| /* auditsc.c -- System-call auditing support |
| * Handles all system-call specific auditing features. |
| * |
| * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. |
| * Copyright 2005 Hewlett-Packard Development Company, L.P. |
| * Copyright (C) 2005, 2006 IBM Corporation |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * Written by Rickard E. (Rik) Faith <faith@redhat.com> |
| * |
| * Many of the ideas implemented here are from Stephen C. Tweedie, |
| * especially the idea of avoiding a copy by using getname. |
| * |
| * The method for actual interception of syscall entry and exit (not in |
| * this file -- see entry.S) is based on a GPL'd patch written by |
| * okir@suse.de and Copyright 2003 SuSE Linux AG. |
| * |
| * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, |
| * 2006. |
| * |
| * The support of additional filter rules compares (>, <, >=, <=) was |
| * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. |
| * |
| * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional |
| * filesystem information. |
| * |
| * Subject and object context labeling support added by <danjones@us.ibm.com> |
| * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. |
| */ |
| |
| #include <linux/init.h> |
| #include <asm/types.h> |
| #include <asm/atomic.h> |
| #include <linux/fs.h> |
| #include <linux/namei.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/mount.h> |
| #include <linux/socket.h> |
| #include <linux/mqueue.h> |
| #include <linux/audit.h> |
| #include <linux/personality.h> |
| #include <linux/time.h> |
| #include <linux/netlink.h> |
| #include <linux/compiler.h> |
| #include <asm/unistd.h> |
| #include <linux/security.h> |
| #include <linux/list.h> |
| #include <linux/tty.h> |
| #include <linux/binfmts.h> |
| #include <linux/highmem.h> |
| #include <linux/syscalls.h> |
| #include <linux/inotify.h> |
| #include <linux/capability.h> |
| |
| #include "audit.h" |
| |
| /* AUDIT_NAMES is the number of slots we reserve in the audit_context |
| * for saving names from getname(). */ |
| #define AUDIT_NAMES 20 |
| |
| /* Indicates that audit should log the full pathname. */ |
| #define AUDIT_NAME_FULL -1 |
| |
| /* no execve audit message should be longer than this (userspace limits) */ |
| #define MAX_EXECVE_AUDIT_LEN 7500 |
| |
| /* number of audit rules */ |
| int audit_n_rules; |
| |
| /* determines whether we collect data for signals sent */ |
| int audit_signals; |
| |
| struct audit_cap_data { |
| kernel_cap_t permitted; |
| kernel_cap_t inheritable; |
| union { |
| unsigned int fE; /* effective bit of a file capability */ |
| kernel_cap_t effective; /* effective set of a process */ |
| }; |
| }; |
| |
| /* When fs/namei.c:getname() is called, we store the pointer in name and |
| * we don't let putname() free it (instead we free all of the saved |
| * pointers at syscall exit time). |
| * |
| * Further, in fs/namei.c:path_lookup() we store the inode and device. */ |
| struct audit_names { |
| const char *name; |
| int name_len; /* number of name's characters to log */ |
| unsigned name_put; /* call __putname() for this name */ |
| unsigned long ino; |
| dev_t dev; |
| umode_t mode; |
| uid_t uid; |
| gid_t gid; |
| dev_t rdev; |
| u32 osid; |
| struct audit_cap_data fcap; |
| unsigned int fcap_ver; |
| }; |
| |
| struct audit_aux_data { |
| struct audit_aux_data *next; |
| int type; |
| }; |
| |
| #define AUDIT_AUX_IPCPERM 0 |
| |
| /* Number of target pids per aux struct. */ |
| #define AUDIT_AUX_PIDS 16 |
| |
| struct audit_aux_data_mq_open { |
| struct audit_aux_data d; |
| int oflag; |
| mode_t mode; |
| struct mq_attr attr; |
| }; |
| |
| struct audit_aux_data_mq_sendrecv { |
| struct audit_aux_data d; |
| mqd_t mqdes; |
| size_t msg_len; |
| unsigned int msg_prio; |
| struct timespec abs_timeout; |
| }; |
| |
| struct audit_aux_data_mq_notify { |
| struct audit_aux_data d; |
| mqd_t mqdes; |
| struct sigevent notification; |
| }; |
| |
| struct audit_aux_data_mq_getsetattr { |
| struct audit_aux_data d; |
| mqd_t mqdes; |
| struct mq_attr mqstat; |
| }; |
| |
| struct audit_aux_data_ipcctl { |
| struct audit_aux_data d; |
| struct ipc_perm p; |
| unsigned long qbytes; |
| uid_t uid; |
| gid_t gid; |
| mode_t mode; |
| u32 osid; |
| }; |
| |
| struct audit_aux_data_execve { |
| struct audit_aux_data d; |
| int argc; |
| int envc; |
| struct mm_struct *mm; |
| }; |
| |
| struct audit_aux_data_fd_pair { |
| struct audit_aux_data d; |
| int fd[2]; |
| }; |
| |
| struct audit_aux_data_pids { |
| struct audit_aux_data d; |
| pid_t target_pid[AUDIT_AUX_PIDS]; |
| uid_t target_auid[AUDIT_AUX_PIDS]; |
| uid_t target_uid[AUDIT_AUX_PIDS]; |
| unsigned int target_sessionid[AUDIT_AUX_PIDS]; |
| u32 target_sid[AUDIT_AUX_PIDS]; |
| char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; |
| int pid_count; |
| }; |
| |
| struct audit_aux_data_bprm_fcaps { |
| struct audit_aux_data d; |
| struct audit_cap_data fcap; |
| unsigned int fcap_ver; |
| struct audit_cap_data old_pcap; |
| struct audit_cap_data new_pcap; |
| }; |
| |
| struct audit_aux_data_capset { |
| struct audit_aux_data d; |
| pid_t pid; |
| struct audit_cap_data cap; |
| }; |
| |
| struct audit_tree_refs { |
| struct audit_tree_refs *next; |
| struct audit_chunk *c[31]; |
| }; |
| |
| /* The per-task audit context. */ |
| struct audit_context { |
| int dummy; /* must be the first element */ |
| int in_syscall; /* 1 if task is in a syscall */ |
| enum audit_state state; |
| unsigned int serial; /* serial number for record */ |
| struct timespec ctime; /* time of syscall entry */ |
| int major; /* syscall number */ |
| unsigned long argv[4]; /* syscall arguments */ |
| int return_valid; /* return code is valid */ |
| long return_code;/* syscall return code */ |
| int auditable; /* 1 if record should be written */ |
| int name_count; |
| struct audit_names names[AUDIT_NAMES]; |
| char * filterkey; /* key for rule that triggered record */ |
| struct path pwd; |
| struct audit_context *previous; /* For nested syscalls */ |
| struct audit_aux_data *aux; |
| struct audit_aux_data *aux_pids; |
| struct sockaddr_storage *sockaddr; |
| size_t sockaddr_len; |
| /* Save things to print about task_struct */ |
| pid_t pid, ppid; |
| uid_t uid, euid, suid, fsuid; |
| gid_t gid, egid, sgid, fsgid; |
| unsigned long personality; |
| int arch; |
| |
| pid_t target_pid; |
| uid_t target_auid; |
| uid_t target_uid; |
| unsigned int target_sessionid; |
| u32 target_sid; |
| char target_comm[TASK_COMM_LEN]; |
| |
| struct audit_tree_refs *trees, *first_trees; |
| int tree_count; |
| |
| int type; |
| union { |
| struct { |
| int nargs; |
| long args[6]; |
| } socketcall; |
| struct { |
| uid_t uid; |
| gid_t gid; |
| mode_t mode; |
| u32 osid; |
| } ipc; |
| }; |
| |
| #if AUDIT_DEBUG |
| int put_count; |
| int ino_count; |
| #endif |
| }; |
| |
| #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) |
| static inline int open_arg(int flags, int mask) |
| { |
| int n = ACC_MODE(flags); |
| if (flags & (O_TRUNC | O_CREAT)) |
| n |= AUDIT_PERM_WRITE; |
| return n & mask; |
| } |
| |
| static int audit_match_perm(struct audit_context *ctx, int mask) |
| { |
| unsigned n; |
| if (unlikely(!ctx)) |
| return 0; |
| n = ctx->major; |
| |
| switch (audit_classify_syscall(ctx->arch, n)) { |
| case 0: /* native */ |
| if ((mask & AUDIT_PERM_WRITE) && |
| audit_match_class(AUDIT_CLASS_WRITE, n)) |
| return 1; |
| if ((mask & AUDIT_PERM_READ) && |
| audit_match_class(AUDIT_CLASS_READ, n)) |
| return 1; |
| if ((mask & AUDIT_PERM_ATTR) && |
| audit_match_class(AUDIT_CLASS_CHATTR, n)) |
| return 1; |
| return 0; |
| case 1: /* 32bit on biarch */ |
| if ((mask & AUDIT_PERM_WRITE) && |
| audit_match_class(AUDIT_CLASS_WRITE_32, n)) |
| return 1; |
| if ((mask & AUDIT_PERM_READ) && |
| audit_match_class(AUDIT_CLASS_READ_32, n)) |
| return 1; |
| if ((mask & AUDIT_PERM_ATTR) && |
| audit_match_class(AUDIT_CLASS_CHATTR_32, n)) |
| return 1; |
| return 0; |
| case 2: /* open */ |
| return mask & ACC_MODE(ctx->argv[1]); |
| case 3: /* openat */ |
| return mask & ACC_MODE(ctx->argv[2]); |
| case 4: /* socketcall */ |
| return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); |
| case 5: /* execve */ |
| return mask & AUDIT_PERM_EXEC; |
| default: |
| return 0; |
| } |
| } |
| |
| static int audit_match_filetype(struct audit_context *ctx, int which) |
| { |
| unsigned index = which & ~S_IFMT; |
| mode_t mode = which & S_IFMT; |
| |
| if (unlikely(!ctx)) |
| return 0; |
| |
| if (index >= ctx->name_count) |
| return 0; |
| if (ctx->names[index].ino == -1) |
| return 0; |
| if ((ctx->names[index].mode ^ mode) & S_IFMT) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; |
| * ->first_trees points to its beginning, ->trees - to the current end of data. |
| * ->tree_count is the number of free entries in array pointed to by ->trees. |
| * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, |
| * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, |
| * it's going to remain 1-element for almost any setup) until we free context itself. |
| * References in it _are_ dropped - at the same time we free/drop aux stuff. |
| */ |
| |
| #ifdef CONFIG_AUDIT_TREE |
| static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) |
| { |
| struct audit_tree_refs *p = ctx->trees; |
| int left = ctx->tree_count; |
| if (likely(left)) { |
| p->c[--left] = chunk; |
| ctx->tree_count = left; |
| return 1; |
| } |
| if (!p) |
| return 0; |
| p = p->next; |
| if (p) { |
| p->c[30] = chunk; |
| ctx->trees = p; |
| ctx->tree_count = 30; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int grow_tree_refs(struct audit_context *ctx) |
| { |
| struct audit_tree_refs *p = ctx->trees; |
| ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); |
| if (!ctx->trees) { |
| ctx->trees = p; |
| return 0; |
| } |
| if (p) |
| p->next = ctx->trees; |
| else |
| ctx->first_trees = ctx->trees; |
| ctx->tree_count = 31; |
| return 1; |
| } |
| #endif |
| |
| static void unroll_tree_refs(struct audit_context *ctx, |
| struct audit_tree_refs *p, int count) |
| { |
| #ifdef CONFIG_AUDIT_TREE |
| struct audit_tree_refs *q; |
| int n; |
| if (!p) { |
| /* we started with empty chain */ |
| p = ctx->first_trees; |
| count = 31; |
| /* if the very first allocation has failed, nothing to do */ |
| if (!p) |
| return; |
| } |
| n = count; |
| for (q = p; q != ctx->trees; q = q->next, n = 31) { |
| while (n--) { |
| audit_put_chunk(q->c[n]); |
| q->c[n] = NULL; |
| } |
| } |
| while (n-- > ctx->tree_count) { |
| audit_put_chunk(q->c[n]); |
| q->c[n] = NULL; |
| } |
| ctx->trees = p; |
| ctx->tree_count = count; |
| #endif |
| } |
| |
| static void free_tree_refs(struct audit_context *ctx) |
| { |
| struct audit_tree_refs *p, *q; |
| for (p = ctx->first_trees; p; p = q) { |
| q = p->next; |
| kfree(p); |
| } |
| } |
| |
| static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) |
| { |
| #ifdef CONFIG_AUDIT_TREE |
| struct audit_tree_refs *p; |
| int n; |
| if (!tree) |
| return 0; |
| /* full ones */ |
| for (p = ctx->first_trees; p != ctx->trees; p = p->next) { |
| for (n = 0; n < 31; n++) |
| if (audit_tree_match(p->c[n], tree)) |
| return 1; |
| } |
| /* partial */ |
| if (p) { |
| for (n = ctx->tree_count; n < 31; n++) |
| if (audit_tree_match(p->c[n], tree)) |
| return 1; |
| } |
| #endif |
| return 0; |
| } |
| |
| /* Determine if any context name data matches a rule's watch data */ |
| /* Compare a task_struct with an audit_rule. Return 1 on match, 0 |
| * otherwise. */ |
| static int audit_filter_rules(struct task_struct *tsk, |
| struct audit_krule *rule, |
| struct audit_context *ctx, |
| struct audit_names *name, |
| enum audit_state *state) |
| { |
| const struct cred *cred = get_task_cred(tsk); |
| int i, j, need_sid = 1; |
| u32 sid; |
| |
| for (i = 0; i < rule->field_count; i++) { |
| struct audit_field *f = &rule->fields[i]; |
| int result = 0; |
| |
| switch (f->type) { |
| case AUDIT_PID: |
| result = audit_comparator(tsk->pid, f->op, f->val); |
| break; |
| case AUDIT_PPID: |
| if (ctx) { |
| if (!ctx->ppid) |
| ctx->ppid = sys_getppid(); |
| result = audit_comparator(ctx->ppid, f->op, f->val); |
| } |
| break; |
| case AUDIT_UID: |
| result = audit_comparator(cred->uid, f->op, f->val); |
| break; |
| case AUDIT_EUID: |
| result = audit_comparator(cred->euid, f->op, f->val); |
| break; |
| case AUDIT_SUID: |
| result = audit_comparator(cred->suid, f->op, f->val); |
| break; |
| case AUDIT_FSUID: |
| result = audit_comparator(cred->fsuid, f->op, f->val); |
| break; |
| case AUDIT_GID: |
| result = audit_comparator(cred->gid, f->op, f->val); |
| break; |
| case AUDIT_EGID: |
| result = audit_comparator(cred->egid, f->op, f->val); |
| break; |
| case AUDIT_SGID: |
| result = audit_comparator(cred->sgid, f->op, f->val); |
| break; |
| case AUDIT_FSGID: |
| result = audit_comparator(cred->fsgid, f->op, f->val); |
| break; |
| case AUDIT_PERS: |
| result = audit_comparator(tsk->personality, f->op, f->val); |
| break; |
| case AUDIT_ARCH: |
| if (ctx) |
| result = audit_comparator(ctx->arch, f->op, f->val); |
| break; |
| |
| case AUDIT_EXIT: |
| if (ctx && ctx->return_valid) |
| result = audit_comparator(ctx->return_code, f->op, f->val); |
| break; |
| case AUDIT_SUCCESS: |
| if (ctx && ctx->return_valid) { |
| if (f->val) |
| result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); |
| else |
| result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); |
| } |
| break; |
| case AUDIT_DEVMAJOR: |
| if (name) |
| result = audit_comparator(MAJOR(name->dev), |
| f->op, f->val); |
| else if (ctx) { |
| for (j = 0; j < ctx->name_count; j++) { |
| if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) { |
| ++result; |
| break; |
| } |
| } |
| } |
| break; |
| case AUDIT_DEVMINOR: |
| if (name) |
| result = audit_comparator(MINOR(name->dev), |
| f->op, f->val); |
| else if (ctx) { |
| for (j = 0; j < ctx->name_count; j++) { |
| if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) { |
| ++result; |
| break; |
| } |
| } |
| } |
| break; |
| case AUDIT_INODE: |
| if (name) |
| result = (name->ino == f->val); |
| else if (ctx) { |
| for (j = 0; j < ctx->name_count; j++) { |
| if (audit_comparator(ctx->names[j].ino, f->op, f->val)) { |
| ++result; |
| break; |
| } |
| } |
| } |
| break; |
| case AUDIT_WATCH: |
| if (name && rule->watch->ino != (unsigned long)-1) |
| result = (name->dev == rule->watch->dev && |
| name->ino == rule->watch->ino); |
| break; |
| case AUDIT_DIR: |
| if (ctx) |
| result = match_tree_refs(ctx, rule->tree); |
| break; |
| case AUDIT_LOGINUID: |
| result = 0; |
| if (ctx) |
| result = audit_comparator(tsk->loginuid, f->op, f->val); |
| break; |
| case AUDIT_SUBJ_USER: |
| case AUDIT_SUBJ_ROLE: |
| case AUDIT_SUBJ_TYPE: |
| case AUDIT_SUBJ_SEN: |
| case AUDIT_SUBJ_CLR: |
| /* NOTE: this may return negative values indicating |
| a temporary error. We simply treat this as a |
| match for now to avoid losing information that |
| may be wanted. An error message will also be |
| logged upon error */ |
| if (f->lsm_rule) { |
| if (need_sid) { |
| security_task_getsecid(tsk, &sid); |
| need_sid = 0; |
| } |
| result = security_audit_rule_match(sid, f->type, |
| f->op, |
| f->lsm_rule, |
| ctx); |
| } |
| break; |
| case AUDIT_OBJ_USER: |
| case AUDIT_OBJ_ROLE: |
| case AUDIT_OBJ_TYPE: |
| case AUDIT_OBJ_LEV_LOW: |
| case AUDIT_OBJ_LEV_HIGH: |
| /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR |
| also applies here */ |
| if (f->lsm_rule) { |
| /* Find files that match */ |
| if (name) { |
| result = security_audit_rule_match( |
| name->osid, f->type, f->op, |
| f->lsm_rule, ctx); |
| } else if (ctx) { |
| for (j = 0; j < ctx->name_count; j++) { |
| if (security_audit_rule_match( |
| ctx->names[j].osid, |
| f->type, f->op, |
| f->lsm_rule, ctx)) { |
| ++result; |
| break; |
| } |
| } |
| } |
| /* Find ipc objects that match */ |
| if (!ctx || ctx->type != AUDIT_IPC) |
| break; |
| if (security_audit_rule_match(ctx->ipc.osid, |
| f->type, f->op, |
| f->lsm_rule, ctx)) |
| ++result; |
| } |
| break; |
| case AUDIT_ARG0: |
| case AUDIT_ARG1: |
| case AUDIT_ARG2: |
| case AUDIT_ARG3: |
| if (ctx) |
| result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); |
| break; |
| case AUDIT_FILTERKEY: |
| /* ignore this field for filtering */ |
| result = 1; |
| break; |
| case AUDIT_PERM: |
| result = audit_match_perm(ctx, f->val); |
| break; |
| case AUDIT_FILETYPE: |
| result = audit_match_filetype(ctx, f->val); |
| break; |
| } |
| |
| if (!result) { |
| put_cred(cred); |
| return 0; |
| } |
| } |
| if (rule->filterkey && ctx) |
| ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); |
| switch (rule->action) { |
| case AUDIT_NEVER: *state = AUDIT_DISABLED; break; |
| case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; |
| } |
| put_cred(cred); |
| return 1; |
| } |
| |
| /* At process creation time, we can determine if system-call auditing is |
| * completely disabled for this task. Since we only have the task |
| * structure at this point, we can only check uid and gid. |
| */ |
| static enum audit_state audit_filter_task(struct task_struct *tsk) |
| { |
| struct audit_entry *e; |
| enum audit_state state; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { |
| if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) { |
| rcu_read_unlock(); |
| return state; |
| } |
| } |
| rcu_read_unlock(); |
| return AUDIT_BUILD_CONTEXT; |
| } |
| |
| /* At syscall entry and exit time, this filter is called if the |
| * audit_state is not low enough that auditing cannot take place, but is |
| * also not high enough that we already know we have to write an audit |
| * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). |
| */ |
| static enum audit_state audit_filter_syscall(struct task_struct *tsk, |
| struct audit_context *ctx, |
| struct list_head *list) |
| { |
| struct audit_entry *e; |
| enum audit_state state; |
| |
| if (audit_pid && tsk->tgid == audit_pid) |
| return AUDIT_DISABLED; |
| |
| rcu_read_lock(); |
| if (!list_empty(list)) { |
| int word = AUDIT_WORD(ctx->major); |
| int bit = AUDIT_BIT(ctx->major); |
| |
| list_for_each_entry_rcu(e, list, list) { |
| if ((e->rule.mask[word] & bit) == bit && |
| audit_filter_rules(tsk, &e->rule, ctx, NULL, |
| &state)) { |
| rcu_read_unlock(); |
| return state; |
| } |
| } |
| } |
| rcu_read_unlock(); |
| return AUDIT_BUILD_CONTEXT; |
| } |
| |
| /* At syscall exit time, this filter is called if any audit_names[] have been |
| * collected during syscall processing. We only check rules in sublists at hash |
| * buckets applicable to the inode numbers in audit_names[]. |
| * Regarding audit_state, same rules apply as for audit_filter_syscall(). |
| */ |
| enum audit_state audit_filter_inodes(struct task_struct *tsk, |
| struct audit_context *ctx) |
| { |
| int i; |
| struct audit_entry *e; |
| enum audit_state state; |
| |
| if (audit_pid && tsk->tgid == audit_pid) |
| return AUDIT_DISABLED; |
| |
| rcu_read_lock(); |
| for (i = 0; i < ctx->name_count; i++) { |
| int word = AUDIT_WORD(ctx->major); |
| int bit = AUDIT_BIT(ctx->major); |
| struct audit_names *n = &ctx->names[i]; |
| int h = audit_hash_ino((u32)n->ino); |
| struct list_head *list = &audit_inode_hash[h]; |
| |
| if (list_empty(list)) |
| continue; |
| |
| list_for_each_entry_rcu(e, list, list) { |
| if ((e->rule.mask[word] & bit) == bit && |
| audit_filter_rules(tsk, &e->rule, ctx, n, &state)) { |
| rcu_read_unlock(); |
| return state; |
| } |
| } |
| } |
| rcu_read_unlock(); |
| return AUDIT_BUILD_CONTEXT; |
| } |
| |
| void audit_set_auditable(struct audit_context *ctx) |
| { |
| ctx->auditable = 1; |
| } |
| |
| static inline struct audit_context *audit_get_context(struct task_struct *tsk, |
| int return_valid, |
| int return_code) |
| { |
| struct audit_context *context = tsk->audit_context; |
| |
| if (likely(!context)) |
| return NULL; |
| context->return_valid = return_valid; |
| |
| /* |
| * we need to fix up the return code in the audit logs if the actual |
| * return codes are later going to be fixed up by the arch specific |
| * signal handlers |
| * |
| * This is actually a test for: |
| * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || |
| * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) |
| * |
| * but is faster than a bunch of || |
| */ |
| if (unlikely(return_code <= -ERESTARTSYS) && |
| (return_code >= -ERESTART_RESTARTBLOCK) && |
| (return_code != -ENOIOCTLCMD)) |
| context->return_code = -EINTR; |
| else |
| context->return_code = return_code; |
| |
| if (context->in_syscall && !context->dummy && !context->auditable) { |
| enum audit_state state; |
| |
| state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); |
| if (state == AUDIT_RECORD_CONTEXT) { |
| context->auditable = 1; |
| goto get_context; |
| } |
| |
| state = audit_filter_inodes(tsk, context); |
| if (state == AUDIT_RECORD_CONTEXT) |
| context->auditable = 1; |
| |
| } |
| |
| get_context: |
| |
| tsk->audit_context = NULL; |
| return context; |
| } |
| |
| static inline void audit_free_names(struct audit_context *context) |
| { |
| int i; |
| |
| #if AUDIT_DEBUG == 2 |
| if (context->auditable |
| ||context->put_count + context->ino_count != context->name_count) { |
| printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" |
| " name_count=%d put_count=%d" |
| " ino_count=%d [NOT freeing]\n", |
| __FILE__, __LINE__, |
| context->serial, context->major, context->in_syscall, |
| context->name_count, context->put_count, |
| context->ino_count); |
| for (i = 0; i < context->name_count; i++) { |
| printk(KERN_ERR "names[%d] = %p = %s\n", i, |
| context->names[i].name, |
| context->names[i].name ?: "(null)"); |
| } |
| dump_stack(); |
| return; |
| } |
| #endif |
| #if AUDIT_DEBUG |
| context->put_count = 0; |
| context->ino_count = 0; |
| #endif |
| |
| for (i = 0; i < context->name_count; i++) { |
| if (context->names[i].name && context->names[i].name_put) |
| __putname(context->names[i].name); |
| } |
| context->name_count = 0; |
| path_put(&context->pwd); |
| context->pwd.dentry = NULL; |
| context->pwd.mnt = NULL; |
| } |
| |
| static inline void audit_free_aux(struct audit_context *context) |
| { |
| struct audit_aux_data *aux; |
| |
| while ((aux = context->aux)) { |
| context->aux = aux->next; |
| kfree(aux); |
| } |
| while ((aux = context->aux_pids)) { |
| context->aux_pids = aux->next; |
| kfree(aux); |
| } |
| } |
| |
| static inline void audit_zero_context(struct audit_context *context, |
| enum audit_state state) |
| { |
| memset(context, 0, sizeof(*context)); |
| context->state = state; |
| } |
| |
| static inline struct audit_context *audit_alloc_context(enum audit_state state) |
| { |
| struct audit_context *context; |
| |
| if (!(context = kmalloc(sizeof(*context), GFP_KERNEL))) |
| return NULL; |
| audit_zero_context(context, state); |
| return context; |
| } |
| |
| /** |
| * audit_alloc - allocate an audit context block for a task |
| * @tsk: task |
| * |
| * Filter on the task information and allocate a per-task audit context |
| * if necessary. Doing so turns on system call auditing for the |
| * specified task. This is called from copy_process, so no lock is |
| * needed. |
| */ |
| int audit_alloc(struct task_struct *tsk) |
| { |
| struct audit_context *context; |
| enum audit_state state; |
| |
| if (likely(!audit_ever_enabled)) |
| return 0; /* Return if not auditing. */ |
| |
| state = audit_filter_task(tsk); |
| if (likely(state == AUDIT_DISABLED)) |
| return 0; |
| |
| if (!(context = audit_alloc_context(state))) { |
| audit_log_lost("out of memory in audit_alloc"); |
| return -ENOMEM; |
| } |
| |
| tsk->audit_context = context; |
| set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); |
| return 0; |
| } |
| |
| static inline void audit_free_context(struct audit_context *context) |
| { |
| struct audit_context *previous; |
| int count = 0; |
| |
| do { |
| previous = context->previous; |
| if (previous || (count && count < 10)) { |
| ++count; |
| printk(KERN_ERR "audit(:%d): major=%d name_count=%d:" |
| " freeing multiple contexts (%d)\n", |
| context->serial, context->major, |
| context->name_count, count); |
| } |
| audit_free_names(context); |
| unroll_tree_refs(context, NULL, 0); |
| free_tree_refs(context); |
| audit_free_aux(context); |
| kfree(context->filterkey); |
| kfree(context->sockaddr); |
| kfree(context); |
| context = previous; |
| } while (context); |
| if (count >= 10) |
| printk(KERN_ERR "audit: freed %d contexts\n", count); |
| } |
| |
| void audit_log_task_context(struct audit_buffer *ab) |
| { |
| char *ctx = NULL; |
| unsigned len; |
| int error; |
| u32 sid; |
| |
| security_task_getsecid(current, &sid); |
| if (!sid) |
| return; |
| |
| error = security_secid_to_secctx(sid, &ctx, &len); |
| if (error) { |
| if (error != -EINVAL) |
| goto error_path; |
| return; |
| } |
| |
| audit_log_format(ab, " subj=%s", ctx); |
| security_release_secctx(ctx, len); |
| return; |
| |
| error_path: |
| audit_panic("error in audit_log_task_context"); |
| return; |
| } |
| |
| EXPORT_SYMBOL(audit_log_task_context); |
| |
| static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) |
| { |
| char name[sizeof(tsk->comm)]; |
| struct mm_struct *mm = tsk->mm; |
| struct vm_area_struct *vma; |
| |
| /* tsk == current */ |
| |
| get_task_comm(name, tsk); |
| audit_log_format(ab, " comm="); |
| audit_log_untrustedstring(ab, name); |
| |
| if (mm) { |
| down_read(&mm->mmap_sem); |
| vma = mm->mmap; |
| while (vma) { |
| if ((vma->vm_flags & VM_EXECUTABLE) && |
| vma->vm_file) { |
| audit_log_d_path(ab, "exe=", |
| &vma->vm_file->f_path); |
| break; |
| } |
| vma = vma->vm_next; |
| } |
| up_read(&mm->mmap_sem); |
| } |
| audit_log_task_context(ab); |
| } |
| |
| static int audit_log_pid_context(struct audit_context *context, pid_t pid, |
| uid_t auid, uid_t uid, unsigned int sessionid, |
| u32 sid, char *comm) |
| { |
| struct audit_buffer *ab; |
| char *ctx = NULL; |
| u32 len; |
| int rc = 0; |
| |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); |
| if (!ab) |
| return rc; |
| |
| audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid, |
| uid, sessionid); |
| if (security_secid_to_secctx(sid, &ctx, &len)) { |
| audit_log_format(ab, " obj=(none)"); |
| rc = 1; |
| } else { |
| audit_log_format(ab, " obj=%s", ctx); |
| security_release_secctx(ctx, len); |
| } |
| audit_log_format(ab, " ocomm="); |
| audit_log_untrustedstring(ab, comm); |
| audit_log_end(ab); |
| |
| return rc; |
| } |
| |
| /* |
| * to_send and len_sent accounting are very loose estimates. We aren't |
| * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being |
| * within about 500 bytes (next page boundry) |
| * |
| * why snprintf? an int is up to 12 digits long. if we just assumed when |
| * logging that a[%d]= was going to be 16 characters long we would be wasting |
| * space in every audit message. In one 7500 byte message we can log up to |
| * about 1000 min size arguments. That comes down to about 50% waste of space |
| * if we didn't do the snprintf to find out how long arg_num_len was. |
| */ |
| static int audit_log_single_execve_arg(struct audit_context *context, |
| struct audit_buffer **ab, |
| int arg_num, |
| size_t *len_sent, |
| const char __user *p, |
| char *buf) |
| { |
| char arg_num_len_buf[12]; |
| const char __user *tmp_p = p; |
| /* how many digits are in arg_num? 3 is the length of a=\n */ |
| size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3; |
| size_t len, len_left, to_send; |
| size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; |
| unsigned int i, has_cntl = 0, too_long = 0; |
| int ret; |
| |
| /* strnlen_user includes the null we don't want to send */ |
| len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; |
| |
| /* |
| * We just created this mm, if we can't find the strings |
| * we just copied into it something is _very_ wrong. Similar |
| * for strings that are too long, we should not have created |
| * any. |
| */ |
| if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { |
| WARN_ON(1); |
| send_sig(SIGKILL, current, 0); |
| return -1; |
| } |
| |
| /* walk the whole argument looking for non-ascii chars */ |
| do { |
| if (len_left > MAX_EXECVE_AUDIT_LEN) |
| to_send = MAX_EXECVE_AUDIT_LEN; |
| else |
| to_send = len_left; |
| ret = copy_from_user(buf, tmp_p, to_send); |
| /* |
| * There is no reason for this copy to be short. We just |
| * copied them here, and the mm hasn't been exposed to user- |
| * space yet. |
| */ |
| if (ret) { |
| WARN_ON(1); |
| send_sig(SIGKILL, current, 0); |
| return -1; |
| } |
| buf[to_send] = '\0'; |
| has_cntl = audit_string_contains_control(buf, to_send); |
| if (has_cntl) { |
| /* |
| * hex messages get logged as 2 bytes, so we can only |
| * send half as much in each message |
| */ |
| max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; |
| break; |
| } |
| len_left -= to_send; |
| tmp_p += to_send; |
| } while (len_left > 0); |
| |
| len_left = len; |
| |
| if (len > max_execve_audit_len) |
| too_long = 1; |
| |
| /* rewalk the argument actually logging the message */ |
| for (i = 0; len_left > 0; i++) { |
| int room_left; |
| |
| if (len_left > max_execve_audit_len) |
| to_send = max_execve_audit_len; |
| else |
| to_send = len_left; |
| |
| /* do we have space left to send this argument in this ab? */ |
| room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; |
| if (has_cntl) |
| room_left -= (to_send * 2); |
| else |
| room_left -= to_send; |
| if (room_left < 0) { |
| *len_sent = 0; |
| audit_log_end(*ab); |
| *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); |
| if (!*ab) |
| return 0; |
| } |
| |
| /* |
| * first record needs to say how long the original string was |
| * so we can be sure nothing was lost. |
| */ |
| if ((i == 0) && (too_long)) |
| audit_log_format(*ab, "a%d_len=%zu ", arg_num, |
| has_cntl ? 2*len : len); |
| |
| /* |
| * normally arguments are small enough to fit and we already |
| * filled buf above when we checked for control characters |
| * so don't bother with another copy_from_user |
| */ |
| if (len >= max_execve_audit_len) |
| ret = copy_from_user(buf, p, to_send); |
| else |
| ret = 0; |
| if (ret) { |
| WARN_ON(1); |
| send_sig(SIGKILL, current, 0); |
| return -1; |
| } |
| buf[to_send] = '\0'; |
| |
| /* actually log it */ |
| audit_log_format(*ab, "a%d", arg_num); |
| if (too_long) |
| audit_log_format(*ab, "[%d]", i); |
| audit_log_format(*ab, "="); |
| if (has_cntl) |
| audit_log_n_hex(*ab, buf, to_send); |
| else |
| audit_log_format(*ab, "\"%s\"", buf); |
| audit_log_format(*ab, "\n"); |
| |
| p += to_send; |
| len_left -= to_send; |
| *len_sent += arg_num_len; |
| if (has_cntl) |
| *len_sent += to_send * 2; |
| else |
| *len_sent += to_send; |
| } |
| /* include the null we didn't log */ |
| return len + 1; |
| } |
| |
| static void audit_log_execve_info(struct audit_context *context, |
| struct audit_buffer **ab, |
| struct audit_aux_data_execve *axi) |
| { |
| int i; |
| size_t len, len_sent = 0; |
| const char __user *p; |
| char *buf; |
| |
| if (axi->mm != current->mm) |
| return; /* execve failed, no additional info */ |
| |
| p = (const char __user *)axi->mm->arg_start; |
| |
| audit_log_format(*ab, "argc=%d ", axi->argc); |
| |
| /* |
| * we need some kernel buffer to hold the userspace args. Just |
| * allocate one big one rather than allocating one of the right size |
| * for every single argument inside audit_log_single_execve_arg() |
| * should be <8k allocation so should be pretty safe. |
| */ |
| buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); |
| if (!buf) { |
| audit_panic("out of memory for argv string\n"); |
| return; |
| } |
| |
| for (i = 0; i < axi->argc; i++) { |
| len = audit_log_single_execve_arg(context, ab, i, |
| &len_sent, p, buf); |
| if (len <= 0) |
| break; |
| p += len; |
| } |
| kfree(buf); |
| } |
| |
| static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) |
| { |
| int i; |
| |
| audit_log_format(ab, " %s=", prefix); |
| CAP_FOR_EACH_U32(i) { |
| audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); |
| } |
| } |
| |
| static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) |
| { |
| kernel_cap_t *perm = &name->fcap.permitted; |
| kernel_cap_t *inh = &name->fcap.inheritable; |
| int log = 0; |
| |
| if (!cap_isclear(*perm)) { |
| audit_log_cap(ab, "cap_fp", perm); |
| log = 1; |
| } |
| if (!cap_isclear(*inh)) { |
| audit_log_cap(ab, "cap_fi", inh); |
| log = 1; |
| } |
| |
| if (log) |
| audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver); |
| } |
| |
| static void show_special(struct audit_context *context, int *call_panic) |
| { |
| struct audit_buffer *ab; |
| int i; |
| |
| ab = audit_log_start(context, GFP_KERNEL, context->type); |
| if (!ab) |
| return; |
| |
| switch (context->type) { |
| case AUDIT_SOCKETCALL: { |
| int nargs = context->socketcall.nargs; |
| audit_log_format(ab, "nargs=%d", nargs); |
| for (i = 0; i < nargs; i++) |
| audit_log_format(ab, " a%d=%lx", i, |
| context->socketcall.args[i]); |
| break; } |
| case AUDIT_IPC: { |
| u32 osid = context->ipc.osid; |
| |
| audit_log_format(ab, "ouid=%u ogid=%u mode=%#o", |
| context->ipc.uid, context->ipc.gid, context->ipc.mode); |
| if (osid) { |
| char *ctx = NULL; |
| u32 len; |
| if (security_secid_to_secctx(osid, &ctx, &len)) { |
| audit_log_format(ab, " osid=%u", osid); |
| *call_panic = 1; |
| } else { |
| audit_log_format(ab, " obj=%s", ctx); |
| security_release_secctx(ctx, len); |
| } |
| } |
| break; } |
| } |
| audit_log_end(ab); |
| } |
| |
| static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) |
| { |
| const struct cred *cred; |
| int i, call_panic = 0; |
| struct audit_buffer *ab; |
| struct audit_aux_data *aux; |
| const char *tty; |
| |
| /* tsk == current */ |
| context->pid = tsk->pid; |
| if (!context->ppid) |
| context->ppid = sys_getppid(); |
| cred = current_cred(); |
| context->uid = cred->uid; |
| context->gid = cred->gid; |
| context->euid = cred->euid; |
| context->suid = cred->suid; |
| context->fsuid = cred->fsuid; |
| context->egid = cred->egid; |
| context->sgid = cred->sgid; |
| context->fsgid = cred->fsgid; |
| context->personality = tsk->personality; |
| |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); |
| if (!ab) |
| return; /* audit_panic has been called */ |
| audit_log_format(ab, "arch=%x syscall=%d", |
| context->arch, context->major); |
| if (context->personality != PER_LINUX) |
| audit_log_format(ab, " per=%lx", context->personality); |
| if (context->return_valid) |
| audit_log_format(ab, " success=%s exit=%ld", |
| (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", |
| context->return_code); |
| |
| spin_lock_irq(&tsk->sighand->siglock); |
| if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) |
| tty = tsk->signal->tty->name; |
| else |
| tty = "(none)"; |
| spin_unlock_irq(&tsk->sighand->siglock); |
| |
| audit_log_format(ab, |
| " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" |
| " ppid=%d pid=%d auid=%u uid=%u gid=%u" |
| " euid=%u suid=%u fsuid=%u" |
| " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", |
| context->argv[0], |
| context->argv[1], |
| context->argv[2], |
| context->argv[3], |
| context->name_count, |
| context->ppid, |
| context->pid, |
| tsk->loginuid, |
| context->uid, |
| context->gid, |
| context->euid, context->suid, context->fsuid, |
| context->egid, context->sgid, context->fsgid, tty, |
| tsk->sessionid); |
| |
| |
| audit_log_task_info(ab, tsk); |
| if (context->filterkey) { |
| audit_log_format(ab, " key="); |
| audit_log_untrustedstring(ab, context->filterkey); |
| } else |
| audit_log_format(ab, " key=(null)"); |
| audit_log_end(ab); |
| |
| for (aux = context->aux; aux; aux = aux->next) { |
| |
| ab = audit_log_start(context, GFP_KERNEL, aux->type); |
| if (!ab) |
| continue; /* audit_panic has been called */ |
| |
| switch (aux->type) { |
| case AUDIT_MQ_OPEN: { |
| struct audit_aux_data_mq_open *axi = (void *)aux; |
| audit_log_format(ab, |
| "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld " |
| "mq_msgsize=%ld mq_curmsgs=%ld", |
| axi->oflag, axi->mode, axi->attr.mq_flags, |
| axi->attr.mq_maxmsg, axi->attr.mq_msgsize, |
| axi->attr.mq_curmsgs); |
| break; } |
| |
| case AUDIT_MQ_SENDRECV: { |
| struct audit_aux_data_mq_sendrecv *axi = (void *)aux; |
| audit_log_format(ab, |
| "mqdes=%d msg_len=%zd msg_prio=%u " |
| "abs_timeout_sec=%ld abs_timeout_nsec=%ld", |
| axi->mqdes, axi->msg_len, axi->msg_prio, |
| axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec); |
| break; } |
| |
| case AUDIT_MQ_NOTIFY: { |
| struct audit_aux_data_mq_notify *axi = (void *)aux; |
| audit_log_format(ab, |
| "mqdes=%d sigev_signo=%d", |
| axi->mqdes, |
| axi->notification.sigev_signo); |
| break; } |
| |
| case AUDIT_MQ_GETSETATTR: { |
| struct audit_aux_data_mq_getsetattr *axi = (void *)aux; |
| audit_log_format(ab, |
| "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " |
| "mq_curmsgs=%ld ", |
| axi->mqdes, |
| axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg, |
| axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs); |
| break; } |
| |
| case AUDIT_IPC_SET_PERM: { |
| struct audit_aux_data_ipcctl *axi = (void *)aux; |
| audit_log_format(ab, |
| "qbytes=%lx ouid=%u ogid=%u mode=%#o", |
| axi->qbytes, axi->uid, axi->gid, axi->mode); |
| break; } |
| |
| case AUDIT_EXECVE: { |
| struct audit_aux_data_execve *axi = (void *)aux; |
| audit_log_execve_info(context, &ab, axi); |
| break; } |
| |
| case AUDIT_FD_PAIR: { |
| struct audit_aux_data_fd_pair *axs = (void *)aux; |
| audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]); |
| break; } |
| |
| case AUDIT_BPRM_FCAPS: { |
| struct audit_aux_data_bprm_fcaps *axs = (void *)aux; |
| audit_log_format(ab, "fver=%x", axs->fcap_ver); |
| audit_log_cap(ab, "fp", &axs->fcap.permitted); |
| audit_log_cap(ab, "fi", &axs->fcap.inheritable); |
| audit_log_format(ab, " fe=%d", axs->fcap.fE); |
| audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); |
| audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); |
| audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); |
| audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); |
| audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); |
| audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); |
| break; } |
| |
| case AUDIT_CAPSET: { |
| struct audit_aux_data_capset *axs = (void *)aux; |
| audit_log_format(ab, "pid=%d", axs->pid); |
| audit_log_cap(ab, "cap_pi", &axs->cap.inheritable); |
| audit_log_cap(ab, "cap_pp", &axs->cap.permitted); |
| audit_log_cap(ab, "cap_pe", &axs->cap.effective); |
| break; } |
| |
| } |
| audit_log_end(ab); |
| } |
| |
| if (context->type) |
| show_special(context, &call_panic); |
| |
| if (context->sockaddr_len) { |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); |
| if (ab) { |
| audit_log_format(ab, "saddr="); |
| audit_log_n_hex(ab, (void *)context->sockaddr, |
| context->sockaddr_len); |
| audit_log_end(ab); |
| } |
| } |
| |
| for (aux = context->aux_pids; aux; aux = aux->next) { |
| struct audit_aux_data_pids *axs = (void *)aux; |
| |
| for (i = 0; i < axs->pid_count; i++) |
| if (audit_log_pid_context(context, axs->target_pid[i], |
| axs->target_auid[i], |
| axs->target_uid[i], |
| axs->target_sessionid[i], |
| axs->target_sid[i], |
| axs->target_comm[i])) |
| call_panic = 1; |
| } |
| |
| if (context->target_pid && |
| audit_log_pid_context(context, context->target_pid, |
| context->target_auid, context->target_uid, |
| context->target_sessionid, |
| context->target_sid, context->target_comm)) |
| call_panic = 1; |
| |
| if (context->pwd.dentry && context->pwd.mnt) { |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); |
| if (ab) { |
| audit_log_d_path(ab, "cwd=", &context->pwd); |
| audit_log_end(ab); |
| } |
| } |
| for (i = 0; i < context->name_count; i++) { |
| struct audit_names *n = &context->names[i]; |
| |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); |
| if (!ab) |
| continue; /* audit_panic has been called */ |
| |
| audit_log_format(ab, "item=%d", i); |
| |
| if (n->name) { |
| switch(n->name_len) { |
| case AUDIT_NAME_FULL: |
| /* log the full path */ |
| audit_log_format(ab, " name="); |
| audit_log_untrustedstring(ab, n->name); |
| break; |
| case 0: |
| /* name was specified as a relative path and the |
| * directory component is the cwd */ |
| audit_log_d_path(ab, " name=", &context->pwd); |
| break; |
| default: |
| /* log the name's directory component */ |
| audit_log_format(ab, " name="); |
| audit_log_n_untrustedstring(ab, n->name, |
| n->name_len); |
| } |
| } else |
| audit_log_format(ab, " name=(null)"); |
| |
| if (n->ino != (unsigned long)-1) { |
| audit_log_format(ab, " inode=%lu" |
| " dev=%02x:%02x mode=%#o" |
| " ouid=%u ogid=%u rdev=%02x:%02x", |
| n->ino, |
| MAJOR(n->dev), |
| MINOR(n->dev), |
| n->mode, |
| n->uid, |
| n->gid, |
| MAJOR(n->rdev), |
| MINOR(n->rdev)); |
| } |
| if (n->osid != 0) { |
| char *ctx = NULL; |
| u32 len; |
| if (security_secid_to_secctx( |
| n->osid, &ctx, &len)) { |
| audit_log_format(ab, " osid=%u", n->osid); |
| call_panic = 2; |
| } else { |
| audit_log_format(ab, " obj=%s", ctx); |
| security_release_secctx(ctx, len); |
| } |
| } |
| |
| audit_log_fcaps(ab, n); |
| |
| audit_log_end(ab); |
| } |
| |
| /* Send end of event record to help user space know we are finished */ |
| ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); |
| if (ab) |
| audit_log_end(ab); |
| if (call_panic) |
| audit_panic("error converting sid to string"); |
| } |
| |
| /** |
| * audit_free - free a per-task audit context |
| * @tsk: task whose audit context block to free |
| * |
| * Called from copy_process and do_exit |
| */ |
| void audit_free(struct task_struct *tsk) |
| { |
| struct audit_context *context; |
| |
| context = audit_get_context(tsk, 0, 0); |
| if (likely(!context)) |
| return; |
| |
| /* Check for system calls that do not go through the exit |
| * function (e.g., exit_group), then free context block. |
| * We use GFP_ATOMIC here because we might be doing this |
| * in the context of the idle thread */ |
| /* that can happen only if we are called from do_exit() */ |
| if (context->in_syscall && context->auditable) |
| audit_log_exit(context, tsk); |
| |
| audit_free_context(context); |
| } |
| |
| /** |
| * audit_syscall_entry - fill in an audit record at syscall entry |
| * @arch: architecture type |
| * @major: major syscall type (function) |
| * @a1: additional syscall register 1 |
| * @a2: additional syscall register 2 |
| * @a3: additional syscall register 3 |
| * @a4: additional syscall register 4 |
| * |
| * Fill in audit context at syscall entry. This only happens if the |
| * audit context was created when the task was created and the state or |
| * filters demand the audit context be built. If the state from the |
| * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, |
| * then the record will be written at syscall exit time (otherwise, it |
| * will only be written if another part of the kernel requests that it |
| * be written). |
| */ |
| void audit_syscall_entry(int arch, int major, |
| unsigned long a1, unsigned long a2, |
| unsigned long a3, unsigned long a4) |
| { |
| struct task_struct *tsk = current; |
| struct audit_context *context = tsk->audit_context; |
| enum audit_state state; |
| |
| if (unlikely(!context)) |
| return; |
| |
| /* |
| * This happens only on certain architectures that make system |
| * calls in kernel_thread via the entry.S interface, instead of |
| * with direct calls. (If you are porting to a new |
| * architecture, hitting this condition can indicate that you |
| * got the _exit/_leave calls backward in entry.S.) |
| * |
| * i386 no |
| * x86_64 no |
| * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S) |
| * |
| * This also happens with vm86 emulation in a non-nested manner |
| * (entries without exits), so this case must be caught. |
| */ |
| if (context->in_syscall) { |
| struct audit_context *newctx; |
| |
| #if AUDIT_DEBUG |
| printk(KERN_ERR |
| "audit(:%d) pid=%d in syscall=%d;" |
| " entering syscall=%d\n", |
| context->serial, tsk->pid, context->major, major); |
| #endif |
| newctx = audit_alloc_context(context->state); |
| if (newctx) { |
| newctx->previous = context; |
| context = newctx; |
| tsk->audit_context = newctx; |
| } else { |
| /* If we can't alloc a new context, the best we |
| * can do is to leak memory (any pending putname |
| * will be lost). The only other alternative is |
| * to abandon auditing. */ |
| audit_zero_context(context, context->state); |
| } |
| } |
| BUG_ON(context->in_syscall || context->name_count); |
| |
| if (!audit_enabled) |
| return; |
| |
| context->arch = arch; |
| context->major = major; |
| context->argv[0] = a1; |
| context->argv[1] = a2; |
| context->argv[2] = a3; |
| context->argv[3] = a4; |
| |
| state = context->state; |
| context->dummy = !audit_n_rules; |
| if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT)) |
| state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); |
| if (likely(state == AUDIT_DISABLED)) |
| return; |
| |
| context->serial = 0; |
| context->ctime = CURRENT_TIME; |
| context->in_syscall = 1; |
| context->auditable = !!(state == AUDIT_RECORD_CONTEXT); |
| context->ppid = 0; |
| } |
| |
| void audit_finish_fork(struct task_struct *child) |
| { |
| struct audit_context *ctx = current->audit_context; |
| struct audit_context *p = child->audit_context; |
| if (!p || !ctx || !ctx->auditable) |
| return; |
| p->arch = ctx->arch; |
| p->major = ctx->major; |
| memcpy(p->argv, ctx->argv, sizeof(ctx->argv)); |
| p->ctime = ctx->ctime; |
| p->dummy = ctx->dummy; |
| p->auditable = ctx->auditable; |
| p->in_syscall = ctx->in_syscall; |
| p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL); |
| p->ppid = current->pid; |
| } |
| |
| /** |
| * audit_syscall_exit - deallocate audit context after a system call |
| * @valid: success/failure flag |
| * @return_code: syscall return value |
| * |
| * Tear down after system call. If the audit context has been marked as |
| * auditable (either because of the AUDIT_RECORD_CONTEXT state from |
| * filtering, or because some other part of the kernel write an audit |
| * message), then write out the syscall information. In call cases, |
| * free the names stored from getname(). |
| */ |
| void audit_syscall_exit(int valid, long return_code) |
| { |
| struct task_struct *tsk = current; |
| struct audit_context *context; |
| |
| context = audit_get_context(tsk, valid, return_code); |
| |
| if (likely(!context)) |
| return; |
| |
| if (context->in_syscall && context->auditable) |
| audit_log_exit(context, tsk); |
| |
| context->in_syscall = 0; |
| context->auditable = 0; |
| |
| if (context->previous) { |
| struct audit_context *new_context = context->previous; |
| context->previous = NULL; |
| audit_free_context(context); |
| tsk->audit_context = new_context; |
| } else { |
| audit_free_names(context); |
| unroll_tree_refs(context, NULL, 0); |
| audit_free_aux(context); |
| context->aux = NULL; |
| context->aux_pids = NULL; |
| context->target_pid = 0; |
| context->target_sid = 0; |
| context->sockaddr_len = 0; |
| context->type = 0; |
| kfree(context->filterkey); |
| context->filterkey = NULL; |
| tsk->audit_context = context; |
| } |
| } |
| |
| static inline void handle_one(const struct inode *inode) |
| { |
| #ifdef CONFIG_AUDIT_TREE |
| struct audit_context *context; |
| struct audit_tree_refs *p; |
| struct audit_chunk *chunk; |
| int count; |
| if (likely(list_empty(&inode->inotify_watches))) |
| return; |
| context = current->audit_context; |
| p = context->trees; |
| count = context->tree_count; |
| rcu_read_lock(); |
| chunk = audit_tree_lookup(inode); |
| rcu_read_unlock(); |
| if (!chunk) |
| return; |
| if (likely(put_tree_ref(context, chunk))) |
| return; |
| if (unlikely(!grow_tree_refs(context))) { |
| printk(KERN_WARNING "out of memory, audit has lost a tree reference\n"); |
| audit_set_auditable(context); |
| audit_put_chunk(chunk); |
| unroll_tree_refs(context, p, count); |
| return; |
| } |
| put_tree_ref(context, chunk); |
| #endif |
| } |
| |
| static void handle_path(const struct dentry *dentry) |
| { |
| #ifdef CONFIG_AUDIT_TREE |
| struct audit_context *context; |
| struct audit_tree_refs *p; |
| const struct dentry *d, *parent; |
| struct audit_chunk *drop; |
| unsigned long seq; |
| int count; |
| |
| context = current->audit_context; |
| p = context->trees; |
| count = context->tree_count; |
| retry: |
| drop = NULL; |
| d = dentry; |
| rcu_read_lock(); |
| seq = read_seqbegin(&rename_lock); |
| for(;;) { |
| struct inode *inode = d->d_inode; |
| if (inode && unlikely(!list_empty(&inode->inotify_watches))) { |
| struct audit_chunk *chunk; |
| chunk = audit_tree_lookup(inode); |
| if (chunk) { |
| if (unlikely(!put_tree_ref(context, chunk))) { |
| drop = chunk; |
| break; |
| } |
| } |
| } |
| parent = d->d_parent; |
| if (parent == d) |
| break; |
| d = parent; |
| } |
| if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ |
| rcu_read_unlock(); |
| if (!drop) { |
| /* just a race with rename */ |
| unroll_tree_refs(context, p, count); |
| goto retry; |
| } |
| audit_put_chunk(drop); |
| if (grow_tree_refs(context)) { |
| /* OK, got more space */ |
| unroll_tree_refs(context, p, count); |
| goto retry; |
| } |
| /* too bad */ |
| printk(KERN_WARNING |
| "out of memory, audit has lost a tree reference\n"); |
| unroll_tree_refs(context, p, count); |
| audit_set_auditable(context); |
| return; |
| } |
| rcu_read_unlock(); |
| #endif |
| } |
| |
| /** |
| * audit_getname - add a name to the list |
| * @name: name to add |
| * |
| * Add a name to the list of audit names for this context. |
| * Called from fs/namei.c:getname(). |
| */ |
| void __audit_getname(const char *name) |
| { |
| struct audit_context *context = current->audit_context; |
| |
| if (IS_ERR(name) || !name) |
| return; |
| |
| if (!context->in_syscall) { |
| #if AUDIT_DEBUG == 2 |
| printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", |
| __FILE__, __LINE__, context->serial, name); |
| dump_stack(); |
| #endif |
| return; |
| } |
| BUG_ON(context->name_count >= AUDIT_NAMES); |
| context->names[context->name_count].name = name; |
| context->names[context->name_count].name_len = AUDIT_NAME_FULL; |
| context->names[context->name_count].name_put = 1; |
| context->names[context->name_count].ino = (unsigned long)-1; |
| context->names[context->name_count].osid = 0; |
| ++context->name_count; |
| if (!context->pwd.dentry) { |
| read_lock(¤t->fs->lock); |
| context->pwd = current->fs->pwd; |
| path_get(¤t->fs->pwd); |
| read_unlock(¤t->fs->lock); |
| } |
| |
| } |
| |
| /* audit_putname - intercept a putname request |
| * @name: name to intercept and delay for putname |
| * |
| * If we have stored the name from getname in the audit context, |
| * then we delay the putname until syscall exit. |
| * Called from include/linux/fs.h:putname(). |
| */ |
| void audit_putname(const char *name) |
| { |
| struct audit_context *context = current->audit_context; |
| |
| BUG_ON(!context); |
| if (!context->in_syscall) { |
| #if AUDIT_DEBUG == 2 |
| printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n", |
| __FILE__, __LINE__, context->serial, name); |
| if (context->name_count) { |
| int i; |
| for (i = 0; i < context->name_count; i++) |
| printk(KERN_ERR "name[%d] = %p = %s\n", i, |
| context->names[i].name, |
| context->names[i].name ?: "(null)"); |
| } |
| #endif |
| __putname(name); |
| } |
| #if AUDIT_DEBUG |
| else { |
| ++context->put_count; |
| if (context->put_count > context->name_count) { |
| printk(KERN_ERR "%s:%d(:%d): major=%d" |
| " in_syscall=%d putname(%p) name_count=%d" |
| " put_count=%d\n", |
| __FILE__, __LINE__, |
| context->serial, context->major, |
| context->in_syscall, name, context->name_count, |
| context->put_count); |
| dump_stack(); |
| } |
| } |
| #endif |
| } |
| |
| static int audit_inc_name_count(struct audit_context *context, |
| const struct inode *inode) |
| { |
| if (context->name_count >= AUDIT_NAMES) { |
| if (inode) |
| printk(KERN_DEBUG "name_count maxed, losing inode data: " |
| "dev=%02x:%02x, inode=%lu\n", |
| MAJOR(inode->i_sb->s_dev), |
| MINOR(inode->i_sb->s_dev), |
| inode->i_ino); |
| |
| else |
| printk(KERN_DEBUG "name_count maxed, losing inode data\n"); |
| return 1; |
| } |
| context->name_count++; |
| #if AUDIT_DEBUG |
| context->ino_count++; |
| #endif |
| return 0; |
| } |
| |
| |
| static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry) |
| { |
| struct cpu_vfs_cap_data caps; |
| int rc; |
| |
| memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t)); |
| memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t)); |
| name->fcap.fE = 0; |
| name->fcap_ver = 0; |
| |
| if (!dentry) |
| return 0; |
| |
| rc = get_vfs_caps_from_disk(dentry, &caps); |
| if (rc) |
| return rc; |
| |
| name->fcap.permitted = caps.permitted; |
| name->fcap.inheritable = caps.inheritable; |
| name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); |
| name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; |
| |
| return 0; |
| } |
| |
| |
| /* Copy inode data into an audit_names. */ |
| static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, |
| const struct inode *inode) |
| { |
| name->ino = inode->i_ino; |
| name->dev = inode->i_sb->s_dev; |
| name->mode = inode->i_mode; |
| name->uid = inode->i_uid; |
| name->gid = inode->i_gid; |
| name->rdev = inode->i_rdev; |
| security_inode_getsecid(inode, &name->osid); |
| audit_copy_fcaps(name, dentry); |
| } |
| |
| /** |
| * audit_inode - store the inode and device from a lookup |
| * @name: name being audited |
| * @dentry: dentry being audited |
| * |
| * Called from fs/namei.c:path_lookup(). |
| */ |
| void __audit_inode(const char *name, const struct dentry *dentry) |
| { |
| int idx; |
| struct audit_context *context = current->audit_context; |
| const struct inode *inode = dentry->d_inode; |
| |
| if (!context->in_syscall) |
| return; |
| if (context->name_count |
| && context->names[context->name_count-1].name |
| && context->names[context->name_count-1].name == name) |
| idx = context->name_count - 1; |
| else if (context->name_count > 1 |
| && context->names[context->name_count-2].name |
| && context->names[context->name_count-2].name == name) |
| idx = context->name_count - 2; |
| else { |
| /* FIXME: how much do we care about inodes that have no |
| * associated name? */ |
| if (audit_inc_name_count(context, inode)) |
| return; |
| idx = context->name_count - 1; |
| context->names[idx].name = NULL; |
| } |
| handle_path(dentry); |
| audit_copy_inode(&context->names[idx], dentry, inode); |
| } |
| |
| /** |
| * audit_inode_child - collect inode info for created/removed objects |
| * @dname: inode's dentry name |
| * @dentry: dentry being audited |
| * @parent: inode of dentry parent |
| * |
| * For syscalls that create or remove filesystem objects, audit_inode |
| * can only collect information for the filesystem object's parent. |
| * This call updates the audit context with the child's information. |
| * Syscalls that create a new filesystem object must be hooked after |
| * the object is created. Syscalls that remove a filesystem object |
| * must be hooked prior, in order to capture the target inode during |
| * unsuccessful attempts. |
| */ |
| void __audit_inode_child(const char *dname, const struct dentry *dentry, |
| const struct inode *parent) |
| { |
| int idx; |
| struct audit_context *context = current->audit_context; |
| const char *found_parent = NULL, *found_child = NULL; |
| const struct inode *inode = dentry->d_inode; |
| int dirlen = 0; |
| |
| if (!context->in_syscall) |
| return; |
| |
| if (inode) |
| handle_one(inode); |
| /* determine matching parent */ |
| if (!dname) |
| goto add_names; |
| |
| /* parent is more likely, look for it first */ |
| for (idx = 0; idx < context->name_count; idx++) { |
| struct audit_names *n = &context->names[idx]; |
| |
| if (!n->name) |
| continue; |
| |
| if (n->ino == parent->i_ino && |
| !audit_compare_dname_path(dname, n->name, &dirlen)) { |
| n->name_len = dirlen; /* update parent data in place */ |
| found_parent = n->name; |
| goto add_names; |
| } |
| } |
| |
| /* no matching parent, look for matching child */ |
| for (idx = 0; idx < context->name_count; idx++) { |
| struct audit_names *n = &context->names[idx]; |
| |
| if (!n->name) |
| continue; |
| |
| /* strcmp() is the more likely scenario */ |
| if (!strcmp(dname, n->name) || |
| !audit_compare_dname_path(dname, n->name, &dirlen)) { |
| if (inode) |
| audit_copy_inode(n, NULL, inode); |
| else |
| n->ino = (unsigned long)-1; |
| found_child = n->name; |
| goto add_names; |
| } |
| } |
| |
| add_names: |
| if (!found_parent) { |
| if (audit_inc_name_count(context, parent)) |
| return; |
| idx = context->name_count - 1; |
| context->names[idx].name = NULL; |
| audit_copy_inode(&context->names[idx], NULL, parent); |
| } |
| |
| if (!found_child) { |
| if (audit_inc_name_count(context, inode)) |
| return; |
| idx = context->name_count - 1; |
| |
| /* Re-use the name belonging to the slot for a matching parent |
| * directory. All names for this context are relinquished in |
| * audit_free_names() */ |
| if (found_parent) { |
| context->names[idx].name = found_parent; |
| context->names[idx].name_len = AUDIT_NAME_FULL; |
| /* don't call __putname() */ |
| context->names[idx].name_put = 0; |
| } else { |
| context->names[idx].name = NULL; |
| } |
| |
| if (inode) |
| audit_copy_inode(&context->names[idx], NULL, inode); |
| else |
| context->names[idx].ino = (unsigned long)-1; |
| } |
| } |
| EXPORT_SYMBOL_GPL(__audit_inode_child); |
| |
| /** |
| * auditsc_get_stamp - get local copies of audit_context values |
| * @ctx: audit_context for the task |
| * @t: timespec to store time recorded in the audit_context |
| * @serial: serial value that is recorded in the audit_context |
| * |
| * Also sets the context as auditable. |
| */ |
| int auditsc_get_stamp(struct audit_context *ctx, |
| struct timespec *t, unsigned int *serial) |
| { |
| if (!ctx->in_syscall) |
| return 0; |
| if (!ctx->serial) |
| ctx->serial = audit_serial(); |
| t->tv_sec = ctx->ctime.tv_sec; |
| t->tv_nsec = ctx->ctime.tv_nsec; |
| *serial = ctx->serial; |
| ctx->auditable = 1; |
| return 1; |
| } |
| |
| /* global counter which is incremented every time something logs in */ |
| static atomic_t session_id = ATOMIC_INIT(0); |
| |
| /** |
| * audit_set_loginuid - set a task's audit_context loginuid |
| * @task: task whose audit context is being modified |
| * @loginuid: loginuid value |
| * |
| * Returns 0. |
| * |
| * Called (set) from fs/proc/base.c::proc_loginuid_write(). |
| */ |
| int audit_set_loginuid(struct task_struct *task, uid_t loginuid) |
| { |
| unsigned int sessionid = atomic_inc_return(&session_id); |
| struct audit_context *context = task->audit_context; |
| |
| if (context && context->in_syscall) { |
| struct audit_buffer *ab; |
| |
| ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); |
| if (ab) { |
| audit_log_format(ab, "login pid=%d uid=%u " |
| "old auid=%u new auid=%u" |
| " old ses=%u new ses=%u", |
| task->pid, task_uid(task), |
| task->loginuid, loginuid, |
| task->sessionid, sessionid); |
| audit_log_end(ab); |
| } |
| } |
| task->sessionid = sessionid; |
| task->loginuid = loginuid; |
| return 0; |
| } |
| |
| /** |
| * __audit_mq_open - record audit data for a POSIX MQ open |
| * @oflag: open flag |
| * @mode: mode bits |
| * @u_attr: queue attributes |
| * |
| * Returns 0 for success or NULL context or < 0 on error. |
| */ |
| int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr) |
| { |
| struct audit_aux_data_mq_open *ax; |
| struct audit_context *context = current->audit_context; |
| |
| if (!audit_enabled) |
| return 0; |
| |
| if (likely(!context)) |
| return 0; |
| |
| ax = kmalloc(sizeof(*ax), GFP_ATOMIC); |
| if (!ax) |
| return -ENOMEM; |
| |
| if (u_attr != NULL) { |
| if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) { |
| kfree(ax); |
| return -EFAULT; |
| } |
| } else |
| memset(&ax->attr, 0, sizeof(ax->attr)); |
| |
| ax->oflag = oflag; |
| ax->mode = mode; |
| |
| ax->d.type = AUDIT_MQ_OPEN; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| return 0; |
| } |
| |
| /** |
| * __audit_mq_timedsend - record audit data for a POSIX MQ timed send |
| * @mqdes: MQ descriptor |
| * @msg_len: Message length |
| * @msg_prio: Message priority |
| * @u_abs_timeout: Message timeout in absolute time |
| * |
| * Returns 0 for success or NULL context or < 0 on error. |
| */ |
| int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, |
| const struct timespec __user *u_abs_timeout) |
| { |
| struct audit_aux_data_mq_sendrecv *ax; |
| struct audit_context *context = current->audit_context; |
| |
| if (!audit_enabled) |
| return 0; |
| |
| if (likely(!context)) |
| return 0; |
| |
| ax = kmalloc(sizeof(*ax), GFP_ATOMIC); |
| if (!ax) |
| return -ENOMEM; |
| |
| if (u_abs_timeout != NULL) { |
| if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) { |
| kfree(ax); |
| return -EFAULT; |
| } |
| } else |
| memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout)); |
| |
| ax->mqdes = mqdes; |
| ax->msg_len = msg_len; |
| ax->msg_prio = msg_prio; |
| |
| ax->d.type = AUDIT_MQ_SENDRECV; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| return 0; |
| } |
| |
| /** |
| * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive |
| * @mqdes: MQ descriptor |
| * @msg_len: Message length |
| * @u_msg_prio: Message priority |
| * @u_abs_timeout: Message timeout in absolute time |
| * |
| * Returns 0 for success or NULL context or < 0 on error. |
| */ |
| int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len, |
| unsigned int __user *u_msg_prio, |
| const struct timespec __user *u_abs_timeout) |
| { |
| struct audit_aux_data_mq_sendrecv *ax; |
| struct audit_context *context = current->audit_context; |
| |
| if (!audit_enabled) |
| return 0; |
| |
| if (likely(!context)) |
| return 0; |
| |
| ax = kmalloc(sizeof(*ax), GFP_ATOMIC); |
| if (!ax) |
| return -ENOMEM; |
| |
| if (u_msg_prio != NULL) { |
| if (get_user(ax->msg_prio, u_msg_prio)) { |
| kfree(ax); |
| return -EFAULT; |
| } |
| } else |
| ax->msg_prio = 0; |
| |
| if (u_abs_timeout != NULL) { |
| if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) { |
| kfree(ax); |
| return -EFAULT; |
| } |
| } else |
| memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout)); |
| |
| ax->mqdes = mqdes; |
| ax->msg_len = msg_len; |
| |
| ax->d.type = AUDIT_MQ_SENDRECV; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| return 0; |
| } |
| |
| /** |
| * __audit_mq_notify - record audit data for a POSIX MQ notify |
| * @mqdes: MQ descriptor |
| * @u_notification: Notification event |
| * |
| * Returns 0 for success or NULL context or < 0 on error. |
| */ |
| |
| int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification) |
| { |
| struct audit_aux_data_mq_notify *ax; |
| struct audit_context *context = current->audit_context; |
| |
| if (!audit_enabled) |
| return 0; |
| |
| if (likely(!context)) |
| return 0; |
| |
| ax = kmalloc(sizeof(*ax), GFP_ATOMIC); |
| if (!ax) |
| return -ENOMEM; |
| |
| if (u_notification != NULL) { |
| if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) { |
| kfree(ax); |
| return -EFAULT; |
| } |
| } else |
| memset(&ax->notification, 0, sizeof(ax->notification)); |
| |
| ax->mqdes = mqdes; |
| |
| ax->d.type = AUDIT_MQ_NOTIFY; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| return 0; |
| } |
| |
| /** |
| * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute |
| * @mqdes: MQ descriptor |
| * @mqstat: MQ flags |
| * |
| * Returns 0 for success or NULL context or < 0 on error. |
| */ |
| int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) |
| { |
| struct audit_aux_data_mq_getsetattr *ax; |
| struct audit_context *context = current->audit_context; |
| |
| if (!audit_enabled) |
| return 0; |
| |
| if (likely(!context)) |
| return 0; |
| |
| ax = kmalloc(sizeof(*ax), GFP_ATOMIC); |
| if (!ax) |
| return -ENOMEM; |
| |
| ax->mqdes = mqdes; |
| ax->mqstat = *mqstat; |
| |
| ax->d.type = AUDIT_MQ_GETSETATTR; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| return 0; |
| } |
| |
| /** |
| * audit_ipc_obj - record audit data for ipc object |
| * @ipcp: ipc permissions |
| * |
| */ |
| void __audit_ipc_obj(struct kern_ipc_perm *ipcp) |
| { |
| struct audit_context *context = current->audit_context; |
| context->ipc.uid = ipcp->uid; |
| context->ipc.gid = ipcp->gid; |
| context->ipc.mode = ipcp->mode; |
| security_ipc_getsecid(ipcp, &context->ipc.osid); |
| context->type = AUDIT_IPC; |
| } |
| |
| /** |
| * audit_ipc_set_perm - record audit data for new ipc permissions |
| * @qbytes: msgq bytes |
| * @uid: msgq user id |
| * @gid: msgq group id |
| * @mode: msgq mode (permissions) |
| * |
| * Returns 0 for success or NULL context or < 0 on error. |
| */ |
| int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) |
| { |
| struct audit_aux_data_ipcctl *ax; |
| struct audit_context *context = current->audit_context; |
| |
| ax = kmalloc(sizeof(*ax), GFP_ATOMIC); |
| if (!ax) |
| return -ENOMEM; |
| |
| ax->qbytes = qbytes; |
| ax->uid = uid; |
| ax->gid = gid; |
| ax->mode = mode; |
| |
| ax->d.type = AUDIT_IPC_SET_PERM; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| return 0; |
| } |
| |
| int audit_bprm(struct linux_binprm *bprm) |
| { |
| struct audit_aux_data_execve *ax; |
| struct audit_context *context = current->audit_context; |
| |
| if (likely(!audit_enabled || !context || context->dummy)) |
| return 0; |
| |
| ax = kmalloc(sizeof(*ax), GFP_KERNEL); |
| if (!ax) |
| return -ENOMEM; |
| |
| ax->argc = bprm->argc; |
| ax->envc = bprm->envc; |
| ax->mm = bprm->mm; |
| ax->d.type = AUDIT_EXECVE; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| return 0; |
| } |
| |
| |
| /** |
| * audit_socketcall - record audit data for sys_socketcall |
| * @nargs: number of args |
| * @args: args array |
| * |
| */ |
| void audit_socketcall(int nargs, unsigned long *args) |
| { |
| struct audit_context *context = current->audit_context; |
| |
| if (likely(!context || context->dummy)) |
| return; |
| |
| context->type = AUDIT_SOCKETCALL; |
| context->socketcall.nargs = nargs; |
| memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); |
| } |
| |
| /** |
| * __audit_fd_pair - record audit data for pipe and socketpair |
| * @fd1: the first file descriptor |
| * @fd2: the second file descriptor |
| * |
| * Returns 0 for success or NULL context or < 0 on error. |
| */ |
| int __audit_fd_pair(int fd1, int fd2) |
| { |
| struct audit_context *context = current->audit_context; |
| struct audit_aux_data_fd_pair *ax; |
| |
| if (likely(!context)) { |
| return 0; |
| } |
| |
| ax = kmalloc(sizeof(*ax), GFP_KERNEL); |
| if (!ax) { |
| return -ENOMEM; |
| } |
| |
| ax->fd[0] = fd1; |
| ax->fd[1] = fd2; |
| |
| ax->d.type = AUDIT_FD_PAIR; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| return 0; |
| } |
| |
| /** |
| * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto |
| * @len: data length in user space |
| * @a: data address in kernel space |
| * |
| * Returns 0 for success or NULL context or < 0 on error. |
| */ |
| int audit_sockaddr(int len, void *a) |
| { |
| struct audit_context *context = current->audit_context; |
| |
| if (likely(!context || context->dummy)) |
| return 0; |
| |
| if (!context->sockaddr) { |
| void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); |
| if (!p) |
| return -ENOMEM; |
| context->sockaddr = p; |
| } |
| |
| context->sockaddr_len = len; |
| memcpy(context->sockaddr, a, len); |
| return 0; |
| } |
| |
| void __audit_ptrace(struct task_struct *t) |
| { |
| struct audit_context *context = current->audit_context; |
| |
| context->target_pid = t->pid; |
| context->target_auid = audit_get_loginuid(t); |
| context->target_uid = task_uid(t); |
| context->target_sessionid = audit_get_sessionid(t); |
| security_task_getsecid(t, &context->target_sid); |
| memcpy(context->target_comm, t->comm, TASK_COMM_LEN); |
| } |
| |
| /** |
| * audit_signal_info - record signal info for shutting down audit subsystem |
| * @sig: signal value |
| * @t: task being signaled |
| * |
| * If the audit subsystem is being terminated, record the task (pid) |
| * and uid that is doing that. |
| */ |
| int __audit_signal_info(int sig, struct task_struct *t) |
| { |
| struct audit_aux_data_pids *axp; |
| struct task_struct *tsk = current; |
| struct audit_context *ctx = tsk->audit_context; |
| uid_t uid = current_uid(), t_uid = task_uid(t); |
| |
| if (audit_pid && t->tgid == audit_pid) { |
| if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { |
| audit_sig_pid = tsk->pid; |
| if (tsk->loginuid != -1) |
| audit_sig_uid = tsk->loginuid; |
| else |
| audit_sig_uid = uid; |
| security_task_getsecid(tsk, &audit_sig_sid); |
| } |
| if (!audit_signals || audit_dummy_context()) |
| return 0; |
| } |
| |
| /* optimize the common case by putting first signal recipient directly |
| * in audit_context */ |
| if (!ctx->target_pid) { |
| ctx->target_pid = t->tgid; |
| ctx->target_auid = audit_get_loginuid(t); |
| ctx->target_uid = t_uid; |
| ctx->target_sessionid = audit_get_sessionid(t); |
| security_task_getsecid(t, &ctx->target_sid); |
| memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); |
| return 0; |
| } |
| |
| axp = (void *)ctx->aux_pids; |
| if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { |
| axp = kzalloc(sizeof(*axp), GFP_ATOMIC); |
| if (!axp) |
| return -ENOMEM; |
| |
| axp->d.type = AUDIT_OBJ_PID; |
| axp->d.next = ctx->aux_pids; |
| ctx->aux_pids = (void *)axp; |
| } |
| BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); |
| |
| axp->target_pid[axp->pid_count] = t->tgid; |
| axp->target_auid[axp->pid_count] = audit_get_loginuid(t); |
| axp->target_uid[axp->pid_count] = t_uid; |
| axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); |
| security_task_getsecid(t, &axp->target_sid[axp->pid_count]); |
| memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); |
| axp->pid_count++; |
| |
| return 0; |
| } |
| |
| /** |
| * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps |
| * @bprm: pointer to the bprm being processed |
| * @new: the proposed new credentials |
| * @old: the old credentials |
| * |
| * Simply check if the proc already has the caps given by the file and if not |
| * store the priv escalation info for later auditing at the end of the syscall |
| * |
| * -Eric |
| */ |
| int __audit_log_bprm_fcaps(struct linux_binprm *bprm, |
| const struct cred *new, const struct cred *old) |
| { |
| struct audit_aux_data_bprm_fcaps *ax; |
| struct audit_context *context = current->audit_context; |
| struct cpu_vfs_cap_data vcaps; |
| struct dentry *dentry; |
| |
| ax = kmalloc(sizeof(*ax), GFP_KERNEL); |
| if (!ax) |
| return -ENOMEM; |
| |
| ax->d.type = AUDIT_BPRM_FCAPS; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| |
| dentry = dget(bprm->file->f_dentry); |
| get_vfs_caps_from_disk(dentry, &vcaps); |
| dput(dentry); |
| |
| ax->fcap.permitted = vcaps.permitted; |
| ax->fcap.inheritable = vcaps.inheritable; |
| ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); |
| ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; |
| |
| ax->old_pcap.permitted = old->cap_permitted; |
| ax->old_pcap.inheritable = old->cap_inheritable; |
| ax->old_pcap.effective = old->cap_effective; |
| |
| ax->new_pcap.permitted = new->cap_permitted; |
| ax->new_pcap.inheritable = new->cap_inheritable; |
| ax->new_pcap.effective = new->cap_effective; |
| return 0; |
| } |
| |
| /** |
| * __audit_log_capset - store information about the arguments to the capset syscall |
| * @pid: target pid of the capset call |
| * @new: the new credentials |
| * @old: the old (current) credentials |
| * |
| * Record the aguments userspace sent to sys_capset for later printing by the |
| * audit system if applicable |
| */ |
| int __audit_log_capset(pid_t pid, |
| const struct cred *new, const struct cred *old) |
| { |
| struct audit_aux_data_capset *ax; |
| struct audit_context *context = current->audit_context; |
| |
| if (likely(!audit_enabled || !context || context->dummy)) |
| return 0; |
| |
| ax = kmalloc(sizeof(*ax), GFP_KERNEL); |
| if (!ax) |
| return -ENOMEM; |
| |
| ax->d.type = AUDIT_CAPSET; |
| ax->d.next = context->aux; |
| context->aux = (void *)ax; |
| |
| ax->pid = pid; |
| ax->cap.effective = new->cap_effective; |
| ax->cap.inheritable = new->cap_effective; |
| ax->cap.permitted = new->cap_permitted; |
| |
| return 0; |
| } |
| |
| /** |
| * audit_core_dumps - record information about processes that end abnormally |
| * @signr: signal value |
| * |
| * If a process ends with a core dump, something fishy is going on and we |
| * should record the event for investigation. |
| */ |
| void audit_core_dumps(long signr) |
| { |
| struct audit_buffer *ab; |
| u32 sid; |
| uid_t auid = audit_get_loginuid(current), uid; |
| gid_t gid; |
| unsigned int sessionid = audit_get_sessionid(current); |
| |
| if (!audit_enabled) |
| return; |
| |
| if (signr == SIGQUIT) /* don't care for those */ |
| return; |
| |
| ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); |
| current_uid_gid(&uid, &gid); |
| audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", |
| auid, uid, gid, sessionid); |
| security_task_getsecid(current, &sid); |
| if (sid) { |
| char *ctx = NULL; |
| u32 len; |
| |
| if (security_secid_to_secctx(sid, &ctx, &len)) |
| audit_log_format(ab, " ssid=%u", sid); |
| else { |
| audit_log_format(ab, " subj=%s", ctx); |
| security_release_secctx(ctx, len); |
| } |
| } |
| audit_log_format(ab, " pid=%d comm=", current->pid); |
| audit_log_untrustedstring(ab, current->comm); |
| audit_log_format(ab, " sig=%ld", signr); |
| audit_log_end(ab); |
| } |