| /* | 
 |  * Performance events core code: | 
 |  * | 
 |  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 
 |  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar | 
 |  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
 |  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | 
 |  * | 
 |  * For licensing details see kernel-base/COPYING | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/file.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/sysfs.h> | 
 | #include <linux/dcache.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/vmstat.h> | 
 | #include <linux/device.h> | 
 | #include <linux/export.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/rculist.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/anon_inodes.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/ftrace_event.h> | 
 | #include <linux/hw_breakpoint.h> | 
 | #include <linux/mm_types.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | #include <asm/irq_regs.h> | 
 |  | 
 | struct remote_function_call { | 
 | 	struct task_struct	*p; | 
 | 	int			(*func)(void *info); | 
 | 	void			*info; | 
 | 	int			ret; | 
 | }; | 
 |  | 
 | static void remote_function(void *data) | 
 | { | 
 | 	struct remote_function_call *tfc = data; | 
 | 	struct task_struct *p = tfc->p; | 
 |  | 
 | 	if (p) { | 
 | 		tfc->ret = -EAGAIN; | 
 | 		if (task_cpu(p) != smp_processor_id() || !task_curr(p)) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	tfc->ret = tfc->func(tfc->info); | 
 | } | 
 |  | 
 | /** | 
 |  * task_function_call - call a function on the cpu on which a task runs | 
 |  * @p:		the task to evaluate | 
 |  * @func:	the function to be called | 
 |  * @info:	the function call argument | 
 |  * | 
 |  * Calls the function @func when the task is currently running. This might | 
 |  * be on the current CPU, which just calls the function directly | 
 |  * | 
 |  * returns: @func return value, or | 
 |  *	    -ESRCH  - when the process isn't running | 
 |  *	    -EAGAIN - when the process moved away | 
 |  */ | 
 | static int | 
 | task_function_call(struct task_struct *p, int (*func) (void *info), void *info) | 
 | { | 
 | 	struct remote_function_call data = { | 
 | 		.p	= p, | 
 | 		.func	= func, | 
 | 		.info	= info, | 
 | 		.ret	= -ESRCH, /* No such (running) process */ | 
 | 	}; | 
 |  | 
 | 	if (task_curr(p)) | 
 | 		smp_call_function_single(task_cpu(p), remote_function, &data, 1); | 
 |  | 
 | 	return data.ret; | 
 | } | 
 |  | 
 | /** | 
 |  * cpu_function_call - call a function on the cpu | 
 |  * @func:	the function to be called | 
 |  * @info:	the function call argument | 
 |  * | 
 |  * Calls the function @func on the remote cpu. | 
 |  * | 
 |  * returns: @func return value or -ENXIO when the cpu is offline | 
 |  */ | 
 | static int cpu_function_call(int cpu, int (*func) (void *info), void *info) | 
 | { | 
 | 	struct remote_function_call data = { | 
 | 		.p	= NULL, | 
 | 		.func	= func, | 
 | 		.info	= info, | 
 | 		.ret	= -ENXIO, /* No such CPU */ | 
 | 	}; | 
 |  | 
 | 	smp_call_function_single(cpu, remote_function, &data, 1); | 
 |  | 
 | 	return data.ret; | 
 | } | 
 |  | 
 | #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ | 
 | 		       PERF_FLAG_FD_OUTPUT  |\ | 
 | 		       PERF_FLAG_PID_CGROUP) | 
 |  | 
 | /* | 
 |  * branch priv levels that need permission checks | 
 |  */ | 
 | #define PERF_SAMPLE_BRANCH_PERM_PLM \ | 
 | 	(PERF_SAMPLE_BRANCH_KERNEL |\ | 
 | 	 PERF_SAMPLE_BRANCH_HV) | 
 |  | 
 | enum event_type_t { | 
 | 	EVENT_FLEXIBLE = 0x1, | 
 | 	EVENT_PINNED = 0x2, | 
 | 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, | 
 | }; | 
 |  | 
 | /* | 
 |  * perf_sched_events : >0 events exist | 
 |  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu | 
 |  */ | 
 | struct static_key_deferred perf_sched_events __read_mostly; | 
 | static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); | 
 | static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); | 
 |  | 
 | static atomic_t nr_mmap_events __read_mostly; | 
 | static atomic_t nr_comm_events __read_mostly; | 
 | static atomic_t nr_task_events __read_mostly; | 
 |  | 
 | static LIST_HEAD(pmus); | 
 | static DEFINE_MUTEX(pmus_lock); | 
 | static struct srcu_struct pmus_srcu; | 
 |  | 
 | /* | 
 |  * perf event paranoia level: | 
 |  *  -1 - not paranoid at all | 
 |  *   0 - disallow raw tracepoint access for unpriv | 
 |  *   1 - disallow cpu events for unpriv | 
 |  *   2 - disallow kernel profiling for unpriv | 
 |  */ | 
 | int sysctl_perf_event_paranoid __read_mostly = 1; | 
 |  | 
 | /* Minimum for 512 kiB + 1 user control page */ | 
 | int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ | 
 |  | 
 | /* | 
 |  * max perf event sample rate | 
 |  */ | 
 | #define DEFAULT_MAX_SAMPLE_RATE 100000 | 
 | int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; | 
 | static int max_samples_per_tick __read_mostly = | 
 | 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); | 
 |  | 
 | int perf_proc_update_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int ret = proc_dointvec(table, write, buffer, lenp, ppos); | 
 |  | 
 | 	if (ret || !write) | 
 | 		return ret; | 
 |  | 
 | 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static atomic64_t perf_event_id; | 
 |  | 
 | static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, | 
 | 			      enum event_type_t event_type); | 
 |  | 
 | static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, | 
 | 			     enum event_type_t event_type, | 
 | 			     struct task_struct *task); | 
 |  | 
 | static void update_context_time(struct perf_event_context *ctx); | 
 | static u64 perf_event_time(struct perf_event *event); | 
 |  | 
 | static void ring_buffer_attach(struct perf_event *event, | 
 | 			       struct ring_buffer *rb); | 
 |  | 
 | void __weak perf_event_print_debug(void)	{ } | 
 |  | 
 | extern __weak const char *perf_pmu_name(void) | 
 | { | 
 | 	return "pmu"; | 
 | } | 
 |  | 
 | static inline u64 perf_clock(void) | 
 | { | 
 | 	return local_clock(); | 
 | } | 
 |  | 
 | static inline struct perf_cpu_context * | 
 | __get_cpu_context(struct perf_event_context *ctx) | 
 | { | 
 | 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context); | 
 | } | 
 |  | 
 | static void perf_ctx_lock(struct perf_cpu_context *cpuctx, | 
 | 			  struct perf_event_context *ctx) | 
 | { | 
 | 	raw_spin_lock(&cpuctx->ctx.lock); | 
 | 	if (ctx) | 
 | 		raw_spin_lock(&ctx->lock); | 
 | } | 
 |  | 
 | static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, | 
 | 			    struct perf_event_context *ctx) | 
 | { | 
 | 	if (ctx) | 
 | 		raw_spin_unlock(&ctx->lock); | 
 | 	raw_spin_unlock(&cpuctx->ctx.lock); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CGROUP_PERF | 
 |  | 
 | /* | 
 |  * Must ensure cgroup is pinned (css_get) before calling | 
 |  * this function. In other words, we cannot call this function | 
 |  * if there is no cgroup event for the current CPU context. | 
 |  */ | 
 | static inline struct perf_cgroup * | 
 | perf_cgroup_from_task(struct task_struct *task) | 
 | { | 
 | 	return container_of(task_subsys_state(task, perf_subsys_id), | 
 | 			struct perf_cgroup, css); | 
 | } | 
 |  | 
 | static inline bool | 
 | perf_cgroup_match(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 |  | 
 | 	return !event->cgrp || event->cgrp == cpuctx->cgrp; | 
 | } | 
 |  | 
 | static inline bool perf_tryget_cgroup(struct perf_event *event) | 
 | { | 
 | 	return css_tryget(&event->cgrp->css); | 
 | } | 
 |  | 
 | static inline void perf_put_cgroup(struct perf_event *event) | 
 | { | 
 | 	css_put(&event->cgrp->css); | 
 | } | 
 |  | 
 | static inline void perf_detach_cgroup(struct perf_event *event) | 
 | { | 
 | 	perf_put_cgroup(event); | 
 | 	event->cgrp = NULL; | 
 | } | 
 |  | 
 | static inline int is_cgroup_event(struct perf_event *event) | 
 | { | 
 | 	return event->cgrp != NULL; | 
 | } | 
 |  | 
 | static inline u64 perf_cgroup_event_time(struct perf_event *event) | 
 | { | 
 | 	struct perf_cgroup_info *t; | 
 |  | 
 | 	t = per_cpu_ptr(event->cgrp->info, event->cpu); | 
 | 	return t->time; | 
 | } | 
 |  | 
 | static inline void __update_cgrp_time(struct perf_cgroup *cgrp) | 
 | { | 
 | 	struct perf_cgroup_info *info; | 
 | 	u64 now; | 
 |  | 
 | 	now = perf_clock(); | 
 |  | 
 | 	info = this_cpu_ptr(cgrp->info); | 
 |  | 
 | 	info->time += now - info->timestamp; | 
 | 	info->timestamp = now; | 
 | } | 
 |  | 
 | static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) | 
 | { | 
 | 	struct perf_cgroup *cgrp_out = cpuctx->cgrp; | 
 | 	if (cgrp_out) | 
 | 		__update_cgrp_time(cgrp_out); | 
 | } | 
 |  | 
 | static inline void update_cgrp_time_from_event(struct perf_event *event) | 
 | { | 
 | 	struct perf_cgroup *cgrp; | 
 |  | 
 | 	/* | 
 | 	 * ensure we access cgroup data only when needed and | 
 | 	 * when we know the cgroup is pinned (css_get) | 
 | 	 */ | 
 | 	if (!is_cgroup_event(event)) | 
 | 		return; | 
 |  | 
 | 	cgrp = perf_cgroup_from_task(current); | 
 | 	/* | 
 | 	 * Do not update time when cgroup is not active | 
 | 	 */ | 
 | 	if (cgrp == event->cgrp) | 
 | 		__update_cgrp_time(event->cgrp); | 
 | } | 
 |  | 
 | static inline void | 
 | perf_cgroup_set_timestamp(struct task_struct *task, | 
 | 			  struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_cgroup *cgrp; | 
 | 	struct perf_cgroup_info *info; | 
 |  | 
 | 	/* | 
 | 	 * ctx->lock held by caller | 
 | 	 * ensure we do not access cgroup data | 
 | 	 * unless we have the cgroup pinned (css_get) | 
 | 	 */ | 
 | 	if (!task || !ctx->nr_cgroups) | 
 | 		return; | 
 |  | 
 | 	cgrp = perf_cgroup_from_task(task); | 
 | 	info = this_cpu_ptr(cgrp->info); | 
 | 	info->timestamp = ctx->timestamp; | 
 | } | 
 |  | 
 | #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */ | 
 | #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */ | 
 |  | 
 | /* | 
 |  * reschedule events based on the cgroup constraint of task. | 
 |  * | 
 |  * mode SWOUT : schedule out everything | 
 |  * mode SWIN : schedule in based on cgroup for next | 
 |  */ | 
 | void perf_cgroup_switch(struct task_struct *task, int mode) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct pmu *pmu; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * disable interrupts to avoid geting nr_cgroup | 
 | 	 * changes via __perf_event_disable(). Also | 
 | 	 * avoids preemption. | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	/* | 
 | 	 * we reschedule only in the presence of cgroup | 
 | 	 * constrained events. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	list_for_each_entry_rcu(pmu, &pmus, entry) { | 
 | 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | 
 | 		if (cpuctx->unique_pmu != pmu) | 
 | 			continue; /* ensure we process each cpuctx once */ | 
 |  | 
 | 		/* | 
 | 		 * perf_cgroup_events says at least one | 
 | 		 * context on this CPU has cgroup events. | 
 | 		 * | 
 | 		 * ctx->nr_cgroups reports the number of cgroup | 
 | 		 * events for a context. | 
 | 		 */ | 
 | 		if (cpuctx->ctx.nr_cgroups > 0) { | 
 | 			perf_ctx_lock(cpuctx, cpuctx->task_ctx); | 
 | 			perf_pmu_disable(cpuctx->ctx.pmu); | 
 |  | 
 | 			if (mode & PERF_CGROUP_SWOUT) { | 
 | 				cpu_ctx_sched_out(cpuctx, EVENT_ALL); | 
 | 				/* | 
 | 				 * must not be done before ctxswout due | 
 | 				 * to event_filter_match() in event_sched_out() | 
 | 				 */ | 
 | 				cpuctx->cgrp = NULL; | 
 | 			} | 
 |  | 
 | 			if (mode & PERF_CGROUP_SWIN) { | 
 | 				WARN_ON_ONCE(cpuctx->cgrp); | 
 | 				/* | 
 | 				 * set cgrp before ctxsw in to allow | 
 | 				 * event_filter_match() to not have to pass | 
 | 				 * task around | 
 | 				 */ | 
 | 				cpuctx->cgrp = perf_cgroup_from_task(task); | 
 | 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); | 
 | 			} | 
 | 			perf_pmu_enable(cpuctx->ctx.pmu); | 
 | 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static inline void perf_cgroup_sched_out(struct task_struct *task, | 
 | 					 struct task_struct *next) | 
 | { | 
 | 	struct perf_cgroup *cgrp1; | 
 | 	struct perf_cgroup *cgrp2 = NULL; | 
 |  | 
 | 	/* | 
 | 	 * we come here when we know perf_cgroup_events > 0 | 
 | 	 */ | 
 | 	cgrp1 = perf_cgroup_from_task(task); | 
 |  | 
 | 	/* | 
 | 	 * next is NULL when called from perf_event_enable_on_exec() | 
 | 	 * that will systematically cause a cgroup_switch() | 
 | 	 */ | 
 | 	if (next) | 
 | 		cgrp2 = perf_cgroup_from_task(next); | 
 |  | 
 | 	/* | 
 | 	 * only schedule out current cgroup events if we know | 
 | 	 * that we are switching to a different cgroup. Otherwise, | 
 | 	 * do no touch the cgroup events. | 
 | 	 */ | 
 | 	if (cgrp1 != cgrp2) | 
 | 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT); | 
 | } | 
 |  | 
 | static inline void perf_cgroup_sched_in(struct task_struct *prev, | 
 | 					struct task_struct *task) | 
 | { | 
 | 	struct perf_cgroup *cgrp1; | 
 | 	struct perf_cgroup *cgrp2 = NULL; | 
 |  | 
 | 	/* | 
 | 	 * we come here when we know perf_cgroup_events > 0 | 
 | 	 */ | 
 | 	cgrp1 = perf_cgroup_from_task(task); | 
 |  | 
 | 	/* prev can never be NULL */ | 
 | 	cgrp2 = perf_cgroup_from_task(prev); | 
 |  | 
 | 	/* | 
 | 	 * only need to schedule in cgroup events if we are changing | 
 | 	 * cgroup during ctxsw. Cgroup events were not scheduled | 
 | 	 * out of ctxsw out if that was not the case. | 
 | 	 */ | 
 | 	if (cgrp1 != cgrp2) | 
 | 		perf_cgroup_switch(task, PERF_CGROUP_SWIN); | 
 | } | 
 |  | 
 | static inline int perf_cgroup_connect(int fd, struct perf_event *event, | 
 | 				      struct perf_event_attr *attr, | 
 | 				      struct perf_event *group_leader) | 
 | { | 
 | 	struct perf_cgroup *cgrp; | 
 | 	struct cgroup_subsys_state *css; | 
 | 	struct fd f = fdget(fd); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!f.file) | 
 | 		return -EBADF; | 
 |  | 
 | 	css = cgroup_css_from_dir(f.file, perf_subsys_id); | 
 | 	if (IS_ERR(css)) { | 
 | 		ret = PTR_ERR(css); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	cgrp = container_of(css, struct perf_cgroup, css); | 
 | 	event->cgrp = cgrp; | 
 |  | 
 | 	/* must be done before we fput() the file */ | 
 | 	if (!perf_tryget_cgroup(event)) { | 
 | 		event->cgrp = NULL; | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * all events in a group must monitor | 
 | 	 * the same cgroup because a task belongs | 
 | 	 * to only one perf cgroup at a time | 
 | 	 */ | 
 | 	if (group_leader && group_leader->cgrp != cgrp) { | 
 | 		perf_detach_cgroup(event); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | out: | 
 | 	fdput(f); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline void | 
 | perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) | 
 | { | 
 | 	struct perf_cgroup_info *t; | 
 | 	t = per_cpu_ptr(event->cgrp->info, event->cpu); | 
 | 	event->shadow_ctx_time = now - t->timestamp; | 
 | } | 
 |  | 
 | static inline void | 
 | perf_cgroup_defer_enabled(struct perf_event *event) | 
 | { | 
 | 	/* | 
 | 	 * when the current task's perf cgroup does not match | 
 | 	 * the event's, we need to remember to call the | 
 | 	 * perf_mark_enable() function the first time a task with | 
 | 	 * a matching perf cgroup is scheduled in. | 
 | 	 */ | 
 | 	if (is_cgroup_event(event) && !perf_cgroup_match(event)) | 
 | 		event->cgrp_defer_enabled = 1; | 
 | } | 
 |  | 
 | static inline void | 
 | perf_cgroup_mark_enabled(struct perf_event *event, | 
 | 			 struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *sub; | 
 | 	u64 tstamp = perf_event_time(event); | 
 |  | 
 | 	if (!event->cgrp_defer_enabled) | 
 | 		return; | 
 |  | 
 | 	event->cgrp_defer_enabled = 0; | 
 |  | 
 | 	event->tstamp_enabled = tstamp - event->total_time_enabled; | 
 | 	list_for_each_entry(sub, &event->sibling_list, group_entry) { | 
 | 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) { | 
 | 			sub->tstamp_enabled = tstamp - sub->total_time_enabled; | 
 | 			sub->cgrp_defer_enabled = 0; | 
 | 		} | 
 | 	} | 
 | } | 
 | #else /* !CONFIG_CGROUP_PERF */ | 
 |  | 
 | static inline bool | 
 | perf_cgroup_match(struct perf_event *event) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline void perf_detach_cgroup(struct perf_event *event) | 
 | {} | 
 |  | 
 | static inline int is_cgroup_event(struct perf_event *event) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void update_cgrp_time_from_event(struct perf_event *event) | 
 | { | 
 | } | 
 |  | 
 | static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) | 
 | { | 
 | } | 
 |  | 
 | static inline void perf_cgroup_sched_out(struct task_struct *task, | 
 | 					 struct task_struct *next) | 
 | { | 
 | } | 
 |  | 
 | static inline void perf_cgroup_sched_in(struct task_struct *prev, | 
 | 					struct task_struct *task) | 
 | { | 
 | } | 
 |  | 
 | static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, | 
 | 				      struct perf_event_attr *attr, | 
 | 				      struct perf_event *group_leader) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static inline void | 
 | perf_cgroup_set_timestamp(struct task_struct *task, | 
 | 			  struct perf_event_context *ctx) | 
 | { | 
 | } | 
 |  | 
 | void | 
 | perf_cgroup_switch(struct task_struct *task, struct task_struct *next) | 
 | { | 
 | } | 
 |  | 
 | static inline void | 
 | perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) | 
 | { | 
 | } | 
 |  | 
 | static inline u64 perf_cgroup_event_time(struct perf_event *event) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void | 
 | perf_cgroup_defer_enabled(struct perf_event *event) | 
 | { | 
 | } | 
 |  | 
 | static inline void | 
 | perf_cgroup_mark_enabled(struct perf_event *event, | 
 | 			 struct perf_event_context *ctx) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | void perf_pmu_disable(struct pmu *pmu) | 
 | { | 
 | 	int *count = this_cpu_ptr(pmu->pmu_disable_count); | 
 | 	if (!(*count)++) | 
 | 		pmu->pmu_disable(pmu); | 
 | } | 
 |  | 
 | void perf_pmu_enable(struct pmu *pmu) | 
 | { | 
 | 	int *count = this_cpu_ptr(pmu->pmu_disable_count); | 
 | 	if (!--(*count)) | 
 | 		pmu->pmu_enable(pmu); | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(struct list_head, rotation_list); | 
 |  | 
 | /* | 
 |  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized | 
 |  * because they're strictly cpu affine and rotate_start is called with IRQs | 
 |  * disabled, while rotate_context is called from IRQ context. | 
 |  */ | 
 | static void perf_pmu_rotate_start(struct pmu *pmu) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | 
 | 	struct list_head *head = &__get_cpu_var(rotation_list); | 
 |  | 
 | 	WARN_ON(!irqs_disabled()); | 
 |  | 
 | 	if (list_empty(&cpuctx->rotation_list)) | 
 | 		list_add(&cpuctx->rotation_list, head); | 
 | } | 
 |  | 
 | static void get_ctx(struct perf_event_context *ctx) | 
 | { | 
 | 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | 
 | } | 
 |  | 
 | static void put_ctx(struct perf_event_context *ctx) | 
 | { | 
 | 	if (atomic_dec_and_test(&ctx->refcount)) { | 
 | 		if (ctx->parent_ctx) | 
 | 			put_ctx(ctx->parent_ctx); | 
 | 		if (ctx->task) | 
 | 			put_task_struct(ctx->task); | 
 | 		kfree_rcu(ctx, rcu_head); | 
 | 	} | 
 | } | 
 |  | 
 | static void unclone_ctx(struct perf_event_context *ctx) | 
 | { | 
 | 	if (ctx->parent_ctx) { | 
 | 		put_ctx(ctx->parent_ctx); | 
 | 		ctx->parent_ctx = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * only top level events have the pid namespace they were created in | 
 | 	 */ | 
 | 	if (event->parent) | 
 | 		event = event->parent; | 
 |  | 
 | 	return task_tgid_nr_ns(p, event->ns); | 
 | } | 
 |  | 
 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * only top level events have the pid namespace they were created in | 
 | 	 */ | 
 | 	if (event->parent) | 
 | 		event = event->parent; | 
 |  | 
 | 	return task_pid_nr_ns(p, event->ns); | 
 | } | 
 |  | 
 | /* | 
 |  * If we inherit events we want to return the parent event id | 
 |  * to userspace. | 
 |  */ | 
 | static u64 primary_event_id(struct perf_event *event) | 
 | { | 
 | 	u64 id = event->id; | 
 |  | 
 | 	if (event->parent) | 
 | 		id = event->parent->id; | 
 |  | 
 | 	return id; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the perf_event_context for a task and lock it. | 
 |  * This has to cope with with the fact that until it is locked, | 
 |  * the context could get moved to another task. | 
 |  */ | 
 | static struct perf_event_context * | 
 | perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 |  | 
 | 	rcu_read_lock(); | 
 | retry: | 
 | 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); | 
 | 	if (ctx) { | 
 | 		/* | 
 | 		 * If this context is a clone of another, it might | 
 | 		 * get swapped for another underneath us by | 
 | 		 * perf_event_task_sched_out, though the | 
 | 		 * rcu_read_lock() protects us from any context | 
 | 		 * getting freed.  Lock the context and check if it | 
 | 		 * got swapped before we could get the lock, and retry | 
 | 		 * if so.  If we locked the right context, then it | 
 | 		 * can't get swapped on us any more. | 
 | 		 */ | 
 | 		raw_spin_lock_irqsave(&ctx->lock, *flags); | 
 | 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { | 
 | 			raw_spin_unlock_irqrestore(&ctx->lock, *flags); | 
 | 			goto retry; | 
 | 		} | 
 |  | 
 | 		if (!atomic_inc_not_zero(&ctx->refcount)) { | 
 | 			raw_spin_unlock_irqrestore(&ctx->lock, *flags); | 
 | 			ctx = NULL; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return ctx; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the context for a task and increment its pin_count so it | 
 |  * can't get swapped to another task.  This also increments its | 
 |  * reference count so that the context can't get freed. | 
 |  */ | 
 | static struct perf_event_context * | 
 | perf_pin_task_context(struct task_struct *task, int ctxn) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	unsigned long flags; | 
 |  | 
 | 	ctx = perf_lock_task_context(task, ctxn, &flags); | 
 | 	if (ctx) { | 
 | 		++ctx->pin_count; | 
 | 		raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 	} | 
 | 	return ctx; | 
 | } | 
 |  | 
 | static void perf_unpin_context(struct perf_event_context *ctx) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&ctx->lock, flags); | 
 | 	--ctx->pin_count; | 
 | 	raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Update the record of the current time in a context. | 
 |  */ | 
 | static void update_context_time(struct perf_event_context *ctx) | 
 | { | 
 | 	u64 now = perf_clock(); | 
 |  | 
 | 	ctx->time += now - ctx->timestamp; | 
 | 	ctx->timestamp = now; | 
 | } | 
 |  | 
 | static u64 perf_event_time(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 |  | 
 | 	if (is_cgroup_event(event)) | 
 | 		return perf_cgroup_event_time(event); | 
 |  | 
 | 	return ctx ? ctx->time : 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Update the total_time_enabled and total_time_running fields for a event. | 
 |  * The caller of this function needs to hold the ctx->lock. | 
 |  */ | 
 | static void update_event_times(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	u64 run_end; | 
 |  | 
 | 	if (event->state < PERF_EVENT_STATE_INACTIVE || | 
 | 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | 
 | 		return; | 
 | 	/* | 
 | 	 * in cgroup mode, time_enabled represents | 
 | 	 * the time the event was enabled AND active | 
 | 	 * tasks were in the monitored cgroup. This is | 
 | 	 * independent of the activity of the context as | 
 | 	 * there may be a mix of cgroup and non-cgroup events. | 
 | 	 * | 
 | 	 * That is why we treat cgroup events differently | 
 | 	 * here. | 
 | 	 */ | 
 | 	if (is_cgroup_event(event)) | 
 | 		run_end = perf_cgroup_event_time(event); | 
 | 	else if (ctx->is_active) | 
 | 		run_end = ctx->time; | 
 | 	else | 
 | 		run_end = event->tstamp_stopped; | 
 |  | 
 | 	event->total_time_enabled = run_end - event->tstamp_enabled; | 
 |  | 
 | 	if (event->state == PERF_EVENT_STATE_INACTIVE) | 
 | 		run_end = event->tstamp_stopped; | 
 | 	else | 
 | 		run_end = perf_event_time(event); | 
 |  | 
 | 	event->total_time_running = run_end - event->tstamp_running; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Update total_time_enabled and total_time_running for all events in a group. | 
 |  */ | 
 | static void update_group_times(struct perf_event *leader) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	update_event_times(leader); | 
 | 	list_for_each_entry(event, &leader->sibling_list, group_entry) | 
 | 		update_event_times(event); | 
 | } | 
 |  | 
 | static struct list_head * | 
 | ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) | 
 | { | 
 | 	if (event->attr.pinned) | 
 | 		return &ctx->pinned_groups; | 
 | 	else | 
 | 		return &ctx->flexible_groups; | 
 | } | 
 |  | 
 | /* | 
 |  * Add a event from the lists for its context. | 
 |  * Must be called with ctx->mutex and ctx->lock held. | 
 |  */ | 
 | static void | 
 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | 
 | { | 
 | 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); | 
 | 	event->attach_state |= PERF_ATTACH_CONTEXT; | 
 |  | 
 | 	/* | 
 | 	 * If we're a stand alone event or group leader, we go to the context | 
 | 	 * list, group events are kept attached to the group so that | 
 | 	 * perf_group_detach can, at all times, locate all siblings. | 
 | 	 */ | 
 | 	if (event->group_leader == event) { | 
 | 		struct list_head *list; | 
 |  | 
 | 		if (is_software_event(event)) | 
 | 			event->group_flags |= PERF_GROUP_SOFTWARE; | 
 |  | 
 | 		list = ctx_group_list(event, ctx); | 
 | 		list_add_tail(&event->group_entry, list); | 
 | 	} | 
 |  | 
 | 	if (is_cgroup_event(event)) | 
 | 		ctx->nr_cgroups++; | 
 |  | 
 | 	if (has_branch_stack(event)) | 
 | 		ctx->nr_branch_stack++; | 
 |  | 
 | 	list_add_rcu(&event->event_entry, &ctx->event_list); | 
 | 	if (!ctx->nr_events) | 
 | 		perf_pmu_rotate_start(ctx->pmu); | 
 | 	ctx->nr_events++; | 
 | 	if (event->attr.inherit_stat) | 
 | 		ctx->nr_stat++; | 
 | } | 
 |  | 
 | /* | 
 |  * Called at perf_event creation and when events are attached/detached from a | 
 |  * group. | 
 |  */ | 
 | static void perf_event__read_size(struct perf_event *event) | 
 | { | 
 | 	int entry = sizeof(u64); /* value */ | 
 | 	int size = 0; | 
 | 	int nr = 1; | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
 | 		size += sizeof(u64); | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
 | 		size += sizeof(u64); | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_ID) | 
 | 		entry += sizeof(u64); | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_GROUP) { | 
 | 		nr += event->group_leader->nr_siblings; | 
 | 		size += sizeof(u64); | 
 | 	} | 
 |  | 
 | 	size += entry * nr; | 
 | 	event->read_size = size; | 
 | } | 
 |  | 
 | static void perf_event__header_size(struct perf_event *event) | 
 | { | 
 | 	struct perf_sample_data *data; | 
 | 	u64 sample_type = event->attr.sample_type; | 
 | 	u16 size = 0; | 
 |  | 
 | 	perf_event__read_size(event); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_IP) | 
 | 		size += sizeof(data->ip); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ADDR) | 
 | 		size += sizeof(data->addr); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_PERIOD) | 
 | 		size += sizeof(data->period); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_READ) | 
 | 		size += event->read_size; | 
 |  | 
 | 	event->header_size = size; | 
 | } | 
 |  | 
 | static void perf_event__id_header_size(struct perf_event *event) | 
 | { | 
 | 	struct perf_sample_data *data; | 
 | 	u64 sample_type = event->attr.sample_type; | 
 | 	u16 size = 0; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TID) | 
 | 		size += sizeof(data->tid_entry); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TIME) | 
 | 		size += sizeof(data->time); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ID) | 
 | 		size += sizeof(data->id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STREAM_ID) | 
 | 		size += sizeof(data->stream_id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CPU) | 
 | 		size += sizeof(data->cpu_entry); | 
 |  | 
 | 	event->id_header_size = size; | 
 | } | 
 |  | 
 | static void perf_group_attach(struct perf_event *event) | 
 | { | 
 | 	struct perf_event *group_leader = event->group_leader, *pos; | 
 |  | 
 | 	/* | 
 | 	 * We can have double attach due to group movement in perf_event_open. | 
 | 	 */ | 
 | 	if (event->attach_state & PERF_ATTACH_GROUP) | 
 | 		return; | 
 |  | 
 | 	event->attach_state |= PERF_ATTACH_GROUP; | 
 |  | 
 | 	if (group_leader == event) | 
 | 		return; | 
 |  | 
 | 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE && | 
 | 			!is_software_event(event)) | 
 | 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; | 
 |  | 
 | 	list_add_tail(&event->group_entry, &group_leader->sibling_list); | 
 | 	group_leader->nr_siblings++; | 
 |  | 
 | 	perf_event__header_size(group_leader); | 
 |  | 
 | 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry) | 
 | 		perf_event__header_size(pos); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove a event from the lists for its context. | 
 |  * Must be called with ctx->mutex and ctx->lock held. | 
 |  */ | 
 | static void | 
 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	/* | 
 | 	 * We can have double detach due to exit/hot-unplug + close. | 
 | 	 */ | 
 | 	if (!(event->attach_state & PERF_ATTACH_CONTEXT)) | 
 | 		return; | 
 |  | 
 | 	event->attach_state &= ~PERF_ATTACH_CONTEXT; | 
 |  | 
 | 	if (is_cgroup_event(event)) { | 
 | 		ctx->nr_cgroups--; | 
 | 		cpuctx = __get_cpu_context(ctx); | 
 | 		/* | 
 | 		 * if there are no more cgroup events | 
 | 		 * then cler cgrp to avoid stale pointer | 
 | 		 * in update_cgrp_time_from_cpuctx() | 
 | 		 */ | 
 | 		if (!ctx->nr_cgroups) | 
 | 			cpuctx->cgrp = NULL; | 
 | 	} | 
 |  | 
 | 	if (has_branch_stack(event)) | 
 | 		ctx->nr_branch_stack--; | 
 |  | 
 | 	ctx->nr_events--; | 
 | 	if (event->attr.inherit_stat) | 
 | 		ctx->nr_stat--; | 
 |  | 
 | 	list_del_rcu(&event->event_entry); | 
 |  | 
 | 	if (event->group_leader == event) | 
 | 		list_del_init(&event->group_entry); | 
 |  | 
 | 	update_group_times(event); | 
 |  | 
 | 	/* | 
 | 	 * If event was in error state, then keep it | 
 | 	 * that way, otherwise bogus counts will be | 
 | 	 * returned on read(). The only way to get out | 
 | 	 * of error state is by explicit re-enabling | 
 | 	 * of the event | 
 | 	 */ | 
 | 	if (event->state > PERF_EVENT_STATE_OFF) | 
 | 		event->state = PERF_EVENT_STATE_OFF; | 
 | } | 
 |  | 
 | static void perf_group_detach(struct perf_event *event) | 
 | { | 
 | 	struct perf_event *sibling, *tmp; | 
 | 	struct list_head *list = NULL; | 
 |  | 
 | 	/* | 
 | 	 * We can have double detach due to exit/hot-unplug + close. | 
 | 	 */ | 
 | 	if (!(event->attach_state & PERF_ATTACH_GROUP)) | 
 | 		return; | 
 |  | 
 | 	event->attach_state &= ~PERF_ATTACH_GROUP; | 
 |  | 
 | 	/* | 
 | 	 * If this is a sibling, remove it from its group. | 
 | 	 */ | 
 | 	if (event->group_leader != event) { | 
 | 		list_del_init(&event->group_entry); | 
 | 		event->group_leader->nr_siblings--; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!list_empty(&event->group_entry)) | 
 | 		list = &event->group_entry; | 
 |  | 
 | 	/* | 
 | 	 * If this was a group event with sibling events then | 
 | 	 * upgrade the siblings to singleton events by adding them | 
 | 	 * to whatever list we are on. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | 
 | 		if (list) | 
 | 			list_move_tail(&sibling->group_entry, list); | 
 | 		sibling->group_leader = sibling; | 
 |  | 
 | 		/* Inherit group flags from the previous leader */ | 
 | 		sibling->group_flags = event->group_flags; | 
 | 	} | 
 |  | 
 | out: | 
 | 	perf_event__header_size(event->group_leader); | 
 |  | 
 | 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) | 
 | 		perf_event__header_size(tmp); | 
 | } | 
 |  | 
 | static inline int | 
 | event_filter_match(struct perf_event *event) | 
 | { | 
 | 	return (event->cpu == -1 || event->cpu == smp_processor_id()) | 
 | 	    && perf_cgroup_match(event); | 
 | } | 
 |  | 
 | static void | 
 | event_sched_out(struct perf_event *event, | 
 | 		  struct perf_cpu_context *cpuctx, | 
 | 		  struct perf_event_context *ctx) | 
 | { | 
 | 	u64 tstamp = perf_event_time(event); | 
 | 	u64 delta; | 
 | 	/* | 
 | 	 * An event which could not be activated because of | 
 | 	 * filter mismatch still needs to have its timings | 
 | 	 * maintained, otherwise bogus information is return | 
 | 	 * via read() for time_enabled, time_running: | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_INACTIVE | 
 | 	    && !event_filter_match(event)) { | 
 | 		delta = tstamp - event->tstamp_stopped; | 
 | 		event->tstamp_running += delta; | 
 | 		event->tstamp_stopped = tstamp; | 
 | 	} | 
 |  | 
 | 	if (event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		return; | 
 |  | 
 | 	event->state = PERF_EVENT_STATE_INACTIVE; | 
 | 	if (event->pending_disable) { | 
 | 		event->pending_disable = 0; | 
 | 		event->state = PERF_EVENT_STATE_OFF; | 
 | 	} | 
 | 	event->tstamp_stopped = tstamp; | 
 | 	event->pmu->del(event, 0); | 
 | 	event->oncpu = -1; | 
 |  | 
 | 	if (!is_software_event(event)) | 
 | 		cpuctx->active_oncpu--; | 
 | 	ctx->nr_active--; | 
 | 	if (event->attr.freq && event->attr.sample_freq) | 
 | 		ctx->nr_freq--; | 
 | 	if (event->attr.exclusive || !cpuctx->active_oncpu) | 
 | 		cpuctx->exclusive = 0; | 
 | } | 
 |  | 
 | static void | 
 | group_sched_out(struct perf_event *group_event, | 
 | 		struct perf_cpu_context *cpuctx, | 
 | 		struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	int state = group_event->state; | 
 |  | 
 | 	event_sched_out(group_event, cpuctx, ctx); | 
 |  | 
 | 	/* | 
 | 	 * Schedule out siblings (if any): | 
 | 	 */ | 
 | 	list_for_each_entry(event, &group_event->sibling_list, group_entry) | 
 | 		event_sched_out(event, cpuctx, ctx); | 
 |  | 
 | 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) | 
 | 		cpuctx->exclusive = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to remove a performance event | 
 |  * | 
 |  * We disable the event on the hardware level first. After that we | 
 |  * remove it from the context list. | 
 |  */ | 
 | static int __perf_remove_from_context(void *info) | 
 | { | 
 | 	struct perf_event *event = info; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 |  | 
 | 	raw_spin_lock(&ctx->lock); | 
 | 	event_sched_out(event, cpuctx, ctx); | 
 | 	list_del_event(event, ctx); | 
 | 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) { | 
 | 		ctx->is_active = 0; | 
 | 		cpuctx->task_ctx = NULL; | 
 | 	} | 
 | 	raw_spin_unlock(&ctx->lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Remove the event from a task's (or a CPU's) list of events. | 
 |  * | 
 |  * CPU events are removed with a smp call. For task events we only | 
 |  * call when the task is on a CPU. | 
 |  * | 
 |  * If event->ctx is a cloned context, callers must make sure that | 
 |  * every task struct that event->ctx->task could possibly point to | 
 |  * remains valid.  This is OK when called from perf_release since | 
 |  * that only calls us on the top-level context, which can't be a clone. | 
 |  * When called from perf_event_exit_task, it's OK because the | 
 |  * context has been detached from its task. | 
 |  */ | 
 | static void perf_remove_from_context(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct task_struct *task = ctx->task; | 
 |  | 
 | 	lockdep_assert_held(&ctx->mutex); | 
 |  | 
 | 	if (!task) { | 
 | 		/* | 
 | 		 * Per cpu events are removed via an smp call and | 
 | 		 * the removal is always successful. | 
 | 		 */ | 
 | 		cpu_function_call(event->cpu, __perf_remove_from_context, event); | 
 | 		return; | 
 | 	} | 
 |  | 
 | retry: | 
 | 	if (!task_function_call(task, __perf_remove_from_context, event)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 | 	/* | 
 | 	 * If we failed to find a running task, but find the context active now | 
 | 	 * that we've acquired the ctx->lock, retry. | 
 | 	 */ | 
 | 	if (ctx->is_active) { | 
 | 		raw_spin_unlock_irq(&ctx->lock); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Since the task isn't running, its safe to remove the event, us | 
 | 	 * holding the ctx->lock ensures the task won't get scheduled in. | 
 | 	 */ | 
 | 	list_del_event(event, ctx); | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to disable a performance event | 
 |  */ | 
 | int __perf_event_disable(void *info) | 
 | { | 
 | 	struct perf_event *event = info; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 |  | 
 | 	/* | 
 | 	 * If this is a per-task event, need to check whether this | 
 | 	 * event's task is the current task on this cpu. | 
 | 	 * | 
 | 	 * Can trigger due to concurrent perf_event_context_sched_out() | 
 | 	 * flipping contexts around. | 
 | 	 */ | 
 | 	if (ctx->task && cpuctx->task_ctx != ctx) | 
 | 		return -EINVAL; | 
 |  | 
 | 	raw_spin_lock(&ctx->lock); | 
 |  | 
 | 	/* | 
 | 	 * If the event is on, turn it off. | 
 | 	 * If it is in error state, leave it in error state. | 
 | 	 */ | 
 | 	if (event->state >= PERF_EVENT_STATE_INACTIVE) { | 
 | 		update_context_time(ctx); | 
 | 		update_cgrp_time_from_event(event); | 
 | 		update_group_times(event); | 
 | 		if (event == event->group_leader) | 
 | 			group_sched_out(event, cpuctx, ctx); | 
 | 		else | 
 | 			event_sched_out(event, cpuctx, ctx); | 
 | 		event->state = PERF_EVENT_STATE_OFF; | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock(&ctx->lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Disable a event. | 
 |  * | 
 |  * If event->ctx is a cloned context, callers must make sure that | 
 |  * every task struct that event->ctx->task could possibly point to | 
 |  * remains valid.  This condition is satisifed when called through | 
 |  * perf_event_for_each_child or perf_event_for_each because they | 
 |  * hold the top-level event's child_mutex, so any descendant that | 
 |  * goes to exit will block in sync_child_event. | 
 |  * When called from perf_pending_event it's OK because event->ctx | 
 |  * is the current context on this CPU and preemption is disabled, | 
 |  * hence we can't get into perf_event_task_sched_out for this context. | 
 |  */ | 
 | void perf_event_disable(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct task_struct *task = ctx->task; | 
 |  | 
 | 	if (!task) { | 
 | 		/* | 
 | 		 * Disable the event on the cpu that it's on | 
 | 		 */ | 
 | 		cpu_function_call(event->cpu, __perf_event_disable, event); | 
 | 		return; | 
 | 	} | 
 |  | 
 | retry: | 
 | 	if (!task_function_call(task, __perf_event_disable, event)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 | 	/* | 
 | 	 * If the event is still active, we need to retry the cross-call. | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_ACTIVE) { | 
 | 		raw_spin_unlock_irq(&ctx->lock); | 
 | 		/* | 
 | 		 * Reload the task pointer, it might have been changed by | 
 | 		 * a concurrent perf_event_context_sched_out(). | 
 | 		 */ | 
 | 		task = ctx->task; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Since we have the lock this context can't be scheduled | 
 | 	 * in, so we can change the state safely. | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_INACTIVE) { | 
 | 		update_group_times(event); | 
 | 		event->state = PERF_EVENT_STATE_OFF; | 
 | 	} | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_disable); | 
 |  | 
 | static void perf_set_shadow_time(struct perf_event *event, | 
 | 				 struct perf_event_context *ctx, | 
 | 				 u64 tstamp) | 
 | { | 
 | 	/* | 
 | 	 * use the correct time source for the time snapshot | 
 | 	 * | 
 | 	 * We could get by without this by leveraging the | 
 | 	 * fact that to get to this function, the caller | 
 | 	 * has most likely already called update_context_time() | 
 | 	 * and update_cgrp_time_xx() and thus both timestamp | 
 | 	 * are identical (or very close). Given that tstamp is, | 
 | 	 * already adjusted for cgroup, we could say that: | 
 | 	 *    tstamp - ctx->timestamp | 
 | 	 * is equivalent to | 
 | 	 *    tstamp - cgrp->timestamp. | 
 | 	 * | 
 | 	 * Then, in perf_output_read(), the calculation would | 
 | 	 * work with no changes because: | 
 | 	 * - event is guaranteed scheduled in | 
 | 	 * - no scheduled out in between | 
 | 	 * - thus the timestamp would be the same | 
 | 	 * | 
 | 	 * But this is a bit hairy. | 
 | 	 * | 
 | 	 * So instead, we have an explicit cgroup call to remain | 
 | 	 * within the time time source all along. We believe it | 
 | 	 * is cleaner and simpler to understand. | 
 | 	 */ | 
 | 	if (is_cgroup_event(event)) | 
 | 		perf_cgroup_set_shadow_time(event, tstamp); | 
 | 	else | 
 | 		event->shadow_ctx_time = tstamp - ctx->timestamp; | 
 | } | 
 |  | 
 | #define MAX_INTERRUPTS (~0ULL) | 
 |  | 
 | static void perf_log_throttle(struct perf_event *event, int enable); | 
 |  | 
 | static int | 
 | event_sched_in(struct perf_event *event, | 
 | 		 struct perf_cpu_context *cpuctx, | 
 | 		 struct perf_event_context *ctx) | 
 | { | 
 | 	u64 tstamp = perf_event_time(event); | 
 |  | 
 | 	if (event->state <= PERF_EVENT_STATE_OFF) | 
 | 		return 0; | 
 |  | 
 | 	event->state = PERF_EVENT_STATE_ACTIVE; | 
 | 	event->oncpu = smp_processor_id(); | 
 |  | 
 | 	/* | 
 | 	 * Unthrottle events, since we scheduled we might have missed several | 
 | 	 * ticks already, also for a heavily scheduling task there is little | 
 | 	 * guarantee it'll get a tick in a timely manner. | 
 | 	 */ | 
 | 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { | 
 | 		perf_log_throttle(event, 1); | 
 | 		event->hw.interrupts = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The new state must be visible before we turn it on in the hardware: | 
 | 	 */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	if (event->pmu->add(event, PERF_EF_START)) { | 
 | 		event->state = PERF_EVENT_STATE_INACTIVE; | 
 | 		event->oncpu = -1; | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	event->tstamp_running += tstamp - event->tstamp_stopped; | 
 |  | 
 | 	perf_set_shadow_time(event, ctx, tstamp); | 
 |  | 
 | 	if (!is_software_event(event)) | 
 | 		cpuctx->active_oncpu++; | 
 | 	ctx->nr_active++; | 
 | 	if (event->attr.freq && event->attr.sample_freq) | 
 | 		ctx->nr_freq++; | 
 |  | 
 | 	if (event->attr.exclusive) | 
 | 		cpuctx->exclusive = 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | group_sched_in(struct perf_event *group_event, | 
 | 	       struct perf_cpu_context *cpuctx, | 
 | 	       struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *event, *partial_group = NULL; | 
 | 	struct pmu *pmu = group_event->pmu; | 
 | 	u64 now = ctx->time; | 
 | 	bool simulate = false; | 
 |  | 
 | 	if (group_event->state == PERF_EVENT_STATE_OFF) | 
 | 		return 0; | 
 |  | 
 | 	pmu->start_txn(pmu); | 
 |  | 
 | 	if (event_sched_in(group_event, cpuctx, ctx)) { | 
 | 		pmu->cancel_txn(pmu); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Schedule in siblings as one group (if any): | 
 | 	 */ | 
 | 	list_for_each_entry(event, &group_event->sibling_list, group_entry) { | 
 | 		if (event_sched_in(event, cpuctx, ctx)) { | 
 | 			partial_group = event; | 
 | 			goto group_error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!pmu->commit_txn(pmu)) | 
 | 		return 0; | 
 |  | 
 | group_error: | 
 | 	/* | 
 | 	 * Groups can be scheduled in as one unit only, so undo any | 
 | 	 * partial group before returning: | 
 | 	 * The events up to the failed event are scheduled out normally, | 
 | 	 * tstamp_stopped will be updated. | 
 | 	 * | 
 | 	 * The failed events and the remaining siblings need to have | 
 | 	 * their timings updated as if they had gone thru event_sched_in() | 
 | 	 * and event_sched_out(). This is required to get consistent timings | 
 | 	 * across the group. This also takes care of the case where the group | 
 | 	 * could never be scheduled by ensuring tstamp_stopped is set to mark | 
 | 	 * the time the event was actually stopped, such that time delta | 
 | 	 * calculation in update_event_times() is correct. | 
 | 	 */ | 
 | 	list_for_each_entry(event, &group_event->sibling_list, group_entry) { | 
 | 		if (event == partial_group) | 
 | 			simulate = true; | 
 |  | 
 | 		if (simulate) { | 
 | 			event->tstamp_running += now - event->tstamp_stopped; | 
 | 			event->tstamp_stopped = now; | 
 | 		} else { | 
 | 			event_sched_out(event, cpuctx, ctx); | 
 | 		} | 
 | 	} | 
 | 	event_sched_out(group_event, cpuctx, ctx); | 
 |  | 
 | 	pmu->cancel_txn(pmu); | 
 |  | 
 | 	return -EAGAIN; | 
 | } | 
 |  | 
 | /* | 
 |  * Work out whether we can put this event group on the CPU now. | 
 |  */ | 
 | static int group_can_go_on(struct perf_event *event, | 
 | 			   struct perf_cpu_context *cpuctx, | 
 | 			   int can_add_hw) | 
 | { | 
 | 	/* | 
 | 	 * Groups consisting entirely of software events can always go on. | 
 | 	 */ | 
 | 	if (event->group_flags & PERF_GROUP_SOFTWARE) | 
 | 		return 1; | 
 | 	/* | 
 | 	 * If an exclusive group is already on, no other hardware | 
 | 	 * events can go on. | 
 | 	 */ | 
 | 	if (cpuctx->exclusive) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * If this group is exclusive and there are already | 
 | 	 * events on the CPU, it can't go on. | 
 | 	 */ | 
 | 	if (event->attr.exclusive && cpuctx->active_oncpu) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * Otherwise, try to add it if all previous groups were able | 
 | 	 * to go on. | 
 | 	 */ | 
 | 	return can_add_hw; | 
 | } | 
 |  | 
 | static void add_event_to_ctx(struct perf_event *event, | 
 | 			       struct perf_event_context *ctx) | 
 | { | 
 | 	u64 tstamp = perf_event_time(event); | 
 |  | 
 | 	list_add_event(event, ctx); | 
 | 	perf_group_attach(event); | 
 | 	event->tstamp_enabled = tstamp; | 
 | 	event->tstamp_running = tstamp; | 
 | 	event->tstamp_stopped = tstamp; | 
 | } | 
 |  | 
 | static void task_ctx_sched_out(struct perf_event_context *ctx); | 
 | static void | 
 | ctx_sched_in(struct perf_event_context *ctx, | 
 | 	     struct perf_cpu_context *cpuctx, | 
 | 	     enum event_type_t event_type, | 
 | 	     struct task_struct *task); | 
 |  | 
 | static void perf_event_sched_in(struct perf_cpu_context *cpuctx, | 
 | 				struct perf_event_context *ctx, | 
 | 				struct task_struct *task) | 
 | { | 
 | 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); | 
 | 	if (ctx) | 
 | 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); | 
 | 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); | 
 | 	if (ctx) | 
 | 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to install and enable a performance event | 
 |  * | 
 |  * Must be called with ctx->mutex held | 
 |  */ | 
 | static int  __perf_install_in_context(void *info) | 
 | { | 
 | 	struct perf_event *event = info; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 | 	struct perf_event_context *task_ctx = cpuctx->task_ctx; | 
 | 	struct task_struct *task = current; | 
 |  | 
 | 	perf_ctx_lock(cpuctx, task_ctx); | 
 | 	perf_pmu_disable(cpuctx->ctx.pmu); | 
 |  | 
 | 	/* | 
 | 	 * If there was an active task_ctx schedule it out. | 
 | 	 */ | 
 | 	if (task_ctx) | 
 | 		task_ctx_sched_out(task_ctx); | 
 |  | 
 | 	/* | 
 | 	 * If the context we're installing events in is not the | 
 | 	 * active task_ctx, flip them. | 
 | 	 */ | 
 | 	if (ctx->task && task_ctx != ctx) { | 
 | 		if (task_ctx) | 
 | 			raw_spin_unlock(&task_ctx->lock); | 
 | 		raw_spin_lock(&ctx->lock); | 
 | 		task_ctx = ctx; | 
 | 	} | 
 |  | 
 | 	if (task_ctx) { | 
 | 		cpuctx->task_ctx = task_ctx; | 
 | 		task = task_ctx->task; | 
 | 	} | 
 |  | 
 | 	cpu_ctx_sched_out(cpuctx, EVENT_ALL); | 
 |  | 
 | 	update_context_time(ctx); | 
 | 	/* | 
 | 	 * update cgrp time only if current cgrp | 
 | 	 * matches event->cgrp. Must be done before | 
 | 	 * calling add_event_to_ctx() | 
 | 	 */ | 
 | 	update_cgrp_time_from_event(event); | 
 |  | 
 | 	add_event_to_ctx(event, ctx); | 
 |  | 
 | 	/* | 
 | 	 * Schedule everything back in | 
 | 	 */ | 
 | 	perf_event_sched_in(cpuctx, task_ctx, task); | 
 |  | 
 | 	perf_pmu_enable(cpuctx->ctx.pmu); | 
 | 	perf_ctx_unlock(cpuctx, task_ctx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Attach a performance event to a context | 
 |  * | 
 |  * First we add the event to the list with the hardware enable bit | 
 |  * in event->hw_config cleared. | 
 |  * | 
 |  * If the event is attached to a task which is on a CPU we use a smp | 
 |  * call to enable it in the task context. The task might have been | 
 |  * scheduled away, but we check this in the smp call again. | 
 |  */ | 
 | static void | 
 | perf_install_in_context(struct perf_event_context *ctx, | 
 | 			struct perf_event *event, | 
 | 			int cpu) | 
 | { | 
 | 	struct task_struct *task = ctx->task; | 
 |  | 
 | 	lockdep_assert_held(&ctx->mutex); | 
 |  | 
 | 	event->ctx = ctx; | 
 | 	if (event->cpu != -1) | 
 | 		event->cpu = cpu; | 
 |  | 
 | 	if (!task) { | 
 | 		/* | 
 | 		 * Per cpu events are installed via an smp call and | 
 | 		 * the install is always successful. | 
 | 		 */ | 
 | 		cpu_function_call(cpu, __perf_install_in_context, event); | 
 | 		return; | 
 | 	} | 
 |  | 
 | retry: | 
 | 	if (!task_function_call(task, __perf_install_in_context, event)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 | 	/* | 
 | 	 * If we failed to find a running task, but find the context active now | 
 | 	 * that we've acquired the ctx->lock, retry. | 
 | 	 */ | 
 | 	if (ctx->is_active) { | 
 | 		raw_spin_unlock_irq(&ctx->lock); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Since the task isn't running, its safe to add the event, us holding | 
 | 	 * the ctx->lock ensures the task won't get scheduled in. | 
 | 	 */ | 
 | 	add_event_to_ctx(event, ctx); | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Put a event into inactive state and update time fields. | 
 |  * Enabling the leader of a group effectively enables all | 
 |  * the group members that aren't explicitly disabled, so we | 
 |  * have to update their ->tstamp_enabled also. | 
 |  * Note: this works for group members as well as group leaders | 
 |  * since the non-leader members' sibling_lists will be empty. | 
 |  */ | 
 | static void __perf_event_mark_enabled(struct perf_event *event) | 
 | { | 
 | 	struct perf_event *sub; | 
 | 	u64 tstamp = perf_event_time(event); | 
 |  | 
 | 	event->state = PERF_EVENT_STATE_INACTIVE; | 
 | 	event->tstamp_enabled = tstamp - event->total_time_enabled; | 
 | 	list_for_each_entry(sub, &event->sibling_list, group_entry) { | 
 | 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) | 
 | 			sub->tstamp_enabled = tstamp - sub->total_time_enabled; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to enable a performance event | 
 |  */ | 
 | static int __perf_event_enable(void *info) | 
 | { | 
 | 	struct perf_event *event = info; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_event *leader = event->group_leader; | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 | 	int err; | 
 |  | 
 | 	if (WARN_ON_ONCE(!ctx->is_active)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	raw_spin_lock(&ctx->lock); | 
 | 	update_context_time(ctx); | 
 |  | 
 | 	if (event->state >= PERF_EVENT_STATE_INACTIVE) | 
 | 		goto unlock; | 
 |  | 
 | 	/* | 
 | 	 * set current task's cgroup time reference point | 
 | 	 */ | 
 | 	perf_cgroup_set_timestamp(current, ctx); | 
 |  | 
 | 	__perf_event_mark_enabled(event); | 
 |  | 
 | 	if (!event_filter_match(event)) { | 
 | 		if (is_cgroup_event(event)) | 
 | 			perf_cgroup_defer_enabled(event); | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the event is in a group and isn't the group leader, | 
 | 	 * then don't put it on unless the group is on. | 
 | 	 */ | 
 | 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		goto unlock; | 
 |  | 
 | 	if (!group_can_go_on(event, cpuctx, 1)) { | 
 | 		err = -EEXIST; | 
 | 	} else { | 
 | 		if (event == leader) | 
 | 			err = group_sched_in(event, cpuctx, ctx); | 
 | 		else | 
 | 			err = event_sched_in(event, cpuctx, ctx); | 
 | 	} | 
 |  | 
 | 	if (err) { | 
 | 		/* | 
 | 		 * If this event can't go on and it's part of a | 
 | 		 * group, then the whole group has to come off. | 
 | 		 */ | 
 | 		if (leader != event) | 
 | 			group_sched_out(leader, cpuctx, ctx); | 
 | 		if (leader->attr.pinned) { | 
 | 			update_group_times(leader); | 
 | 			leader->state = PERF_EVENT_STATE_ERROR; | 
 | 		} | 
 | 	} | 
 |  | 
 | unlock: | 
 | 	raw_spin_unlock(&ctx->lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Enable a event. | 
 |  * | 
 |  * If event->ctx is a cloned context, callers must make sure that | 
 |  * every task struct that event->ctx->task could possibly point to | 
 |  * remains valid.  This condition is satisfied when called through | 
 |  * perf_event_for_each_child or perf_event_for_each as described | 
 |  * for perf_event_disable. | 
 |  */ | 
 | void perf_event_enable(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct task_struct *task = ctx->task; | 
 |  | 
 | 	if (!task) { | 
 | 		/* | 
 | 		 * Enable the event on the cpu that it's on | 
 | 		 */ | 
 | 		cpu_function_call(event->cpu, __perf_event_enable, event); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 | 	if (event->state >= PERF_EVENT_STATE_INACTIVE) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If the event is in error state, clear that first. | 
 | 	 * That way, if we see the event in error state below, we | 
 | 	 * know that it has gone back into error state, as distinct | 
 | 	 * from the task having been scheduled away before the | 
 | 	 * cross-call arrived. | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_ERROR) | 
 | 		event->state = PERF_EVENT_STATE_OFF; | 
 |  | 
 | retry: | 
 | 	if (!ctx->is_active) { | 
 | 		__perf_event_mark_enabled(event); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 |  | 
 | 	if (!task_function_call(task, __perf_event_enable, event)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 |  | 
 | 	/* | 
 | 	 * If the context is active and the event is still off, | 
 | 	 * we need to retry the cross-call. | 
 | 	 */ | 
 | 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { | 
 | 		/* | 
 | 		 * task could have been flipped by a concurrent | 
 | 		 * perf_event_context_sched_out() | 
 | 		 */ | 
 | 		task = ctx->task; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | out: | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_enable); | 
 |  | 
 | int perf_event_refresh(struct perf_event *event, int refresh) | 
 | { | 
 | 	/* | 
 | 	 * not supported on inherited events | 
 | 	 */ | 
 | 	if (event->attr.inherit || !is_sampling_event(event)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	atomic_add(refresh, &event->event_limit); | 
 | 	perf_event_enable(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_refresh); | 
 |  | 
 | static void ctx_sched_out(struct perf_event_context *ctx, | 
 | 			  struct perf_cpu_context *cpuctx, | 
 | 			  enum event_type_t event_type) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	int is_active = ctx->is_active; | 
 |  | 
 | 	ctx->is_active &= ~event_type; | 
 | 	if (likely(!ctx->nr_events)) | 
 | 		return; | 
 |  | 
 | 	update_context_time(ctx); | 
 | 	update_cgrp_time_from_cpuctx(cpuctx); | 
 | 	if (!ctx->nr_active) | 
 | 		return; | 
 |  | 
 | 	perf_pmu_disable(ctx->pmu); | 
 | 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { | 
 | 		list_for_each_entry(event, &ctx->pinned_groups, group_entry) | 
 | 			group_sched_out(event, cpuctx, ctx); | 
 | 	} | 
 |  | 
 | 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { | 
 | 		list_for_each_entry(event, &ctx->flexible_groups, group_entry) | 
 | 			group_sched_out(event, cpuctx, ctx); | 
 | 	} | 
 | 	perf_pmu_enable(ctx->pmu); | 
 | } | 
 |  | 
 | /* | 
 |  * Test whether two contexts are equivalent, i.e. whether they | 
 |  * have both been cloned from the same version of the same context | 
 |  * and they both have the same number of enabled events. | 
 |  * If the number of enabled events is the same, then the set | 
 |  * of enabled events should be the same, because these are both | 
 |  * inherited contexts, therefore we can't access individual events | 
 |  * in them directly with an fd; we can only enable/disable all | 
 |  * events via prctl, or enable/disable all events in a family | 
 |  * via ioctl, which will have the same effect on both contexts. | 
 |  */ | 
 | static int context_equiv(struct perf_event_context *ctx1, | 
 | 			 struct perf_event_context *ctx2) | 
 | { | 
 | 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | 
 | 		&& ctx1->parent_gen == ctx2->parent_gen | 
 | 		&& !ctx1->pin_count && !ctx2->pin_count; | 
 | } | 
 |  | 
 | static void __perf_event_sync_stat(struct perf_event *event, | 
 | 				     struct perf_event *next_event) | 
 | { | 
 | 	u64 value; | 
 |  | 
 | 	if (!event->attr.inherit_stat) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Update the event value, we cannot use perf_event_read() | 
 | 	 * because we're in the middle of a context switch and have IRQs | 
 | 	 * disabled, which upsets smp_call_function_single(), however | 
 | 	 * we know the event must be on the current CPU, therefore we | 
 | 	 * don't need to use it. | 
 | 	 */ | 
 | 	switch (event->state) { | 
 | 	case PERF_EVENT_STATE_ACTIVE: | 
 | 		event->pmu->read(event); | 
 | 		/* fall-through */ | 
 |  | 
 | 	case PERF_EVENT_STATE_INACTIVE: | 
 | 		update_event_times(event); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In order to keep per-task stats reliable we need to flip the event | 
 | 	 * values when we flip the contexts. | 
 | 	 */ | 
 | 	value = local64_read(&next_event->count); | 
 | 	value = local64_xchg(&event->count, value); | 
 | 	local64_set(&next_event->count, value); | 
 |  | 
 | 	swap(event->total_time_enabled, next_event->total_time_enabled); | 
 | 	swap(event->total_time_running, next_event->total_time_running); | 
 |  | 
 | 	/* | 
 | 	 * Since we swizzled the values, update the user visible data too. | 
 | 	 */ | 
 | 	perf_event_update_userpage(event); | 
 | 	perf_event_update_userpage(next_event); | 
 | } | 
 |  | 
 | #define list_next_entry(pos, member) \ | 
 | 	list_entry(pos->member.next, typeof(*pos), member) | 
 |  | 
 | static void perf_event_sync_stat(struct perf_event_context *ctx, | 
 | 				   struct perf_event_context *next_ctx) | 
 | { | 
 | 	struct perf_event *event, *next_event; | 
 |  | 
 | 	if (!ctx->nr_stat) | 
 | 		return; | 
 |  | 
 | 	update_context_time(ctx); | 
 |  | 
 | 	event = list_first_entry(&ctx->event_list, | 
 | 				   struct perf_event, event_entry); | 
 |  | 
 | 	next_event = list_first_entry(&next_ctx->event_list, | 
 | 					struct perf_event, event_entry); | 
 |  | 
 | 	while (&event->event_entry != &ctx->event_list && | 
 | 	       &next_event->event_entry != &next_ctx->event_list) { | 
 |  | 
 | 		__perf_event_sync_stat(event, next_event); | 
 |  | 
 | 		event = list_next_entry(event, event_entry); | 
 | 		next_event = list_next_entry(next_event, event_entry); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_event_context_sched_out(struct task_struct *task, int ctxn, | 
 | 					 struct task_struct *next) | 
 | { | 
 | 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; | 
 | 	struct perf_event_context *next_ctx; | 
 | 	struct perf_event_context *parent; | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	int do_switch = 1; | 
 |  | 
 | 	if (likely(!ctx)) | 
 | 		return; | 
 |  | 
 | 	cpuctx = __get_cpu_context(ctx); | 
 | 	if (!cpuctx->task_ctx) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	parent = rcu_dereference(ctx->parent_ctx); | 
 | 	next_ctx = next->perf_event_ctxp[ctxn]; | 
 | 	if (parent && next_ctx && | 
 | 	    rcu_dereference(next_ctx->parent_ctx) == parent) { | 
 | 		/* | 
 | 		 * Looks like the two contexts are clones, so we might be | 
 | 		 * able to optimize the context switch.  We lock both | 
 | 		 * contexts and check that they are clones under the | 
 | 		 * lock (including re-checking that neither has been | 
 | 		 * uncloned in the meantime).  It doesn't matter which | 
 | 		 * order we take the locks because no other cpu could | 
 | 		 * be trying to lock both of these tasks. | 
 | 		 */ | 
 | 		raw_spin_lock(&ctx->lock); | 
 | 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | 
 | 		if (context_equiv(ctx, next_ctx)) { | 
 | 			/* | 
 | 			 * XXX do we need a memory barrier of sorts | 
 | 			 * wrt to rcu_dereference() of perf_event_ctxp | 
 | 			 */ | 
 | 			task->perf_event_ctxp[ctxn] = next_ctx; | 
 | 			next->perf_event_ctxp[ctxn] = ctx; | 
 | 			ctx->task = next; | 
 | 			next_ctx->task = task; | 
 | 			do_switch = 0; | 
 |  | 
 | 			perf_event_sync_stat(ctx, next_ctx); | 
 | 		} | 
 | 		raw_spin_unlock(&next_ctx->lock); | 
 | 		raw_spin_unlock(&ctx->lock); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (do_switch) { | 
 | 		raw_spin_lock(&ctx->lock); | 
 | 		ctx_sched_out(ctx, cpuctx, EVENT_ALL); | 
 | 		cpuctx->task_ctx = NULL; | 
 | 		raw_spin_unlock(&ctx->lock); | 
 | 	} | 
 | } | 
 |  | 
 | #define for_each_task_context_nr(ctxn)					\ | 
 | 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) | 
 |  | 
 | /* | 
 |  * Called from scheduler to remove the events of the current task, | 
 |  * with interrupts disabled. | 
 |  * | 
 |  * We stop each event and update the event value in event->count. | 
 |  * | 
 |  * This does not protect us against NMI, but disable() | 
 |  * sets the disabled bit in the control field of event _before_ | 
 |  * accessing the event control register. If a NMI hits, then it will | 
 |  * not restart the event. | 
 |  */ | 
 | void __perf_event_task_sched_out(struct task_struct *task, | 
 | 				 struct task_struct *next) | 
 | { | 
 | 	int ctxn; | 
 |  | 
 | 	for_each_task_context_nr(ctxn) | 
 | 		perf_event_context_sched_out(task, ctxn, next); | 
 |  | 
 | 	/* | 
 | 	 * if cgroup events exist on this CPU, then we need | 
 | 	 * to check if we have to switch out PMU state. | 
 | 	 * cgroup event are system-wide mode only | 
 | 	 */ | 
 | 	if (atomic_read(&__get_cpu_var(perf_cgroup_events))) | 
 | 		perf_cgroup_sched_out(task, next); | 
 | } | 
 |  | 
 | static void task_ctx_sched_out(struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 |  | 
 | 	if (!cpuctx->task_ctx) | 
 | 		return; | 
 |  | 
 | 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | 
 | 		return; | 
 |  | 
 | 	ctx_sched_out(ctx, cpuctx, EVENT_ALL); | 
 | 	cpuctx->task_ctx = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Called with IRQs disabled | 
 |  */ | 
 | static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, | 
 | 			      enum event_type_t event_type) | 
 | { | 
 | 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); | 
 | } | 
 |  | 
 | static void | 
 | ctx_pinned_sched_in(struct perf_event_context *ctx, | 
 | 		    struct perf_cpu_context *cpuctx) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) { | 
 | 		if (event->state <= PERF_EVENT_STATE_OFF) | 
 | 			continue; | 
 | 		if (!event_filter_match(event)) | 
 | 			continue; | 
 |  | 
 | 		/* may need to reset tstamp_enabled */ | 
 | 		if (is_cgroup_event(event)) | 
 | 			perf_cgroup_mark_enabled(event, ctx); | 
 |  | 
 | 		if (group_can_go_on(event, cpuctx, 1)) | 
 | 			group_sched_in(event, cpuctx, ctx); | 
 |  | 
 | 		/* | 
 | 		 * If this pinned group hasn't been scheduled, | 
 | 		 * put it in error state. | 
 | 		 */ | 
 | 		if (event->state == PERF_EVENT_STATE_INACTIVE) { | 
 | 			update_group_times(event); | 
 | 			event->state = PERF_EVENT_STATE_ERROR; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | ctx_flexible_sched_in(struct perf_event_context *ctx, | 
 | 		      struct perf_cpu_context *cpuctx) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	int can_add_hw = 1; | 
 |  | 
 | 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) { | 
 | 		/* Ignore events in OFF or ERROR state */ | 
 | 		if (event->state <= PERF_EVENT_STATE_OFF) | 
 | 			continue; | 
 | 		/* | 
 | 		 * Listen to the 'cpu' scheduling filter constraint | 
 | 		 * of events: | 
 | 		 */ | 
 | 		if (!event_filter_match(event)) | 
 | 			continue; | 
 |  | 
 | 		/* may need to reset tstamp_enabled */ | 
 | 		if (is_cgroup_event(event)) | 
 | 			perf_cgroup_mark_enabled(event, ctx); | 
 |  | 
 | 		if (group_can_go_on(event, cpuctx, can_add_hw)) { | 
 | 			if (group_sched_in(event, cpuctx, ctx)) | 
 | 				can_add_hw = 0; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | ctx_sched_in(struct perf_event_context *ctx, | 
 | 	     struct perf_cpu_context *cpuctx, | 
 | 	     enum event_type_t event_type, | 
 | 	     struct task_struct *task) | 
 | { | 
 | 	u64 now; | 
 | 	int is_active = ctx->is_active; | 
 |  | 
 | 	ctx->is_active |= event_type; | 
 | 	if (likely(!ctx->nr_events)) | 
 | 		return; | 
 |  | 
 | 	now = perf_clock(); | 
 | 	ctx->timestamp = now; | 
 | 	perf_cgroup_set_timestamp(task, ctx); | 
 | 	/* | 
 | 	 * First go through the list and put on any pinned groups | 
 | 	 * in order to give them the best chance of going on. | 
 | 	 */ | 
 | 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) | 
 | 		ctx_pinned_sched_in(ctx, cpuctx); | 
 |  | 
 | 	/* Then walk through the lower prio flexible groups */ | 
 | 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) | 
 | 		ctx_flexible_sched_in(ctx, cpuctx); | 
 | } | 
 |  | 
 | static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, | 
 | 			     enum event_type_t event_type, | 
 | 			     struct task_struct *task) | 
 | { | 
 | 	struct perf_event_context *ctx = &cpuctx->ctx; | 
 |  | 
 | 	ctx_sched_in(ctx, cpuctx, event_type, task); | 
 | } | 
 |  | 
 | static void perf_event_context_sched_in(struct perf_event_context *ctx, | 
 | 					struct task_struct *task) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 |  | 
 | 	cpuctx = __get_cpu_context(ctx); | 
 | 	if (cpuctx->task_ctx == ctx) | 
 | 		return; | 
 |  | 
 | 	perf_ctx_lock(cpuctx, ctx); | 
 | 	perf_pmu_disable(ctx->pmu); | 
 | 	/* | 
 | 	 * We want to keep the following priority order: | 
 | 	 * cpu pinned (that don't need to move), task pinned, | 
 | 	 * cpu flexible, task flexible. | 
 | 	 */ | 
 | 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); | 
 |  | 
 | 	if (ctx->nr_events) | 
 | 		cpuctx->task_ctx = ctx; | 
 |  | 
 | 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); | 
 |  | 
 | 	perf_pmu_enable(ctx->pmu); | 
 | 	perf_ctx_unlock(cpuctx, ctx); | 
 |  | 
 | 	/* | 
 | 	 * Since these rotations are per-cpu, we need to ensure the | 
 | 	 * cpu-context we got scheduled on is actually rotating. | 
 | 	 */ | 
 | 	perf_pmu_rotate_start(ctx->pmu); | 
 | } | 
 |  | 
 | /* | 
 |  * When sampling the branck stack in system-wide, it may be necessary | 
 |  * to flush the stack on context switch. This happens when the branch | 
 |  * stack does not tag its entries with the pid of the current task. | 
 |  * Otherwise it becomes impossible to associate a branch entry with a | 
 |  * task. This ambiguity is more likely to appear when the branch stack | 
 |  * supports priv level filtering and the user sets it to monitor only | 
 |  * at the user level (which could be a useful measurement in system-wide | 
 |  * mode). In that case, the risk is high of having a branch stack with | 
 |  * branch from multiple tasks. Flushing may mean dropping the existing | 
 |  * entries or stashing them somewhere in the PMU specific code layer. | 
 |  * | 
 |  * This function provides the context switch callback to the lower code | 
 |  * layer. It is invoked ONLY when there is at least one system-wide context | 
 |  * with at least one active event using taken branch sampling. | 
 |  */ | 
 | static void perf_branch_stack_sched_in(struct task_struct *prev, | 
 | 				       struct task_struct *task) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct pmu *pmu; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* no need to flush branch stack if not changing task */ | 
 | 	if (prev == task) | 
 | 		return; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	list_for_each_entry_rcu(pmu, &pmus, entry) { | 
 | 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | 
 |  | 
 | 		/* | 
 | 		 * check if the context has at least one | 
 | 		 * event using PERF_SAMPLE_BRANCH_STACK | 
 | 		 */ | 
 | 		if (cpuctx->ctx.nr_branch_stack > 0 | 
 | 		    && pmu->flush_branch_stack) { | 
 |  | 
 | 			pmu = cpuctx->ctx.pmu; | 
 |  | 
 | 			perf_ctx_lock(cpuctx, cpuctx->task_ctx); | 
 |  | 
 | 			perf_pmu_disable(pmu); | 
 |  | 
 | 			pmu->flush_branch_stack(); | 
 |  | 
 | 			perf_pmu_enable(pmu); | 
 |  | 
 | 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Called from scheduler to add the events of the current task | 
 |  * with interrupts disabled. | 
 |  * | 
 |  * We restore the event value and then enable it. | 
 |  * | 
 |  * This does not protect us against NMI, but enable() | 
 |  * sets the enabled bit in the control field of event _before_ | 
 |  * accessing the event control register. If a NMI hits, then it will | 
 |  * keep the event running. | 
 |  */ | 
 | void __perf_event_task_sched_in(struct task_struct *prev, | 
 | 				struct task_struct *task) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	int ctxn; | 
 |  | 
 | 	for_each_task_context_nr(ctxn) { | 
 | 		ctx = task->perf_event_ctxp[ctxn]; | 
 | 		if (likely(!ctx)) | 
 | 			continue; | 
 |  | 
 | 		perf_event_context_sched_in(ctx, task); | 
 | 	} | 
 | 	/* | 
 | 	 * if cgroup events exist on this CPU, then we need | 
 | 	 * to check if we have to switch in PMU state. | 
 | 	 * cgroup event are system-wide mode only | 
 | 	 */ | 
 | 	if (atomic_read(&__get_cpu_var(perf_cgroup_events))) | 
 | 		perf_cgroup_sched_in(prev, task); | 
 |  | 
 | 	/* check for system-wide branch_stack events */ | 
 | 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) | 
 | 		perf_branch_stack_sched_in(prev, task); | 
 | } | 
 |  | 
 | static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) | 
 | { | 
 | 	u64 frequency = event->attr.sample_freq; | 
 | 	u64 sec = NSEC_PER_SEC; | 
 | 	u64 divisor, dividend; | 
 |  | 
 | 	int count_fls, nsec_fls, frequency_fls, sec_fls; | 
 |  | 
 | 	count_fls = fls64(count); | 
 | 	nsec_fls = fls64(nsec); | 
 | 	frequency_fls = fls64(frequency); | 
 | 	sec_fls = 30; | 
 |  | 
 | 	/* | 
 | 	 * We got @count in @nsec, with a target of sample_freq HZ | 
 | 	 * the target period becomes: | 
 | 	 * | 
 | 	 *             @count * 10^9 | 
 | 	 * period = ------------------- | 
 | 	 *          @nsec * sample_freq | 
 | 	 * | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Reduce accuracy by one bit such that @a and @b converge | 
 | 	 * to a similar magnitude. | 
 | 	 */ | 
 | #define REDUCE_FLS(a, b)		\ | 
 | do {					\ | 
 | 	if (a##_fls > b##_fls) {	\ | 
 | 		a >>= 1;		\ | 
 | 		a##_fls--;		\ | 
 | 	} else {			\ | 
 | 		b >>= 1;		\ | 
 | 		b##_fls--;		\ | 
 | 	}				\ | 
 | } while (0) | 
 |  | 
 | 	/* | 
 | 	 * Reduce accuracy until either term fits in a u64, then proceed with | 
 | 	 * the other, so that finally we can do a u64/u64 division. | 
 | 	 */ | 
 | 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { | 
 | 		REDUCE_FLS(nsec, frequency); | 
 | 		REDUCE_FLS(sec, count); | 
 | 	} | 
 |  | 
 | 	if (count_fls + sec_fls > 64) { | 
 | 		divisor = nsec * frequency; | 
 |  | 
 | 		while (count_fls + sec_fls > 64) { | 
 | 			REDUCE_FLS(count, sec); | 
 | 			divisor >>= 1; | 
 | 		} | 
 |  | 
 | 		dividend = count * sec; | 
 | 	} else { | 
 | 		dividend = count * sec; | 
 |  | 
 | 		while (nsec_fls + frequency_fls > 64) { | 
 | 			REDUCE_FLS(nsec, frequency); | 
 | 			dividend >>= 1; | 
 | 		} | 
 |  | 
 | 		divisor = nsec * frequency; | 
 | 	} | 
 |  | 
 | 	if (!divisor) | 
 | 		return dividend; | 
 |  | 
 | 	return div64_u64(dividend, divisor); | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(int, perf_throttled_count); | 
 | static DEFINE_PER_CPU(u64, perf_throttled_seq); | 
 |  | 
 | static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	s64 period, sample_period; | 
 | 	s64 delta; | 
 |  | 
 | 	period = perf_calculate_period(event, nsec, count); | 
 |  | 
 | 	delta = (s64)(period - hwc->sample_period); | 
 | 	delta = (delta + 7) / 8; /* low pass filter */ | 
 |  | 
 | 	sample_period = hwc->sample_period + delta; | 
 |  | 
 | 	if (!sample_period) | 
 | 		sample_period = 1; | 
 |  | 
 | 	hwc->sample_period = sample_period; | 
 |  | 
 | 	if (local64_read(&hwc->period_left) > 8*sample_period) { | 
 | 		if (disable) | 
 | 			event->pmu->stop(event, PERF_EF_UPDATE); | 
 |  | 
 | 		local64_set(&hwc->period_left, 0); | 
 |  | 
 | 		if (disable) | 
 | 			event->pmu->start(event, PERF_EF_RELOAD); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * combine freq adjustment with unthrottling to avoid two passes over the | 
 |  * events. At the same time, make sure, having freq events does not change | 
 |  * the rate of unthrottling as that would introduce bias. | 
 |  */ | 
 | static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, | 
 | 					   int needs_unthr) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	struct hw_perf_event *hwc; | 
 | 	u64 now, period = TICK_NSEC; | 
 | 	s64 delta; | 
 |  | 
 | 	/* | 
 | 	 * only need to iterate over all events iff: | 
 | 	 * - context have events in frequency mode (needs freq adjust) | 
 | 	 * - there are events to unthrottle on this cpu | 
 | 	 */ | 
 | 	if (!(ctx->nr_freq || needs_unthr)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock(&ctx->lock); | 
 | 	perf_pmu_disable(ctx->pmu); | 
 |  | 
 | 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 		if (event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 			continue; | 
 |  | 
 | 		if (!event_filter_match(event)) | 
 | 			continue; | 
 |  | 
 | 		hwc = &event->hw; | 
 |  | 
 | 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { | 
 | 			hwc->interrupts = 0; | 
 | 			perf_log_throttle(event, 1); | 
 | 			event->pmu->start(event, 0); | 
 | 		} | 
 |  | 
 | 		if (!event->attr.freq || !event->attr.sample_freq) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * stop the event and update event->count | 
 | 		 */ | 
 | 		event->pmu->stop(event, PERF_EF_UPDATE); | 
 |  | 
 | 		now = local64_read(&event->count); | 
 | 		delta = now - hwc->freq_count_stamp; | 
 | 		hwc->freq_count_stamp = now; | 
 |  | 
 | 		/* | 
 | 		 * restart the event | 
 | 		 * reload only if value has changed | 
 | 		 * we have stopped the event so tell that | 
 | 		 * to perf_adjust_period() to avoid stopping it | 
 | 		 * twice. | 
 | 		 */ | 
 | 		if (delta > 0) | 
 | 			perf_adjust_period(event, period, delta, false); | 
 |  | 
 | 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); | 
 | 	} | 
 |  | 
 | 	perf_pmu_enable(ctx->pmu); | 
 | 	raw_spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Round-robin a context's events: | 
 |  */ | 
 | static void rotate_ctx(struct perf_event_context *ctx) | 
 | { | 
 | 	/* | 
 | 	 * Rotate the first entry last of non-pinned groups. Rotation might be | 
 | 	 * disabled by the inheritance code. | 
 | 	 */ | 
 | 	if (!ctx->rotate_disable) | 
 | 		list_rotate_left(&ctx->flexible_groups); | 
 | } | 
 |  | 
 | /* | 
 |  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized | 
 |  * because they're strictly cpu affine and rotate_start is called with IRQs | 
 |  * disabled, while rotate_context is called from IRQ context. | 
 |  */ | 
 | static void perf_rotate_context(struct perf_cpu_context *cpuctx) | 
 | { | 
 | 	struct perf_event_context *ctx = NULL; | 
 | 	int rotate = 0, remove = 1; | 
 |  | 
 | 	if (cpuctx->ctx.nr_events) { | 
 | 		remove = 0; | 
 | 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) | 
 | 			rotate = 1; | 
 | 	} | 
 |  | 
 | 	ctx = cpuctx->task_ctx; | 
 | 	if (ctx && ctx->nr_events) { | 
 | 		remove = 0; | 
 | 		if (ctx->nr_events != ctx->nr_active) | 
 | 			rotate = 1; | 
 | 	} | 
 |  | 
 | 	if (!rotate) | 
 | 		goto done; | 
 |  | 
 | 	perf_ctx_lock(cpuctx, cpuctx->task_ctx); | 
 | 	perf_pmu_disable(cpuctx->ctx.pmu); | 
 |  | 
 | 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); | 
 | 	if (ctx) | 
 | 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); | 
 |  | 
 | 	rotate_ctx(&cpuctx->ctx); | 
 | 	if (ctx) | 
 | 		rotate_ctx(ctx); | 
 |  | 
 | 	perf_event_sched_in(cpuctx, ctx, current); | 
 |  | 
 | 	perf_pmu_enable(cpuctx->ctx.pmu); | 
 | 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx); | 
 | done: | 
 | 	if (remove) | 
 | 		list_del_init(&cpuctx->rotation_list); | 
 | } | 
 |  | 
 | void perf_event_task_tick(void) | 
 | { | 
 | 	struct list_head *head = &__get_cpu_var(rotation_list); | 
 | 	struct perf_cpu_context *cpuctx, *tmp; | 
 | 	struct perf_event_context *ctx; | 
 | 	int throttled; | 
 |  | 
 | 	WARN_ON(!irqs_disabled()); | 
 |  | 
 | 	__this_cpu_inc(perf_throttled_seq); | 
 | 	throttled = __this_cpu_xchg(perf_throttled_count, 0); | 
 |  | 
 | 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { | 
 | 		ctx = &cpuctx->ctx; | 
 | 		perf_adjust_freq_unthr_context(ctx, throttled); | 
 |  | 
 | 		ctx = cpuctx->task_ctx; | 
 | 		if (ctx) | 
 | 			perf_adjust_freq_unthr_context(ctx, throttled); | 
 |  | 
 | 		if (cpuctx->jiffies_interval == 1 || | 
 | 				!(jiffies % cpuctx->jiffies_interval)) | 
 | 			perf_rotate_context(cpuctx); | 
 | 	} | 
 | } | 
 |  | 
 | static int event_enable_on_exec(struct perf_event *event, | 
 | 				struct perf_event_context *ctx) | 
 | { | 
 | 	if (!event->attr.enable_on_exec) | 
 | 		return 0; | 
 |  | 
 | 	event->attr.enable_on_exec = 0; | 
 | 	if (event->state >= PERF_EVENT_STATE_INACTIVE) | 
 | 		return 0; | 
 |  | 
 | 	__perf_event_mark_enabled(event); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Enable all of a task's events that have been marked enable-on-exec. | 
 |  * This expects task == current. | 
 |  */ | 
 | static void perf_event_enable_on_exec(struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	unsigned long flags; | 
 | 	int enabled = 0; | 
 | 	int ret; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	if (!ctx || !ctx->nr_events) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We must ctxsw out cgroup events to avoid conflict | 
 | 	 * when invoking perf_task_event_sched_in() later on | 
 | 	 * in this function. Otherwise we end up trying to | 
 | 	 * ctxswin cgroup events which are already scheduled | 
 | 	 * in. | 
 | 	 */ | 
 | 	perf_cgroup_sched_out(current, NULL); | 
 |  | 
 | 	raw_spin_lock(&ctx->lock); | 
 | 	task_ctx_sched_out(ctx); | 
 |  | 
 | 	list_for_each_entry(event, &ctx->event_list, event_entry) { | 
 | 		ret = event_enable_on_exec(event, ctx); | 
 | 		if (ret) | 
 | 			enabled = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Unclone this context if we enabled any event. | 
 | 	 */ | 
 | 	if (enabled) | 
 | 		unclone_ctx(ctx); | 
 |  | 
 | 	raw_spin_unlock(&ctx->lock); | 
 |  | 
 | 	/* | 
 | 	 * Also calls ctxswin for cgroup events, if any: | 
 | 	 */ | 
 | 	perf_event_context_sched_in(ctx, ctx->task); | 
 | out: | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to read the hardware event | 
 |  */ | 
 | static void __perf_event_read(void *info) | 
 | { | 
 | 	struct perf_event *event = info; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 |  | 
 | 	/* | 
 | 	 * If this is a task context, we need to check whether it is | 
 | 	 * the current task context of this cpu.  If not it has been | 
 | 	 * scheduled out before the smp call arrived.  In that case | 
 | 	 * event->count would have been updated to a recent sample | 
 | 	 * when the event was scheduled out. | 
 | 	 */ | 
 | 	if (ctx->task && cpuctx->task_ctx != ctx) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock(&ctx->lock); | 
 | 	if (ctx->is_active) { | 
 | 		update_context_time(ctx); | 
 | 		update_cgrp_time_from_event(event); | 
 | 	} | 
 | 	update_event_times(event); | 
 | 	if (event->state == PERF_EVENT_STATE_ACTIVE) | 
 | 		event->pmu->read(event); | 
 | 	raw_spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 | static inline u64 perf_event_count(struct perf_event *event) | 
 | { | 
 | 	return local64_read(&event->count) + atomic64_read(&event->child_count); | 
 | } | 
 |  | 
 | static u64 perf_event_read(struct perf_event *event) | 
 | { | 
 | 	/* | 
 | 	 * If event is enabled and currently active on a CPU, update the | 
 | 	 * value in the event structure: | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_ACTIVE) { | 
 | 		smp_call_function_single(event->oncpu, | 
 | 					 __perf_event_read, event, 1); | 
 | 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) { | 
 | 		struct perf_event_context *ctx = event->ctx; | 
 | 		unsigned long flags; | 
 |  | 
 | 		raw_spin_lock_irqsave(&ctx->lock, flags); | 
 | 		/* | 
 | 		 * may read while context is not active | 
 | 		 * (e.g., thread is blocked), in that case | 
 | 		 * we cannot update context time | 
 | 		 */ | 
 | 		if (ctx->is_active) { | 
 | 			update_context_time(ctx); | 
 | 			update_cgrp_time_from_event(event); | 
 | 		} | 
 | 		update_event_times(event); | 
 | 		raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 	} | 
 |  | 
 | 	return perf_event_count(event); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the perf_event context in a task_struct: | 
 |  */ | 
 | static void __perf_event_init_context(struct perf_event_context *ctx) | 
 | { | 
 | 	raw_spin_lock_init(&ctx->lock); | 
 | 	mutex_init(&ctx->mutex); | 
 | 	INIT_LIST_HEAD(&ctx->pinned_groups); | 
 | 	INIT_LIST_HEAD(&ctx->flexible_groups); | 
 | 	INIT_LIST_HEAD(&ctx->event_list); | 
 | 	atomic_set(&ctx->refcount, 1); | 
 | } | 
 |  | 
 | static struct perf_event_context * | 
 | alloc_perf_context(struct pmu *pmu, struct task_struct *task) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 |  | 
 | 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); | 
 | 	if (!ctx) | 
 | 		return NULL; | 
 |  | 
 | 	__perf_event_init_context(ctx); | 
 | 	if (task) { | 
 | 		ctx->task = task; | 
 | 		get_task_struct(task); | 
 | 	} | 
 | 	ctx->pmu = pmu; | 
 |  | 
 | 	return ctx; | 
 | } | 
 |  | 
 | static struct task_struct * | 
 | find_lively_task_by_vpid(pid_t vpid) | 
 | { | 
 | 	struct task_struct *task; | 
 | 	int err; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (!vpid) | 
 | 		task = current; | 
 | 	else | 
 | 		task = find_task_by_vpid(vpid); | 
 | 	if (task) | 
 | 		get_task_struct(task); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (!task) | 
 | 		return ERR_PTR(-ESRCH); | 
 |  | 
 | 	/* Reuse ptrace permission checks for now. */ | 
 | 	err = -EACCES; | 
 | 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) | 
 | 		goto errout; | 
 |  | 
 | 	return task; | 
 | errout: | 
 | 	put_task_struct(task); | 
 | 	return ERR_PTR(err); | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Returns a matching context with refcount and pincount. | 
 |  */ | 
 | static struct perf_event_context * | 
 | find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	unsigned long flags; | 
 | 	int ctxn, err; | 
 |  | 
 | 	if (!task) { | 
 | 		/* Must be root to operate on a CPU event: */ | 
 | 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | 
 | 			return ERR_PTR(-EACCES); | 
 |  | 
 | 		/* | 
 | 		 * We could be clever and allow to attach a event to an | 
 | 		 * offline CPU and activate it when the CPU comes up, but | 
 | 		 * that's for later. | 
 | 		 */ | 
 | 		if (!cpu_online(cpu)) | 
 | 			return ERR_PTR(-ENODEV); | 
 |  | 
 | 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | 
 | 		ctx = &cpuctx->ctx; | 
 | 		get_ctx(ctx); | 
 | 		++ctx->pin_count; | 
 |  | 
 | 		return ctx; | 
 | 	} | 
 |  | 
 | 	err = -EINVAL; | 
 | 	ctxn = pmu->task_ctx_nr; | 
 | 	if (ctxn < 0) | 
 | 		goto errout; | 
 |  | 
 | retry: | 
 | 	ctx = perf_lock_task_context(task, ctxn, &flags); | 
 | 	if (ctx) { | 
 | 		unclone_ctx(ctx); | 
 | 		++ctx->pin_count; | 
 | 		raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 	} else { | 
 | 		ctx = alloc_perf_context(pmu, task); | 
 | 		err = -ENOMEM; | 
 | 		if (!ctx) | 
 | 			goto errout; | 
 |  | 
 | 		err = 0; | 
 | 		mutex_lock(&task->perf_event_mutex); | 
 | 		/* | 
 | 		 * If it has already passed perf_event_exit_task(). | 
 | 		 * we must see PF_EXITING, it takes this mutex too. | 
 | 		 */ | 
 | 		if (task->flags & PF_EXITING) | 
 | 			err = -ESRCH; | 
 | 		else if (task->perf_event_ctxp[ctxn]) | 
 | 			err = -EAGAIN; | 
 | 		else { | 
 | 			get_ctx(ctx); | 
 | 			++ctx->pin_count; | 
 | 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); | 
 | 		} | 
 | 		mutex_unlock(&task->perf_event_mutex); | 
 |  | 
 | 		if (unlikely(err)) { | 
 | 			put_ctx(ctx); | 
 |  | 
 | 			if (err == -EAGAIN) | 
 | 				goto retry; | 
 | 			goto errout; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ctx; | 
 |  | 
 | errout: | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static void perf_event_free_filter(struct perf_event *event); | 
 |  | 
 | static void free_event_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	event = container_of(head, struct perf_event, rcu_head); | 
 | 	if (event->ns) | 
 | 		put_pid_ns(event->ns); | 
 | 	perf_event_free_filter(event); | 
 | 	kfree(event); | 
 | } | 
 |  | 
 | static void ring_buffer_put(struct ring_buffer *rb); | 
 |  | 
 | static void free_event(struct perf_event *event) | 
 | { | 
 | 	irq_work_sync(&event->pending); | 
 |  | 
 | 	if (!event->parent) { | 
 | 		if (event->attach_state & PERF_ATTACH_TASK) | 
 | 			static_key_slow_dec_deferred(&perf_sched_events); | 
 | 		if (event->attr.mmap || event->attr.mmap_data) | 
 | 			atomic_dec(&nr_mmap_events); | 
 | 		if (event->attr.comm) | 
 | 			atomic_dec(&nr_comm_events); | 
 | 		if (event->attr.task) | 
 | 			atomic_dec(&nr_task_events); | 
 | 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) | 
 | 			put_callchain_buffers(); | 
 | 		if (is_cgroup_event(event)) { | 
 | 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); | 
 | 			static_key_slow_dec_deferred(&perf_sched_events); | 
 | 		} | 
 |  | 
 | 		if (has_branch_stack(event)) { | 
 | 			static_key_slow_dec_deferred(&perf_sched_events); | 
 | 			/* is system-wide event */ | 
 | 			if (!(event->attach_state & PERF_ATTACH_TASK)) | 
 | 				atomic_dec(&per_cpu(perf_branch_stack_events, | 
 | 						    event->cpu)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (event->rb) { | 
 | 		ring_buffer_put(event->rb); | 
 | 		event->rb = NULL; | 
 | 	} | 
 |  | 
 | 	if (is_cgroup_event(event)) | 
 | 		perf_detach_cgroup(event); | 
 |  | 
 | 	if (event->destroy) | 
 | 		event->destroy(event); | 
 |  | 
 | 	if (event->ctx) | 
 | 		put_ctx(event->ctx); | 
 |  | 
 | 	call_rcu(&event->rcu_head, free_event_rcu); | 
 | } | 
 |  | 
 | int perf_event_release_kernel(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 |  | 
 | 	WARN_ON_ONCE(ctx->parent_ctx); | 
 | 	/* | 
 | 	 * There are two ways this annotation is useful: | 
 | 	 * | 
 | 	 *  1) there is a lock recursion from perf_event_exit_task | 
 | 	 *     see the comment there. | 
 | 	 * | 
 | 	 *  2) there is a lock-inversion with mmap_sem through | 
 | 	 *     perf_event_read_group(), which takes faults while | 
 | 	 *     holding ctx->mutex, however this is called after | 
 | 	 *     the last filedesc died, so there is no possibility | 
 | 	 *     to trigger the AB-BA case. | 
 | 	 */ | 
 | 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 | 	perf_group_detach(event); | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 | 	perf_remove_from_context(event); | 
 | 	mutex_unlock(&ctx->mutex); | 
 |  | 
 | 	free_event(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_release_kernel); | 
 |  | 
 | /* | 
 |  * Called when the last reference to the file is gone. | 
 |  */ | 
 | static void put_event(struct perf_event *event) | 
 | { | 
 | 	struct task_struct *owner; | 
 |  | 
 | 	if (!atomic_long_dec_and_test(&event->refcount)) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	owner = ACCESS_ONCE(event->owner); | 
 | 	/* | 
 | 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe | 
 | 	 * !owner it means the list deletion is complete and we can indeed | 
 | 	 * free this event, otherwise we need to serialize on | 
 | 	 * owner->perf_event_mutex. | 
 | 	 */ | 
 | 	smp_read_barrier_depends(); | 
 | 	if (owner) { | 
 | 		/* | 
 | 		 * Since delayed_put_task_struct() also drops the last | 
 | 		 * task reference we can safely take a new reference | 
 | 		 * while holding the rcu_read_lock(). | 
 | 		 */ | 
 | 		get_task_struct(owner); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (owner) { | 
 | 		mutex_lock(&owner->perf_event_mutex); | 
 | 		/* | 
 | 		 * We have to re-check the event->owner field, if it is cleared | 
 | 		 * we raced with perf_event_exit_task(), acquiring the mutex | 
 | 		 * ensured they're done, and we can proceed with freeing the | 
 | 		 * event. | 
 | 		 */ | 
 | 		if (event->owner) | 
 | 			list_del_init(&event->owner_entry); | 
 | 		mutex_unlock(&owner->perf_event_mutex); | 
 | 		put_task_struct(owner); | 
 | 	} | 
 |  | 
 | 	perf_event_release_kernel(event); | 
 | } | 
 |  | 
 | static int perf_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	put_event(file->private_data); | 
 | 	return 0; | 
 | } | 
 |  | 
 | u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) | 
 | { | 
 | 	struct perf_event *child; | 
 | 	u64 total = 0; | 
 |  | 
 | 	*enabled = 0; | 
 | 	*running = 0; | 
 |  | 
 | 	mutex_lock(&event->child_mutex); | 
 | 	total += perf_event_read(event); | 
 | 	*enabled += event->total_time_enabled + | 
 | 			atomic64_read(&event->child_total_time_enabled); | 
 | 	*running += event->total_time_running + | 
 | 			atomic64_read(&event->child_total_time_running); | 
 |  | 
 | 	list_for_each_entry(child, &event->child_list, child_list) { | 
 | 		total += perf_event_read(child); | 
 | 		*enabled += child->total_time_enabled; | 
 | 		*running += child->total_time_running; | 
 | 	} | 
 | 	mutex_unlock(&event->child_mutex); | 
 |  | 
 | 	return total; | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_read_value); | 
 |  | 
 | static int perf_event_read_group(struct perf_event *event, | 
 | 				   u64 read_format, char __user *buf) | 
 | { | 
 | 	struct perf_event *leader = event->group_leader, *sub; | 
 | 	int n = 0, size = 0, ret = -EFAULT; | 
 | 	struct perf_event_context *ctx = leader->ctx; | 
 | 	u64 values[5]; | 
 | 	u64 count, enabled, running; | 
 |  | 
 | 	mutex_lock(&ctx->mutex); | 
 | 	count = perf_event_read_value(leader, &enabled, &running); | 
 |  | 
 | 	values[n++] = 1 + leader->nr_siblings; | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
 | 		values[n++] = enabled; | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
 | 		values[n++] = running; | 
 | 	values[n++] = count; | 
 | 	if (read_format & PERF_FORMAT_ID) | 
 | 		values[n++] = primary_event_id(leader); | 
 |  | 
 | 	size = n * sizeof(u64); | 
 |  | 
 | 	if (copy_to_user(buf, values, size)) | 
 | 		goto unlock; | 
 |  | 
 | 	ret = size; | 
 |  | 
 | 	list_for_each_entry(sub, &leader->sibling_list, group_entry) { | 
 | 		n = 0; | 
 |  | 
 | 		values[n++] = perf_event_read_value(sub, &enabled, &running); | 
 | 		if (read_format & PERF_FORMAT_ID) | 
 | 			values[n++] = primary_event_id(sub); | 
 |  | 
 | 		size = n * sizeof(u64); | 
 |  | 
 | 		if (copy_to_user(buf + ret, values, size)) { | 
 | 			ret = -EFAULT; | 
 | 			goto unlock; | 
 | 		} | 
 |  | 
 | 		ret += size; | 
 | 	} | 
 | unlock: | 
 | 	mutex_unlock(&ctx->mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int perf_event_read_one(struct perf_event *event, | 
 | 				 u64 read_format, char __user *buf) | 
 | { | 
 | 	u64 enabled, running; | 
 | 	u64 values[4]; | 
 | 	int n = 0; | 
 |  | 
 | 	values[n++] = perf_event_read_value(event, &enabled, &running); | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
 | 		values[n++] = enabled; | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
 | 		values[n++] = running; | 
 | 	if (read_format & PERF_FORMAT_ID) | 
 | 		values[n++] = primary_event_id(event); | 
 |  | 
 | 	if (copy_to_user(buf, values, n * sizeof(u64))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return n * sizeof(u64); | 
 | } | 
 |  | 
 | /* | 
 |  * Read the performance event - simple non blocking version for now | 
 |  */ | 
 | static ssize_t | 
 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | 
 | { | 
 | 	u64 read_format = event->attr.read_format; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Return end-of-file for a read on a event that is in | 
 | 	 * error state (i.e. because it was pinned but it couldn't be | 
 | 	 * scheduled on to the CPU at some point). | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_ERROR) | 
 | 		return 0; | 
 |  | 
 | 	if (count < event->read_size) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	WARN_ON_ONCE(event->ctx->parent_ctx); | 
 | 	if (read_format & PERF_FORMAT_GROUP) | 
 | 		ret = perf_event_read_group(event, read_format, buf); | 
 | 	else | 
 | 		ret = perf_event_read_one(event, read_format, buf); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t | 
 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 |  | 
 | 	return perf_read_hw(event, buf, count); | 
 | } | 
 |  | 
 | static unsigned int perf_poll(struct file *file, poll_table *wait) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 | 	struct ring_buffer *rb; | 
 | 	unsigned int events = POLL_HUP; | 
 |  | 
 | 	/* | 
 | 	 * Race between perf_event_set_output() and perf_poll(): perf_poll() | 
 | 	 * grabs the rb reference but perf_event_set_output() overrides it. | 
 | 	 * Here is the timeline for two threads T1, T2: | 
 | 	 * t0: T1, rb = rcu_dereference(event->rb) | 
 | 	 * t1: T2, old_rb = event->rb | 
 | 	 * t2: T2, event->rb = new rb | 
 | 	 * t3: T2, ring_buffer_detach(old_rb) | 
 | 	 * t4: T1, ring_buffer_attach(rb1) | 
 | 	 * t5: T1, poll_wait(event->waitq) | 
 | 	 * | 
 | 	 * To avoid this problem, we grab mmap_mutex in perf_poll() | 
 | 	 * thereby ensuring that the assignment of the new ring buffer | 
 | 	 * and the detachment of the old buffer appear atomic to perf_poll() | 
 | 	 */ | 
 | 	mutex_lock(&event->mmap_mutex); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	rb = rcu_dereference(event->rb); | 
 | 	if (rb) { | 
 | 		ring_buffer_attach(event, rb); | 
 | 		events = atomic_xchg(&rb->poll, 0); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	mutex_unlock(&event->mmap_mutex); | 
 |  | 
 | 	poll_wait(file, &event->waitq, wait); | 
 |  | 
 | 	return events; | 
 | } | 
 |  | 
 | static void perf_event_reset(struct perf_event *event) | 
 | { | 
 | 	(void)perf_event_read(event); | 
 | 	local64_set(&event->count, 0); | 
 | 	perf_event_update_userpage(event); | 
 | } | 
 |  | 
 | /* | 
 |  * Holding the top-level event's child_mutex means that any | 
 |  * descendant process that has inherited this event will block | 
 |  * in sync_child_event if it goes to exit, thus satisfying the | 
 |  * task existence requirements of perf_event_enable/disable. | 
 |  */ | 
 | static void perf_event_for_each_child(struct perf_event *event, | 
 | 					void (*func)(struct perf_event *)) | 
 | { | 
 | 	struct perf_event *child; | 
 |  | 
 | 	WARN_ON_ONCE(event->ctx->parent_ctx); | 
 | 	mutex_lock(&event->child_mutex); | 
 | 	func(event); | 
 | 	list_for_each_entry(child, &event->child_list, child_list) | 
 | 		func(child); | 
 | 	mutex_unlock(&event->child_mutex); | 
 | } | 
 |  | 
 | static void perf_event_for_each(struct perf_event *event, | 
 | 				  void (*func)(struct perf_event *)) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_event *sibling; | 
 |  | 
 | 	WARN_ON_ONCE(ctx->parent_ctx); | 
 | 	mutex_lock(&ctx->mutex); | 
 | 	event = event->group_leader; | 
 |  | 
 | 	perf_event_for_each_child(event, func); | 
 | 	list_for_each_entry(sibling, &event->sibling_list, group_entry) | 
 | 		perf_event_for_each_child(sibling, func); | 
 | 	mutex_unlock(&ctx->mutex); | 
 | } | 
 |  | 
 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	int ret = 0; | 
 | 	u64 value; | 
 |  | 
 | 	if (!is_sampling_event(event)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (copy_from_user(&value, arg, sizeof(value))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (!value) | 
 | 		return -EINVAL; | 
 |  | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 | 	if (event->attr.freq) { | 
 | 		if (value > sysctl_perf_event_sample_rate) { | 
 | 			ret = -EINVAL; | 
 | 			goto unlock; | 
 | 		} | 
 |  | 
 | 		event->attr.sample_freq = value; | 
 | 	} else { | 
 | 		event->attr.sample_period = value; | 
 | 		event->hw.sample_period = value; | 
 | 	} | 
 | unlock: | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct file_operations perf_fops; | 
 |  | 
 | static inline int perf_fget_light(int fd, struct fd *p) | 
 | { | 
 | 	struct fd f = fdget(fd); | 
 | 	if (!f.file) | 
 | 		return -EBADF; | 
 |  | 
 | 	if (f.file->f_op != &perf_fops) { | 
 | 		fdput(f); | 
 | 		return -EBADF; | 
 | 	} | 
 | 	*p = f; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_event_set_output(struct perf_event *event, | 
 | 				 struct perf_event *output_event); | 
 | static int perf_event_set_filter(struct perf_event *event, void __user *arg); | 
 |  | 
 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 | 	void (*func)(struct perf_event *); | 
 | 	u32 flags = arg; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case PERF_EVENT_IOC_ENABLE: | 
 | 		func = perf_event_enable; | 
 | 		break; | 
 | 	case PERF_EVENT_IOC_DISABLE: | 
 | 		func = perf_event_disable; | 
 | 		break; | 
 | 	case PERF_EVENT_IOC_RESET: | 
 | 		func = perf_event_reset; | 
 | 		break; | 
 |  | 
 | 	case PERF_EVENT_IOC_REFRESH: | 
 | 		return perf_event_refresh(event, arg); | 
 |  | 
 | 	case PERF_EVENT_IOC_PERIOD: | 
 | 		return perf_event_period(event, (u64 __user *)arg); | 
 |  | 
 | 	case PERF_EVENT_IOC_SET_OUTPUT: | 
 | 	{ | 
 | 		int ret; | 
 | 		if (arg != -1) { | 
 | 			struct perf_event *output_event; | 
 | 			struct fd output; | 
 | 			ret = perf_fget_light(arg, &output); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			output_event = output.file->private_data; | 
 | 			ret = perf_event_set_output(event, output_event); | 
 | 			fdput(output); | 
 | 		} else { | 
 | 			ret = perf_event_set_output(event, NULL); | 
 | 		} | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	case PERF_EVENT_IOC_SET_FILTER: | 
 | 		return perf_event_set_filter(event, (void __user *)arg); | 
 |  | 
 | 	default: | 
 | 		return -ENOTTY; | 
 | 	} | 
 |  | 
 | 	if (flags & PERF_IOC_FLAG_GROUP) | 
 | 		perf_event_for_each(event, func); | 
 | 	else | 
 | 		perf_event_for_each_child(event, func); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int perf_event_task_enable(void) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	mutex_lock(¤t->perf_event_mutex); | 
 | 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | 
 | 		perf_event_for_each_child(event, perf_event_enable); | 
 | 	mutex_unlock(¤t->perf_event_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int perf_event_task_disable(void) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	mutex_lock(¤t->perf_event_mutex); | 
 | 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | 
 | 		perf_event_for_each_child(event, perf_event_disable); | 
 | 	mutex_unlock(¤t->perf_event_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_event_index(struct perf_event *event) | 
 | { | 
 | 	if (event->hw.state & PERF_HES_STOPPED) | 
 | 		return 0; | 
 |  | 
 | 	if (event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		return 0; | 
 |  | 
 | 	return event->pmu->event_idx(event); | 
 | } | 
 |  | 
 | static void calc_timer_values(struct perf_event *event, | 
 | 				u64 *now, | 
 | 				u64 *enabled, | 
 | 				u64 *running) | 
 | { | 
 | 	u64 ctx_time; | 
 |  | 
 | 	*now = perf_clock(); | 
 | 	ctx_time = event->shadow_ctx_time + *now; | 
 | 	*enabled = ctx_time - event->tstamp_enabled; | 
 | 	*running = ctx_time - event->tstamp_running; | 
 | } | 
 |  | 
 | void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Callers need to ensure there can be no nesting of this function, otherwise | 
 |  * the seqlock logic goes bad. We can not serialize this because the arch | 
 |  * code calls this from NMI context. | 
 |  */ | 
 | void perf_event_update_userpage(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_mmap_page *userpg; | 
 | 	struct ring_buffer *rb; | 
 | 	u64 enabled, running, now; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * compute total_time_enabled, total_time_running | 
 | 	 * based on snapshot values taken when the event | 
 | 	 * was last scheduled in. | 
 | 	 * | 
 | 	 * we cannot simply called update_context_time() | 
 | 	 * because of locking issue as we can be called in | 
 | 	 * NMI context | 
 | 	 */ | 
 | 	calc_timer_values(event, &now, &enabled, &running); | 
 | 	rb = rcu_dereference(event->rb); | 
 | 	if (!rb) | 
 | 		goto unlock; | 
 |  | 
 | 	userpg = rb->user_page; | 
 |  | 
 | 	/* | 
 | 	 * Disable preemption so as to not let the corresponding user-space | 
 | 	 * spin too long if we get preempted. | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	++userpg->lock; | 
 | 	barrier(); | 
 | 	userpg->index = perf_event_index(event); | 
 | 	userpg->offset = perf_event_count(event); | 
 | 	if (userpg->index) | 
 | 		userpg->offset -= local64_read(&event->hw.prev_count); | 
 |  | 
 | 	userpg->time_enabled = enabled + | 
 | 			atomic64_read(&event->child_total_time_enabled); | 
 |  | 
 | 	userpg->time_running = running + | 
 | 			atomic64_read(&event->child_total_time_running); | 
 |  | 
 | 	arch_perf_update_userpage(userpg, now); | 
 |  | 
 | 	barrier(); | 
 | 	++userpg->lock; | 
 | 	preempt_enable(); | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
 | { | 
 | 	struct perf_event *event = vma->vm_file->private_data; | 
 | 	struct ring_buffer *rb; | 
 | 	int ret = VM_FAULT_SIGBUS; | 
 |  | 
 | 	if (vmf->flags & FAULT_FLAG_MKWRITE) { | 
 | 		if (vmf->pgoff == 0) | 
 | 			ret = 0; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	rb = rcu_dereference(event->rb); | 
 | 	if (!rb) | 
 | 		goto unlock; | 
 |  | 
 | 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) | 
 | 		goto unlock; | 
 |  | 
 | 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff); | 
 | 	if (!vmf->page) | 
 | 		goto unlock; | 
 |  | 
 | 	get_page(vmf->page); | 
 | 	vmf->page->mapping = vma->vm_file->f_mapping; | 
 | 	vmf->page->index   = vmf->pgoff; | 
 |  | 
 | 	ret = 0; | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void ring_buffer_attach(struct perf_event *event, | 
 | 			       struct ring_buffer *rb) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!list_empty(&event->rb_entry)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&rb->event_lock, flags); | 
 | 	if (!list_empty(&event->rb_entry)) | 
 | 		goto unlock; | 
 |  | 
 | 	list_add(&event->rb_entry, &rb->event_list); | 
 | unlock: | 
 | 	spin_unlock_irqrestore(&rb->event_lock, flags); | 
 | } | 
 |  | 
 | static void ring_buffer_detach(struct perf_event *event, | 
 | 			       struct ring_buffer *rb) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (list_empty(&event->rb_entry)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&rb->event_lock, flags); | 
 | 	list_del_init(&event->rb_entry); | 
 | 	wake_up_all(&event->waitq); | 
 | 	spin_unlock_irqrestore(&rb->event_lock, flags); | 
 | } | 
 |  | 
 | static void ring_buffer_wakeup(struct perf_event *event) | 
 | { | 
 | 	struct ring_buffer *rb; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	rb = rcu_dereference(event->rb); | 
 | 	if (!rb) | 
 | 		goto unlock; | 
 |  | 
 | 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) | 
 | 		wake_up_all(&event->waitq); | 
 |  | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void rb_free_rcu(struct rcu_head *rcu_head) | 
 | { | 
 | 	struct ring_buffer *rb; | 
 |  | 
 | 	rb = container_of(rcu_head, struct ring_buffer, rcu_head); | 
 | 	rb_free(rb); | 
 | } | 
 |  | 
 | static struct ring_buffer *ring_buffer_get(struct perf_event *event) | 
 | { | 
 | 	struct ring_buffer *rb; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	rb = rcu_dereference(event->rb); | 
 | 	if (rb) { | 
 | 		if (!atomic_inc_not_zero(&rb->refcount)) | 
 | 			rb = NULL; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return rb; | 
 | } | 
 |  | 
 | static void ring_buffer_put(struct ring_buffer *rb) | 
 | { | 
 | 	struct perf_event *event, *n; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!atomic_dec_and_test(&rb->refcount)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&rb->event_lock, flags); | 
 | 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { | 
 | 		list_del_init(&event->rb_entry); | 
 | 		wake_up_all(&event->waitq); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&rb->event_lock, flags); | 
 |  | 
 | 	call_rcu(&rb->rcu_head, rb_free_rcu); | 
 | } | 
 |  | 
 | static void perf_mmap_open(struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_event *event = vma->vm_file->private_data; | 
 |  | 
 | 	atomic_inc(&event->mmap_count); | 
 | } | 
 |  | 
 | static void perf_mmap_close(struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_event *event = vma->vm_file->private_data; | 
 |  | 
 | 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | 
 | 		unsigned long size = perf_data_size(event->rb); | 
 | 		struct user_struct *user = event->mmap_user; | 
 | 		struct ring_buffer *rb = event->rb; | 
 |  | 
 | 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); | 
 | 		vma->vm_mm->pinned_vm -= event->mmap_locked; | 
 | 		rcu_assign_pointer(event->rb, NULL); | 
 | 		ring_buffer_detach(event, rb); | 
 | 		mutex_unlock(&event->mmap_mutex); | 
 |  | 
 | 		ring_buffer_put(rb); | 
 | 		free_uid(user); | 
 | 	} | 
 | } | 
 |  | 
 | static const struct vm_operations_struct perf_mmap_vmops = { | 
 | 	.open		= perf_mmap_open, | 
 | 	.close		= perf_mmap_close, | 
 | 	.fault		= perf_mmap_fault, | 
 | 	.page_mkwrite	= perf_mmap_fault, | 
 | }; | 
 |  | 
 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 | 	unsigned long user_locked, user_lock_limit; | 
 | 	struct user_struct *user = current_user(); | 
 | 	unsigned long locked, lock_limit; | 
 | 	struct ring_buffer *rb; | 
 | 	unsigned long vma_size; | 
 | 	unsigned long nr_pages; | 
 | 	long user_extra, extra; | 
 | 	int ret = 0, flags = 0; | 
 |  | 
 | 	/* | 
 | 	 * Don't allow mmap() of inherited per-task counters. This would | 
 | 	 * create a performance issue due to all children writing to the | 
 | 	 * same rb. | 
 | 	 */ | 
 | 	if (event->cpu == -1 && event->attr.inherit) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!(vma->vm_flags & VM_SHARED)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vma_size = vma->vm_end - vma->vm_start; | 
 | 	nr_pages = (vma_size / PAGE_SIZE) - 1; | 
 |  | 
 | 	/* | 
 | 	 * If we have rb pages ensure they're a power-of-two number, so we | 
 | 	 * can do bitmasks instead of modulo. | 
 | 	 */ | 
 | 	if (nr_pages != 0 && !is_power_of_2(nr_pages)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (vma_size != PAGE_SIZE * (1 + nr_pages)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (vma->vm_pgoff != 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	WARN_ON_ONCE(event->ctx->parent_ctx); | 
 | 	mutex_lock(&event->mmap_mutex); | 
 | 	if (event->rb) { | 
 | 		if (event->rb->nr_pages == nr_pages) | 
 | 			atomic_inc(&event->rb->refcount); | 
 | 		else | 
 | 			ret = -EINVAL; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	user_extra = nr_pages + 1; | 
 | 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | 
 |  | 
 | 	/* | 
 | 	 * Increase the limit linearly with more CPUs: | 
 | 	 */ | 
 | 	user_lock_limit *= num_online_cpus(); | 
 |  | 
 | 	user_locked = atomic_long_read(&user->locked_vm) + user_extra; | 
 |  | 
 | 	extra = 0; | 
 | 	if (user_locked > user_lock_limit) | 
 | 		extra = user_locked - user_lock_limit; | 
 |  | 
 | 	lock_limit = rlimit(RLIMIT_MEMLOCK); | 
 | 	lock_limit >>= PAGE_SHIFT; | 
 | 	locked = vma->vm_mm->pinned_vm + extra; | 
 |  | 
 | 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | 
 | 		!capable(CAP_IPC_LOCK)) { | 
 | 		ret = -EPERM; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	WARN_ON(event->rb); | 
 |  | 
 | 	if (vma->vm_flags & VM_WRITE) | 
 | 		flags |= RING_BUFFER_WRITABLE; | 
 |  | 
 | 	rb = rb_alloc(nr_pages,  | 
 | 		event->attr.watermark ? event->attr.wakeup_watermark : 0, | 
 | 		event->cpu, flags); | 
 |  | 
 | 	if (!rb) { | 
 | 		ret = -ENOMEM; | 
 | 		goto unlock; | 
 | 	} | 
 | 	rcu_assign_pointer(event->rb, rb); | 
 |  | 
 | 	atomic_long_add(user_extra, &user->locked_vm); | 
 | 	event->mmap_locked = extra; | 
 | 	event->mmap_user = get_current_user(); | 
 | 	vma->vm_mm->pinned_vm += event->mmap_locked; | 
 |  | 
 | 	perf_event_update_userpage(event); | 
 |  | 
 | unlock: | 
 | 	if (!ret) | 
 | 		atomic_inc(&event->mmap_count); | 
 | 	mutex_unlock(&event->mmap_mutex); | 
 |  | 
 | 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; | 
 | 	vma->vm_ops = &perf_mmap_vmops; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int perf_fasync(int fd, struct file *filp, int on) | 
 | { | 
 | 	struct inode *inode = filp->f_path.dentry->d_inode; | 
 | 	struct perf_event *event = filp->private_data; | 
 | 	int retval; | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	retval = fasync_helper(fd, filp, on, &event->fasync); | 
 | 	mutex_unlock(&inode->i_mutex); | 
 |  | 
 | 	if (retval < 0) | 
 | 		return retval; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct file_operations perf_fops = { | 
 | 	.llseek			= no_llseek, | 
 | 	.release		= perf_release, | 
 | 	.read			= perf_read, | 
 | 	.poll			= perf_poll, | 
 | 	.unlocked_ioctl		= perf_ioctl, | 
 | 	.compat_ioctl		= perf_ioctl, | 
 | 	.mmap			= perf_mmap, | 
 | 	.fasync			= perf_fasync, | 
 | }; | 
 |  | 
 | /* | 
 |  * Perf event wakeup | 
 |  * | 
 |  * If there's data, ensure we set the poll() state and publish everything | 
 |  * to user-space before waking everybody up. | 
 |  */ | 
 |  | 
 | void perf_event_wakeup(struct perf_event *event) | 
 | { | 
 | 	ring_buffer_wakeup(event); | 
 |  | 
 | 	if (event->pending_kill) { | 
 | 		kill_fasync(&event->fasync, SIGIO, event->pending_kill); | 
 | 		event->pending_kill = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_pending_event(struct irq_work *entry) | 
 | { | 
 | 	struct perf_event *event = container_of(entry, | 
 | 			struct perf_event, pending); | 
 |  | 
 | 	if (event->pending_disable) { | 
 | 		event->pending_disable = 0; | 
 | 		__perf_event_disable(event); | 
 | 	} | 
 |  | 
 | 	if (event->pending_wakeup) { | 
 | 		event->pending_wakeup = 0; | 
 | 		perf_event_wakeup(event); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * We assume there is only KVM supporting the callbacks. | 
 |  * Later on, we might change it to a list if there is | 
 |  * another virtualization implementation supporting the callbacks. | 
 |  */ | 
 | struct perf_guest_info_callbacks *perf_guest_cbs; | 
 |  | 
 | int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) | 
 | { | 
 | 	perf_guest_cbs = cbs; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); | 
 |  | 
 | int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) | 
 | { | 
 | 	perf_guest_cbs = NULL; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); | 
 |  | 
 | static void | 
 | perf_output_sample_regs(struct perf_output_handle *handle, | 
 | 			struct pt_regs *regs, u64 mask) | 
 | { | 
 | 	int bit; | 
 |  | 
 | 	for_each_set_bit(bit, (const unsigned long *) &mask, | 
 | 			 sizeof(mask) * BITS_PER_BYTE) { | 
 | 		u64 val; | 
 |  | 
 | 		val = perf_reg_value(regs, bit); | 
 | 		perf_output_put(handle, val); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_sample_regs_user(struct perf_regs_user *regs_user, | 
 | 				  struct pt_regs *regs) | 
 | { | 
 | 	if (!user_mode(regs)) { | 
 | 		if (current->mm) | 
 | 			regs = task_pt_regs(current); | 
 | 		else | 
 | 			regs = NULL; | 
 | 	} | 
 |  | 
 | 	if (regs) { | 
 | 		regs_user->regs = regs; | 
 | 		regs_user->abi  = perf_reg_abi(current); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Get remaining task size from user stack pointer. | 
 |  * | 
 |  * It'd be better to take stack vma map and limit this more | 
 |  * precisly, but there's no way to get it safely under interrupt, | 
 |  * so using TASK_SIZE as limit. | 
 |  */ | 
 | static u64 perf_ustack_task_size(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long addr = perf_user_stack_pointer(regs); | 
 |  | 
 | 	if (!addr || addr >= TASK_SIZE) | 
 | 		return 0; | 
 |  | 
 | 	return TASK_SIZE - addr; | 
 | } | 
 |  | 
 | static u16 | 
 | perf_sample_ustack_size(u16 stack_size, u16 header_size, | 
 | 			struct pt_regs *regs) | 
 | { | 
 | 	u64 task_size; | 
 |  | 
 | 	/* No regs, no stack pointer, no dump. */ | 
 | 	if (!regs) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Check if we fit in with the requested stack size into the: | 
 | 	 * - TASK_SIZE | 
 | 	 *   If we don't, we limit the size to the TASK_SIZE. | 
 | 	 * | 
 | 	 * - remaining sample size | 
 | 	 *   If we don't, we customize the stack size to | 
 | 	 *   fit in to the remaining sample size. | 
 | 	 */ | 
 |  | 
 | 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); | 
 | 	stack_size = min(stack_size, (u16) task_size); | 
 |  | 
 | 	/* Current header size plus static size and dynamic size. */ | 
 | 	header_size += 2 * sizeof(u64); | 
 |  | 
 | 	/* Do we fit in with the current stack dump size? */ | 
 | 	if ((u16) (header_size + stack_size) < header_size) { | 
 | 		/* | 
 | 		 * If we overflow the maximum size for the sample, | 
 | 		 * we customize the stack dump size to fit in. | 
 | 		 */ | 
 | 		stack_size = USHRT_MAX - header_size - sizeof(u64); | 
 | 		stack_size = round_up(stack_size, sizeof(u64)); | 
 | 	} | 
 |  | 
 | 	return stack_size; | 
 | } | 
 |  | 
 | static void | 
 | perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, | 
 | 			  struct pt_regs *regs) | 
 | { | 
 | 	/* Case of a kernel thread, nothing to dump */ | 
 | 	if (!regs) { | 
 | 		u64 size = 0; | 
 | 		perf_output_put(handle, size); | 
 | 	} else { | 
 | 		unsigned long sp; | 
 | 		unsigned int rem; | 
 | 		u64 dyn_size; | 
 |  | 
 | 		/* | 
 | 		 * We dump: | 
 | 		 * static size | 
 | 		 *   - the size requested by user or the best one we can fit | 
 | 		 *     in to the sample max size | 
 | 		 * data | 
 | 		 *   - user stack dump data | 
 | 		 * dynamic size | 
 | 		 *   - the actual dumped size | 
 | 		 */ | 
 |  | 
 | 		/* Static size. */ | 
 | 		perf_output_put(handle, dump_size); | 
 |  | 
 | 		/* Data. */ | 
 | 		sp = perf_user_stack_pointer(regs); | 
 | 		rem = __output_copy_user(handle, (void *) sp, dump_size); | 
 | 		dyn_size = dump_size - rem; | 
 |  | 
 | 		perf_output_skip(handle, rem); | 
 |  | 
 | 		/* Dynamic size. */ | 
 | 		perf_output_put(handle, dyn_size); | 
 | 	} | 
 | } | 
 |  | 
 | static void __perf_event_header__init_id(struct perf_event_header *header, | 
 | 					 struct perf_sample_data *data, | 
 | 					 struct perf_event *event) | 
 | { | 
 | 	u64 sample_type = event->attr.sample_type; | 
 |  | 
 | 	data->type = sample_type; | 
 | 	header->size += event->id_header_size; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TID) { | 
 | 		/* namespace issues */ | 
 | 		data->tid_entry.pid = perf_event_pid(event, current); | 
 | 		data->tid_entry.tid = perf_event_tid(event, current); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TIME) | 
 | 		data->time = perf_clock(); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ID) | 
 | 		data->id = primary_event_id(event); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STREAM_ID) | 
 | 		data->stream_id = event->id; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CPU) { | 
 | 		data->cpu_entry.cpu	 = raw_smp_processor_id(); | 
 | 		data->cpu_entry.reserved = 0; | 
 | 	} | 
 | } | 
 |  | 
 | void perf_event_header__init_id(struct perf_event_header *header, | 
 | 				struct perf_sample_data *data, | 
 | 				struct perf_event *event) | 
 | { | 
 | 	if (event->attr.sample_id_all) | 
 | 		__perf_event_header__init_id(header, data, event); | 
 | } | 
 |  | 
 | static void __perf_event__output_id_sample(struct perf_output_handle *handle, | 
 | 					   struct perf_sample_data *data) | 
 | { | 
 | 	u64 sample_type = data->type; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TID) | 
 | 		perf_output_put(handle, data->tid_entry); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TIME) | 
 | 		perf_output_put(handle, data->time); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ID) | 
 | 		perf_output_put(handle, data->id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STREAM_ID) | 
 | 		perf_output_put(handle, data->stream_id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CPU) | 
 | 		perf_output_put(handle, data->cpu_entry); | 
 | } | 
 |  | 
 | void perf_event__output_id_sample(struct perf_event *event, | 
 | 				  struct perf_output_handle *handle, | 
 | 				  struct perf_sample_data *sample) | 
 | { | 
 | 	if (event->attr.sample_id_all) | 
 | 		__perf_event__output_id_sample(handle, sample); | 
 | } | 
 |  | 
 | static void perf_output_read_one(struct perf_output_handle *handle, | 
 | 				 struct perf_event *event, | 
 | 				 u64 enabled, u64 running) | 
 | { | 
 | 	u64 read_format = event->attr.read_format; | 
 | 	u64 values[4]; | 
 | 	int n = 0; | 
 |  | 
 | 	values[n++] = perf_event_count(event); | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | 
 | 		values[n++] = enabled + | 
 | 			atomic64_read(&event->child_total_time_enabled); | 
 | 	} | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | 
 | 		values[n++] = running + | 
 | 			atomic64_read(&event->child_total_time_running); | 
 | 	} | 
 | 	if (read_format & PERF_FORMAT_ID) | 
 | 		values[n++] = primary_event_id(event); | 
 |  | 
 | 	__output_copy(handle, values, n * sizeof(u64)); | 
 | } | 
 |  | 
 | /* | 
 |  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | 
 |  */ | 
 | static void perf_output_read_group(struct perf_output_handle *handle, | 
 | 			    struct perf_event *event, | 
 | 			    u64 enabled, u64 running) | 
 | { | 
 | 	struct perf_event *leader = event->group_leader, *sub; | 
 | 	u64 read_format = event->attr.read_format; | 
 | 	u64 values[5]; | 
 | 	int n = 0; | 
 |  | 
 | 	values[n++] = 1 + leader->nr_siblings; | 
 |  | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
 | 		values[n++] = enabled; | 
 |  | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
 | 		values[n++] = running; | 
 |  | 
 | 	if (leader != event) | 
 | 		leader->pmu->read(leader); | 
 |  | 
 | 	values[n++] = perf_event_count(leader); | 
 | 	if (read_format & PERF_FORMAT_ID) | 
 | 		values[n++] = primary_event_id(leader); | 
 |  | 
 | 	__output_copy(handle, values, n * sizeof(u64)); | 
 |  | 
 | 	list_for_each_entry(sub, &leader->sibling_list, group_entry) { | 
 | 		n = 0; | 
 |  | 
 | 		if (sub != event) | 
 | 			sub->pmu->read(sub); | 
 |  | 
 | 		values[n++] = perf_event_count(sub); | 
 | 		if (read_format & PERF_FORMAT_ID) | 
 | 			values[n++] = primary_event_id(sub); | 
 |  | 
 | 		__output_copy(handle, values, n * sizeof(u64)); | 
 | 	} | 
 | } | 
 |  | 
 | #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ | 
 | 				 PERF_FORMAT_TOTAL_TIME_RUNNING) | 
 |  | 
 | static void perf_output_read(struct perf_output_handle *handle, | 
 | 			     struct perf_event *event) | 
 | { | 
 | 	u64 enabled = 0, running = 0, now; | 
 | 	u64 read_format = event->attr.read_format; | 
 |  | 
 | 	/* | 
 | 	 * compute total_time_enabled, total_time_running | 
 | 	 * based on snapshot values taken when the event | 
 | 	 * was last scheduled in. | 
 | 	 * | 
 | 	 * we cannot simply called update_context_time() | 
 | 	 * because of locking issue as we are called in | 
 | 	 * NMI context | 
 | 	 */ | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIMES) | 
 | 		calc_timer_values(event, &now, &enabled, &running); | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_GROUP) | 
 | 		perf_output_read_group(handle, event, enabled, running); | 
 | 	else | 
 | 		perf_output_read_one(handle, event, enabled, running); | 
 | } | 
 |  | 
 | void perf_output_sample(struct perf_output_handle *handle, | 
 | 			struct perf_event_header *header, | 
 | 			struct perf_sample_data *data, | 
 | 			struct perf_event *event) | 
 | { | 
 | 	u64 sample_type = data->type; | 
 |  | 
 | 	perf_output_put(handle, *header); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_IP) | 
 | 		perf_output_put(handle, data->ip); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TID) | 
 | 		perf_output_put(handle, data->tid_entry); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TIME) | 
 | 		perf_output_put(handle, data->time); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ADDR) | 
 | 		perf_output_put(handle, data->addr); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ID) | 
 | 		perf_output_put(handle, data->id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STREAM_ID) | 
 | 		perf_output_put(handle, data->stream_id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CPU) | 
 | 		perf_output_put(handle, data->cpu_entry); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_PERIOD) | 
 | 		perf_output_put(handle, data->period); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_READ) | 
 | 		perf_output_read(handle, event); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 
 | 		if (data->callchain) { | 
 | 			int size = 1; | 
 |  | 
 | 			if (data->callchain) | 
 | 				size += data->callchain->nr; | 
 |  | 
 | 			size *= sizeof(u64); | 
 |  | 
 | 			__output_copy(handle, data->callchain, size); | 
 | 		} else { | 
 | 			u64 nr = 0; | 
 | 			perf_output_put(handle, nr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_RAW) { | 
 | 		if (data->raw) { | 
 | 			perf_output_put(handle, data->raw->size); | 
 | 			__output_copy(handle, data->raw->data, | 
 | 					   data->raw->size); | 
 | 		} else { | 
 | 			struct { | 
 | 				u32	size; | 
 | 				u32	data; | 
 | 			} raw = { | 
 | 				.size = sizeof(u32), | 
 | 				.data = 0, | 
 | 			}; | 
 | 			perf_output_put(handle, raw); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!event->attr.watermark) { | 
 | 		int wakeup_events = event->attr.wakeup_events; | 
 |  | 
 | 		if (wakeup_events) { | 
 | 			struct ring_buffer *rb = handle->rb; | 
 | 			int events = local_inc_return(&rb->events); | 
 |  | 
 | 			if (events >= wakeup_events) { | 
 | 				local_sub(wakeup_events, &rb->events); | 
 | 				local_inc(&rb->wakeup); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) { | 
 | 		if (data->br_stack) { | 
 | 			size_t size; | 
 |  | 
 | 			size = data->br_stack->nr | 
 | 			     * sizeof(struct perf_branch_entry); | 
 |  | 
 | 			perf_output_put(handle, data->br_stack->nr); | 
 | 			perf_output_copy(handle, data->br_stack->entries, size); | 
 | 		} else { | 
 | 			/* | 
 | 			 * we always store at least the value of nr | 
 | 			 */ | 
 | 			u64 nr = 0; | 
 | 			perf_output_put(handle, nr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_REGS_USER) { | 
 | 		u64 abi = data->regs_user.abi; | 
 |  | 
 | 		/* | 
 | 		 * If there are no regs to dump, notice it through | 
 | 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). | 
 | 		 */ | 
 | 		perf_output_put(handle, abi); | 
 |  | 
 | 		if (abi) { | 
 | 			u64 mask = event->attr.sample_regs_user; | 
 | 			perf_output_sample_regs(handle, | 
 | 						data->regs_user.regs, | 
 | 						mask); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STACK_USER) | 
 | 		perf_output_sample_ustack(handle, | 
 | 					  data->stack_user_size, | 
 | 					  data->regs_user.regs); | 
 | } | 
 |  | 
 | void perf_prepare_sample(struct perf_event_header *header, | 
 | 			 struct perf_sample_data *data, | 
 | 			 struct perf_event *event, | 
 | 			 struct pt_regs *regs) | 
 | { | 
 | 	u64 sample_type = event->attr.sample_type; | 
 |  | 
 | 	header->type = PERF_RECORD_SAMPLE; | 
 | 	header->size = sizeof(*header) + event->header_size; | 
 |  | 
 | 	header->misc = 0; | 
 | 	header->misc |= perf_misc_flags(regs); | 
 |  | 
 | 	__perf_event_header__init_id(header, data, event); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_IP) | 
 | 		data->ip = perf_instruction_pointer(regs); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 
 | 		int size = 1; | 
 |  | 
 | 		data->callchain = perf_callchain(event, regs); | 
 |  | 
 | 		if (data->callchain) | 
 | 			size += data->callchain->nr; | 
 |  | 
 | 		header->size += size * sizeof(u64); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_RAW) { | 
 | 		int size = sizeof(u32); | 
 |  | 
 | 		if (data->raw) | 
 | 			size += data->raw->size; | 
 | 		else | 
 | 			size += sizeof(u32); | 
 |  | 
 | 		WARN_ON_ONCE(size & (sizeof(u64)-1)); | 
 | 		header->size += size; | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) { | 
 | 		int size = sizeof(u64); /* nr */ | 
 | 		if (data->br_stack) { | 
 | 			size += data->br_stack->nr | 
 | 			      * sizeof(struct perf_branch_entry); | 
 | 		} | 
 | 		header->size += size; | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_REGS_USER) { | 
 | 		/* regs dump ABI info */ | 
 | 		int size = sizeof(u64); | 
 |  | 
 | 		perf_sample_regs_user(&data->regs_user, regs); | 
 |  | 
 | 		if (data->regs_user.regs) { | 
 | 			u64 mask = event->attr.sample_regs_user; | 
 | 			size += hweight64(mask) * sizeof(u64); | 
 | 		} | 
 |  | 
 | 		header->size += size; | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STACK_USER) { | 
 | 		/* | 
 | 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways | 
 | 		 * processed as the last one or have additional check added | 
 | 		 * in case new sample type is added, because we could eat | 
 | 		 * up the rest of the sample size. | 
 | 		 */ | 
 | 		struct perf_regs_user *uregs = &data->regs_user; | 
 | 		u16 stack_size = event->attr.sample_stack_user; | 
 | 		u16 size = sizeof(u64); | 
 |  | 
 | 		if (!uregs->abi) | 
 | 			perf_sample_regs_user(uregs, regs); | 
 |  | 
 | 		stack_size = perf_sample_ustack_size(stack_size, header->size, | 
 | 						     uregs->regs); | 
 |  | 
 | 		/* | 
 | 		 * If there is something to dump, add space for the dump | 
 | 		 * itself and for the field that tells the dynamic size, | 
 | 		 * which is how many have been actually dumped. | 
 | 		 */ | 
 | 		if (stack_size) | 
 | 			size += sizeof(u64) + stack_size; | 
 |  | 
 | 		data->stack_user_size = stack_size; | 
 | 		header->size += size; | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_event_output(struct perf_event *event, | 
 | 				struct perf_sample_data *data, | 
 | 				struct pt_regs *regs) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_event_header header; | 
 |  | 
 | 	/* protect the callchain buffers */ | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	perf_prepare_sample(&header, data, event, regs); | 
 |  | 
 | 	if (perf_output_begin(&handle, event, header.size)) | 
 | 		goto exit; | 
 |  | 
 | 	perf_output_sample(&handle, &header, data, event); | 
 |  | 
 | 	perf_output_end(&handle); | 
 |  | 
 | exit: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * read event_id | 
 |  */ | 
 |  | 
 | struct perf_read_event { | 
 | 	struct perf_event_header	header; | 
 |  | 
 | 	u32				pid; | 
 | 	u32				tid; | 
 | }; | 
 |  | 
 | static void | 
 | perf_event_read_event(struct perf_event *event, | 
 | 			struct task_struct *task) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	struct perf_read_event read_event = { | 
 | 		.header = { | 
 | 			.type = PERF_RECORD_READ, | 
 | 			.misc = 0, | 
 | 			.size = sizeof(read_event) + event->read_size, | 
 | 		}, | 
 | 		.pid = perf_event_pid(event, task), | 
 | 		.tid = perf_event_tid(event, task), | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	perf_event_header__init_id(&read_event.header, &sample, event); | 
 | 	ret = perf_output_begin(&handle, event, read_event.header.size); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	perf_output_put(&handle, read_event); | 
 | 	perf_output_read(&handle, event); | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | /* | 
 |  * task tracking -- fork/exit | 
 |  * | 
 |  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task | 
 |  */ | 
 |  | 
 | struct perf_task_event { | 
 | 	struct task_struct		*task; | 
 | 	struct perf_event_context	*task_ctx; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 |  | 
 | 		u32				pid; | 
 | 		u32				ppid; | 
 | 		u32				tid; | 
 | 		u32				ptid; | 
 | 		u64				time; | 
 | 	} event_id; | 
 | }; | 
 |  | 
 | static void perf_event_task_output(struct perf_event *event, | 
 | 				     struct perf_task_event *task_event) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data	sample; | 
 | 	struct task_struct *task = task_event->task; | 
 | 	int ret, size = task_event->event_id.header.size; | 
 |  | 
 | 	perf_event_header__init_id(&task_event->event_id.header, &sample, event); | 
 |  | 
 | 	ret = perf_output_begin(&handle, event, | 
 | 				task_event->event_id.header.size); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	task_event->event_id.pid = perf_event_pid(event, task); | 
 | 	task_event->event_id.ppid = perf_event_pid(event, current); | 
 |  | 
 | 	task_event->event_id.tid = perf_event_tid(event, task); | 
 | 	task_event->event_id.ptid = perf_event_tid(event, current); | 
 |  | 
 | 	perf_output_put(&handle, task_event->event_id); | 
 |  | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | out: | 
 | 	task_event->event_id.header.size = size; | 
 | } | 
 |  | 
 | static int perf_event_task_match(struct perf_event *event) | 
 | { | 
 | 	if (event->state < PERF_EVENT_STATE_INACTIVE) | 
 | 		return 0; | 
 |  | 
 | 	if (!event_filter_match(event)) | 
 | 		return 0; | 
 |  | 
 | 	if (event->attr.comm || event->attr.mmap || | 
 | 	    event->attr.mmap_data || event->attr.task) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_event_task_ctx(struct perf_event_context *ctx, | 
 | 				  struct perf_task_event *task_event) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 		if (perf_event_task_match(event)) | 
 | 			perf_event_task_output(event, task_event); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_event_task_event(struct perf_task_event *task_event) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct perf_event_context *ctx; | 
 | 	struct pmu *pmu; | 
 | 	int ctxn; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(pmu, &pmus, entry) { | 
 | 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); | 
 | 		if (cpuctx->unique_pmu != pmu) | 
 | 			goto next; | 
 | 		perf_event_task_ctx(&cpuctx->ctx, task_event); | 
 |  | 
 | 		ctx = task_event->task_ctx; | 
 | 		if (!ctx) { | 
 | 			ctxn = pmu->task_ctx_nr; | 
 | 			if (ctxn < 0) | 
 | 				goto next; | 
 | 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); | 
 | 		} | 
 | 		if (ctx) | 
 | 			perf_event_task_ctx(ctx, task_event); | 
 | next: | 
 | 		put_cpu_ptr(pmu->pmu_cpu_context); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void perf_event_task(struct task_struct *task, | 
 | 			      struct perf_event_context *task_ctx, | 
 | 			      int new) | 
 | { | 
 | 	struct perf_task_event task_event; | 
 |  | 
 | 	if (!atomic_read(&nr_comm_events) && | 
 | 	    !atomic_read(&nr_mmap_events) && | 
 | 	    !atomic_read(&nr_task_events)) | 
 | 		return; | 
 |  | 
 | 	task_event = (struct perf_task_event){ | 
 | 		.task	  = task, | 
 | 		.task_ctx = task_ctx, | 
 | 		.event_id    = { | 
 | 			.header = { | 
 | 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | 
 | 				.misc = 0, | 
 | 				.size = sizeof(task_event.event_id), | 
 | 			}, | 
 | 			/* .pid  */ | 
 | 			/* .ppid */ | 
 | 			/* .tid  */ | 
 | 			/* .ptid */ | 
 | 			.time = perf_clock(), | 
 | 		}, | 
 | 	}; | 
 |  | 
 | 	perf_event_task_event(&task_event); | 
 | } | 
 |  | 
 | void perf_event_fork(struct task_struct *task) | 
 | { | 
 | 	perf_event_task(task, NULL, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * comm tracking | 
 |  */ | 
 |  | 
 | struct perf_comm_event { | 
 | 	struct task_struct	*task; | 
 | 	char			*comm; | 
 | 	int			comm_size; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 |  | 
 | 		u32				pid; | 
 | 		u32				tid; | 
 | 	} event_id; | 
 | }; | 
 |  | 
 | static void perf_event_comm_output(struct perf_event *event, | 
 | 				     struct perf_comm_event *comm_event) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	int size = comm_event->event_id.header.size; | 
 | 	int ret; | 
 |  | 
 | 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event); | 
 | 	ret = perf_output_begin(&handle, event, | 
 | 				comm_event->event_id.header.size); | 
 |  | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | 
 | 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | 
 |  | 
 | 	perf_output_put(&handle, comm_event->event_id); | 
 | 	__output_copy(&handle, comm_event->comm, | 
 | 				   comm_event->comm_size); | 
 |  | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | out: | 
 | 	comm_event->event_id.header.size = size; | 
 | } | 
 |  | 
 | static int perf_event_comm_match(struct perf_event *event) | 
 | { | 
 | 	if (event->state < PERF_EVENT_STATE_INACTIVE) | 
 | 		return 0; | 
 |  | 
 | 	if (!event_filter_match(event)) | 
 | 		return 0; | 
 |  | 
 | 	if (event->attr.comm) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_event_comm_ctx(struct perf_event_context *ctx, | 
 | 				  struct perf_comm_event *comm_event) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 		if (perf_event_comm_match(event)) | 
 | 			perf_event_comm_output(event, comm_event); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct perf_event_context *ctx; | 
 | 	char comm[TASK_COMM_LEN]; | 
 | 	unsigned int size; | 
 | 	struct pmu *pmu; | 
 | 	int ctxn; | 
 |  | 
 | 	memset(comm, 0, sizeof(comm)); | 
 | 	strlcpy(comm, comm_event->task->comm, sizeof(comm)); | 
 | 	size = ALIGN(strlen(comm)+1, sizeof(u64)); | 
 |  | 
 | 	comm_event->comm = comm; | 
 | 	comm_event->comm_size = size; | 
 |  | 
 | 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(pmu, &pmus, entry) { | 
 | 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); | 
 | 		if (cpuctx->unique_pmu != pmu) | 
 | 			goto next; | 
 | 		perf_event_comm_ctx(&cpuctx->ctx, comm_event); | 
 |  | 
 | 		ctxn = pmu->task_ctx_nr; | 
 | 		if (ctxn < 0) | 
 | 			goto next; | 
 |  | 
 | 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); | 
 | 		if (ctx) | 
 | 			perf_event_comm_ctx(ctx, comm_event); | 
 | next: | 
 | 		put_cpu_ptr(pmu->pmu_cpu_context); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void perf_event_comm(struct task_struct *task) | 
 | { | 
 | 	struct perf_comm_event comm_event; | 
 | 	struct perf_event_context *ctx; | 
 | 	int ctxn; | 
 |  | 
 | 	for_each_task_context_nr(ctxn) { | 
 | 		ctx = task->perf_event_ctxp[ctxn]; | 
 | 		if (!ctx) | 
 | 			continue; | 
 |  | 
 | 		perf_event_enable_on_exec(ctx); | 
 | 	} | 
 |  | 
 | 	if (!atomic_read(&nr_comm_events)) | 
 | 		return; | 
 |  | 
 | 	comm_event = (struct perf_comm_event){ | 
 | 		.task	= task, | 
 | 		/* .comm      */ | 
 | 		/* .comm_size */ | 
 | 		.event_id  = { | 
 | 			.header = { | 
 | 				.type = PERF_RECORD_COMM, | 
 | 				.misc = 0, | 
 | 				/* .size */ | 
 | 			}, | 
 | 			/* .pid */ | 
 | 			/* .tid */ | 
 | 		}, | 
 | 	}; | 
 |  | 
 | 	perf_event_comm_event(&comm_event); | 
 | } | 
 |  | 
 | /* | 
 |  * mmap tracking | 
 |  */ | 
 |  | 
 | struct perf_mmap_event { | 
 | 	struct vm_area_struct	*vma; | 
 |  | 
 | 	const char		*file_name; | 
 | 	int			file_size; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 |  | 
 | 		u32				pid; | 
 | 		u32				tid; | 
 | 		u64				start; | 
 | 		u64				len; | 
 | 		u64				pgoff; | 
 | 	} event_id; | 
 | }; | 
 |  | 
 | static void perf_event_mmap_output(struct perf_event *event, | 
 | 				     struct perf_mmap_event *mmap_event) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	int size = mmap_event->event_id.header.size; | 
 | 	int ret; | 
 |  | 
 | 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); | 
 | 	ret = perf_output_begin(&handle, event, | 
 | 				mmap_event->event_id.header.size); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	mmap_event->event_id.pid = perf_event_pid(event, current); | 
 | 	mmap_event->event_id.tid = perf_event_tid(event, current); | 
 |  | 
 | 	perf_output_put(&handle, mmap_event->event_id); | 
 | 	__output_copy(&handle, mmap_event->file_name, | 
 | 				   mmap_event->file_size); | 
 |  | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | out: | 
 | 	mmap_event->event_id.header.size = size; | 
 | } | 
 |  | 
 | static int perf_event_mmap_match(struct perf_event *event, | 
 | 				   struct perf_mmap_event *mmap_event, | 
 | 				   int executable) | 
 | { | 
 | 	if (event->state < PERF_EVENT_STATE_INACTIVE) | 
 | 		return 0; | 
 |  | 
 | 	if (!event_filter_match(event)) | 
 | 		return 0; | 
 |  | 
 | 	if ((!executable && event->attr.mmap_data) || | 
 | 	    (executable && event->attr.mmap)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | 
 | 				  struct perf_mmap_event *mmap_event, | 
 | 				  int executable) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 		if (perf_event_mmap_match(event, mmap_event, executable)) | 
 | 			perf_event_mmap_output(event, mmap_event); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct perf_event_context *ctx; | 
 | 	struct vm_area_struct *vma = mmap_event->vma; | 
 | 	struct file *file = vma->vm_file; | 
 | 	unsigned int size; | 
 | 	char tmp[16]; | 
 | 	char *buf = NULL; | 
 | 	const char *name; | 
 | 	struct pmu *pmu; | 
 | 	int ctxn; | 
 |  | 
 | 	memset(tmp, 0, sizeof(tmp)); | 
 |  | 
 | 	if (file) { | 
 | 		/* | 
 | 		 * d_path works from the end of the rb backwards, so we | 
 | 		 * need to add enough zero bytes after the string to handle | 
 | 		 * the 64bit alignment we do later. | 
 | 		 */ | 
 | 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | 
 | 		if (!buf) { | 
 | 			name = strncpy(tmp, "//enomem", sizeof(tmp)); | 
 | 			goto got_name; | 
 | 		} | 
 | 		name = d_path(&file->f_path, buf, PATH_MAX); | 
 | 		if (IS_ERR(name)) { | 
 | 			name = strncpy(tmp, "//toolong", sizeof(tmp)); | 
 | 			goto got_name; | 
 | 		} | 
 | 	} else { | 
 | 		if (arch_vma_name(mmap_event->vma)) { | 
 | 			name = strncpy(tmp, arch_vma_name(mmap_event->vma), | 
 | 				       sizeof(tmp)); | 
 | 			goto got_name; | 
 | 		} | 
 |  | 
 | 		if (!vma->vm_mm) { | 
 | 			name = strncpy(tmp, "[vdso]", sizeof(tmp)); | 
 | 			goto got_name; | 
 | 		} else if (vma->vm_start <= vma->vm_mm->start_brk && | 
 | 				vma->vm_end >= vma->vm_mm->brk) { | 
 | 			name = strncpy(tmp, "[heap]", sizeof(tmp)); | 
 | 			goto got_name; | 
 | 		} else if (vma->vm_start <= vma->vm_mm->start_stack && | 
 | 				vma->vm_end >= vma->vm_mm->start_stack) { | 
 | 			name = strncpy(tmp, "[stack]", sizeof(tmp)); | 
 | 			goto got_name; | 
 | 		} | 
 |  | 
 | 		name = strncpy(tmp, "//anon", sizeof(tmp)); | 
 | 		goto got_name; | 
 | 	} | 
 |  | 
 | got_name: | 
 | 	size = ALIGN(strlen(name)+1, sizeof(u64)); | 
 |  | 
 | 	mmap_event->file_name = name; | 
 | 	mmap_event->file_size = size; | 
 |  | 
 | 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(pmu, &pmus, entry) { | 
 | 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); | 
 | 		if (cpuctx->unique_pmu != pmu) | 
 | 			goto next; | 
 | 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, | 
 | 					vma->vm_flags & VM_EXEC); | 
 |  | 
 | 		ctxn = pmu->task_ctx_nr; | 
 | 		if (ctxn < 0) | 
 | 			goto next; | 
 |  | 
 | 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); | 
 | 		if (ctx) { | 
 | 			perf_event_mmap_ctx(ctx, mmap_event, | 
 | 					vma->vm_flags & VM_EXEC); | 
 | 		} | 
 | next: | 
 | 		put_cpu_ptr(pmu->pmu_cpu_context); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	kfree(buf); | 
 | } | 
 |  | 
 | void perf_event_mmap(struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_mmap_event mmap_event; | 
 |  | 
 | 	if (!atomic_read(&nr_mmap_events)) | 
 | 		return; | 
 |  | 
 | 	mmap_event = (struct perf_mmap_event){ | 
 | 		.vma	= vma, | 
 | 		/* .file_name */ | 
 | 		/* .file_size */ | 
 | 		.event_id  = { | 
 | 			.header = { | 
 | 				.type = PERF_RECORD_MMAP, | 
 | 				.misc = PERF_RECORD_MISC_USER, | 
 | 				/* .size */ | 
 | 			}, | 
 | 			/* .pid */ | 
 | 			/* .tid */ | 
 | 			.start  = vma->vm_start, | 
 | 			.len    = vma->vm_end - vma->vm_start, | 
 | 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT, | 
 | 		}, | 
 | 	}; | 
 |  | 
 | 	perf_event_mmap_event(&mmap_event); | 
 | } | 
 |  | 
 | /* | 
 |  * IRQ throttle logging | 
 |  */ | 
 |  | 
 | static void perf_log_throttle(struct perf_event *event, int enable) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	int ret; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 | 		u64				time; | 
 | 		u64				id; | 
 | 		u64				stream_id; | 
 | 	} throttle_event = { | 
 | 		.header = { | 
 | 			.type = PERF_RECORD_THROTTLE, | 
 | 			.misc = 0, | 
 | 			.size = sizeof(throttle_event), | 
 | 		}, | 
 | 		.time		= perf_clock(), | 
 | 		.id		= primary_event_id(event), | 
 | 		.stream_id	= event->id, | 
 | 	}; | 
 |  | 
 | 	if (enable) | 
 | 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | 
 |  | 
 | 	perf_event_header__init_id(&throttle_event.header, &sample, event); | 
 |  | 
 | 	ret = perf_output_begin(&handle, event, | 
 | 				throttle_event.header.size); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	perf_output_put(&handle, throttle_event); | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | /* | 
 |  * Generic event overflow handling, sampling. | 
 |  */ | 
 |  | 
 | static int __perf_event_overflow(struct perf_event *event, | 
 | 				   int throttle, struct perf_sample_data *data, | 
 | 				   struct pt_regs *regs) | 
 | { | 
 | 	int events = atomic_read(&event->event_limit); | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	u64 seq; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Non-sampling counters might still use the PMI to fold short | 
 | 	 * hardware counters, ignore those. | 
 | 	 */ | 
 | 	if (unlikely(!is_sampling_event(event))) | 
 | 		return 0; | 
 |  | 
 | 	seq = __this_cpu_read(perf_throttled_seq); | 
 | 	if (seq != hwc->interrupts_seq) { | 
 | 		hwc->interrupts_seq = seq; | 
 | 		hwc->interrupts = 1; | 
 | 	} else { | 
 | 		hwc->interrupts++; | 
 | 		if (unlikely(throttle | 
 | 			     && hwc->interrupts >= max_samples_per_tick)) { | 
 | 			__this_cpu_inc(perf_throttled_count); | 
 | 			hwc->interrupts = MAX_INTERRUPTS; | 
 | 			perf_log_throttle(event, 0); | 
 | 			ret = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (event->attr.freq) { | 
 | 		u64 now = perf_clock(); | 
 | 		s64 delta = now - hwc->freq_time_stamp; | 
 |  | 
 | 		hwc->freq_time_stamp = now; | 
 |  | 
 | 		if (delta > 0 && delta < 2*TICK_NSEC) | 
 | 			perf_adjust_period(event, delta, hwc->last_period, true); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * XXX event_limit might not quite work as expected on inherited | 
 | 	 * events | 
 | 	 */ | 
 |  | 
 | 	event->pending_kill = POLL_IN; | 
 | 	if (events && atomic_dec_and_test(&event->event_limit)) { | 
 | 		ret = 1; | 
 | 		event->pending_kill = POLL_HUP; | 
 | 		event->pending_disable = 1; | 
 | 		irq_work_queue(&event->pending); | 
 | 	} | 
 |  | 
 | 	if (event->overflow_handler) | 
 | 		event->overflow_handler(event, data, regs); | 
 | 	else | 
 | 		perf_event_output(event, data, regs); | 
 |  | 
 | 	if (event->fasync && event->pending_kill) { | 
 | 		event->pending_wakeup = 1; | 
 | 		irq_work_queue(&event->pending); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int perf_event_overflow(struct perf_event *event, | 
 | 			  struct perf_sample_data *data, | 
 | 			  struct pt_regs *regs) | 
 | { | 
 | 	return __perf_event_overflow(event, 1, data, regs); | 
 | } | 
 |  | 
 | /* | 
 |  * Generic software event infrastructure | 
 |  */ | 
 |  | 
 | struct swevent_htable { | 
 | 	struct swevent_hlist		*swevent_hlist; | 
 | 	struct mutex			hlist_mutex; | 
 | 	int				hlist_refcount; | 
 |  | 
 | 	/* Recursion avoidance in each contexts */ | 
 | 	int				recursion[PERF_NR_CONTEXTS]; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); | 
 |  | 
 | /* | 
 |  * We directly increment event->count and keep a second value in | 
 |  * event->hw.period_left to count intervals. This period event | 
 |  * is kept in the range [-sample_period, 0] so that we can use the | 
 |  * sign as trigger. | 
 |  */ | 
 |  | 
 | static u64 perf_swevent_set_period(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	u64 period = hwc->last_period; | 
 | 	u64 nr, offset; | 
 | 	s64 old, val; | 
 |  | 
 | 	hwc->last_period = hwc->sample_period; | 
 |  | 
 | again: | 
 | 	old = val = local64_read(&hwc->period_left); | 
 | 	if (val < 0) | 
 | 		return 0; | 
 |  | 
 | 	nr = div64_u64(period + val, period); | 
 | 	offset = nr * period; | 
 | 	val -= offset; | 
 | 	if (local64_cmpxchg(&hwc->period_left, old, val) != old) | 
 | 		goto again; | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | static void perf_swevent_overflow(struct perf_event *event, u64 overflow, | 
 | 				    struct perf_sample_data *data, | 
 | 				    struct pt_regs *regs) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	int throttle = 0; | 
 |  | 
 | 	if (!overflow) | 
 | 		overflow = perf_swevent_set_period(event); | 
 |  | 
 | 	if (hwc->interrupts == MAX_INTERRUPTS) | 
 | 		return; | 
 |  | 
 | 	for (; overflow; overflow--) { | 
 | 		if (__perf_event_overflow(event, throttle, | 
 | 					    data, regs)) { | 
 | 			/* | 
 | 			 * We inhibit the overflow from happening when | 
 | 			 * hwc->interrupts == MAX_INTERRUPTS. | 
 | 			 */ | 
 | 			break; | 
 | 		} | 
 | 		throttle = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_swevent_event(struct perf_event *event, u64 nr, | 
 | 			       struct perf_sample_data *data, | 
 | 			       struct pt_regs *regs) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	local64_add(nr, &event->count); | 
 |  | 
 | 	if (!regs) | 
 | 		return; | 
 |  | 
 | 	if (!is_sampling_event(event)) | 
 | 		return; | 
 |  | 
 | 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { | 
 | 		data->period = nr; | 
 | 		return perf_swevent_overflow(event, 1, data, regs); | 
 | 	} else | 
 | 		data->period = event->hw.last_period; | 
 |  | 
 | 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) | 
 | 		return perf_swevent_overflow(event, 1, data, regs); | 
 |  | 
 | 	if (local64_add_negative(nr, &hwc->period_left)) | 
 | 		return; | 
 |  | 
 | 	perf_swevent_overflow(event, 0, data, regs); | 
 | } | 
 |  | 
 | static int perf_exclude_event(struct perf_event *event, | 
 | 			      struct pt_regs *regs) | 
 | { | 
 | 	if (event->hw.state & PERF_HES_STOPPED) | 
 | 		return 1; | 
 |  | 
 | 	if (regs) { | 
 | 		if (event->attr.exclude_user && user_mode(regs)) | 
 | 			return 1; | 
 |  | 
 | 		if (event->attr.exclude_kernel && !user_mode(regs)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_swevent_match(struct perf_event *event, | 
 | 				enum perf_type_id type, | 
 | 				u32 event_id, | 
 | 				struct perf_sample_data *data, | 
 | 				struct pt_regs *regs) | 
 | { | 
 | 	if (event->attr.type != type) | 
 | 		return 0; | 
 |  | 
 | 	if (event->attr.config != event_id) | 
 | 		return 0; | 
 |  | 
 | 	if (perf_exclude_event(event, regs)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline u64 swevent_hash(u64 type, u32 event_id) | 
 | { | 
 | 	u64 val = event_id | (type << 32); | 
 |  | 
 | 	return hash_64(val, SWEVENT_HLIST_BITS); | 
 | } | 
 |  | 
 | static inline struct hlist_head * | 
 | __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) | 
 | { | 
 | 	u64 hash = swevent_hash(type, event_id); | 
 |  | 
 | 	return &hlist->heads[hash]; | 
 | } | 
 |  | 
 | /* For the read side: events when they trigger */ | 
 | static inline struct hlist_head * | 
 | find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) | 
 | { | 
 | 	struct swevent_hlist *hlist; | 
 |  | 
 | 	hlist = rcu_dereference(swhash->swevent_hlist); | 
 | 	if (!hlist) | 
 | 		return NULL; | 
 |  | 
 | 	return __find_swevent_head(hlist, type, event_id); | 
 | } | 
 |  | 
 | /* For the event head insertion and removal in the hlist */ | 
 | static inline struct hlist_head * | 
 | find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) | 
 | { | 
 | 	struct swevent_hlist *hlist; | 
 | 	u32 event_id = event->attr.config; | 
 | 	u64 type = event->attr.type; | 
 |  | 
 | 	/* | 
 | 	 * Event scheduling is always serialized against hlist allocation | 
 | 	 * and release. Which makes the protected version suitable here. | 
 | 	 * The context lock guarantees that. | 
 | 	 */ | 
 | 	hlist = rcu_dereference_protected(swhash->swevent_hlist, | 
 | 					  lockdep_is_held(&event->ctx->lock)); | 
 | 	if (!hlist) | 
 | 		return NULL; | 
 |  | 
 | 	return __find_swevent_head(hlist, type, event_id); | 
 | } | 
 |  | 
 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | 
 | 				    u64 nr, | 
 | 				    struct perf_sample_data *data, | 
 | 				    struct pt_regs *regs) | 
 | { | 
 | 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); | 
 | 	struct perf_event *event; | 
 | 	struct hlist_node *node; | 
 | 	struct hlist_head *head; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	head = find_swevent_head_rcu(swhash, type, event_id); | 
 | 	if (!head) | 
 | 		goto end; | 
 |  | 
 | 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) { | 
 | 		if (perf_swevent_match(event, type, event_id, data, regs)) | 
 | 			perf_swevent_event(event, nr, data, regs); | 
 | 	} | 
 | end: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | int perf_swevent_get_recursion_context(void) | 
 | { | 
 | 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); | 
 |  | 
 | 	return get_recursion_context(swhash->recursion); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); | 
 |  | 
 | inline void perf_swevent_put_recursion_context(int rctx) | 
 | { | 
 | 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); | 
 |  | 
 | 	put_recursion_context(swhash->recursion, rctx); | 
 | } | 
 |  | 
 | void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) | 
 | { | 
 | 	struct perf_sample_data data; | 
 | 	int rctx; | 
 |  | 
 | 	preempt_disable_notrace(); | 
 | 	rctx = perf_swevent_get_recursion_context(); | 
 | 	if (rctx < 0) | 
 | 		return; | 
 |  | 
 | 	perf_sample_data_init(&data, addr, 0); | 
 |  | 
 | 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); | 
 |  | 
 | 	perf_swevent_put_recursion_context(rctx); | 
 | 	preempt_enable_notrace(); | 
 | } | 
 |  | 
 | static void perf_swevent_read(struct perf_event *event) | 
 | { | 
 | } | 
 |  | 
 | static int perf_swevent_add(struct perf_event *event, int flags) | 
 | { | 
 | 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	struct hlist_head *head; | 
 |  | 
 | 	if (is_sampling_event(event)) { | 
 | 		hwc->last_period = hwc->sample_period; | 
 | 		perf_swevent_set_period(event); | 
 | 	} | 
 |  | 
 | 	hwc->state = !(flags & PERF_EF_START); | 
 |  | 
 | 	head = find_swevent_head(swhash, event); | 
 | 	if (WARN_ON_ONCE(!head)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	hlist_add_head_rcu(&event->hlist_entry, head); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_swevent_del(struct perf_event *event, int flags) | 
 | { | 
 | 	hlist_del_rcu(&event->hlist_entry); | 
 | } | 
 |  | 
 | static void perf_swevent_start(struct perf_event *event, int flags) | 
 | { | 
 | 	event->hw.state = 0; | 
 | } | 
 |  | 
 | static void perf_swevent_stop(struct perf_event *event, int flags) | 
 | { | 
 | 	event->hw.state = PERF_HES_STOPPED; | 
 | } | 
 |  | 
 | /* Deref the hlist from the update side */ | 
 | static inline struct swevent_hlist * | 
 | swevent_hlist_deref(struct swevent_htable *swhash) | 
 | { | 
 | 	return rcu_dereference_protected(swhash->swevent_hlist, | 
 | 					 lockdep_is_held(&swhash->hlist_mutex)); | 
 | } | 
 |  | 
 | static void swevent_hlist_release(struct swevent_htable *swhash) | 
 | { | 
 | 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash); | 
 |  | 
 | 	if (!hlist) | 
 | 		return; | 
 |  | 
 | 	rcu_assign_pointer(swhash->swevent_hlist, NULL); | 
 | 	kfree_rcu(hlist, rcu_head); | 
 | } | 
 |  | 
 | static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) | 
 | { | 
 | 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | 
 |  | 
 | 	mutex_lock(&swhash->hlist_mutex); | 
 |  | 
 | 	if (!--swhash->hlist_refcount) | 
 | 		swevent_hlist_release(swhash); | 
 |  | 
 | 	mutex_unlock(&swhash->hlist_mutex); | 
 | } | 
 |  | 
 | static void swevent_hlist_put(struct perf_event *event) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	if (event->cpu != -1) { | 
 | 		swevent_hlist_put_cpu(event, event->cpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		swevent_hlist_put_cpu(event, cpu); | 
 | } | 
 |  | 
 | static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) | 
 | { | 
 | 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | 
 | 	int err = 0; | 
 |  | 
 | 	mutex_lock(&swhash->hlist_mutex); | 
 |  | 
 | 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { | 
 | 		struct swevent_hlist *hlist; | 
 |  | 
 | 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); | 
 | 		if (!hlist) { | 
 | 			err = -ENOMEM; | 
 | 			goto exit; | 
 | 		} | 
 | 		rcu_assign_pointer(swhash->swevent_hlist, hlist); | 
 | 	} | 
 | 	swhash->hlist_refcount++; | 
 | exit: | 
 | 	mutex_unlock(&swhash->hlist_mutex); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int swevent_hlist_get(struct perf_event *event) | 
 | { | 
 | 	int err; | 
 | 	int cpu, failed_cpu; | 
 |  | 
 | 	if (event->cpu != -1) | 
 | 		return swevent_hlist_get_cpu(event, event->cpu); | 
 |  | 
 | 	get_online_cpus(); | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		err = swevent_hlist_get_cpu(event, cpu); | 
 | 		if (err) { | 
 | 			failed_cpu = cpu; | 
 | 			goto fail; | 
 | 		} | 
 | 	} | 
 | 	put_online_cpus(); | 
 |  | 
 | 	return 0; | 
 | fail: | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		if (cpu == failed_cpu) | 
 | 			break; | 
 | 		swevent_hlist_put_cpu(event, cpu); | 
 | 	} | 
 |  | 
 | 	put_online_cpus(); | 
 | 	return err; | 
 | } | 
 |  | 
 | struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; | 
 |  | 
 | static void sw_perf_event_destroy(struct perf_event *event) | 
 | { | 
 | 	u64 event_id = event->attr.config; | 
 |  | 
 | 	WARN_ON(event->parent); | 
 |  | 
 | 	static_key_slow_dec(&perf_swevent_enabled[event_id]); | 
 | 	swevent_hlist_put(event); | 
 | } | 
 |  | 
 | static int perf_swevent_init(struct perf_event *event) | 
 | { | 
 | 	int event_id = event->attr.config; | 
 |  | 
 | 	if (event->attr.type != PERF_TYPE_SOFTWARE) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * no branch sampling for software events | 
 | 	 */ | 
 | 	if (has_branch_stack(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	switch (event_id) { | 
 | 	case PERF_COUNT_SW_CPU_CLOCK: | 
 | 	case PERF_COUNT_SW_TASK_CLOCK: | 
 | 		return -ENOENT; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (event_id >= PERF_COUNT_SW_MAX) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (!event->parent) { | 
 | 		int err; | 
 |  | 
 | 		err = swevent_hlist_get(event); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		static_key_slow_inc(&perf_swevent_enabled[event_id]); | 
 | 		event->destroy = sw_perf_event_destroy; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_swevent_event_idx(struct perf_event *event) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct pmu perf_swevent = { | 
 | 	.task_ctx_nr	= perf_sw_context, | 
 |  | 
 | 	.event_init	= perf_swevent_init, | 
 | 	.add		= perf_swevent_add, | 
 | 	.del		= perf_swevent_del, | 
 | 	.start		= perf_swevent_start, | 
 | 	.stop		= perf_swevent_stop, | 
 | 	.read		= perf_swevent_read, | 
 |  | 
 | 	.event_idx	= perf_swevent_event_idx, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_EVENT_TRACING | 
 |  | 
 | static int perf_tp_filter_match(struct perf_event *event, | 
 | 				struct perf_sample_data *data) | 
 | { | 
 | 	void *record = data->raw->data; | 
 |  | 
 | 	if (likely(!event->filter) || filter_match_preds(event->filter, record)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_tp_event_match(struct perf_event *event, | 
 | 				struct perf_sample_data *data, | 
 | 				struct pt_regs *regs) | 
 | { | 
 | 	if (event->hw.state & PERF_HES_STOPPED) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * All tracepoints are from kernel-space. | 
 | 	 */ | 
 | 	if (event->attr.exclude_kernel) | 
 | 		return 0; | 
 |  | 
 | 	if (!perf_tp_filter_match(event, data)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, | 
 | 		   struct pt_regs *regs, struct hlist_head *head, int rctx, | 
 | 		   struct task_struct *task) | 
 | { | 
 | 	struct perf_sample_data data; | 
 | 	struct perf_event *event; | 
 | 	struct hlist_node *node; | 
 |  | 
 | 	struct perf_raw_record raw = { | 
 | 		.size = entry_size, | 
 | 		.data = record, | 
 | 	}; | 
 |  | 
 | 	perf_sample_data_init(&data, addr, 0); | 
 | 	data.raw = &raw; | 
 |  | 
 | 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) { | 
 | 		if (perf_tp_event_match(event, &data, regs)) | 
 | 			perf_swevent_event(event, count, &data, regs); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we got specified a target task, also iterate its context and | 
 | 	 * deliver this event there too. | 
 | 	 */ | 
 | 	if (task && task != current) { | 
 | 		struct perf_event_context *ctx; | 
 | 		struct trace_entry *entry = record; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); | 
 | 		if (!ctx) | 
 | 			goto unlock; | 
 |  | 
 | 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 			if (event->attr.type != PERF_TYPE_TRACEPOINT) | 
 | 				continue; | 
 | 			if (event->attr.config != entry->type) | 
 | 				continue; | 
 | 			if (perf_tp_event_match(event, &data, regs)) | 
 | 				perf_swevent_event(event, count, &data, regs); | 
 | 		} | 
 | unlock: | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	perf_swevent_put_recursion_context(rctx); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_tp_event); | 
 |  | 
 | static void tp_perf_event_destroy(struct perf_event *event) | 
 | { | 
 | 	perf_trace_destroy(event); | 
 | } | 
 |  | 
 | static int perf_tp_event_init(struct perf_event *event) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (event->attr.type != PERF_TYPE_TRACEPOINT) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * no branch sampling for tracepoint events | 
 | 	 */ | 
 | 	if (has_branch_stack(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	err = perf_trace_init(event); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	event->destroy = tp_perf_event_destroy; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct pmu perf_tracepoint = { | 
 | 	.task_ctx_nr	= perf_sw_context, | 
 |  | 
 | 	.event_init	= perf_tp_event_init, | 
 | 	.add		= perf_trace_add, | 
 | 	.del		= perf_trace_del, | 
 | 	.start		= perf_swevent_start, | 
 | 	.stop		= perf_swevent_stop, | 
 | 	.read		= perf_swevent_read, | 
 |  | 
 | 	.event_idx	= perf_swevent_event_idx, | 
 | }; | 
 |  | 
 | static inline void perf_tp_register(void) | 
 | { | 
 | 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); | 
 | } | 
 |  | 
 | static int perf_event_set_filter(struct perf_event *event, void __user *arg) | 
 | { | 
 | 	char *filter_str; | 
 | 	int ret; | 
 |  | 
 | 	if (event->attr.type != PERF_TYPE_TRACEPOINT) | 
 | 		return -EINVAL; | 
 |  | 
 | 	filter_str = strndup_user(arg, PAGE_SIZE); | 
 | 	if (IS_ERR(filter_str)) | 
 | 		return PTR_ERR(filter_str); | 
 |  | 
 | 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); | 
 |  | 
 | 	kfree(filter_str); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void perf_event_free_filter(struct perf_event *event) | 
 | { | 
 | 	ftrace_profile_free_filter(event); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline void perf_tp_register(void) | 
 | { | 
 | } | 
 |  | 
 | static int perf_event_set_filter(struct perf_event *event, void __user *arg) | 
 | { | 
 | 	return -ENOENT; | 
 | } | 
 |  | 
 | static void perf_event_free_filter(struct perf_event *event) | 
 | { | 
 | } | 
 |  | 
 | #endif /* CONFIG_EVENT_TRACING */ | 
 |  | 
 | #ifdef CONFIG_HAVE_HW_BREAKPOINT | 
 | void perf_bp_event(struct perf_event *bp, void *data) | 
 | { | 
 | 	struct perf_sample_data sample; | 
 | 	struct pt_regs *regs = data; | 
 |  | 
 | 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0); | 
 |  | 
 | 	if (!bp->hw.state && !perf_exclude_event(bp, regs)) | 
 | 		perf_swevent_event(bp, 1, &sample, regs); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * hrtimer based swevent callback | 
 |  */ | 
 |  | 
 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | 
 | { | 
 | 	enum hrtimer_restart ret = HRTIMER_RESTART; | 
 | 	struct perf_sample_data data; | 
 | 	struct pt_regs *regs; | 
 | 	struct perf_event *event; | 
 | 	u64 period; | 
 |  | 
 | 	event = container_of(hrtimer, struct perf_event, hw.hrtimer); | 
 |  | 
 | 	if (event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		return HRTIMER_NORESTART; | 
 |  | 
 | 	event->pmu->read(event); | 
 |  | 
 | 	perf_sample_data_init(&data, 0, event->hw.last_period); | 
 | 	regs = get_irq_regs(); | 
 |  | 
 | 	if (regs && !perf_exclude_event(event, regs)) { | 
 | 		if (!(event->attr.exclude_idle && is_idle_task(current))) | 
 | 			if (__perf_event_overflow(event, 1, &data, regs)) | 
 | 				ret = HRTIMER_NORESTART; | 
 | 	} | 
 |  | 
 | 	period = max_t(u64, 10000, event->hw.sample_period); | 
 | 	hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void perf_swevent_start_hrtimer(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	s64 period; | 
 |  | 
 | 	if (!is_sampling_event(event)) | 
 | 		return; | 
 |  | 
 | 	period = local64_read(&hwc->period_left); | 
 | 	if (period) { | 
 | 		if (period < 0) | 
 | 			period = 10000; | 
 |  | 
 | 		local64_set(&hwc->period_left, 0); | 
 | 	} else { | 
 | 		period = max_t(u64, 10000, hwc->sample_period); | 
 | 	} | 
 | 	__hrtimer_start_range_ns(&hwc->hrtimer, | 
 | 				ns_to_ktime(period), 0, | 
 | 				HRTIMER_MODE_REL_PINNED, 0); | 
 | } | 
 |  | 
 | static void perf_swevent_cancel_hrtimer(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	if (is_sampling_event(event)) { | 
 | 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); | 
 | 		local64_set(&hwc->period_left, ktime_to_ns(remaining)); | 
 |  | 
 | 		hrtimer_cancel(&hwc->hrtimer); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_swevent_init_hrtimer(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	if (!is_sampling_event(event)) | 
 | 		return; | 
 |  | 
 | 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	hwc->hrtimer.function = perf_swevent_hrtimer; | 
 |  | 
 | 	/* | 
 | 	 * Since hrtimers have a fixed rate, we can do a static freq->period | 
 | 	 * mapping and avoid the whole period adjust feedback stuff. | 
 | 	 */ | 
 | 	if (event->attr.freq) { | 
 | 		long freq = event->attr.sample_freq; | 
 |  | 
 | 		event->attr.sample_period = NSEC_PER_SEC / freq; | 
 | 		hwc->sample_period = event->attr.sample_period; | 
 | 		local64_set(&hwc->period_left, hwc->sample_period); | 
 | 		event->attr.freq = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Software event: cpu wall time clock | 
 |  */ | 
 |  | 
 | static void cpu_clock_event_update(struct perf_event *event) | 
 | { | 
 | 	s64 prev; | 
 | 	u64 now; | 
 |  | 
 | 	now = local_clock(); | 
 | 	prev = local64_xchg(&event->hw.prev_count, now); | 
 | 	local64_add(now - prev, &event->count); | 
 | } | 
 |  | 
 | static void cpu_clock_event_start(struct perf_event *event, int flags) | 
 | { | 
 | 	local64_set(&event->hw.prev_count, local_clock()); | 
 | 	perf_swevent_start_hrtimer(event); | 
 | } | 
 |  | 
 | static void cpu_clock_event_stop(struct perf_event *event, int flags) | 
 | { | 
 | 	perf_swevent_cancel_hrtimer(event); | 
 | 	cpu_clock_event_update(event); | 
 | } | 
 |  | 
 | static int cpu_clock_event_add(struct perf_event *event, int flags) | 
 | { | 
 | 	if (flags & PERF_EF_START) | 
 | 		cpu_clock_event_start(event, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cpu_clock_event_del(struct perf_event *event, int flags) | 
 | { | 
 | 	cpu_clock_event_stop(event, flags); | 
 | } | 
 |  | 
 | static void cpu_clock_event_read(struct perf_event *event) | 
 | { | 
 | 	cpu_clock_event_update(event); | 
 | } | 
 |  | 
 | static int cpu_clock_event_init(struct perf_event *event) | 
 | { | 
 | 	if (event->attr.type != PERF_TYPE_SOFTWARE) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * no branch sampling for software events | 
 | 	 */ | 
 | 	if (has_branch_stack(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	perf_swevent_init_hrtimer(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct pmu perf_cpu_clock = { | 
 | 	.task_ctx_nr	= perf_sw_context, | 
 |  | 
 | 	.event_init	= cpu_clock_event_init, | 
 | 	.add		= cpu_clock_event_add, | 
 | 	.del		= cpu_clock_event_del, | 
 | 	.start		= cpu_clock_event_start, | 
 | 	.stop		= cpu_clock_event_stop, | 
 | 	.read		= cpu_clock_event_read, | 
 |  | 
 | 	.event_idx	= perf_swevent_event_idx, | 
 | }; | 
 |  | 
 | /* | 
 |  * Software event: task time clock | 
 |  */ | 
 |  | 
 | static void task_clock_event_update(struct perf_event *event, u64 now) | 
 | { | 
 | 	u64 prev; | 
 | 	s64 delta; | 
 |  | 
 | 	prev = local64_xchg(&event->hw.prev_count, now); | 
 | 	delta = now - prev; | 
 | 	local64_add(delta, &event->count); | 
 | } | 
 |  | 
 | static void task_clock_event_start(struct perf_event *event, int flags) | 
 | { | 
 | 	local64_set(&event->hw.prev_count, event->ctx->time); | 
 | 	perf_swevent_start_hrtimer(event); | 
 | } | 
 |  | 
 | static void task_clock_event_stop(struct perf_event *event, int flags) | 
 | { | 
 | 	perf_swevent_cancel_hrtimer(event); | 
 | 	task_clock_event_update(event, event->ctx->time); | 
 | } | 
 |  | 
 | static int task_clock_event_add(struct perf_event *event, int flags) | 
 | { | 
 | 	if (flags & PERF_EF_START) | 
 | 		task_clock_event_start(event, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void task_clock_event_del(struct perf_event *event, int flags) | 
 | { | 
 | 	task_clock_event_stop(event, PERF_EF_UPDATE); | 
 | } | 
 |  | 
 | static void task_clock_event_read(struct perf_event *event) | 
 | { | 
 | 	u64 now = perf_clock(); | 
 | 	u64 delta = now - event->ctx->timestamp; | 
 | 	u64 time = event->ctx->time + delta; | 
 |  | 
 | 	task_clock_event_update(event, time); | 
 | } | 
 |  | 
 | static int task_clock_event_init(struct perf_event *event) | 
 | { | 
 | 	if (event->attr.type != PERF_TYPE_SOFTWARE) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * no branch sampling for software events | 
 | 	 */ | 
 | 	if (has_branch_stack(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	perf_swevent_init_hrtimer(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct pmu perf_task_clock = { | 
 | 	.task_ctx_nr	= perf_sw_context, | 
 |  | 
 | 	.event_init	= task_clock_event_init, | 
 | 	.add		= task_clock_event_add, | 
 | 	.del		= task_clock_event_del, | 
 | 	.start		= task_clock_event_start, | 
 | 	.stop		= task_clock_event_stop, | 
 | 	.read		= task_clock_event_read, | 
 |  | 
 | 	.event_idx	= perf_swevent_event_idx, | 
 | }; | 
 |  | 
 | static void perf_pmu_nop_void(struct pmu *pmu) | 
 | { | 
 | } | 
 |  | 
 | static int perf_pmu_nop_int(struct pmu *pmu) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_pmu_start_txn(struct pmu *pmu) | 
 | { | 
 | 	perf_pmu_disable(pmu); | 
 | } | 
 |  | 
 | static int perf_pmu_commit_txn(struct pmu *pmu) | 
 | { | 
 | 	perf_pmu_enable(pmu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_pmu_cancel_txn(struct pmu *pmu) | 
 | { | 
 | 	perf_pmu_enable(pmu); | 
 | } | 
 |  | 
 | static int perf_event_idx_default(struct perf_event *event) | 
 | { | 
 | 	return event->hw.idx + 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Ensures all contexts with the same task_ctx_nr have the same | 
 |  * pmu_cpu_context too. | 
 |  */ | 
 | static void *find_pmu_context(int ctxn) | 
 | { | 
 | 	struct pmu *pmu; | 
 |  | 
 | 	if (ctxn < 0) | 
 | 		return NULL; | 
 |  | 
 | 	list_for_each_entry(pmu, &pmus, entry) { | 
 | 		if (pmu->task_ctx_nr == ctxn) | 
 | 			return pmu->pmu_cpu_context; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct perf_cpu_context *cpuctx; | 
 |  | 
 | 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | 
 |  | 
 | 		if (cpuctx->unique_pmu == old_pmu) | 
 | 			cpuctx->unique_pmu = pmu; | 
 | 	} | 
 | } | 
 |  | 
 | static void free_pmu_context(struct pmu *pmu) | 
 | { | 
 | 	struct pmu *i; | 
 |  | 
 | 	mutex_lock(&pmus_lock); | 
 | 	/* | 
 | 	 * Like a real lame refcount. | 
 | 	 */ | 
 | 	list_for_each_entry(i, &pmus, entry) { | 
 | 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) { | 
 | 			update_pmu_context(i, pmu); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	free_percpu(pmu->pmu_cpu_context); | 
 | out: | 
 | 	mutex_unlock(&pmus_lock); | 
 | } | 
 | static struct idr pmu_idr; | 
 |  | 
 | static ssize_t | 
 | type_show(struct device *dev, struct device_attribute *attr, char *page) | 
 | { | 
 | 	struct pmu *pmu = dev_get_drvdata(dev); | 
 |  | 
 | 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); | 
 | } | 
 |  | 
 | static struct device_attribute pmu_dev_attrs[] = { | 
 |        __ATTR_RO(type), | 
 |        __ATTR_NULL, | 
 | }; | 
 |  | 
 | static int pmu_bus_running; | 
 | static struct bus_type pmu_bus = { | 
 | 	.name		= "event_source", | 
 | 	.dev_attrs	= pmu_dev_attrs, | 
 | }; | 
 |  | 
 | static void pmu_dev_release(struct device *dev) | 
 | { | 
 | 	kfree(dev); | 
 | } | 
 |  | 
 | static int pmu_dev_alloc(struct pmu *pmu) | 
 | { | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); | 
 | 	if (!pmu->dev) | 
 | 		goto out; | 
 |  | 
 | 	pmu->dev->groups = pmu->attr_groups; | 
 | 	device_initialize(pmu->dev); | 
 | 	ret = dev_set_name(pmu->dev, "%s", pmu->name); | 
 | 	if (ret) | 
 | 		goto free_dev; | 
 |  | 
 | 	dev_set_drvdata(pmu->dev, pmu); | 
 | 	pmu->dev->bus = &pmu_bus; | 
 | 	pmu->dev->release = pmu_dev_release; | 
 | 	ret = device_add(pmu->dev); | 
 | 	if (ret) | 
 | 		goto free_dev; | 
 |  | 
 | out: | 
 | 	return ret; | 
 |  | 
 | free_dev: | 
 | 	put_device(pmu->dev); | 
 | 	goto out; | 
 | } | 
 |  | 
 | static struct lock_class_key cpuctx_mutex; | 
 | static struct lock_class_key cpuctx_lock; | 
 |  | 
 | int perf_pmu_register(struct pmu *pmu, char *name, int type) | 
 | { | 
 | 	int cpu, ret; | 
 |  | 
 | 	mutex_lock(&pmus_lock); | 
 | 	ret = -ENOMEM; | 
 | 	pmu->pmu_disable_count = alloc_percpu(int); | 
 | 	if (!pmu->pmu_disable_count) | 
 | 		goto unlock; | 
 |  | 
 | 	pmu->type = -1; | 
 | 	if (!name) | 
 | 		goto skip_type; | 
 | 	pmu->name = name; | 
 |  | 
 | 	if (type < 0) { | 
 | 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL); | 
 | 		if (!err) | 
 | 			goto free_pdc; | 
 |  | 
 | 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); | 
 | 		if (err) { | 
 | 			ret = err; | 
 | 			goto free_pdc; | 
 | 		} | 
 | 	} | 
 | 	pmu->type = type; | 
 |  | 
 | 	if (pmu_bus_running) { | 
 | 		ret = pmu_dev_alloc(pmu); | 
 | 		if (ret) | 
 | 			goto free_idr; | 
 | 	} | 
 |  | 
 | skip_type: | 
 | 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); | 
 | 	if (pmu->pmu_cpu_context) | 
 | 		goto got_cpu_context; | 
 |  | 
 | 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); | 
 | 	if (!pmu->pmu_cpu_context) | 
 | 		goto free_dev; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct perf_cpu_context *cpuctx; | 
 |  | 
 | 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | 
 | 		__perf_event_init_context(&cpuctx->ctx); | 
 | 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); | 
 | 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); | 
 | 		cpuctx->ctx.type = cpu_context; | 
 | 		cpuctx->ctx.pmu = pmu; | 
 | 		cpuctx->jiffies_interval = 1; | 
 | 		INIT_LIST_HEAD(&cpuctx->rotation_list); | 
 | 		cpuctx->unique_pmu = pmu; | 
 | 	} | 
 |  | 
 | got_cpu_context: | 
 | 	if (!pmu->start_txn) { | 
 | 		if (pmu->pmu_enable) { | 
 | 			/* | 
 | 			 * If we have pmu_enable/pmu_disable calls, install | 
 | 			 * transaction stubs that use that to try and batch | 
 | 			 * hardware accesses. | 
 | 			 */ | 
 | 			pmu->start_txn  = perf_pmu_start_txn; | 
 | 			pmu->commit_txn = perf_pmu_commit_txn; | 
 | 			pmu->cancel_txn = perf_pmu_cancel_txn; | 
 | 		} else { | 
 | 			pmu->start_txn  = perf_pmu_nop_void; | 
 | 			pmu->commit_txn = perf_pmu_nop_int; | 
 | 			pmu->cancel_txn = perf_pmu_nop_void; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!pmu->pmu_enable) { | 
 | 		pmu->pmu_enable  = perf_pmu_nop_void; | 
 | 		pmu->pmu_disable = perf_pmu_nop_void; | 
 | 	} | 
 |  | 
 | 	if (!pmu->event_idx) | 
 | 		pmu->event_idx = perf_event_idx_default; | 
 |  | 
 | 	list_add_rcu(&pmu->entry, &pmus); | 
 | 	ret = 0; | 
 | unlock: | 
 | 	mutex_unlock(&pmus_lock); | 
 |  | 
 | 	return ret; | 
 |  | 
 | free_dev: | 
 | 	device_del(pmu->dev); | 
 | 	put_device(pmu->dev); | 
 |  | 
 | free_idr: | 
 | 	if (pmu->type >= PERF_TYPE_MAX) | 
 | 		idr_remove(&pmu_idr, pmu->type); | 
 |  | 
 | free_pdc: | 
 | 	free_percpu(pmu->pmu_disable_count); | 
 | 	goto unlock; | 
 | } | 
 |  | 
 | void perf_pmu_unregister(struct pmu *pmu) | 
 | { | 
 | 	mutex_lock(&pmus_lock); | 
 | 	list_del_rcu(&pmu->entry); | 
 | 	mutex_unlock(&pmus_lock); | 
 |  | 
 | 	/* | 
 | 	 * We dereference the pmu list under both SRCU and regular RCU, so | 
 | 	 * synchronize against both of those. | 
 | 	 */ | 
 | 	synchronize_srcu(&pmus_srcu); | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	free_percpu(pmu->pmu_disable_count); | 
 | 	if (pmu->type >= PERF_TYPE_MAX) | 
 | 		idr_remove(&pmu_idr, pmu->type); | 
 | 	device_del(pmu->dev); | 
 | 	put_device(pmu->dev); | 
 | 	free_pmu_context(pmu); | 
 | } | 
 |  | 
 | struct pmu *perf_init_event(struct perf_event *event) | 
 | { | 
 | 	struct pmu *pmu = NULL; | 
 | 	int idx; | 
 | 	int ret; | 
 |  | 
 | 	idx = srcu_read_lock(&pmus_srcu); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	pmu = idr_find(&pmu_idr, event->attr.type); | 
 | 	rcu_read_unlock(); | 
 | 	if (pmu) { | 
 | 		event->pmu = pmu; | 
 | 		ret = pmu->event_init(event); | 
 | 		if (ret) | 
 | 			pmu = ERR_PTR(ret); | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_rcu(pmu, &pmus, entry) { | 
 | 		event->pmu = pmu; | 
 | 		ret = pmu->event_init(event); | 
 | 		if (!ret) | 
 | 			goto unlock; | 
 |  | 
 | 		if (ret != -ENOENT) { | 
 | 			pmu = ERR_PTR(ret); | 
 | 			goto unlock; | 
 | 		} | 
 | 	} | 
 | 	pmu = ERR_PTR(-ENOENT); | 
 | unlock: | 
 | 	srcu_read_unlock(&pmus_srcu, idx); | 
 |  | 
 | 	return pmu; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate and initialize a event structure | 
 |  */ | 
 | static struct perf_event * | 
 | perf_event_alloc(struct perf_event_attr *attr, int cpu, | 
 | 		 struct task_struct *task, | 
 | 		 struct perf_event *group_leader, | 
 | 		 struct perf_event *parent_event, | 
 | 		 perf_overflow_handler_t overflow_handler, | 
 | 		 void *context) | 
 | { | 
 | 	struct pmu *pmu; | 
 | 	struct perf_event *event; | 
 | 	struct hw_perf_event *hwc; | 
 | 	long err; | 
 |  | 
 | 	if ((unsigned)cpu >= nr_cpu_ids) { | 
 | 		if (!task || cpu != -1) | 
 | 			return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	event = kzalloc(sizeof(*event), GFP_KERNEL); | 
 | 	if (!event) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	/* | 
 | 	 * Single events are their own group leaders, with an | 
 | 	 * empty sibling list: | 
 | 	 */ | 
 | 	if (!group_leader) | 
 | 		group_leader = event; | 
 |  | 
 | 	mutex_init(&event->child_mutex); | 
 | 	INIT_LIST_HEAD(&event->child_list); | 
 |  | 
 | 	INIT_LIST_HEAD(&event->group_entry); | 
 | 	INIT_LIST_HEAD(&event->event_entry); | 
 | 	INIT_LIST_HEAD(&event->sibling_list); | 
 | 	INIT_LIST_HEAD(&event->rb_entry); | 
 |  | 
 | 	init_waitqueue_head(&event->waitq); | 
 | 	init_irq_work(&event->pending, perf_pending_event); | 
 |  | 
 | 	mutex_init(&event->mmap_mutex); | 
 |  | 
 | 	atomic_long_set(&event->refcount, 1); | 
 | 	event->cpu		= cpu; | 
 | 	event->attr		= *attr; | 
 | 	event->group_leader	= group_leader; | 
 | 	event->pmu		= NULL; | 
 | 	event->oncpu		= -1; | 
 |  | 
 | 	event->parent		= parent_event; | 
 |  | 
 | 	event->ns		= get_pid_ns(task_active_pid_ns(current)); | 
 | 	event->id		= atomic64_inc_return(&perf_event_id); | 
 |  | 
 | 	event->state		= PERF_EVENT_STATE_INACTIVE; | 
 |  | 
 | 	if (task) { | 
 | 		event->attach_state = PERF_ATTACH_TASK; | 
 | #ifdef CONFIG_HAVE_HW_BREAKPOINT | 
 | 		/* | 
 | 		 * hw_breakpoint is a bit difficult here.. | 
 | 		 */ | 
 | 		if (attr->type == PERF_TYPE_BREAKPOINT) | 
 | 			event->hw.bp_target = task; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	if (!overflow_handler && parent_event) { | 
 | 		overflow_handler = parent_event->overflow_handler; | 
 | 		context = parent_event->overflow_handler_context; | 
 | 	} | 
 |  | 
 | 	event->overflow_handler	= overflow_handler; | 
 | 	event->overflow_handler_context = context; | 
 |  | 
 | 	if (attr->disabled) | 
 | 		event->state = PERF_EVENT_STATE_OFF; | 
 |  | 
 | 	pmu = NULL; | 
 |  | 
 | 	hwc = &event->hw; | 
 | 	hwc->sample_period = attr->sample_period; | 
 | 	if (attr->freq && attr->sample_freq) | 
 | 		hwc->sample_period = 1; | 
 | 	hwc->last_period = hwc->sample_period; | 
 |  | 
 | 	local64_set(&hwc->period_left, hwc->sample_period); | 
 |  | 
 | 	/* | 
 | 	 * we currently do not support PERF_FORMAT_GROUP on inherited events | 
 | 	 */ | 
 | 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | 
 | 		goto done; | 
 |  | 
 | 	pmu = perf_init_event(event); | 
 |  | 
 | done: | 
 | 	err = 0; | 
 | 	if (!pmu) | 
 | 		err = -EINVAL; | 
 | 	else if (IS_ERR(pmu)) | 
 | 		err = PTR_ERR(pmu); | 
 |  | 
 | 	if (err) { | 
 | 		if (event->ns) | 
 | 			put_pid_ns(event->ns); | 
 | 		kfree(event); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 |  | 
 | 	if (!event->parent) { | 
 | 		if (event->attach_state & PERF_ATTACH_TASK) | 
 | 			static_key_slow_inc(&perf_sched_events.key); | 
 | 		if (event->attr.mmap || event->attr.mmap_data) | 
 | 			atomic_inc(&nr_mmap_events); | 
 | 		if (event->attr.comm) | 
 | 			atomic_inc(&nr_comm_events); | 
 | 		if (event->attr.task) | 
 | 			atomic_inc(&nr_task_events); | 
 | 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { | 
 | 			err = get_callchain_buffers(); | 
 | 			if (err) { | 
 | 				free_event(event); | 
 | 				return ERR_PTR(err); | 
 | 			} | 
 | 		} | 
 | 		if (has_branch_stack(event)) { | 
 | 			static_key_slow_inc(&perf_sched_events.key); | 
 | 			if (!(event->attach_state & PERF_ATTACH_TASK)) | 
 | 				atomic_inc(&per_cpu(perf_branch_stack_events, | 
 | 						    event->cpu)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return event; | 
 | } | 
 |  | 
 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | 
 | 			  struct perf_event_attr *attr) | 
 | { | 
 | 	u32 size; | 
 | 	int ret; | 
 |  | 
 | 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * zero the full structure, so that a short copy will be nice. | 
 | 	 */ | 
 | 	memset(attr, 0, sizeof(*attr)); | 
 |  | 
 | 	ret = get_user(size, &uattr->size); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (size > PAGE_SIZE)	/* silly large */ | 
 | 		goto err_size; | 
 |  | 
 | 	if (!size)		/* abi compat */ | 
 | 		size = PERF_ATTR_SIZE_VER0; | 
 |  | 
 | 	if (size < PERF_ATTR_SIZE_VER0) | 
 | 		goto err_size; | 
 |  | 
 | 	/* | 
 | 	 * If we're handed a bigger struct than we know of, | 
 | 	 * ensure all the unknown bits are 0 - i.e. new | 
 | 	 * user-space does not rely on any kernel feature | 
 | 	 * extensions we dont know about yet. | 
 | 	 */ | 
 | 	if (size > sizeof(*attr)) { | 
 | 		unsigned char __user *addr; | 
 | 		unsigned char __user *end; | 
 | 		unsigned char val; | 
 |  | 
 | 		addr = (void __user *)uattr + sizeof(*attr); | 
 | 		end  = (void __user *)uattr + size; | 
 |  | 
 | 		for (; addr < end; addr++) { | 
 | 			ret = get_user(val, addr); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			if (val) | 
 | 				goto err_size; | 
 | 		} | 
 | 		size = sizeof(*attr); | 
 | 	} | 
 |  | 
 | 	ret = copy_from_user(attr, uattr, size); | 
 | 	if (ret) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (attr->__reserved_1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { | 
 | 		u64 mask = attr->branch_sample_type; | 
 |  | 
 | 		/* only using defined bits */ | 
 | 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		/* at least one branch bit must be set */ | 
 | 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		/* kernel level capture: check permissions */ | 
 | 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) | 
 | 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | 
 | 			return -EACCES; | 
 |  | 
 | 		/* propagate priv level, when not set for branch */ | 
 | 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { | 
 |  | 
 | 			/* exclude_kernel checked on syscall entry */ | 
 | 			if (!attr->exclude_kernel) | 
 | 				mask |= PERF_SAMPLE_BRANCH_KERNEL; | 
 |  | 
 | 			if (!attr->exclude_user) | 
 | 				mask |= PERF_SAMPLE_BRANCH_USER; | 
 |  | 
 | 			if (!attr->exclude_hv) | 
 | 				mask |= PERF_SAMPLE_BRANCH_HV; | 
 | 			/* | 
 | 			 * adjust user setting (for HW filter setup) | 
 | 			 */ | 
 | 			attr->branch_sample_type = mask; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) { | 
 | 		ret = perf_reg_validate(attr->sample_regs_user); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) { | 
 | 		if (!arch_perf_have_user_stack_dump()) | 
 | 			return -ENOSYS; | 
 |  | 
 | 		/* | 
 | 		 * We have __u32 type for the size, but so far | 
 | 		 * we can only use __u16 as maximum due to the | 
 | 		 * __u16 sample size limit. | 
 | 		 */ | 
 | 		if (attr->sample_stack_user >= USHRT_MAX) | 
 | 			ret = -EINVAL; | 
 | 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) | 
 | 			ret = -EINVAL; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret; | 
 |  | 
 | err_size: | 
 | 	put_user(sizeof(*attr), &uattr->size); | 
 | 	ret = -E2BIG; | 
 | 	goto out; | 
 | } | 
 |  | 
 | static int | 
 | perf_event_set_output(struct perf_event *event, struct perf_event *output_event) | 
 | { | 
 | 	struct ring_buffer *rb = NULL, *old_rb = NULL; | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	if (!output_event) | 
 | 		goto set; | 
 |  | 
 | 	/* don't allow circular references */ | 
 | 	if (event == output_event) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Don't allow cross-cpu buffers | 
 | 	 */ | 
 | 	if (output_event->cpu != event->cpu) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If its not a per-cpu rb, it must be the same task. | 
 | 	 */ | 
 | 	if (output_event->cpu == -1 && output_event->ctx != event->ctx) | 
 | 		goto out; | 
 |  | 
 | set: | 
 | 	mutex_lock(&event->mmap_mutex); | 
 | 	/* Can't redirect output if we've got an active mmap() */ | 
 | 	if (atomic_read(&event->mmap_count)) | 
 | 		goto unlock; | 
 |  | 
 | 	if (output_event) { | 
 | 		/* get the rb we want to redirect to */ | 
 | 		rb = ring_buffer_get(output_event); | 
 | 		if (!rb) | 
 | 			goto unlock; | 
 | 	} | 
 |  | 
 | 	old_rb = event->rb; | 
 | 	rcu_assign_pointer(event->rb, rb); | 
 | 	if (old_rb) | 
 | 		ring_buffer_detach(event, old_rb); | 
 | 	ret = 0; | 
 | unlock: | 
 | 	mutex_unlock(&event->mmap_mutex); | 
 |  | 
 | 	if (old_rb) | 
 | 		ring_buffer_put(old_rb); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_perf_event_open - open a performance event, associate it to a task/cpu | 
 |  * | 
 |  * @attr_uptr:	event_id type attributes for monitoring/sampling | 
 |  * @pid:		target pid | 
 |  * @cpu:		target cpu | 
 |  * @group_fd:		group leader event fd | 
 |  */ | 
 | SYSCALL_DEFINE5(perf_event_open, | 
 | 		struct perf_event_attr __user *, attr_uptr, | 
 | 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | 
 | { | 
 | 	struct perf_event *group_leader = NULL, *output_event = NULL; | 
 | 	struct perf_event *event, *sibling; | 
 | 	struct perf_event_attr attr; | 
 | 	struct perf_event_context *ctx; | 
 | 	struct file *event_file = NULL; | 
 | 	struct fd group = {NULL, 0}; | 
 | 	struct task_struct *task = NULL; | 
 | 	struct pmu *pmu; | 
 | 	int event_fd; | 
 | 	int move_group = 0; | 
 | 	int err; | 
 |  | 
 | 	/* for future expandability... */ | 
 | 	if (flags & ~PERF_FLAG_ALL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	err = perf_copy_attr(attr_uptr, &attr); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (!attr.exclude_kernel) { | 
 | 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | 
 | 			return -EACCES; | 
 | 	} | 
 |  | 
 | 	if (attr.freq) { | 
 | 		if (attr.sample_freq > sysctl_perf_event_sample_rate) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In cgroup mode, the pid argument is used to pass the fd | 
 | 	 * opened to the cgroup directory in cgroupfs. The cpu argument | 
 | 	 * designates the cpu on which to monitor threads from that | 
 | 	 * cgroup. | 
 | 	 */ | 
 | 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	event_fd = get_unused_fd(); | 
 | 	if (event_fd < 0) | 
 | 		return event_fd; | 
 |  | 
 | 	if (group_fd != -1) { | 
 | 		err = perf_fget_light(group_fd, &group); | 
 | 		if (err) | 
 | 			goto err_fd; | 
 | 		group_leader = group.file->private_data; | 
 | 		if (flags & PERF_FLAG_FD_OUTPUT) | 
 | 			output_event = group_leader; | 
 | 		if (flags & PERF_FLAG_FD_NO_GROUP) | 
 | 			group_leader = NULL; | 
 | 	} | 
 |  | 
 | 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { | 
 | 		task = find_lively_task_by_vpid(pid); | 
 | 		if (IS_ERR(task)) { | 
 | 			err = PTR_ERR(task); | 
 | 			goto err_group_fd; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	get_online_cpus(); | 
 |  | 
 | 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, | 
 | 				 NULL, NULL); | 
 | 	if (IS_ERR(event)) { | 
 | 		err = PTR_ERR(event); | 
 | 		goto err_task; | 
 | 	} | 
 |  | 
 | 	if (flags & PERF_FLAG_PID_CGROUP) { | 
 | 		err = perf_cgroup_connect(pid, event, &attr, group_leader); | 
 | 		if (err) | 
 | 			goto err_alloc; | 
 | 		/* | 
 | 		 * one more event: | 
 | 		 * - that has cgroup constraint on event->cpu | 
 | 		 * - that may need work on context switch | 
 | 		 */ | 
 | 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); | 
 | 		static_key_slow_inc(&perf_sched_events.key); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Special case software events and allow them to be part of | 
 | 	 * any hardware group. | 
 | 	 */ | 
 | 	pmu = event->pmu; | 
 |  | 
 | 	if (group_leader && | 
 | 	    (is_software_event(event) != is_software_event(group_leader))) { | 
 | 		if (is_software_event(event)) { | 
 | 			/* | 
 | 			 * If event and group_leader are not both a software | 
 | 			 * event, and event is, then group leader is not. | 
 | 			 * | 
 | 			 * Allow the addition of software events to !software | 
 | 			 * groups, this is safe because software events never | 
 | 			 * fail to schedule. | 
 | 			 */ | 
 | 			pmu = group_leader->pmu; | 
 | 		} else if (is_software_event(group_leader) && | 
 | 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { | 
 | 			/* | 
 | 			 * In case the group is a pure software group, and we | 
 | 			 * try to add a hardware event, move the whole group to | 
 | 			 * the hardware context. | 
 | 			 */ | 
 | 			move_group = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get the target context (task or percpu): | 
 | 	 */ | 
 | 	ctx = find_get_context(pmu, task, event->cpu); | 
 | 	if (IS_ERR(ctx)) { | 
 | 		err = PTR_ERR(ctx); | 
 | 		goto err_alloc; | 
 | 	} | 
 |  | 
 | 	if (task) { | 
 | 		put_task_struct(task); | 
 | 		task = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Look up the group leader (we will attach this event to it): | 
 | 	 */ | 
 | 	if (group_leader) { | 
 | 		err = -EINVAL; | 
 |  | 
 | 		/* | 
 | 		 * Do not allow a recursive hierarchy (this new sibling | 
 | 		 * becoming part of another group-sibling): | 
 | 		 */ | 
 | 		if (group_leader->group_leader != group_leader) | 
 | 			goto err_context; | 
 | 		/* | 
 | 		 * Do not allow to attach to a group in a different | 
 | 		 * task or CPU context: | 
 | 		 */ | 
 | 		if (move_group) { | 
 | 			if (group_leader->ctx->type != ctx->type) | 
 | 				goto err_context; | 
 | 		} else { | 
 | 			if (group_leader->ctx != ctx) | 
 | 				goto err_context; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Only a group leader can be exclusive or pinned | 
 | 		 */ | 
 | 		if (attr.exclusive || attr.pinned) | 
 | 			goto err_context; | 
 | 	} | 
 |  | 
 | 	if (output_event) { | 
 | 		err = perf_event_set_output(event, output_event); | 
 | 		if (err) | 
 | 			goto err_context; | 
 | 	} | 
 |  | 
 | 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); | 
 | 	if (IS_ERR(event_file)) { | 
 | 		err = PTR_ERR(event_file); | 
 | 		goto err_context; | 
 | 	} | 
 |  | 
 | 	if (move_group) { | 
 | 		struct perf_event_context *gctx = group_leader->ctx; | 
 |  | 
 | 		mutex_lock(&gctx->mutex); | 
 | 		perf_remove_from_context(group_leader); | 
 | 		list_for_each_entry(sibling, &group_leader->sibling_list, | 
 | 				    group_entry) { | 
 | 			perf_remove_from_context(sibling); | 
 | 			put_ctx(gctx); | 
 | 		} | 
 | 		mutex_unlock(&gctx->mutex); | 
 | 		put_ctx(gctx); | 
 | 	} | 
 |  | 
 | 	WARN_ON_ONCE(ctx->parent_ctx); | 
 | 	mutex_lock(&ctx->mutex); | 
 |  | 
 | 	if (move_group) { | 
 | 		synchronize_rcu(); | 
 | 		perf_install_in_context(ctx, group_leader, event->cpu); | 
 | 		get_ctx(ctx); | 
 | 		list_for_each_entry(sibling, &group_leader->sibling_list, | 
 | 				    group_entry) { | 
 | 			perf_install_in_context(ctx, sibling, event->cpu); | 
 | 			get_ctx(ctx); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	perf_install_in_context(ctx, event, event->cpu); | 
 | 	++ctx->generation; | 
 | 	perf_unpin_context(ctx); | 
 | 	mutex_unlock(&ctx->mutex); | 
 |  | 
 | 	put_online_cpus(); | 
 |  | 
 | 	event->owner = current; | 
 |  | 
 | 	mutex_lock(¤t->perf_event_mutex); | 
 | 	list_add_tail(&event->owner_entry, ¤t->perf_event_list); | 
 | 	mutex_unlock(¤t->perf_event_mutex); | 
 |  | 
 | 	/* | 
 | 	 * Precalculate sample_data sizes | 
 | 	 */ | 
 | 	perf_event__header_size(event); | 
 | 	perf_event__id_header_size(event); | 
 |  | 
 | 	/* | 
 | 	 * Drop the reference on the group_event after placing the | 
 | 	 * new event on the sibling_list. This ensures destruction | 
 | 	 * of the group leader will find the pointer to itself in | 
 | 	 * perf_group_detach(). | 
 | 	 */ | 
 | 	fdput(group); | 
 | 	fd_install(event_fd, event_file); | 
 | 	return event_fd; | 
 |  | 
 | err_context: | 
 | 	perf_unpin_context(ctx); | 
 | 	put_ctx(ctx); | 
 | err_alloc: | 
 | 	free_event(event); | 
 | err_task: | 
 | 	put_online_cpus(); | 
 | 	if (task) | 
 | 		put_task_struct(task); | 
 | err_group_fd: | 
 | 	fdput(group); | 
 | err_fd: | 
 | 	put_unused_fd(event_fd); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * perf_event_create_kernel_counter | 
 |  * | 
 |  * @attr: attributes of the counter to create | 
 |  * @cpu: cpu in which the counter is bound | 
 |  * @task: task to profile (NULL for percpu) | 
 |  */ | 
 | struct perf_event * | 
 | perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, | 
 | 				 struct task_struct *task, | 
 | 				 perf_overflow_handler_t overflow_handler, | 
 | 				 void *context) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	struct perf_event *event; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * Get the target context (task or percpu): | 
 | 	 */ | 
 |  | 
 | 	event = perf_event_alloc(attr, cpu, task, NULL, NULL, | 
 | 				 overflow_handler, context); | 
 | 	if (IS_ERR(event)) { | 
 | 		err = PTR_ERR(event); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	ctx = find_get_context(event->pmu, task, cpu); | 
 | 	if (IS_ERR(ctx)) { | 
 | 		err = PTR_ERR(ctx); | 
 | 		goto err_free; | 
 | 	} | 
 |  | 
 | 	WARN_ON_ONCE(ctx->parent_ctx); | 
 | 	mutex_lock(&ctx->mutex); | 
 | 	perf_install_in_context(ctx, event, cpu); | 
 | 	++ctx->generation; | 
 | 	perf_unpin_context(ctx); | 
 | 	mutex_unlock(&ctx->mutex); | 
 |  | 
 | 	return event; | 
 |  | 
 | err_free: | 
 | 	free_event(event); | 
 | err: | 
 | 	return ERR_PTR(err); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); | 
 |  | 
 | void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) | 
 | { | 
 | 	struct perf_event_context *src_ctx; | 
 | 	struct perf_event_context *dst_ctx; | 
 | 	struct perf_event *event, *tmp; | 
 | 	LIST_HEAD(events); | 
 |  | 
 | 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; | 
 | 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; | 
 |  | 
 | 	mutex_lock(&src_ctx->mutex); | 
 | 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list, | 
 | 				 event_entry) { | 
 | 		perf_remove_from_context(event); | 
 | 		put_ctx(src_ctx); | 
 | 		list_add(&event->event_entry, &events); | 
 | 	} | 
 | 	mutex_unlock(&src_ctx->mutex); | 
 |  | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	mutex_lock(&dst_ctx->mutex); | 
 | 	list_for_each_entry_safe(event, tmp, &events, event_entry) { | 
 | 		list_del(&event->event_entry); | 
 | 		if (event->state >= PERF_EVENT_STATE_OFF) | 
 | 			event->state = PERF_EVENT_STATE_INACTIVE; | 
 | 		perf_install_in_context(dst_ctx, event, dst_cpu); | 
 | 		get_ctx(dst_ctx); | 
 | 	} | 
 | 	mutex_unlock(&dst_ctx->mutex); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); | 
 |  | 
 | static void sync_child_event(struct perf_event *child_event, | 
 | 			       struct task_struct *child) | 
 | { | 
 | 	struct perf_event *parent_event = child_event->parent; | 
 | 	u64 child_val; | 
 |  | 
 | 	if (child_event->attr.inherit_stat) | 
 | 		perf_event_read_event(child_event, child); | 
 |  | 
 | 	child_val = perf_event_count(child_event); | 
 |  | 
 | 	/* | 
 | 	 * Add back the child's count to the parent's count: | 
 | 	 */ | 
 | 	atomic64_add(child_val, &parent_event->child_count); | 
 | 	atomic64_add(child_event->total_time_enabled, | 
 | 		     &parent_event->child_total_time_enabled); | 
 | 	atomic64_add(child_event->total_time_running, | 
 | 		     &parent_event->child_total_time_running); | 
 |  | 
 | 	/* | 
 | 	 * Remove this event from the parent's list | 
 | 	 */ | 
 | 	WARN_ON_ONCE(parent_event->ctx->parent_ctx); | 
 | 	mutex_lock(&parent_event->child_mutex); | 
 | 	list_del_init(&child_event->child_list); | 
 | 	mutex_unlock(&parent_event->child_mutex); | 
 |  | 
 | 	/* | 
 | 	 * Release the parent event, if this was the last | 
 | 	 * reference to it. | 
 | 	 */ | 
 | 	put_event(parent_event); | 
 | } | 
 |  | 
 | static void | 
 | __perf_event_exit_task(struct perf_event *child_event, | 
 | 			 struct perf_event_context *child_ctx, | 
 | 			 struct task_struct *child) | 
 | { | 
 | 	if (child_event->parent) { | 
 | 		raw_spin_lock_irq(&child_ctx->lock); | 
 | 		perf_group_detach(child_event); | 
 | 		raw_spin_unlock_irq(&child_ctx->lock); | 
 | 	} | 
 |  | 
 | 	perf_remove_from_context(child_event); | 
 |  | 
 | 	/* | 
 | 	 * It can happen that the parent exits first, and has events | 
 | 	 * that are still around due to the child reference. These | 
 | 	 * events need to be zapped. | 
 | 	 */ | 
 | 	if (child_event->parent) { | 
 | 		sync_child_event(child_event, child); | 
 | 		free_event(child_event); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_event_exit_task_context(struct task_struct *child, int ctxn) | 
 | { | 
 | 	struct perf_event *child_event, *tmp; | 
 | 	struct perf_event_context *child_ctx; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (likely(!child->perf_event_ctxp[ctxn])) { | 
 | 		perf_event_task(child, NULL, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	/* | 
 | 	 * We can't reschedule here because interrupts are disabled, | 
 | 	 * and either child is current or it is a task that can't be | 
 | 	 * scheduled, so we are now safe from rescheduling changing | 
 | 	 * our context. | 
 | 	 */ | 
 | 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); | 
 |  | 
 | 	/* | 
 | 	 * Take the context lock here so that if find_get_context is | 
 | 	 * reading child->perf_event_ctxp, we wait until it has | 
 | 	 * incremented the context's refcount before we do put_ctx below. | 
 | 	 */ | 
 | 	raw_spin_lock(&child_ctx->lock); | 
 | 	task_ctx_sched_out(child_ctx); | 
 | 	child->perf_event_ctxp[ctxn] = NULL; | 
 | 	/* | 
 | 	 * If this context is a clone; unclone it so it can't get | 
 | 	 * swapped to another process while we're removing all | 
 | 	 * the events from it. | 
 | 	 */ | 
 | 	unclone_ctx(child_ctx); | 
 | 	update_context_time(child_ctx); | 
 | 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Report the task dead after unscheduling the events so that we | 
 | 	 * won't get any samples after PERF_RECORD_EXIT. We can however still | 
 | 	 * get a few PERF_RECORD_READ events. | 
 | 	 */ | 
 | 	perf_event_task(child, child_ctx, 0); | 
 |  | 
 | 	/* | 
 | 	 * We can recurse on the same lock type through: | 
 | 	 * | 
 | 	 *   __perf_event_exit_task() | 
 | 	 *     sync_child_event() | 
 | 	 *       put_event() | 
 | 	 *         mutex_lock(&ctx->mutex) | 
 | 	 * | 
 | 	 * But since its the parent context it won't be the same instance. | 
 | 	 */ | 
 | 	mutex_lock(&child_ctx->mutex); | 
 |  | 
 | again: | 
 | 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, | 
 | 				 group_entry) | 
 | 		__perf_event_exit_task(child_event, child_ctx, child); | 
 |  | 
 | 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, | 
 | 				 group_entry) | 
 | 		__perf_event_exit_task(child_event, child_ctx, child); | 
 |  | 
 | 	/* | 
 | 	 * If the last event was a group event, it will have appended all | 
 | 	 * its siblings to the list, but we obtained 'tmp' before that which | 
 | 	 * will still point to the list head terminating the iteration. | 
 | 	 */ | 
 | 	if (!list_empty(&child_ctx->pinned_groups) || | 
 | 	    !list_empty(&child_ctx->flexible_groups)) | 
 | 		goto again; | 
 |  | 
 | 	mutex_unlock(&child_ctx->mutex); | 
 |  | 
 | 	put_ctx(child_ctx); | 
 | } | 
 |  | 
 | /* | 
 |  * When a child task exits, feed back event values to parent events. | 
 |  */ | 
 | void perf_event_exit_task(struct task_struct *child) | 
 | { | 
 | 	struct perf_event *event, *tmp; | 
 | 	int ctxn; | 
 |  | 
 | 	mutex_lock(&child->perf_event_mutex); | 
 | 	list_for_each_entry_safe(event, tmp, &child->perf_event_list, | 
 | 				 owner_entry) { | 
 | 		list_del_init(&event->owner_entry); | 
 |  | 
 | 		/* | 
 | 		 * Ensure the list deletion is visible before we clear | 
 | 		 * the owner, closes a race against perf_release() where | 
 | 		 * we need to serialize on the owner->perf_event_mutex. | 
 | 		 */ | 
 | 		smp_wmb(); | 
 | 		event->owner = NULL; | 
 | 	} | 
 | 	mutex_unlock(&child->perf_event_mutex); | 
 |  | 
 | 	for_each_task_context_nr(ctxn) | 
 | 		perf_event_exit_task_context(child, ctxn); | 
 | } | 
 |  | 
 | static void perf_free_event(struct perf_event *event, | 
 | 			    struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *parent = event->parent; | 
 |  | 
 | 	if (WARN_ON_ONCE(!parent)) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&parent->child_mutex); | 
 | 	list_del_init(&event->child_list); | 
 | 	mutex_unlock(&parent->child_mutex); | 
 |  | 
 | 	put_event(parent); | 
 |  | 
 | 	perf_group_detach(event); | 
 | 	list_del_event(event, ctx); | 
 | 	free_event(event); | 
 | } | 
 |  | 
 | /* | 
 |  * free an unexposed, unused context as created by inheritance by | 
 |  * perf_event_init_task below, used by fork() in case of fail. | 
 |  */ | 
 | void perf_event_free_task(struct task_struct *task) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	struct perf_event *event, *tmp; | 
 | 	int ctxn; | 
 |  | 
 | 	for_each_task_context_nr(ctxn) { | 
 | 		ctx = task->perf_event_ctxp[ctxn]; | 
 | 		if (!ctx) | 
 | 			continue; | 
 |  | 
 | 		mutex_lock(&ctx->mutex); | 
 | again: | 
 | 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, | 
 | 				group_entry) | 
 | 			perf_free_event(event, ctx); | 
 |  | 
 | 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, | 
 | 				group_entry) | 
 | 			perf_free_event(event, ctx); | 
 |  | 
 | 		if (!list_empty(&ctx->pinned_groups) || | 
 | 				!list_empty(&ctx->flexible_groups)) | 
 | 			goto again; | 
 |  | 
 | 		mutex_unlock(&ctx->mutex); | 
 |  | 
 | 		put_ctx(ctx); | 
 | 	} | 
 | } | 
 |  | 
 | void perf_event_delayed_put(struct task_struct *task) | 
 | { | 
 | 	int ctxn; | 
 |  | 
 | 	for_each_task_context_nr(ctxn) | 
 | 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); | 
 | } | 
 |  | 
 | /* | 
 |  * inherit a event from parent task to child task: | 
 |  */ | 
 | static struct perf_event * | 
 | inherit_event(struct perf_event *parent_event, | 
 | 	      struct task_struct *parent, | 
 | 	      struct perf_event_context *parent_ctx, | 
 | 	      struct task_struct *child, | 
 | 	      struct perf_event *group_leader, | 
 | 	      struct perf_event_context *child_ctx) | 
 | { | 
 | 	struct perf_event *child_event; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Instead of creating recursive hierarchies of events, | 
 | 	 * we link inherited events back to the original parent, | 
 | 	 * which has a filp for sure, which we use as the reference | 
 | 	 * count: | 
 | 	 */ | 
 | 	if (parent_event->parent) | 
 | 		parent_event = parent_event->parent; | 
 |  | 
 | 	child_event = perf_event_alloc(&parent_event->attr, | 
 | 					   parent_event->cpu, | 
 | 					   child, | 
 | 					   group_leader, parent_event, | 
 | 				           NULL, NULL); | 
 | 	if (IS_ERR(child_event)) | 
 | 		return child_event; | 
 |  | 
 | 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) { | 
 | 		free_event(child_event); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	get_ctx(child_ctx); | 
 |  | 
 | 	/* | 
 | 	 * Make the child state follow the state of the parent event, | 
 | 	 * not its attr.disabled bit.  We hold the parent's mutex, | 
 | 	 * so we won't race with perf_event_{en, dis}able_family. | 
 | 	 */ | 
 | 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | 
 | 		child_event->state = PERF_EVENT_STATE_INACTIVE; | 
 | 	else | 
 | 		child_event->state = PERF_EVENT_STATE_OFF; | 
 |  | 
 | 	if (parent_event->attr.freq) { | 
 | 		u64 sample_period = parent_event->hw.sample_period; | 
 | 		struct hw_perf_event *hwc = &child_event->hw; | 
 |  | 
 | 		hwc->sample_period = sample_period; | 
 | 		hwc->last_period   = sample_period; | 
 |  | 
 | 		local64_set(&hwc->period_left, sample_period); | 
 | 	} | 
 |  | 
 | 	child_event->ctx = child_ctx; | 
 | 	child_event->overflow_handler = parent_event->overflow_handler; | 
 | 	child_event->overflow_handler_context | 
 | 		= parent_event->overflow_handler_context; | 
 |  | 
 | 	/* | 
 | 	 * Precalculate sample_data sizes | 
 | 	 */ | 
 | 	perf_event__header_size(child_event); | 
 | 	perf_event__id_header_size(child_event); | 
 |  | 
 | 	/* | 
 | 	 * Link it up in the child's context: | 
 | 	 */ | 
 | 	raw_spin_lock_irqsave(&child_ctx->lock, flags); | 
 | 	add_event_to_ctx(child_event, child_ctx); | 
 | 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Link this into the parent event's child list | 
 | 	 */ | 
 | 	WARN_ON_ONCE(parent_event->ctx->parent_ctx); | 
 | 	mutex_lock(&parent_event->child_mutex); | 
 | 	list_add_tail(&child_event->child_list, &parent_event->child_list); | 
 | 	mutex_unlock(&parent_event->child_mutex); | 
 |  | 
 | 	return child_event; | 
 | } | 
 |  | 
 | static int inherit_group(struct perf_event *parent_event, | 
 | 	      struct task_struct *parent, | 
 | 	      struct perf_event_context *parent_ctx, | 
 | 	      struct task_struct *child, | 
 | 	      struct perf_event_context *child_ctx) | 
 | { | 
 | 	struct perf_event *leader; | 
 | 	struct perf_event *sub; | 
 | 	struct perf_event *child_ctr; | 
 |  | 
 | 	leader = inherit_event(parent_event, parent, parent_ctx, | 
 | 				 child, NULL, child_ctx); | 
 | 	if (IS_ERR(leader)) | 
 | 		return PTR_ERR(leader); | 
 | 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | 
 | 		child_ctr = inherit_event(sub, parent, parent_ctx, | 
 | 					    child, leader, child_ctx); | 
 | 		if (IS_ERR(child_ctr)) | 
 | 			return PTR_ERR(child_ctr); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | inherit_task_group(struct perf_event *event, struct task_struct *parent, | 
 | 		   struct perf_event_context *parent_ctx, | 
 | 		   struct task_struct *child, int ctxn, | 
 | 		   int *inherited_all) | 
 | { | 
 | 	int ret; | 
 | 	struct perf_event_context *child_ctx; | 
 |  | 
 | 	if (!event->attr.inherit) { | 
 | 		*inherited_all = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	child_ctx = child->perf_event_ctxp[ctxn]; | 
 | 	if (!child_ctx) { | 
 | 		/* | 
 | 		 * This is executed from the parent task context, so | 
 | 		 * inherit events that have been marked for cloning. | 
 | 		 * First allocate and initialize a context for the | 
 | 		 * child. | 
 | 		 */ | 
 |  | 
 | 		child_ctx = alloc_perf_context(event->pmu, child); | 
 | 		if (!child_ctx) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		child->perf_event_ctxp[ctxn] = child_ctx; | 
 | 	} | 
 |  | 
 | 	ret = inherit_group(event, parent, parent_ctx, | 
 | 			    child, child_ctx); | 
 |  | 
 | 	if (ret) | 
 | 		*inherited_all = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the perf_event context in task_struct | 
 |  */ | 
 | int perf_event_init_context(struct task_struct *child, int ctxn) | 
 | { | 
 | 	struct perf_event_context *child_ctx, *parent_ctx; | 
 | 	struct perf_event_context *cloned_ctx; | 
 | 	struct perf_event *event; | 
 | 	struct task_struct *parent = current; | 
 | 	int inherited_all = 1; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (likely(!parent->perf_event_ctxp[ctxn])) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If the parent's context is a clone, pin it so it won't get | 
 | 	 * swapped under us. | 
 | 	 */ | 
 | 	parent_ctx = perf_pin_task_context(parent, ctxn); | 
 |  | 
 | 	/* | 
 | 	 * No need to check if parent_ctx != NULL here; since we saw | 
 | 	 * it non-NULL earlier, the only reason for it to become NULL | 
 | 	 * is if we exit, and since we're currently in the middle of | 
 | 	 * a fork we can't be exiting at the same time. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Lock the parent list. No need to lock the child - not PID | 
 | 	 * hashed yet and not running, so nobody can access it. | 
 | 	 */ | 
 | 	mutex_lock(&parent_ctx->mutex); | 
 |  | 
 | 	/* | 
 | 	 * We dont have to disable NMIs - we are only looking at | 
 | 	 * the list, not manipulating it: | 
 | 	 */ | 
 | 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { | 
 | 		ret = inherit_task_group(event, parent, parent_ctx, | 
 | 					 child, ctxn, &inherited_all); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can't hold ctx->lock when iterating the ->flexible_group list due | 
 | 	 * to allocations, but we need to prevent rotation because | 
 | 	 * rotate_ctx() will change the list from interrupt context. | 
 | 	 */ | 
 | 	raw_spin_lock_irqsave(&parent_ctx->lock, flags); | 
 | 	parent_ctx->rotate_disable = 1; | 
 | 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); | 
 |  | 
 | 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { | 
 | 		ret = inherit_task_group(event, parent, parent_ctx, | 
 | 					 child, ctxn, &inherited_all); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	raw_spin_lock_irqsave(&parent_ctx->lock, flags); | 
 | 	parent_ctx->rotate_disable = 0; | 
 |  | 
 | 	child_ctx = child->perf_event_ctxp[ctxn]; | 
 |  | 
 | 	if (child_ctx && inherited_all) { | 
 | 		/* | 
 | 		 * Mark the child context as a clone of the parent | 
 | 		 * context, or of whatever the parent is a clone of. | 
 | 		 * | 
 | 		 * Note that if the parent is a clone, the holding of | 
 | 		 * parent_ctx->lock avoids it from being uncloned. | 
 | 		 */ | 
 | 		cloned_ctx = parent_ctx->parent_ctx; | 
 | 		if (cloned_ctx) { | 
 | 			child_ctx->parent_ctx = cloned_ctx; | 
 | 			child_ctx->parent_gen = parent_ctx->parent_gen; | 
 | 		} else { | 
 | 			child_ctx->parent_ctx = parent_ctx; | 
 | 			child_ctx->parent_gen = parent_ctx->generation; | 
 | 		} | 
 | 		get_ctx(child_ctx->parent_ctx); | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); | 
 | 	mutex_unlock(&parent_ctx->mutex); | 
 |  | 
 | 	perf_unpin_context(parent_ctx); | 
 | 	put_ctx(parent_ctx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the perf_event context in task_struct | 
 |  */ | 
 | int perf_event_init_task(struct task_struct *child) | 
 | { | 
 | 	int ctxn, ret; | 
 |  | 
 | 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); | 
 | 	mutex_init(&child->perf_event_mutex); | 
 | 	INIT_LIST_HEAD(&child->perf_event_list); | 
 |  | 
 | 	for_each_task_context_nr(ctxn) { | 
 | 		ret = perf_event_init_context(child, ctxn); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init perf_event_init_all_cpus(void) | 
 | { | 
 | 	struct swevent_htable *swhash; | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		swhash = &per_cpu(swevent_htable, cpu); | 
 | 		mutex_init(&swhash->hlist_mutex); | 
 | 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); | 
 | 	} | 
 | } | 
 |  | 
 | static void __cpuinit perf_event_init_cpu(int cpu) | 
 | { | 
 | 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | 
 |  | 
 | 	mutex_lock(&swhash->hlist_mutex); | 
 | 	if (swhash->hlist_refcount > 0) { | 
 | 		struct swevent_hlist *hlist; | 
 |  | 
 | 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); | 
 | 		WARN_ON(!hlist); | 
 | 		rcu_assign_pointer(swhash->swevent_hlist, hlist); | 
 | 	} | 
 | 	mutex_unlock(&swhash->hlist_mutex); | 
 | } | 
 |  | 
 | #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC | 
 | static void perf_pmu_rotate_stop(struct pmu *pmu) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | 
 |  | 
 | 	WARN_ON(!irqs_disabled()); | 
 |  | 
 | 	list_del_init(&cpuctx->rotation_list); | 
 | } | 
 |  | 
 | static void __perf_event_exit_context(void *__info) | 
 | { | 
 | 	struct perf_event_context *ctx = __info; | 
 | 	struct perf_event *event, *tmp; | 
 |  | 
 | 	perf_pmu_rotate_stop(ctx->pmu); | 
 |  | 
 | 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) | 
 | 		__perf_remove_from_context(event); | 
 | 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) | 
 | 		__perf_remove_from_context(event); | 
 | } | 
 |  | 
 | static void perf_event_exit_cpu_context(int cpu) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	struct pmu *pmu; | 
 | 	int idx; | 
 |  | 
 | 	idx = srcu_read_lock(&pmus_srcu); | 
 | 	list_for_each_entry_rcu(pmu, &pmus, entry) { | 
 | 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; | 
 |  | 
 | 		mutex_lock(&ctx->mutex); | 
 | 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); | 
 | 		mutex_unlock(&ctx->mutex); | 
 | 	} | 
 | 	srcu_read_unlock(&pmus_srcu, idx); | 
 | } | 
 |  | 
 | static void perf_event_exit_cpu(int cpu) | 
 | { | 
 | 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | 
 |  | 
 | 	mutex_lock(&swhash->hlist_mutex); | 
 | 	swevent_hlist_release(swhash); | 
 | 	mutex_unlock(&swhash->hlist_mutex); | 
 |  | 
 | 	perf_event_exit_cpu_context(cpu); | 
 | } | 
 | #else | 
 | static inline void perf_event_exit_cpu(int cpu) { } | 
 | #endif | 
 |  | 
 | static int | 
 | perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		perf_event_exit_cpu(cpu); | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | /* | 
 |  * Run the perf reboot notifier at the very last possible moment so that | 
 |  * the generic watchdog code runs as long as possible. | 
 |  */ | 
 | static struct notifier_block perf_reboot_notifier = { | 
 | 	.notifier_call = perf_reboot, | 
 | 	.priority = INT_MIN, | 
 | }; | 
 |  | 
 | static int __cpuinit | 
 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | 
 | { | 
 | 	unsigned int cpu = (long)hcpu; | 
 |  | 
 | 	switch (action & ~CPU_TASKS_FROZEN) { | 
 |  | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_DOWN_FAILED: | 
 | 		perf_event_init_cpu(cpu); | 
 | 		break; | 
 |  | 
 | 	case CPU_UP_CANCELED: | 
 | 	case CPU_DOWN_PREPARE: | 
 | 		perf_event_exit_cpu(cpu); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | void __init perf_event_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	idr_init(&pmu_idr); | 
 |  | 
 | 	perf_event_init_all_cpus(); | 
 | 	init_srcu_struct(&pmus_srcu); | 
 | 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); | 
 | 	perf_pmu_register(&perf_cpu_clock, NULL, -1); | 
 | 	perf_pmu_register(&perf_task_clock, NULL, -1); | 
 | 	perf_tp_register(); | 
 | 	perf_cpu_notifier(perf_cpu_notify); | 
 | 	register_reboot_notifier(&perf_reboot_notifier); | 
 |  | 
 | 	ret = init_hw_breakpoint(); | 
 | 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret); | 
 |  | 
 | 	/* do not patch jump label more than once per second */ | 
 | 	jump_label_rate_limit(&perf_sched_events, HZ); | 
 |  | 
 | 	/* | 
 | 	 * Build time assertion that we keep the data_head at the intended | 
 | 	 * location.  IOW, validation we got the __reserved[] size right. | 
 | 	 */ | 
 | 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) | 
 | 		     != 1024); | 
 | } | 
 |  | 
 | static int __init perf_event_sysfs_init(void) | 
 | { | 
 | 	struct pmu *pmu; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&pmus_lock); | 
 |  | 
 | 	ret = bus_register(&pmu_bus); | 
 | 	if (ret) | 
 | 		goto unlock; | 
 |  | 
 | 	list_for_each_entry(pmu, &pmus, entry) { | 
 | 		if (!pmu->name || pmu->type < 0) | 
 | 			continue; | 
 |  | 
 | 		ret = pmu_dev_alloc(pmu); | 
 | 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); | 
 | 	} | 
 | 	pmu_bus_running = 1; | 
 | 	ret = 0; | 
 |  | 
 | unlock: | 
 | 	mutex_unlock(&pmus_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 | device_initcall(perf_event_sysfs_init); | 
 |  | 
 | #ifdef CONFIG_CGROUP_PERF | 
 | static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont) | 
 | { | 
 | 	struct perf_cgroup *jc; | 
 |  | 
 | 	jc = kzalloc(sizeof(*jc), GFP_KERNEL); | 
 | 	if (!jc) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	jc->info = alloc_percpu(struct perf_cgroup_info); | 
 | 	if (!jc->info) { | 
 | 		kfree(jc); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	return &jc->css; | 
 | } | 
 |  | 
 | static void perf_cgroup_css_free(struct cgroup *cont) | 
 | { | 
 | 	struct perf_cgroup *jc; | 
 | 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), | 
 | 			  struct perf_cgroup, css); | 
 | 	free_percpu(jc->info); | 
 | 	kfree(jc); | 
 | } | 
 |  | 
 | static int __perf_cgroup_move(void *info) | 
 | { | 
 | 	struct task_struct *task = info; | 
 | 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) | 
 | { | 
 | 	struct task_struct *task; | 
 |  | 
 | 	cgroup_taskset_for_each(task, cgrp, tset) | 
 | 		task_function_call(task, __perf_cgroup_move, task); | 
 | } | 
 |  | 
 | static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, | 
 | 			     struct task_struct *task) | 
 | { | 
 | 	/* | 
 | 	 * cgroup_exit() is called in the copy_process() failure path. | 
 | 	 * Ignore this case since the task hasn't ran yet, this avoids | 
 | 	 * trying to poke a half freed task state from generic code. | 
 | 	 */ | 
 | 	if (!(task->flags & PF_EXITING)) | 
 | 		return; | 
 |  | 
 | 	task_function_call(task, __perf_cgroup_move, task); | 
 | } | 
 |  | 
 | struct cgroup_subsys perf_subsys = { | 
 | 	.name		= "perf_event", | 
 | 	.subsys_id	= perf_subsys_id, | 
 | 	.css_alloc	= perf_cgroup_css_alloc, | 
 | 	.css_free	= perf_cgroup_css_free, | 
 | 	.exit		= perf_cgroup_exit, | 
 | 	.attach		= perf_cgroup_attach, | 
 |  | 
 | 	/* | 
 | 	 * perf_event cgroup doesn't handle nesting correctly. | 
 | 	 * ctx->nr_cgroups adjustments should be propagated through the | 
 | 	 * cgroup hierarchy.  Fix it and remove the following. | 
 | 	 */ | 
 | 	.broken_hierarchy = true, | 
 | }; | 
 | #endif /* CONFIG_CGROUP_PERF */ |