| /** |
| * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project. |
| * |
| * Copyright (c) 2001-2007 Anton Altaparmakov |
| * |
| * This program/include file is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as published |
| * by the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program/include file is distributed in the hope that it will be |
| * useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program (in the main directory of the Linux-NTFS |
| * distribution in the file COPYING); if not, write to the Free Software |
| * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/buffer_head.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/mount.h> |
| #include <linux/mutex.h> |
| #include <linux/pagemap.h> |
| #include <linux/quotaops.h> |
| #include <linux/slab.h> |
| #include <linux/log2.h> |
| #include <linux/aio.h> |
| |
| #include "aops.h" |
| #include "attrib.h" |
| #include "bitmap.h" |
| #include "dir.h" |
| #include "debug.h" |
| #include "inode.h" |
| #include "lcnalloc.h" |
| #include "malloc.h" |
| #include "mft.h" |
| #include "time.h" |
| #include "ntfs.h" |
| |
| /** |
| * ntfs_test_inode - compare two (possibly fake) inodes for equality |
| * @vi: vfs inode which to test |
| * @na: ntfs attribute which is being tested with |
| * |
| * Compare the ntfs attribute embedded in the ntfs specific part of the vfs |
| * inode @vi for equality with the ntfs attribute @na. |
| * |
| * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. |
| * @na->name and @na->name_len are then ignored. |
| * |
| * Return 1 if the attributes match and 0 if not. |
| * |
| * NOTE: This function runs with the inode_hash_lock spin lock held so it is not |
| * allowed to sleep. |
| */ |
| int ntfs_test_inode(struct inode *vi, ntfs_attr *na) |
| { |
| ntfs_inode *ni; |
| |
| if (vi->i_ino != na->mft_no) |
| return 0; |
| ni = NTFS_I(vi); |
| /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ |
| if (likely(!NInoAttr(ni))) { |
| /* If not looking for a normal inode this is a mismatch. */ |
| if (unlikely(na->type != AT_UNUSED)) |
| return 0; |
| } else { |
| /* A fake inode describing an attribute. */ |
| if (ni->type != na->type) |
| return 0; |
| if (ni->name_len != na->name_len) |
| return 0; |
| if (na->name_len && memcmp(ni->name, na->name, |
| na->name_len * sizeof(ntfschar))) |
| return 0; |
| } |
| /* Match! */ |
| return 1; |
| } |
| |
| /** |
| * ntfs_init_locked_inode - initialize an inode |
| * @vi: vfs inode to initialize |
| * @na: ntfs attribute which to initialize @vi to |
| * |
| * Initialize the vfs inode @vi with the values from the ntfs attribute @na in |
| * order to enable ntfs_test_inode() to do its work. |
| * |
| * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. |
| * In that case, @na->name and @na->name_len should be set to NULL and 0, |
| * respectively. Although that is not strictly necessary as |
| * ntfs_read_locked_inode() will fill them in later. |
| * |
| * Return 0 on success and -errno on error. |
| * |
| * NOTE: This function runs with the inode->i_lock spin lock held so it is not |
| * allowed to sleep. (Hence the GFP_ATOMIC allocation.) |
| */ |
| static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) |
| { |
| ntfs_inode *ni = NTFS_I(vi); |
| |
| vi->i_ino = na->mft_no; |
| |
| ni->type = na->type; |
| if (na->type == AT_INDEX_ALLOCATION) |
| NInoSetMstProtected(ni); |
| |
| ni->name = na->name; |
| ni->name_len = na->name_len; |
| |
| /* If initializing a normal inode, we are done. */ |
| if (likely(na->type == AT_UNUSED)) { |
| BUG_ON(na->name); |
| BUG_ON(na->name_len); |
| return 0; |
| } |
| |
| /* It is a fake inode. */ |
| NInoSetAttr(ni); |
| |
| /* |
| * We have I30 global constant as an optimization as it is the name |
| * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC |
| * allocation but that is ok. And most attributes are unnamed anyway, |
| * thus the fraction of named attributes with name != I30 is actually |
| * absolutely tiny. |
| */ |
| if (na->name_len && na->name != I30) { |
| unsigned int i; |
| |
| BUG_ON(!na->name); |
| i = na->name_len * sizeof(ntfschar); |
| ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); |
| if (!ni->name) |
| return -ENOMEM; |
| memcpy(ni->name, na->name, i); |
| ni->name[na->name_len] = 0; |
| } |
| return 0; |
| } |
| |
| typedef int (*set_t)(struct inode *, void *); |
| static int ntfs_read_locked_inode(struct inode *vi); |
| static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); |
| static int ntfs_read_locked_index_inode(struct inode *base_vi, |
| struct inode *vi); |
| |
| /** |
| * ntfs_iget - obtain a struct inode corresponding to a specific normal inode |
| * @sb: super block of mounted volume |
| * @mft_no: mft record number / inode number to obtain |
| * |
| * Obtain the struct inode corresponding to a specific normal inode (i.e. a |
| * file or directory). |
| * |
| * If the inode is in the cache, it is just returned with an increased |
| * reference count. Otherwise, a new struct inode is allocated and initialized, |
| * and finally ntfs_read_locked_inode() is called to read in the inode and |
| * fill in the remainder of the inode structure. |
| * |
| * Return the struct inode on success. Check the return value with IS_ERR() and |
| * if true, the function failed and the error code is obtained from PTR_ERR(). |
| */ |
| struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) |
| { |
| struct inode *vi; |
| int err; |
| ntfs_attr na; |
| |
| na.mft_no = mft_no; |
| na.type = AT_UNUSED; |
| na.name = NULL; |
| na.name_len = 0; |
| |
| vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, |
| (set_t)ntfs_init_locked_inode, &na); |
| if (unlikely(!vi)) |
| return ERR_PTR(-ENOMEM); |
| |
| err = 0; |
| |
| /* If this is a freshly allocated inode, need to read it now. */ |
| if (vi->i_state & I_NEW) { |
| err = ntfs_read_locked_inode(vi); |
| unlock_new_inode(vi); |
| } |
| /* |
| * There is no point in keeping bad inodes around if the failure was |
| * due to ENOMEM. We want to be able to retry again later. |
| */ |
| if (unlikely(err == -ENOMEM)) { |
| iput(vi); |
| vi = ERR_PTR(err); |
| } |
| return vi; |
| } |
| |
| /** |
| * ntfs_attr_iget - obtain a struct inode corresponding to an attribute |
| * @base_vi: vfs base inode containing the attribute |
| * @type: attribute type |
| * @name: Unicode name of the attribute (NULL if unnamed) |
| * @name_len: length of @name in Unicode characters (0 if unnamed) |
| * |
| * Obtain the (fake) struct inode corresponding to the attribute specified by |
| * @type, @name, and @name_len, which is present in the base mft record |
| * specified by the vfs inode @base_vi. |
| * |
| * If the attribute inode is in the cache, it is just returned with an |
| * increased reference count. Otherwise, a new struct inode is allocated and |
| * initialized, and finally ntfs_read_locked_attr_inode() is called to read the |
| * attribute and fill in the inode structure. |
| * |
| * Note, for index allocation attributes, you need to use ntfs_index_iget() |
| * instead of ntfs_attr_iget() as working with indices is a lot more complex. |
| * |
| * Return the struct inode of the attribute inode on success. Check the return |
| * value with IS_ERR() and if true, the function failed and the error code is |
| * obtained from PTR_ERR(). |
| */ |
| struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, |
| ntfschar *name, u32 name_len) |
| { |
| struct inode *vi; |
| int err; |
| ntfs_attr na; |
| |
| /* Make sure no one calls ntfs_attr_iget() for indices. */ |
| BUG_ON(type == AT_INDEX_ALLOCATION); |
| |
| na.mft_no = base_vi->i_ino; |
| na.type = type; |
| na.name = name; |
| na.name_len = name_len; |
| |
| vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, |
| (set_t)ntfs_init_locked_inode, &na); |
| if (unlikely(!vi)) |
| return ERR_PTR(-ENOMEM); |
| |
| err = 0; |
| |
| /* If this is a freshly allocated inode, need to read it now. */ |
| if (vi->i_state & I_NEW) { |
| err = ntfs_read_locked_attr_inode(base_vi, vi); |
| unlock_new_inode(vi); |
| } |
| /* |
| * There is no point in keeping bad attribute inodes around. This also |
| * simplifies things in that we never need to check for bad attribute |
| * inodes elsewhere. |
| */ |
| if (unlikely(err)) { |
| iput(vi); |
| vi = ERR_PTR(err); |
| } |
| return vi; |
| } |
| |
| /** |
| * ntfs_index_iget - obtain a struct inode corresponding to an index |
| * @base_vi: vfs base inode containing the index related attributes |
| * @name: Unicode name of the index |
| * @name_len: length of @name in Unicode characters |
| * |
| * Obtain the (fake) struct inode corresponding to the index specified by @name |
| * and @name_len, which is present in the base mft record specified by the vfs |
| * inode @base_vi. |
| * |
| * If the index inode is in the cache, it is just returned with an increased |
| * reference count. Otherwise, a new struct inode is allocated and |
| * initialized, and finally ntfs_read_locked_index_inode() is called to read |
| * the index related attributes and fill in the inode structure. |
| * |
| * Return the struct inode of the index inode on success. Check the return |
| * value with IS_ERR() and if true, the function failed and the error code is |
| * obtained from PTR_ERR(). |
| */ |
| struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, |
| u32 name_len) |
| { |
| struct inode *vi; |
| int err; |
| ntfs_attr na; |
| |
| na.mft_no = base_vi->i_ino; |
| na.type = AT_INDEX_ALLOCATION; |
| na.name = name; |
| na.name_len = name_len; |
| |
| vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, |
| (set_t)ntfs_init_locked_inode, &na); |
| if (unlikely(!vi)) |
| return ERR_PTR(-ENOMEM); |
| |
| err = 0; |
| |
| /* If this is a freshly allocated inode, need to read it now. */ |
| if (vi->i_state & I_NEW) { |
| err = ntfs_read_locked_index_inode(base_vi, vi); |
| unlock_new_inode(vi); |
| } |
| /* |
| * There is no point in keeping bad index inodes around. This also |
| * simplifies things in that we never need to check for bad index |
| * inodes elsewhere. |
| */ |
| if (unlikely(err)) { |
| iput(vi); |
| vi = ERR_PTR(err); |
| } |
| return vi; |
| } |
| |
| struct inode *ntfs_alloc_big_inode(struct super_block *sb) |
| { |
| ntfs_inode *ni; |
| |
| ntfs_debug("Entering."); |
| ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); |
| if (likely(ni != NULL)) { |
| ni->state = 0; |
| return VFS_I(ni); |
| } |
| ntfs_error(sb, "Allocation of NTFS big inode structure failed."); |
| return NULL; |
| } |
| |
| static void ntfs_i_callback(struct rcu_head *head) |
| { |
| struct inode *inode = container_of(head, struct inode, i_rcu); |
| kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); |
| } |
| |
| void ntfs_destroy_big_inode(struct inode *inode) |
| { |
| ntfs_inode *ni = NTFS_I(inode); |
| |
| ntfs_debug("Entering."); |
| BUG_ON(ni->page); |
| if (!atomic_dec_and_test(&ni->count)) |
| BUG(); |
| call_rcu(&inode->i_rcu, ntfs_i_callback); |
| } |
| |
| static inline ntfs_inode *ntfs_alloc_extent_inode(void) |
| { |
| ntfs_inode *ni; |
| |
| ntfs_debug("Entering."); |
| ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); |
| if (likely(ni != NULL)) { |
| ni->state = 0; |
| return ni; |
| } |
| ntfs_error(NULL, "Allocation of NTFS inode structure failed."); |
| return NULL; |
| } |
| |
| static void ntfs_destroy_extent_inode(ntfs_inode *ni) |
| { |
| ntfs_debug("Entering."); |
| BUG_ON(ni->page); |
| if (!atomic_dec_and_test(&ni->count)) |
| BUG(); |
| kmem_cache_free(ntfs_inode_cache, ni); |
| } |
| |
| /* |
| * The attribute runlist lock has separate locking rules from the |
| * normal runlist lock, so split the two lock-classes: |
| */ |
| static struct lock_class_key attr_list_rl_lock_class; |
| |
| /** |
| * __ntfs_init_inode - initialize ntfs specific part of an inode |
| * @sb: super block of mounted volume |
| * @ni: freshly allocated ntfs inode which to initialize |
| * |
| * Initialize an ntfs inode to defaults. |
| * |
| * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left |
| * untouched. Make sure to initialize them elsewhere. |
| * |
| * Return zero on success and -ENOMEM on error. |
| */ |
| void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) |
| { |
| ntfs_debug("Entering."); |
| rwlock_init(&ni->size_lock); |
| ni->initialized_size = ni->allocated_size = 0; |
| ni->seq_no = 0; |
| atomic_set(&ni->count, 1); |
| ni->vol = NTFS_SB(sb); |
| ntfs_init_runlist(&ni->runlist); |
| mutex_init(&ni->mrec_lock); |
| ni->page = NULL; |
| ni->page_ofs = 0; |
| ni->attr_list_size = 0; |
| ni->attr_list = NULL; |
| ntfs_init_runlist(&ni->attr_list_rl); |
| lockdep_set_class(&ni->attr_list_rl.lock, |
| &attr_list_rl_lock_class); |
| ni->itype.index.block_size = 0; |
| ni->itype.index.vcn_size = 0; |
| ni->itype.index.collation_rule = 0; |
| ni->itype.index.block_size_bits = 0; |
| ni->itype.index.vcn_size_bits = 0; |
| mutex_init(&ni->extent_lock); |
| ni->nr_extents = 0; |
| ni->ext.base_ntfs_ino = NULL; |
| } |
| |
| /* |
| * Extent inodes get MFT-mapped in a nested way, while the base inode |
| * is still mapped. Teach this nesting to the lock validator by creating |
| * a separate class for nested inode's mrec_lock's: |
| */ |
| static struct lock_class_key extent_inode_mrec_lock_key; |
| |
| inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, |
| unsigned long mft_no) |
| { |
| ntfs_inode *ni = ntfs_alloc_extent_inode(); |
| |
| ntfs_debug("Entering."); |
| if (likely(ni != NULL)) { |
| __ntfs_init_inode(sb, ni); |
| lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); |
| ni->mft_no = mft_no; |
| ni->type = AT_UNUSED; |
| ni->name = NULL; |
| ni->name_len = 0; |
| } |
| return ni; |
| } |
| |
| /** |
| * ntfs_is_extended_system_file - check if a file is in the $Extend directory |
| * @ctx: initialized attribute search context |
| * |
| * Search all file name attributes in the inode described by the attribute |
| * search context @ctx and check if any of the names are in the $Extend system |
| * directory. |
| * |
| * Return values: |
| * 1: file is in $Extend directory |
| * 0: file is not in $Extend directory |
| * -errno: failed to determine if the file is in the $Extend directory |
| */ |
| static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) |
| { |
| int nr_links, err; |
| |
| /* Restart search. */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| |
| /* Get number of hard links. */ |
| nr_links = le16_to_cpu(ctx->mrec->link_count); |
| |
| /* Loop through all hard links. */ |
| while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, |
| ctx))) { |
| FILE_NAME_ATTR *file_name_attr; |
| ATTR_RECORD *attr = ctx->attr; |
| u8 *p, *p2; |
| |
| nr_links--; |
| /* |
| * Maximum sanity checking as we are called on an inode that |
| * we suspect might be corrupt. |
| */ |
| p = (u8*)attr + le32_to_cpu(attr->length); |
| if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + |
| le32_to_cpu(ctx->mrec->bytes_in_use)) { |
| err_corrupt_attr: |
| ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " |
| "attribute. You should run chkdsk."); |
| return -EIO; |
| } |
| if (attr->non_resident) { |
| ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " |
| "name. You should run chkdsk."); |
| return -EIO; |
| } |
| if (attr->flags) { |
| ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " |
| "invalid flags. You should run " |
| "chkdsk."); |
| return -EIO; |
| } |
| if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { |
| ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " |
| "name. You should run chkdsk."); |
| return -EIO; |
| } |
| file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + |
| le16_to_cpu(attr->data.resident.value_offset)); |
| p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); |
| if (p2 < (u8*)attr || p2 > p) |
| goto err_corrupt_attr; |
| /* This attribute is ok, but is it in the $Extend directory? */ |
| if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) |
| return 1; /* YES, it's an extended system file. */ |
| } |
| if (unlikely(err != -ENOENT)) |
| return err; |
| if (unlikely(nr_links)) { |
| ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " |
| "doesn't match number of name attributes. You " |
| "should run chkdsk."); |
| return -EIO; |
| } |
| return 0; /* NO, it is not an extended system file. */ |
| } |
| |
| /** |
| * ntfs_read_locked_inode - read an inode from its device |
| * @vi: inode to read |
| * |
| * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode |
| * described by @vi into memory from the device. |
| * |
| * The only fields in @vi that we need to/can look at when the function is |
| * called are i_sb, pointing to the mounted device's super block, and i_ino, |
| * the number of the inode to load. |
| * |
| * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino |
| * for reading and sets up the necessary @vi fields as well as initializing |
| * the ntfs inode. |
| * |
| * Q: What locks are held when the function is called? |
| * A: i_state has I_NEW set, hence the inode is locked, also |
| * i_count is set to 1, so it is not going to go away |
| * i_flags is set to 0 and we have no business touching it. Only an ioctl() |
| * is allowed to write to them. We should of course be honouring them but |
| * we need to do that using the IS_* macros defined in include/linux/fs.h. |
| * In any case ntfs_read_locked_inode() has nothing to do with i_flags. |
| * |
| * Return 0 on success and -errno on error. In the error case, the inode will |
| * have had make_bad_inode() executed on it. |
| */ |
| static int ntfs_read_locked_inode(struct inode *vi) |
| { |
| ntfs_volume *vol = NTFS_SB(vi->i_sb); |
| ntfs_inode *ni; |
| struct inode *bvi; |
| MFT_RECORD *m; |
| ATTR_RECORD *a; |
| STANDARD_INFORMATION *si; |
| ntfs_attr_search_ctx *ctx; |
| int err = 0; |
| |
| ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); |
| |
| /* Setup the generic vfs inode parts now. */ |
| |
| /* |
| * This is for checking whether an inode has changed w.r.t. a file so |
| * that the file can be updated if necessary (compare with f_version). |
| */ |
| vi->i_version = 1; |
| |
| vi->i_uid = vol->uid; |
| vi->i_gid = vol->gid; |
| vi->i_mode = 0; |
| |
| /* |
| * Initialize the ntfs specific part of @vi special casing |
| * FILE_MFT which we need to do at mount time. |
| */ |
| if (vi->i_ino != FILE_MFT) |
| ntfs_init_big_inode(vi); |
| ni = NTFS_I(vi); |
| |
| m = map_mft_record(ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| goto err_out; |
| } |
| ctx = ntfs_attr_get_search_ctx(ni, m); |
| if (!ctx) { |
| err = -ENOMEM; |
| goto unm_err_out; |
| } |
| |
| if (!(m->flags & MFT_RECORD_IN_USE)) { |
| ntfs_error(vi->i_sb, "Inode is not in use!"); |
| goto unm_err_out; |
| } |
| if (m->base_mft_record) { |
| ntfs_error(vi->i_sb, "Inode is an extent inode!"); |
| goto unm_err_out; |
| } |
| |
| /* Transfer information from mft record into vfs and ntfs inodes. */ |
| vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); |
| |
| /* |
| * FIXME: Keep in mind that link_count is two for files which have both |
| * a long file name and a short file name as separate entries, so if |
| * we are hiding short file names this will be too high. Either we need |
| * to account for the short file names by subtracting them or we need |
| * to make sure we delete files even though i_nlink is not zero which |
| * might be tricky due to vfs interactions. Need to think about this |
| * some more when implementing the unlink command. |
| */ |
| set_nlink(vi, le16_to_cpu(m->link_count)); |
| /* |
| * FIXME: Reparse points can have the directory bit set even though |
| * they would be S_IFLNK. Need to deal with this further below when we |
| * implement reparse points / symbolic links but it will do for now. |
| * Also if not a directory, it could be something else, rather than |
| * a regular file. But again, will do for now. |
| */ |
| /* Everyone gets all permissions. */ |
| vi->i_mode |= S_IRWXUGO; |
| /* If read-only, no one gets write permissions. */ |
| if (IS_RDONLY(vi)) |
| vi->i_mode &= ~S_IWUGO; |
| if (m->flags & MFT_RECORD_IS_DIRECTORY) { |
| vi->i_mode |= S_IFDIR; |
| /* |
| * Apply the directory permissions mask set in the mount |
| * options. |
| */ |
| vi->i_mode &= ~vol->dmask; |
| /* Things break without this kludge! */ |
| if (vi->i_nlink > 1) |
| set_nlink(vi, 1); |
| } else { |
| vi->i_mode |= S_IFREG; |
| /* Apply the file permissions mask set in the mount options. */ |
| vi->i_mode &= ~vol->fmask; |
| } |
| /* |
| * Find the standard information attribute in the mft record. At this |
| * stage we haven't setup the attribute list stuff yet, so this could |
| * in fact fail if the standard information is in an extent record, but |
| * I don't think this actually ever happens. |
| */ |
| err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, |
| ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) { |
| /* |
| * TODO: We should be performing a hot fix here (if the |
| * recover mount option is set) by creating a new |
| * attribute. |
| */ |
| ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " |
| "is missing."); |
| } |
| goto unm_err_out; |
| } |
| a = ctx->attr; |
| /* Get the standard information attribute value. */ |
| si = (STANDARD_INFORMATION*)((u8*)a + |
| le16_to_cpu(a->data.resident.value_offset)); |
| |
| /* Transfer information from the standard information into vi. */ |
| /* |
| * Note: The i_?times do not quite map perfectly onto the NTFS times, |
| * but they are close enough, and in the end it doesn't really matter |
| * that much... |
| */ |
| /* |
| * mtime is the last change of the data within the file. Not changed |
| * when only metadata is changed, e.g. a rename doesn't affect mtime. |
| */ |
| vi->i_mtime = ntfs2utc(si->last_data_change_time); |
| /* |
| * ctime is the last change of the metadata of the file. This obviously |
| * always changes, when mtime is changed. ctime can be changed on its |
| * own, mtime is then not changed, e.g. when a file is renamed. |
| */ |
| vi->i_ctime = ntfs2utc(si->last_mft_change_time); |
| /* |
| * Last access to the data within the file. Not changed during a rename |
| * for example but changed whenever the file is written to. |
| */ |
| vi->i_atime = ntfs2utc(si->last_access_time); |
| |
| /* Find the attribute list attribute if present. */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); |
| if (err) { |
| if (unlikely(err != -ENOENT)) { |
| ntfs_error(vi->i_sb, "Failed to lookup attribute list " |
| "attribute."); |
| goto unm_err_out; |
| } |
| } else /* if (!err) */ { |
| if (vi->i_ino == FILE_MFT) |
| goto skip_attr_list_load; |
| ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); |
| NInoSetAttrList(ni); |
| a = ctx->attr; |
| if (a->flags & ATTR_COMPRESSION_MASK) { |
| ntfs_error(vi->i_sb, "Attribute list attribute is " |
| "compressed."); |
| goto unm_err_out; |
| } |
| if (a->flags & ATTR_IS_ENCRYPTED || |
| a->flags & ATTR_IS_SPARSE) { |
| if (a->non_resident) { |
| ntfs_error(vi->i_sb, "Non-resident attribute " |
| "list attribute is encrypted/" |
| "sparse."); |
| goto unm_err_out; |
| } |
| ntfs_warning(vi->i_sb, "Resident attribute list " |
| "attribute in inode 0x%lx is marked " |
| "encrypted/sparse which is not true. " |
| "However, Windows allows this and " |
| "chkdsk does not detect or correct it " |
| "so we will just ignore the invalid " |
| "flags and pretend they are not set.", |
| vi->i_ino); |
| } |
| /* Now allocate memory for the attribute list. */ |
| ni->attr_list_size = (u32)ntfs_attr_size(a); |
| ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); |
| if (!ni->attr_list) { |
| ntfs_error(vi->i_sb, "Not enough memory to allocate " |
| "buffer for attribute list."); |
| err = -ENOMEM; |
| goto unm_err_out; |
| } |
| if (a->non_resident) { |
| NInoSetAttrListNonResident(ni); |
| if (a->data.non_resident.lowest_vcn) { |
| ntfs_error(vi->i_sb, "Attribute list has non " |
| "zero lowest_vcn."); |
| goto unm_err_out; |
| } |
| /* |
| * Setup the runlist. No need for locking as we have |
| * exclusive access to the inode at this time. |
| */ |
| ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, |
| a, NULL); |
| if (IS_ERR(ni->attr_list_rl.rl)) { |
| err = PTR_ERR(ni->attr_list_rl.rl); |
| ni->attr_list_rl.rl = NULL; |
| ntfs_error(vi->i_sb, "Mapping pairs " |
| "decompression failed."); |
| goto unm_err_out; |
| } |
| /* Now load the attribute list. */ |
| if ((err = load_attribute_list(vol, &ni->attr_list_rl, |
| ni->attr_list, ni->attr_list_size, |
| sle64_to_cpu(a->data.non_resident. |
| initialized_size)))) { |
| ntfs_error(vi->i_sb, "Failed to load " |
| "attribute list attribute."); |
| goto unm_err_out; |
| } |
| } else /* if (!a->non_resident) */ { |
| if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) |
| + le32_to_cpu( |
| a->data.resident.value_length) > |
| (u8*)ctx->mrec + vol->mft_record_size) { |
| ntfs_error(vi->i_sb, "Corrupt attribute list " |
| "in inode."); |
| goto unm_err_out; |
| } |
| /* Now copy the attribute list. */ |
| memcpy(ni->attr_list, (u8*)a + le16_to_cpu( |
| a->data.resident.value_offset), |
| le32_to_cpu( |
| a->data.resident.value_length)); |
| } |
| } |
| skip_attr_list_load: |
| /* |
| * If an attribute list is present we now have the attribute list value |
| * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. |
| */ |
| if (S_ISDIR(vi->i_mode)) { |
| loff_t bvi_size; |
| ntfs_inode *bni; |
| INDEX_ROOT *ir; |
| u8 *ir_end, *index_end; |
| |
| /* It is a directory, find index root attribute. */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, |
| 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) { |
| // FIXME: File is corrupt! Hot-fix with empty |
| // index root attribute if recovery option is |
| // set. |
| ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " |
| "is missing."); |
| } |
| goto unm_err_out; |
| } |
| a = ctx->attr; |
| /* Set up the state. */ |
| if (unlikely(a->non_resident)) { |
| ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " |
| "resident."); |
| goto unm_err_out; |
| } |
| /* Ensure the attribute name is placed before the value. */ |
| if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
| le16_to_cpu(a->data.resident.value_offset)))) { |
| ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " |
| "placed after the attribute value."); |
| goto unm_err_out; |
| } |
| /* |
| * Compressed/encrypted index root just means that the newly |
| * created files in that directory should be created compressed/ |
| * encrypted. However index root cannot be both compressed and |
| * encrypted. |
| */ |
| if (a->flags & ATTR_COMPRESSION_MASK) |
| NInoSetCompressed(ni); |
| if (a->flags & ATTR_IS_ENCRYPTED) { |
| if (a->flags & ATTR_COMPRESSION_MASK) { |
| ntfs_error(vi->i_sb, "Found encrypted and " |
| "compressed attribute."); |
| goto unm_err_out; |
| } |
| NInoSetEncrypted(ni); |
| } |
| if (a->flags & ATTR_IS_SPARSE) |
| NInoSetSparse(ni); |
| ir = (INDEX_ROOT*)((u8*)a + |
| le16_to_cpu(a->data.resident.value_offset)); |
| ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); |
| if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { |
| ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " |
| "corrupt."); |
| goto unm_err_out; |
| } |
| index_end = (u8*)&ir->index + |
| le32_to_cpu(ir->index.index_length); |
| if (index_end > ir_end) { |
| ntfs_error(vi->i_sb, "Directory index is corrupt."); |
| goto unm_err_out; |
| } |
| if (ir->type != AT_FILE_NAME) { |
| ntfs_error(vi->i_sb, "Indexed attribute is not " |
| "$FILE_NAME."); |
| goto unm_err_out; |
| } |
| if (ir->collation_rule != COLLATION_FILE_NAME) { |
| ntfs_error(vi->i_sb, "Index collation rule is not " |
| "COLLATION_FILE_NAME."); |
| goto unm_err_out; |
| } |
| ni->itype.index.collation_rule = ir->collation_rule; |
| ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); |
| if (ni->itype.index.block_size & |
| (ni->itype.index.block_size - 1)) { |
| ntfs_error(vi->i_sb, "Index block size (%u) is not a " |
| "power of two.", |
| ni->itype.index.block_size); |
| goto unm_err_out; |
| } |
| if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { |
| ntfs_error(vi->i_sb, "Index block size (%u) > " |
| "PAGE_CACHE_SIZE (%ld) is not " |
| "supported. Sorry.", |
| ni->itype.index.block_size, |
| PAGE_CACHE_SIZE); |
| err = -EOPNOTSUPP; |
| goto unm_err_out; |
| } |
| if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { |
| ntfs_error(vi->i_sb, "Index block size (%u) < " |
| "NTFS_BLOCK_SIZE (%i) is not " |
| "supported. Sorry.", |
| ni->itype.index.block_size, |
| NTFS_BLOCK_SIZE); |
| err = -EOPNOTSUPP; |
| goto unm_err_out; |
| } |
| ni->itype.index.block_size_bits = |
| ffs(ni->itype.index.block_size) - 1; |
| /* Determine the size of a vcn in the directory index. */ |
| if (vol->cluster_size <= ni->itype.index.block_size) { |
| ni->itype.index.vcn_size = vol->cluster_size; |
| ni->itype.index.vcn_size_bits = vol->cluster_size_bits; |
| } else { |
| ni->itype.index.vcn_size = vol->sector_size; |
| ni->itype.index.vcn_size_bits = vol->sector_size_bits; |
| } |
| |
| /* Setup the index allocation attribute, even if not present. */ |
| NInoSetMstProtected(ni); |
| ni->type = AT_INDEX_ALLOCATION; |
| ni->name = I30; |
| ni->name_len = 4; |
| |
| if (!(ir->index.flags & LARGE_INDEX)) { |
| /* No index allocation. */ |
| vi->i_size = ni->initialized_size = |
| ni->allocated_size = 0; |
| /* We are done with the mft record, so we release it. */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(ni); |
| m = NULL; |
| ctx = NULL; |
| goto skip_large_dir_stuff; |
| } /* LARGE_INDEX: Index allocation present. Setup state. */ |
| NInoSetIndexAllocPresent(ni); |
| /* Find index allocation attribute. */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " |
| "attribute is not present but " |
| "$INDEX_ROOT indicated it is."); |
| else |
| ntfs_error(vi->i_sb, "Failed to lookup " |
| "$INDEX_ALLOCATION " |
| "attribute."); |
| goto unm_err_out; |
| } |
| a = ctx->attr; |
| if (!a->non_resident) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
| "is resident."); |
| goto unm_err_out; |
| } |
| /* |
| * Ensure the attribute name is placed before the mapping pairs |
| * array. |
| */ |
| if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
| le16_to_cpu( |
| a->data.non_resident.mapping_pairs_offset)))) { |
| ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " |
| "is placed after the mapping pairs " |
| "array."); |
| goto unm_err_out; |
| } |
| if (a->flags & ATTR_IS_ENCRYPTED) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
| "is encrypted."); |
| goto unm_err_out; |
| } |
| if (a->flags & ATTR_IS_SPARSE) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
| "is sparse."); |
| goto unm_err_out; |
| } |
| if (a->flags & ATTR_COMPRESSION_MASK) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
| "is compressed."); |
| goto unm_err_out; |
| } |
| if (a->data.non_resident.lowest_vcn) { |
| ntfs_error(vi->i_sb, "First extent of " |
| "$INDEX_ALLOCATION attribute has non " |
| "zero lowest_vcn."); |
| goto unm_err_out; |
| } |
| vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); |
| ni->initialized_size = sle64_to_cpu( |
| a->data.non_resident.initialized_size); |
| ni->allocated_size = sle64_to_cpu( |
| a->data.non_resident.allocated_size); |
| /* |
| * We are done with the mft record, so we release it. Otherwise |
| * we would deadlock in ntfs_attr_iget(). |
| */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(ni); |
| m = NULL; |
| ctx = NULL; |
| /* Get the index bitmap attribute inode. */ |
| bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); |
| if (IS_ERR(bvi)) { |
| ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); |
| err = PTR_ERR(bvi); |
| goto unm_err_out; |
| } |
| bni = NTFS_I(bvi); |
| if (NInoCompressed(bni) || NInoEncrypted(bni) || |
| NInoSparse(bni)) { |
| ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " |
| "and/or encrypted and/or sparse."); |
| goto iput_unm_err_out; |
| } |
| /* Consistency check bitmap size vs. index allocation size. */ |
| bvi_size = i_size_read(bvi); |
| if ((bvi_size << 3) < (vi->i_size >> |
| ni->itype.index.block_size_bits)) { |
| ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " |
| "for index allocation (0x%llx).", |
| bvi_size << 3, vi->i_size); |
| goto iput_unm_err_out; |
| } |
| /* No longer need the bitmap attribute inode. */ |
| iput(bvi); |
| skip_large_dir_stuff: |
| /* Setup the operations for this inode. */ |
| vi->i_op = &ntfs_dir_inode_ops; |
| vi->i_fop = &ntfs_dir_ops; |
| } else { |
| /* It is a file. */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| |
| /* Setup the data attribute, even if not present. */ |
| ni->type = AT_DATA; |
| ni->name = NULL; |
| ni->name_len = 0; |
| |
| /* Find first extent of the unnamed data attribute. */ |
| err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| vi->i_size = ni->initialized_size = |
| ni->allocated_size = 0; |
| if (err != -ENOENT) { |
| ntfs_error(vi->i_sb, "Failed to lookup $DATA " |
| "attribute."); |
| goto unm_err_out; |
| } |
| /* |
| * FILE_Secure does not have an unnamed $DATA |
| * attribute, so we special case it here. |
| */ |
| if (vi->i_ino == FILE_Secure) |
| goto no_data_attr_special_case; |
| /* |
| * Most if not all the system files in the $Extend |
| * system directory do not have unnamed data |
| * attributes so we need to check if the parent |
| * directory of the file is FILE_Extend and if it is |
| * ignore this error. To do this we need to get the |
| * name of this inode from the mft record as the name |
| * contains the back reference to the parent directory. |
| */ |
| if (ntfs_is_extended_system_file(ctx) > 0) |
| goto no_data_attr_special_case; |
| // FIXME: File is corrupt! Hot-fix with empty data |
| // attribute if recovery option is set. |
| ntfs_error(vi->i_sb, "$DATA attribute is missing."); |
| goto unm_err_out; |
| } |
| a = ctx->attr; |
| /* Setup the state. */ |
| if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { |
| if (a->flags & ATTR_COMPRESSION_MASK) { |
| NInoSetCompressed(ni); |
| if (vol->cluster_size > 4096) { |
| ntfs_error(vi->i_sb, "Found " |
| "compressed data but " |
| "compression is " |
| "disabled due to " |
| "cluster size (%i) > " |
| "4kiB.", |
| vol->cluster_size); |
| goto unm_err_out; |
| } |
| if ((a->flags & ATTR_COMPRESSION_MASK) |
| != ATTR_IS_COMPRESSED) { |
| ntfs_error(vi->i_sb, "Found unknown " |
| "compression method " |
| "or corrupt file."); |
| goto unm_err_out; |
| } |
| } |
| if (a->flags & ATTR_IS_SPARSE) |
| NInoSetSparse(ni); |
| } |
| if (a->flags & ATTR_IS_ENCRYPTED) { |
| if (NInoCompressed(ni)) { |
| ntfs_error(vi->i_sb, "Found encrypted and " |
| "compressed data."); |
| goto unm_err_out; |
| } |
| NInoSetEncrypted(ni); |
| } |
| if (a->non_resident) { |
| NInoSetNonResident(ni); |
| if (NInoCompressed(ni) || NInoSparse(ni)) { |
| if (NInoCompressed(ni) && a->data.non_resident. |
| compression_unit != 4) { |
| ntfs_error(vi->i_sb, "Found " |
| "non-standard " |
| "compression unit (%u " |
| "instead of 4). " |
| "Cannot handle this.", |
| a->data.non_resident. |
| compression_unit); |
| err = -EOPNOTSUPP; |
| goto unm_err_out; |
| } |
| if (a->data.non_resident.compression_unit) { |
| ni->itype.compressed.block_size = 1U << |
| (a->data.non_resident. |
| compression_unit + |
| vol->cluster_size_bits); |
| ni->itype.compressed.block_size_bits = |
| ffs(ni->itype. |
| compressed. |
| block_size) - 1; |
| ni->itype.compressed.block_clusters = |
| 1U << a->data. |
| non_resident. |
| compression_unit; |
| } else { |
| ni->itype.compressed.block_size = 0; |
| ni->itype.compressed.block_size_bits = |
| 0; |
| ni->itype.compressed.block_clusters = |
| 0; |
| } |
| ni->itype.compressed.size = sle64_to_cpu( |
| a->data.non_resident. |
| compressed_size); |
| } |
| if (a->data.non_resident.lowest_vcn) { |
| ntfs_error(vi->i_sb, "First extent of $DATA " |
| "attribute has non zero " |
| "lowest_vcn."); |
| goto unm_err_out; |
| } |
| vi->i_size = sle64_to_cpu( |
| a->data.non_resident.data_size); |
| ni->initialized_size = sle64_to_cpu( |
| a->data.non_resident.initialized_size); |
| ni->allocated_size = sle64_to_cpu( |
| a->data.non_resident.allocated_size); |
| } else { /* Resident attribute. */ |
| vi->i_size = ni->initialized_size = le32_to_cpu( |
| a->data.resident.value_length); |
| ni->allocated_size = le32_to_cpu(a->length) - |
| le16_to_cpu( |
| a->data.resident.value_offset); |
| if (vi->i_size > ni->allocated_size) { |
| ntfs_error(vi->i_sb, "Resident data attribute " |
| "is corrupt (size exceeds " |
| "allocation)."); |
| goto unm_err_out; |
| } |
| } |
| no_data_attr_special_case: |
| /* We are done with the mft record, so we release it. */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(ni); |
| m = NULL; |
| ctx = NULL; |
| /* Setup the operations for this inode. */ |
| vi->i_op = &ntfs_file_inode_ops; |
| vi->i_fop = &ntfs_file_ops; |
| } |
| if (NInoMstProtected(ni)) |
| vi->i_mapping->a_ops = &ntfs_mst_aops; |
| else |
| vi->i_mapping->a_ops = &ntfs_aops; |
| /* |
| * The number of 512-byte blocks used on disk (for stat). This is in so |
| * far inaccurate as it doesn't account for any named streams or other |
| * special non-resident attributes, but that is how Windows works, too, |
| * so we are at least consistent with Windows, if not entirely |
| * consistent with the Linux Way. Doing it the Linux Way would cause a |
| * significant slowdown as it would involve iterating over all |
| * attributes in the mft record and adding the allocated/compressed |
| * sizes of all non-resident attributes present to give us the Linux |
| * correct size that should go into i_blocks (after division by 512). |
| */ |
| if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) |
| vi->i_blocks = ni->itype.compressed.size >> 9; |
| else |
| vi->i_blocks = ni->allocated_size >> 9; |
| ntfs_debug("Done."); |
| return 0; |
| iput_unm_err_out: |
| iput(bvi); |
| unm_err_out: |
| if (!err) |
| err = -EIO; |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| if (m) |
| unmap_mft_record(ni); |
| err_out: |
| ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " |
| "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); |
| make_bad_inode(vi); |
| if (err != -EOPNOTSUPP && err != -ENOMEM) |
| NVolSetErrors(vol); |
| return err; |
| } |
| |
| /** |
| * ntfs_read_locked_attr_inode - read an attribute inode from its base inode |
| * @base_vi: base inode |
| * @vi: attribute inode to read |
| * |
| * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the |
| * attribute inode described by @vi into memory from the base mft record |
| * described by @base_ni. |
| * |
| * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for |
| * reading and looks up the attribute described by @vi before setting up the |
| * necessary fields in @vi as well as initializing the ntfs inode. |
| * |
| * Q: What locks are held when the function is called? |
| * A: i_state has I_NEW set, hence the inode is locked, also |
| * i_count is set to 1, so it is not going to go away |
| * |
| * Return 0 on success and -errno on error. In the error case, the inode will |
| * have had make_bad_inode() executed on it. |
| * |
| * Note this cannot be called for AT_INDEX_ALLOCATION. |
| */ |
| static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) |
| { |
| ntfs_volume *vol = NTFS_SB(vi->i_sb); |
| ntfs_inode *ni, *base_ni; |
| MFT_RECORD *m; |
| ATTR_RECORD *a; |
| ntfs_attr_search_ctx *ctx; |
| int err = 0; |
| |
| ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); |
| |
| ntfs_init_big_inode(vi); |
| |
| ni = NTFS_I(vi); |
| base_ni = NTFS_I(base_vi); |
| |
| /* Just mirror the values from the base inode. */ |
| vi->i_version = base_vi->i_version; |
| vi->i_uid = base_vi->i_uid; |
| vi->i_gid = base_vi->i_gid; |
| set_nlink(vi, base_vi->i_nlink); |
| vi->i_mtime = base_vi->i_mtime; |
| vi->i_ctime = base_vi->i_ctime; |
| vi->i_atime = base_vi->i_atime; |
| vi->i_generation = ni->seq_no = base_ni->seq_no; |
| |
| /* Set inode type to zero but preserve permissions. */ |
| vi->i_mode = base_vi->i_mode & ~S_IFMT; |
| |
| m = map_mft_record(base_ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| goto err_out; |
| } |
| ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| if (!ctx) { |
| err = -ENOMEM; |
| goto unm_err_out; |
| } |
| /* Find the attribute. */ |
| err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) |
| goto unm_err_out; |
| a = ctx->attr; |
| if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { |
| if (a->flags & ATTR_COMPRESSION_MASK) { |
| NInoSetCompressed(ni); |
| if ((ni->type != AT_DATA) || (ni->type == AT_DATA && |
| ni->name_len)) { |
| ntfs_error(vi->i_sb, "Found compressed " |
| "non-data or named data " |
| "attribute. Please report " |
| "you saw this message to " |
| "linux-ntfs-dev@lists." |
| "sourceforge.net"); |
| goto unm_err_out; |
| } |
| if (vol->cluster_size > 4096) { |
| ntfs_error(vi->i_sb, "Found compressed " |
| "attribute but compression is " |
| "disabled due to cluster size " |
| "(%i) > 4kiB.", |
| vol->cluster_size); |
| goto unm_err_out; |
| } |
| if ((a->flags & ATTR_COMPRESSION_MASK) != |
| ATTR_IS_COMPRESSED) { |
| ntfs_error(vi->i_sb, "Found unknown " |
| "compression method."); |
| goto unm_err_out; |
| } |
| } |
| /* |
| * The compressed/sparse flag set in an index root just means |
| * to compress all files. |
| */ |
| if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { |
| ntfs_error(vi->i_sb, "Found mst protected attribute " |
| "but the attribute is %s. Please " |
| "report you saw this message to " |
| "linux-ntfs-dev@lists.sourceforge.net", |
| NInoCompressed(ni) ? "compressed" : |
| "sparse"); |
| goto unm_err_out; |
| } |
| if (a->flags & ATTR_IS_SPARSE) |
| NInoSetSparse(ni); |
| } |
| if (a->flags & ATTR_IS_ENCRYPTED) { |
| if (NInoCompressed(ni)) { |
| ntfs_error(vi->i_sb, "Found encrypted and compressed " |
| "data."); |
| goto unm_err_out; |
| } |
| /* |
| * The encryption flag set in an index root just means to |
| * encrypt all files. |
| */ |
| if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { |
| ntfs_error(vi->i_sb, "Found mst protected attribute " |
| "but the attribute is encrypted. " |
| "Please report you saw this message " |
| "to linux-ntfs-dev@lists.sourceforge." |
| "net"); |
| goto unm_err_out; |
| } |
| if (ni->type != AT_DATA) { |
| ntfs_error(vi->i_sb, "Found encrypted non-data " |
| "attribute."); |
| goto unm_err_out; |
| } |
| NInoSetEncrypted(ni); |
| } |
| if (!a->non_resident) { |
| /* Ensure the attribute name is placed before the value. */ |
| if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
| le16_to_cpu(a->data.resident.value_offset)))) { |
| ntfs_error(vol->sb, "Attribute name is placed after " |
| "the attribute value."); |
| goto unm_err_out; |
| } |
| if (NInoMstProtected(ni)) { |
| ntfs_error(vi->i_sb, "Found mst protected attribute " |
| "but the attribute is resident. " |
| "Please report you saw this message to " |
| "linux-ntfs-dev@lists.sourceforge.net"); |
| goto unm_err_out; |
| } |
| vi->i_size = ni->initialized_size = le32_to_cpu( |
| a->data.resident.value_length); |
| ni->allocated_size = le32_to_cpu(a->length) - |
| le16_to_cpu(a->data.resident.value_offset); |
| if (vi->i_size > ni->allocated_size) { |
| ntfs_error(vi->i_sb, "Resident attribute is corrupt " |
| "(size exceeds allocation)."); |
| goto unm_err_out; |
| } |
| } else { |
| NInoSetNonResident(ni); |
| /* |
| * Ensure the attribute name is placed before the mapping pairs |
| * array. |
| */ |
| if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
| le16_to_cpu( |
| a->data.non_resident.mapping_pairs_offset)))) { |
| ntfs_error(vol->sb, "Attribute name is placed after " |
| "the mapping pairs array."); |
| goto unm_err_out; |
| } |
| if (NInoCompressed(ni) || NInoSparse(ni)) { |
| if (NInoCompressed(ni) && a->data.non_resident. |
| compression_unit != 4) { |
| ntfs_error(vi->i_sb, "Found non-standard " |
| "compression unit (%u instead " |
| "of 4). Cannot handle this.", |
| a->data.non_resident. |
| compression_unit); |
| err = -EOPNOTSUPP; |
| goto unm_err_out; |
| } |
| if (a->data.non_resident.compression_unit) { |
| ni->itype.compressed.block_size = 1U << |
| (a->data.non_resident. |
| compression_unit + |
| vol->cluster_size_bits); |
| ni->itype.compressed.block_size_bits = |
| ffs(ni->itype.compressed. |
| block_size) - 1; |
| ni->itype.compressed.block_clusters = 1U << |
| a->data.non_resident. |
| compression_unit; |
| } else { |
| ni->itype.compressed.block_size = 0; |
| ni->itype.compressed.block_size_bits = 0; |
| ni->itype.compressed.block_clusters = 0; |
| } |
| ni->itype.compressed.size = sle64_to_cpu( |
| a->data.non_resident.compressed_size); |
| } |
| if (a->data.non_resident.lowest_vcn) { |
| ntfs_error(vi->i_sb, "First extent of attribute has " |
| "non-zero lowest_vcn."); |
| goto unm_err_out; |
| } |
| vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); |
| ni->initialized_size = sle64_to_cpu( |
| a->data.non_resident.initialized_size); |
| ni->allocated_size = sle64_to_cpu( |
| a->data.non_resident.allocated_size); |
| } |
| if (NInoMstProtected(ni)) |
| vi->i_mapping->a_ops = &ntfs_mst_aops; |
| else |
| vi->i_mapping->a_ops = &ntfs_aops; |
| if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) |
| vi->i_blocks = ni->itype.compressed.size >> 9; |
| else |
| vi->i_blocks = ni->allocated_size >> 9; |
| /* |
| * Make sure the base inode does not go away and attach it to the |
| * attribute inode. |
| */ |
| igrab(base_vi); |
| ni->ext.base_ntfs_ino = base_ni; |
| ni->nr_extents = -1; |
| |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| |
| ntfs_debug("Done."); |
| return 0; |
| |
| unm_err_out: |
| if (!err) |
| err = -EIO; |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| err_out: |
| ntfs_error(vol->sb, "Failed with error code %i while reading attribute " |
| "inode (mft_no 0x%lx, type 0x%x, name_len %i). " |
| "Marking corrupt inode and base inode 0x%lx as bad. " |
| "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, |
| base_vi->i_ino); |
| make_bad_inode(vi); |
| if (err != -ENOMEM) |
| NVolSetErrors(vol); |
| return err; |
| } |
| |
| /** |
| * ntfs_read_locked_index_inode - read an index inode from its base inode |
| * @base_vi: base inode |
| * @vi: index inode to read |
| * |
| * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the |
| * index inode described by @vi into memory from the base mft record described |
| * by @base_ni. |
| * |
| * ntfs_read_locked_index_inode() maps, pins and locks the base inode for |
| * reading and looks up the attributes relating to the index described by @vi |
| * before setting up the necessary fields in @vi as well as initializing the |
| * ntfs inode. |
| * |
| * Note, index inodes are essentially attribute inodes (NInoAttr() is true) |
| * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they |
| * are setup like directory inodes since directories are a special case of |
| * indices ao they need to be treated in much the same way. Most importantly, |
| * for small indices the index allocation attribute might not actually exist. |
| * However, the index root attribute always exists but this does not need to |
| * have an inode associated with it and this is why we define a new inode type |
| * index. Also, like for directories, we need to have an attribute inode for |
| * the bitmap attribute corresponding to the index allocation attribute and we |
| * can store this in the appropriate field of the inode, just like we do for |
| * normal directory inodes. |
| * |
| * Q: What locks are held when the function is called? |
| * A: i_state has I_NEW set, hence the inode is locked, also |
| * i_count is set to 1, so it is not going to go away |
| * |
| * Return 0 on success and -errno on error. In the error case, the inode will |
| * have had make_bad_inode() executed on it. |
| */ |
| static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) |
| { |
| loff_t bvi_size; |
| ntfs_volume *vol = NTFS_SB(vi->i_sb); |
| ntfs_inode *ni, *base_ni, *bni; |
| struct inode *bvi; |
| MFT_RECORD *m; |
| ATTR_RECORD *a; |
| ntfs_attr_search_ctx *ctx; |
| INDEX_ROOT *ir; |
| u8 *ir_end, *index_end; |
| int err = 0; |
| |
| ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); |
| ntfs_init_big_inode(vi); |
| ni = NTFS_I(vi); |
| base_ni = NTFS_I(base_vi); |
| /* Just mirror the values from the base inode. */ |
| vi->i_version = base_vi->i_version; |
| vi->i_uid = base_vi->i_uid; |
| vi->i_gid = base_vi->i_gid; |
| set_nlink(vi, base_vi->i_nlink); |
| vi->i_mtime = base_vi->i_mtime; |
| vi->i_ctime = base_vi->i_ctime; |
| vi->i_atime = base_vi->i_atime; |
| vi->i_generation = ni->seq_no = base_ni->seq_no; |
| /* Set inode type to zero but preserve permissions. */ |
| vi->i_mode = base_vi->i_mode & ~S_IFMT; |
| /* Map the mft record for the base inode. */ |
| m = map_mft_record(base_ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| goto err_out; |
| } |
| ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| if (!ctx) { |
| err = -ENOMEM; |
| goto unm_err_out; |
| } |
| /* Find the index root attribute. */ |
| err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) |
| ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " |
| "missing."); |
| goto unm_err_out; |
| } |
| a = ctx->attr; |
| /* Set up the state. */ |
| if (unlikely(a->non_resident)) { |
| ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); |
| goto unm_err_out; |
| } |
| /* Ensure the attribute name is placed before the value. */ |
| if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
| le16_to_cpu(a->data.resident.value_offset)))) { |
| ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " |
| "after the attribute value."); |
| goto unm_err_out; |
| } |
| /* |
| * Compressed/encrypted/sparse index root is not allowed, except for |
| * directories of course but those are not dealt with here. |
| */ |
| if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | |
| ATTR_IS_SPARSE)) { |
| ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " |
| "root attribute."); |
| goto unm_err_out; |
| } |
| ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); |
| ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); |
| if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { |
| ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); |
| goto unm_err_out; |
| } |
| index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); |
| if (index_end > ir_end) { |
| ntfs_error(vi->i_sb, "Index is corrupt."); |
| goto unm_err_out; |
| } |
| if (ir->type) { |
| ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", |
| le32_to_cpu(ir->type)); |
| goto unm_err_out; |
| } |
| ni->itype.index.collation_rule = ir->collation_rule; |
| ntfs_debug("Index collation rule is 0x%x.", |
| le32_to_cpu(ir->collation_rule)); |
| ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); |
| if (!is_power_of_2(ni->itype.index.block_size)) { |
| ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " |
| "two.", ni->itype.index.block_size); |
| goto unm_err_out; |
| } |
| if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { |
| ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE " |
| "(%ld) is not supported. Sorry.", |
| ni->itype.index.block_size, PAGE_CACHE_SIZE); |
| err = -EOPNOTSUPP; |
| goto unm_err_out; |
| } |
| if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { |
| ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " |
| "(%i) is not supported. Sorry.", |
| ni->itype.index.block_size, NTFS_BLOCK_SIZE); |
| err = -EOPNOTSUPP; |
| goto unm_err_out; |
| } |
| ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; |
| /* Determine the size of a vcn in the index. */ |
| if (vol->cluster_size <= ni->itype.index.block_size) { |
| ni->itype.index.vcn_size = vol->cluster_size; |
| ni->itype.index.vcn_size_bits = vol->cluster_size_bits; |
| } else { |
| ni->itype.index.vcn_size = vol->sector_size; |
| ni->itype.index.vcn_size_bits = vol->sector_size_bits; |
| } |
| /* Check for presence of index allocation attribute. */ |
| if (!(ir->index.flags & LARGE_INDEX)) { |
| /* No index allocation. */ |
| vi->i_size = ni->initialized_size = ni->allocated_size = 0; |
| /* We are done with the mft record, so we release it. */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| m = NULL; |
| ctx = NULL; |
| goto skip_large_index_stuff; |
| } /* LARGE_INDEX: Index allocation present. Setup state. */ |
| NInoSetIndexAllocPresent(ni); |
| /* Find index allocation attribute. */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
| "not present but $INDEX_ROOT " |
| "indicated it is."); |
| else |
| ntfs_error(vi->i_sb, "Failed to lookup " |
| "$INDEX_ALLOCATION attribute."); |
| goto unm_err_out; |
| } |
| a = ctx->attr; |
| if (!a->non_resident) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
| "resident."); |
| goto unm_err_out; |
| } |
| /* |
| * Ensure the attribute name is placed before the mapping pairs array. |
| */ |
| if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
| le16_to_cpu( |
| a->data.non_resident.mapping_pairs_offset)))) { |
| ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " |
| "placed after the mapping pairs array."); |
| goto unm_err_out; |
| } |
| if (a->flags & ATTR_IS_ENCRYPTED) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
| "encrypted."); |
| goto unm_err_out; |
| } |
| if (a->flags & ATTR_IS_SPARSE) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); |
| goto unm_err_out; |
| } |
| if (a->flags & ATTR_COMPRESSION_MASK) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
| "compressed."); |
| goto unm_err_out; |
| } |
| if (a->data.non_resident.lowest_vcn) { |
| ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " |
| "attribute has non zero lowest_vcn."); |
| goto unm_err_out; |
| } |
| vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); |
| ni->initialized_size = sle64_to_cpu( |
| a->data.non_resident.initialized_size); |
| ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); |
| /* |
| * We are done with the mft record, so we release it. Otherwise |
| * we would deadlock in ntfs_attr_iget(). |
| */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| m = NULL; |
| ctx = NULL; |
| /* Get the index bitmap attribute inode. */ |
| bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); |
| if (IS_ERR(bvi)) { |
| ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); |
| err = PTR_ERR(bvi); |
| goto unm_err_out; |
| } |
| bni = NTFS_I(bvi); |
| if (NInoCompressed(bni) || NInoEncrypted(bni) || |
| NInoSparse(bni)) { |
| ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " |
| "encrypted and/or sparse."); |
| goto iput_unm_err_out; |
| } |
| /* Consistency check bitmap size vs. index allocation size. */ |
| bvi_size = i_size_read(bvi); |
| if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { |
| ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " |
| "index allocation (0x%llx).", bvi_size << 3, |
| vi->i_size); |
| goto iput_unm_err_out; |
| } |
| iput(bvi); |
| skip_large_index_stuff: |
| /* Setup the operations for this index inode. */ |
| vi->i_mapping->a_ops = &ntfs_mst_aops; |
| vi->i_blocks = ni->allocated_size >> 9; |
| /* |
| * Make sure the base inode doesn't go away and attach it to the |
| * index inode. |
| */ |
| igrab(base_vi); |
| ni->ext.base_ntfs_ino = base_ni; |
| ni->nr_extents = -1; |
| |
| ntfs_debug("Done."); |
| return 0; |
| iput_unm_err_out: |
| iput(bvi); |
| unm_err_out: |
| if (!err) |
| err = -EIO; |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| if (m) |
| unmap_mft_record(base_ni); |
| err_out: |
| ntfs_error(vi->i_sb, "Failed with error code %i while reading index " |
| "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, |
| ni->name_len); |
| make_bad_inode(vi); |
| if (err != -EOPNOTSUPP && err != -ENOMEM) |
| NVolSetErrors(vol); |
| return err; |
| } |
| |
| /* |
| * The MFT inode has special locking, so teach the lock validator |
| * about this by splitting off the locking rules of the MFT from |
| * the locking rules of other inodes. The MFT inode can never be |
| * accessed from the VFS side (or even internally), only by the |
| * map_mft functions. |
| */ |
| static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; |
| |
| /** |
| * ntfs_read_inode_mount - special read_inode for mount time use only |
| * @vi: inode to read |
| * |
| * Read inode FILE_MFT at mount time, only called with super_block lock |
| * held from within the read_super() code path. |
| * |
| * This function exists because when it is called the page cache for $MFT/$DATA |
| * is not initialized and hence we cannot get at the contents of mft records |
| * by calling map_mft_record*(). |
| * |
| * Further it needs to cope with the circular references problem, i.e. cannot |
| * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because |
| * we do not know where the other extent mft records are yet and again, because |
| * we cannot call map_mft_record*() yet. Obviously this applies only when an |
| * attribute list is actually present in $MFT inode. |
| * |
| * We solve these problems by starting with the $DATA attribute before anything |
| * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each |
| * extent is found, we ntfs_mapping_pairs_decompress() including the implied |
| * ntfs_runlists_merge(). Each step of the iteration necessarily provides |
| * sufficient information for the next step to complete. |
| * |
| * This should work but there are two possible pit falls (see inline comments |
| * below), but only time will tell if they are real pits or just smoke... |
| */ |
| int ntfs_read_inode_mount(struct inode *vi) |
| { |
| VCN next_vcn, last_vcn, highest_vcn; |
| s64 block; |
| struct super_block *sb = vi->i_sb; |
| ntfs_volume *vol = NTFS_SB(sb); |
| struct buffer_head *bh; |
| ntfs_inode *ni; |
| MFT_RECORD *m = NULL; |
| ATTR_RECORD *a; |
| ntfs_attr_search_ctx *ctx; |
| unsigned int i, nr_blocks; |
| int err; |
| |
| ntfs_debug("Entering."); |
| |
| /* Initialize the ntfs specific part of @vi. */ |
| ntfs_init_big_inode(vi); |
| |
| ni = NTFS_I(vi); |
| |
| /* Setup the data attribute. It is special as it is mst protected. */ |
| NInoSetNonResident(ni); |
| NInoSetMstProtected(ni); |
| NInoSetSparseDisabled(ni); |
| ni->type = AT_DATA; |
| ni->name = NULL; |
| ni->name_len = 0; |
| /* |
| * This sets up our little cheat allowing us to reuse the async read io |
| * completion handler for directories. |
| */ |
| ni->itype.index.block_size = vol->mft_record_size; |
| ni->itype.index.block_size_bits = vol->mft_record_size_bits; |
| |
| /* Very important! Needed to be able to call map_mft_record*(). */ |
| vol->mft_ino = vi; |
| |
| /* Allocate enough memory to read the first mft record. */ |
| if (vol->mft_record_size > 64 * 1024) { |
| ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", |
| vol->mft_record_size); |
| goto err_out; |
| } |
| i = vol->mft_record_size; |
| if (i < sb->s_blocksize) |
| i = sb->s_blocksize; |
| m = (MFT_RECORD*)ntfs_malloc_nofs(i); |
| if (!m) { |
| ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); |
| goto err_out; |
| } |
| |
| /* Determine the first block of the $MFT/$DATA attribute. */ |
| block = vol->mft_lcn << vol->cluster_size_bits >> |
| sb->s_blocksize_bits; |
| nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; |
| if (!nr_blocks) |
| nr_blocks = 1; |
| |
| /* Load $MFT/$DATA's first mft record. */ |
| for (i = 0; i < nr_blocks; i++) { |
| bh = sb_bread(sb, block++); |
| if (!bh) { |
| ntfs_error(sb, "Device read failed."); |
| goto err_out; |
| } |
| memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, |
| sb->s_blocksize); |
| brelse(bh); |
| } |
| |
| /* Apply the mst fixups. */ |
| if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { |
| /* FIXME: Try to use the $MFTMirr now. */ |
| ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); |
| goto err_out; |
| } |
| |
| /* Need this to sanity check attribute list references to $MFT. */ |
| vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); |
| |
| /* Provides readpage() and sync_page() for map_mft_record(). */ |
| vi->i_mapping->a_ops = &ntfs_mst_aops; |
| |
| ctx = ntfs_attr_get_search_ctx(ni, m); |
| if (!ctx) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| |
| /* Find the attribute list attribute if present. */ |
| err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); |
| if (err) { |
| if (unlikely(err != -ENOENT)) { |
| ntfs_error(sb, "Failed to lookup attribute list " |
| "attribute. You should run chkdsk."); |
| goto put_err_out; |
| } |
| } else /* if (!err) */ { |
| ATTR_LIST_ENTRY *al_entry, *next_al_entry; |
| u8 *al_end; |
| static const char *es = " Not allowed. $MFT is corrupt. " |
| "You should run chkdsk."; |
| |
| ntfs_debug("Attribute list attribute found in $MFT."); |
| NInoSetAttrList(ni); |
| a = ctx->attr; |
| if (a->flags & ATTR_COMPRESSION_MASK) { |
| ntfs_error(sb, "Attribute list attribute is " |
| "compressed.%s", es); |
| goto put_err_out; |
| } |
| if (a->flags & ATTR_IS_ENCRYPTED || |
| a->flags & ATTR_IS_SPARSE) { |
| if (a->non_resident) { |
| ntfs_error(sb, "Non-resident attribute list " |
| "attribute is encrypted/" |
| "sparse.%s", es); |
| goto put_err_out; |
| } |
| ntfs_warning(sb, "Resident attribute list attribute " |
| "in $MFT system file is marked " |
| "encrypted/sparse which is not true. " |
| "However, Windows allows this and " |
| "chkdsk does not detect or correct it " |
| "so we will just ignore the invalid " |
| "flags and pretend they are not set."); |
| } |
| /* Now allocate memory for the attribute list. */ |
| ni->attr_list_size = (u32)ntfs_attr_size(a); |
| ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); |
| if (!ni->attr_list) { |
| ntfs_error(sb, "Not enough memory to allocate buffer " |
| "for attribute list."); |
| goto put_err_out; |
| } |
| if (a->non_resident) { |
| NInoSetAttrListNonResident(ni); |
| if (a->data.non_resident.lowest_vcn) { |
| ntfs_error(sb, "Attribute list has non zero " |
| "lowest_vcn. $MFT is corrupt. " |
| "You should run chkdsk."); |
| goto put_err_out; |
| } |
| /* Setup the runlist. */ |
| ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, |
| a, NULL); |
| if (IS_ERR(ni->attr_list_rl.rl)) { |
| err = PTR_ERR(ni->attr_list_rl.rl); |
| ni->attr_list_rl.rl = NULL; |
| ntfs_error(sb, "Mapping pairs decompression " |
| "failed with error code %i.", |
| -err); |
| goto put_err_out; |
| } |
| /* Now load the attribute list. */ |
| if ((err = load_attribute_list(vol, &ni->attr_list_rl, |
| ni->attr_list, ni->attr_list_size, |
| sle64_to_cpu(a->data. |
| non_resident.initialized_size)))) { |
| ntfs_error(sb, "Failed to load attribute list " |
| "attribute with error code %i.", |
| -err); |
| goto put_err_out; |
| } |
| } else /* if (!ctx.attr->non_resident) */ { |
| if ((u8*)a + le16_to_cpu( |
| a->data.resident.value_offset) + |
| le32_to_cpu( |
| a->data.resident.value_length) > |
| (u8*)ctx->mrec + vol->mft_record_size) { |
| ntfs_error(sb, "Corrupt attribute list " |
| "attribute."); |
| goto put_err_out; |
| } |
| /* Now copy the attribute list. */ |
| memcpy(ni->attr_list, (u8*)a + le16_to_cpu( |
| a->data.resident.value_offset), |
| le32_to_cpu( |
| a->data.resident.value_length)); |
| } |
| /* The attribute list is now setup in memory. */ |
| /* |
| * FIXME: I don't know if this case is actually possible. |
| * According to logic it is not possible but I have seen too |
| * many weird things in MS software to rely on logic... Thus we |
| * perform a manual search and make sure the first $MFT/$DATA |
| * extent is in the base inode. If it is not we abort with an |
| * error and if we ever see a report of this error we will need |
| * to do some magic in order to have the necessary mft record |
| * loaded and in the right place in the page cache. But |
| * hopefully logic will prevail and this never happens... |
| */ |
| al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; |
| al_end = (u8*)al_entry + ni->attr_list_size; |
| for (;; al_entry = next_al_entry) { |
| /* Out of bounds check. */ |
| if ((u8*)al_entry < ni->attr_list || |
| (u8*)al_entry > al_end) |
| goto em_put_err_out; |
| /* Catch the end of the attribute list. */ |
| if ((u8*)al_entry == al_end) |
| goto em_put_err_out; |
| if (!al_entry->length) |
| goto em_put_err_out; |
| if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + |
| le16_to_cpu(al_entry->length) > al_end) |
| goto em_put_err_out; |
| next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + |
| le16_to_cpu(al_entry->length)); |
| if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) |
| goto em_put_err_out; |
| if (AT_DATA != al_entry->type) |
| continue; |
| /* We want an unnamed attribute. */ |
| if (al_entry->name_length) |
| goto em_put_err_out; |
| /* Want the first entry, i.e. lowest_vcn == 0. */ |
| if (al_entry->lowest_vcn) |
| goto em_put_err_out; |
| /* First entry has to be in the base mft record. */ |
| if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { |
| /* MFT references do not match, logic fails. */ |
| ntfs_error(sb, "BUG: The first $DATA extent " |
| "of $MFT is not in the base " |
| "mft record. Please report " |
| "you saw this message to " |
| "linux-ntfs-dev@lists." |
| "sourceforge.net"); |
| goto put_err_out; |
| } else { |
| /* Sequence numbers must match. */ |
| if (MSEQNO_LE(al_entry->mft_reference) != |
| ni->seq_no) |
| goto em_put_err_out; |
| /* Got it. All is ok. We can stop now. */ |
| break; |
| } |
| } |
| } |
| |
| ntfs_attr_reinit_search_ctx(ctx); |
| |
| /* Now load all attribute extents. */ |
| a = NULL; |
| next_vcn = last_vcn = highest_vcn = 0; |
| while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, |
| ctx))) { |
| runlist_element *nrl; |
| |
| /* Cache the current attribute. */ |
| a = ctx->attr; |
| /* $MFT must be non-resident. */ |
| if (!a->non_resident) { |
| ntfs_error(sb, "$MFT must be non-resident but a " |
| "resident extent was found. $MFT is " |
| "corrupt. Run chkdsk."); |
| goto put_err_out; |
| } |
| /* $MFT must be uncompressed and unencrypted. */ |
| if (a->flags & ATTR_COMPRESSION_MASK || |
| a->flags & ATTR_IS_ENCRYPTED || |
| a->flags & ATTR_IS_SPARSE) { |
| ntfs_error(sb, "$MFT must be uncompressed, " |
| "non-sparse, and unencrypted but a " |
| "compressed/sparse/encrypted extent " |
| "was found. $MFT is corrupt. Run " |
| "chkdsk."); |
| goto put_err_out; |
| } |
| /* |
| * Decompress the mapping pairs array of this extent and merge |
| * the result into the existing runlist. No need for locking |
| * as we have exclusive access to the inode at this time and we |
| * are a mount in progress task, too. |
| */ |
| nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); |
| if (IS_ERR(nrl)) { |
| ntfs_error(sb, "ntfs_mapping_pairs_decompress() " |
| "failed with error code %ld. $MFT is " |
| "corrupt.", PTR_ERR(nrl)); |
| goto put_err_out; |
| } |
| ni->runlist.rl = nrl; |
| |
| /* Are we in the first extent? */ |
| if (!next_vcn) { |
| if (a->data.non_resident.lowest_vcn) { |
| ntfs_error(sb, "First extent of $DATA " |
| "attribute has non zero " |
| "lowest_vcn. $MFT is corrupt. " |
| "You should run chkdsk."); |
| goto put_err_out; |
| } |
| /* Get the last vcn in the $DATA attribute. */ |
| last_vcn = sle64_to_cpu( |
| a->data.non_resident.allocated_size) |
| >> vol->cluster_size_bits; |
| /* Fill in the inode size. */ |
| vi->i_size = sle64_to_cpu( |
| a->data.non_resident.data_size); |
| ni->initialized_size = sle64_to_cpu( |
| a->data.non_resident.initialized_size); |
| ni->allocated_size = sle64_to_cpu( |
| a->data.non_resident.allocated_size); |
| /* |
| * Verify the number of mft records does not exceed |
| * 2^32 - 1. |
| */ |
| if ((vi->i_size >> vol->mft_record_size_bits) >= |
| (1ULL << 32)) { |
| ntfs_error(sb, "$MFT is too big! Aborting."); |
| goto put_err_out; |
| } |
| /* |
| * We have got the first extent of the runlist for |
| * $MFT which means it is now relatively safe to call |
| * the normal ntfs_read_inode() function. |
| * Complete reading the inode, this will actually |
| * re-read the mft record for $MFT, this time entering |
| * it into the page cache with which we complete the |
| * kick start of the volume. It should be safe to do |
| * this now as the first extent of $MFT/$DATA is |
| * already known and we would hope that we don't need |
| * further extents in order to find the other |
| * attributes belonging to $MFT. Only time will tell if |
| * this is really the case. If not we will have to play |
| * magic at this point, possibly duplicating a lot of |
| * ntfs_read_inode() at this point. We will need to |
| * ensure we do enough of its work to be able to call |
| * ntfs_read_inode() on extents of $MFT/$DATA. But lets |
| * hope this never happens... |
| */ |
| ntfs_read_locked_inode(vi); |
| if (is_bad_inode(vi)) { |
| ntfs_error(sb, "ntfs_read_inode() of $MFT " |
| "failed. BUG or corrupt $MFT. " |
| "Run chkdsk and if no errors " |
| "are found, please report you " |
| "saw this message to " |
| "linux-ntfs-dev@lists." |
| "sourceforge.net"); |
| ntfs_attr_put_search_ctx(ctx); |
| /* Revert to the safe super operations. */ |
| ntfs_free(m); |
| return -1; |
| } |
| /* |
| * Re-initialize some specifics about $MFT's inode as |
| * ntfs_read_inode() will have set up the default ones. |
| */ |
| /* Set uid and gid to root. */ |
| vi->i_uid = GLOBAL_ROOT_UID; |
| vi->i_gid = GLOBAL_ROOT_GID; |
| /* Regular file. No access for anyone. */ |
| vi->i_mode = S_IFREG; |
| /* No VFS initiated operations allowed for $MFT. */ |
| vi->i_op = &ntfs_empty_inode_ops; |
| vi->i_fop = &ntfs_empty_file_ops; |
| } |
| |
| /* Get the lowest vcn for the next extent. */ |
| highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); |
| next_vcn = highest_vcn + 1; |
| |
| /* Only one extent or error, which we catch below. */ |
| if (next_vcn <= 0) |
| break; |
| |
| /* Avoid endless loops due to corruption. */ |
| if (next_vcn < sle64_to_cpu( |
| a->data.non_resident.lowest_vcn)) { |
| ntfs_error(sb, "$MFT has corrupt attribute list " |
| "attribute. Run chkdsk."); |
| goto put_err_out; |
| } |
| } |
| if (err != -ENOENT) { |
| ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " |
| "$MFT is corrupt. Run chkdsk."); |
| goto put_err_out; |
| } |
| if (!a) { |
| ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " |
| "corrupt. Run chkdsk."); |
| goto put_err_out; |
| } |
| if (highest_vcn && highest_vcn != last_vcn - 1) { |
| ntfs_error(sb, "Failed to load the complete runlist for " |
| "$MFT/$DATA. Driver bug or corrupt $MFT. " |
| "Run chkdsk."); |
| ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", |
| (unsigned long long)highest_vcn, |
| (unsigned long long)last_vcn - 1); |
| goto put_err_out; |
| } |
| ntfs_attr_put_search_ctx(ctx); |
| ntfs_debug("Done."); |
| ntfs_free(m); |
| |
| /* |
| * Split the locking rules of the MFT inode from the |
| * locking rules of other inodes: |
| */ |
| lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); |
| lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); |
| |
| return 0; |
| |
| em_put_err_out: |
| ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " |
| "attribute list. $MFT is corrupt. Run chkdsk."); |
| put_err_out: |
| ntfs_attr_put_search_ctx(ctx); |
| err_out: |
| ntfs_error(sb, "Failed. Marking inode as bad."); |
| make_bad_inode(vi); |
| ntfs_free(m); |
| return -1; |
| } |
| |
| static void __ntfs_clear_inode(ntfs_inode *ni) |
| { |
| /* Free all alocated memory. */ |
| down_write(&ni->runlist.lock); |
| if (ni->runlist.rl) { |
| ntfs_free(ni->runlist.rl); |
| ni->runlist.rl = NULL; |
| } |
| up_write(&ni->runlist.lock); |
| |
| if (ni->attr_list) { |
| ntfs_free(ni->attr_list); |
| ni->attr_list = NULL; |
| } |
| |
| down_write(&ni->attr_list_rl.lock); |
| if (ni->attr_list_rl.rl) { |
| ntfs_free(ni->attr_list_rl.rl); |
| ni->attr_list_rl.rl = NULL; |
| } |
| up_write(&ni->attr_list_rl.lock); |
| |
| if (ni->name_len && ni->name != I30) { |
| /* Catch bugs... */ |
| BUG_ON(!ni->name); |
| kfree(ni->name); |
| } |
| } |
| |
| void ntfs_clear_extent_inode(ntfs_inode *ni) |
| { |
| ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); |
| |
| BUG_ON(NInoAttr(ni)); |
| BUG_ON(ni->nr_extents != -1); |
| |
| #ifdef NTFS_RW |
| if (NInoDirty(ni)) { |
| if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) |
| ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " |
| "Losing data! This is a BUG!!!"); |
| // FIXME: Do something!!! |
| } |
| #endif /* NTFS_RW */ |
| |
| __ntfs_clear_inode(ni); |
| |
| /* Bye, bye... */ |
| ntfs_destroy_extent_inode(ni); |
| } |
| |
| /** |
| * ntfs_evict_big_inode - clean up the ntfs specific part of an inode |
| * @vi: vfs inode pending annihilation |
| * |
| * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() |
| * is called, which deallocates all memory belonging to the NTFS specific part |
| * of the inode and returns. |
| * |
| * If the MFT record is dirty, we commit it before doing anything else. |
| */ |
| void ntfs_evict_big_inode(struct inode *vi) |
| { |
| ntfs_inode *ni = NTFS_I(vi); |
| |
| truncate_inode_pages_final(&vi->i_data); |
| clear_inode(vi); |
| |
| #ifdef NTFS_RW |
| if (NInoDirty(ni)) { |
| bool was_bad = (is_bad_inode(vi)); |
| |
| /* Committing the inode also commits all extent inodes. */ |
| ntfs_commit_inode(vi); |
| |
| if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { |
| ntfs_error(vi->i_sb, "Failed to commit dirty inode " |
| "0x%lx. Losing data!", vi->i_ino); |
| // FIXME: Do something!!! |
| } |
| } |
| #endif /* NTFS_RW */ |
| |
| /* No need to lock at this stage as no one else has a reference. */ |
| if (ni->nr_extents > 0) { |
| int i; |
| |
| for (i = 0; i < ni->nr_extents; i++) |
| ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); |
| kfree(ni->ext.extent_ntfs_inos); |
| } |
| |
| __ntfs_clear_inode(ni); |
| |
| if (NInoAttr(ni)) { |
| /* Release the base inode if we are holding it. */ |
| if (ni->nr_extents == -1) { |
| iput(VFS_I(ni->ext.base_ntfs_ino)); |
| ni->nr_extents = 0; |
| ni->ext.base_ntfs_ino = NULL; |
| } |
| } |
| return; |
| } |
| |
| /** |
| * ntfs_show_options - show mount options in /proc/mounts |
| * @sf: seq_file in which to write our mount options |
| * @root: root of the mounted tree whose mount options to display |
| * |
| * Called by the VFS once for each mounted ntfs volume when someone reads |
| * /proc/mounts in order to display the NTFS specific mount options of each |
| * mount. The mount options of fs specified by @root are written to the seq file |
| * @sf and success is returned. |
| */ |
| int ntfs_show_options(struct seq_file *sf, struct dentry *root) |
| { |
| ntfs_volume *vol = NTFS_SB(root->d_sb); |
| int i; |
| |
| seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid)); |
| seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid)); |
| if (vol->fmask == vol->dmask) |
| seq_printf(sf, ",umask=0%o", vol->fmask); |
| else { |
| seq_printf(sf, ",fmask=0%o", vol->fmask); |
| seq_printf(sf, ",dmask=0%o", vol->dmask); |
| } |
| seq_printf(sf, ",nls=%s", vol->nls_map->charset); |
| if (NVolCaseSensitive(vol)) |
| seq_printf(sf, ",case_sensitive"); |
| if (NVolShowSystemFiles(vol)) |
| seq_printf(sf, ",show_sys_files"); |
| if (!NVolSparseEnabled(vol)) |
| seq_printf(sf, ",disable_sparse"); |
| for (i = 0; on_errors_arr[i].val; i++) { |
| if (on_errors_arr[i].val & vol->on_errors) |
| seq_printf(sf, ",errors=%s", on_errors_arr[i].str); |
| } |
| seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); |
| return 0; |
| } |
| |
| #ifdef NTFS_RW |
| |
| static const char *es = " Leaving inconsistent metadata. Unmount and run " |
| "chkdsk."; |
| |
| /** |
| * ntfs_truncate - called when the i_size of an ntfs inode is changed |
| * @vi: inode for which the i_size was changed |
| * |
| * We only support i_size changes for normal files at present, i.e. not |
| * compressed and not encrypted. This is enforced in ntfs_setattr(), see |
| * below. |
| * |
| * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and |
| * that the change is allowed. |
| * |
| * This implies for us that @vi is a file inode rather than a directory, index, |
| * or attribute inode as well as that @vi is a base inode. |
| * |
| * Returns 0 on success or -errno on error. |
| * |
| * Called with ->i_mutex held. |
| */ |
| int ntfs_truncate(struct inode *vi) |
| { |
| s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; |
| VCN highest_vcn; |
| unsigned long flags; |
| ntfs_inode *base_ni, *ni = NTFS_I(vi); |
| ntfs_volume *vol = ni->vol; |
| ntfs_attr_search_ctx *ctx; |
| MFT_RECORD *m; |
| ATTR_RECORD *a; |
| const char *te = " Leaving file length out of sync with i_size."; |
| int err, mp_size, size_change, alloc_change; |
| u32 attr_len; |
| |
| ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); |
| BUG_ON(NInoAttr(ni)); |
| BUG_ON(S_ISDIR(vi->i_mode)); |
| BUG_ON(NInoMstProtected(ni)); |
| BUG_ON(ni->nr_extents < 0); |
| retry_truncate: |
| /* |
| * Lock the runlist for writing and map the mft record to ensure it is |
| * safe to mess with the attribute runlist and sizes. |
| */ |
| down_write(&ni->runlist.lock); |
| if (!NInoAttr(ni)) |
| base_ni = ni; |
| else |
| base_ni = ni->ext.base_ntfs_ino; |
| m = map_mft_record(base_ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " |
| "(error code %d).%s", vi->i_ino, err, te); |
| ctx = NULL; |
| m = NULL; |
| goto old_bad_out; |
| } |
| ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| if (unlikely(!ctx)) { |
| ntfs_error(vi->i_sb, "Failed to allocate a search context for " |
| "inode 0x%lx (not enough memory).%s", |
| vi->i_ino, te); |
| err = -ENOMEM; |
| goto old_bad_out; |
| } |
| err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) { |
| ntfs_error(vi->i_sb, "Open attribute is missing from " |
| "mft record. Inode 0x%lx is corrupt. " |
| "Run chkdsk.%s", vi->i_ino, te); |
| err = -EIO; |
| } else |
| ntfs_error(vi->i_sb, "Failed to lookup attribute in " |
| "inode 0x%lx (error code %d).%s", |
| vi->i_ino, err, te); |
| goto old_bad_out; |
| } |
| m = ctx->mrec; |
| a = ctx->attr; |
| /* |
| * The i_size of the vfs inode is the new size for the attribute value. |
| */ |
| new_size = i_size_read(vi); |
| /* The current size of the attribute value is the old size. */ |
| old_size = ntfs_attr_size(a); |
| /* Calculate the new allocated size. */ |
| if (NInoNonResident(ni)) |
| new_alloc_size = (new_size + vol->cluster_size - 1) & |
| ~(s64)vol->cluster_size_mask; |
| else |
| new_alloc_size = (new_size + 7) & ~7; |
| /* The current allocated size is the old allocated size. */ |
| read_lock_irqsave(&ni->size_lock, flags); |
| old_alloc_size = ni->allocated_size; |
| read_unlock_irqrestore(&ni->size_lock, flags); |
| /* |
| * The change in the file size. This will be 0 if no change, >0 if the |
| * size is growing, and <0 if the size is shrinking. |
| */ |
| size_change = -1; |
| if (new_size - old_size >= 0) { |
| size_change = 1; |
| if (new_size == old_size) |
| size_change = 0; |
| } |
| /* As above for the allocated size. */ |
| alloc_change = -1; |
| if (new_alloc_size - old_alloc_size >= 0) { |
| alloc_change = 1; |
| if (new_alloc_size == old_alloc_size) |
| alloc_change = 0; |
| } |
| /* |
| * If neither the size nor the allocation are being changed there is |
| * nothing to do. |
| */ |
| if (!size_change && !alloc_change) |
| goto unm_done; |
| /* If the size is changing, check if new size is allowed in $AttrDef. */ |
| if (size_change) { |
| err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); |
| if (unlikely(err)) { |
| if (err == -ERANGE) { |
| ntfs_error(vol->sb, "Truncate would cause the " |
| "inode 0x%lx to %simum size " |
| "for its attribute type " |
| "(0x%x). Aborting truncate.", |
| vi->i_ino, |
| new_size > old_size ? "exceed " |
| "the max" : "go under the min", |
| le32_to_cpu(ni->type)); |
| err = -EFBIG; |
| } else { |
| ntfs_error(vol->sb, "Inode 0x%lx has unknown " |
| "attribute type 0x%x. " |
| "Aborting truncate.", |
| vi->i_ino, |
| le32_to_cpu(ni->type)); |
| err = -EIO; |
| } |
| /* Reset the vfs inode size to the old size. */ |
| i_size_write(vi, old_size); |
| goto err_out; |
| } |
| } |
| if (NInoCompressed(ni) || NInoEncrypted(ni)) { |
| ntfs_warning(vi->i_sb, "Changes in inode size are not " |
| "supported yet for %s files, ignoring.", |
| NInoCompressed(ni) ? "compressed" : |
| "encrypted"); |
| err = -EOPNOTSUPP; |
| goto bad_out; |
| } |
| if (a->non_resident) |
| goto do_non_resident_truncate; |
| BUG_ON(NInoNonResident(ni)); |
| /* Resize the attribute record to best fit the new attribute size. */ |
| if (new_size < vol->mft_record_size && |
| !ntfs_resident_attr_value_resize(m, a, new_size)) { |
| /* The resize succeeded! */ |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| write_lock_irqsave(&ni->size_lock, flags); |
| /* Update the sizes in the ntfs inode and all is done. */ |
| ni->allocated_size = le32_to_cpu(a->length) - |
| le16_to_cpu(a->data.resident.value_offset); |
| /* |
| * Note ntfs_resident_attr_value_resize() has already done any |
| * necessary data clearing in the attribute record. When the |
| * file is being shrunk vmtruncate() will already have cleared |
| * the top part of the last partial page, i.e. since this is |
| * the resident case this is the page with index 0. However, |
| * when the file is being expanded, the page cache page data |
| * between the old data_size, i.e. old_size, and the new_size |
| * has not been zeroed. Fortunately, we do not need to zero it |
| * either since on one hand it will either already be zero due |
| * to both readpage and writepage clearing partial page data |
| * beyond i_size in which case there is nothing to do or in the |
| * case of the file being mmap()ped at the same time, POSIX |
| * specifies that the behaviour is unspecified thus we do not |
| * have to do anything. This means that in our implementation |
| * in the rare case that the file is mmap()ped and a write |
| * occurred into the mmap()ped region just beyond the file size |
| * and writepage has not yet been called to write out the page |
| * (which would clear the area beyond the file size) and we now |
| * extend the file size to incorporate this dirty region |
| * outside the file size, a write of the page would result in |
| * this data being written to disk instead of being cleared. |
| * Given both POSIX and the Linux mmap(2) man page specify that |
| * this corner case is undefined, we choose to leave it like |
| * that as this is much simpler for us as we cannot lock the |
| * relevant page now since we are holding too many ntfs locks |
| * which would result in a lock reversal deadlock. |
| */ |
| ni->initialized_size = new_size; |
| write_unlock_irqrestore(&ni->size_lock, flags); |
| goto unm_done; |
| } |
| /* If the above resize failed, this must be an attribute extension. */ |
| BUG_ON(size_change < 0); |
| /* |
| * We have to drop all the locks so we can call |
| * ntfs_attr_make_non_resident(). This could be optimised by try- |
| * locking the first page cache page and only if that fails dropping |
| * the locks, locking the page, and redoing all the locking and |
| * lookups. While this would be a huge optimisation, it is not worth |
| * it as this is definitely a slow code path as it only ever can happen |
| * once for any given file. |
| */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| up_write(&ni->runlist.lock); |
| /* |
| * Not enough space in the mft record, try to make the attribute |
| * non-resident and if successful restart the truncation process. |
| */ |
| err = ntfs_attr_make_non_resident(ni, old_size); |
| if (likely(!err)) |
| goto retry_truncate; |
| /* |
| * Could not make non-resident. If this is due to this not being |
| * permitted for this attribute type or there not being enough space, |
| * try to make other attributes non-resident. Otherwise fail. |
| */ |
| if (unlikely(err != -EPERM && err != -ENOSPC)) { |
| ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " |
| "type 0x%x, because the conversion from " |
| "resident to non-resident attribute failed " |
| "with error code %i.", vi->i_ino, |
| (unsigned)le32_to_cpu(ni->type), err); |
| if (err != -ENOMEM) |
| err = -EIO; |
| goto conv_err_out; |
| } |
| /* TODO: Not implemented from here, abort. */ |
| if (err == -ENOSPC) |
| ntfs_error(vol->sb, "Not enough space in the mft record/on " |
| "disk for the non-resident attribute value. " |
| "This case is not implemented yet."); |
| else /* if (err == -EPERM) */ |
| ntfs_error(vol->sb, "This attribute type may not be " |
| "non-resident. This case is not implemented " |
| "yet."); |
| err = -EOPNOTSUPP; |
| goto conv_err_out; |
| #if 0 |
| // TODO: Attempt to make other attributes non-resident. |
| if (!err) |
| goto do_resident_extend; |
| /* |
| * Both the attribute list attribute and the standard information |
| * attribute must remain in the base inode. Thus, if this is one of |
| * these attributes, we have to try to move other attributes out into |
| * extent mft records instead. |
| */ |
| if (ni->type == AT_ATTRIBUTE_LIST || |
| ni->type == AT_STANDARD_INFORMATION) { |
| // TODO: Attempt to move other attributes into extent mft |
| // records. |
| err = -EOPNOTSUPP; |
| if (!err) |
| goto do_resident_extend; |
| goto err_out; |
| } |
| // TODO: Attempt to move this attribute to an extent mft record, but |
| // only if it is not already the only attribute in an mft record in |
| // which case there would be nothing to gain. |
| err = -EOPNOTSUPP; |
| if (!err) |
| goto do_resident_extend; |
| /* There is nothing we can do to make enough space. )-: */ |
| goto err_out; |
| #endif |
| do_non_resident_truncate: |
| BUG_ON(!NInoNonResident(ni)); |
| if (alloc_change < 0) { |
| highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); |
| if (highest_vcn > 0 && |
| old_alloc_size >> vol->cluster_size_bits > |
| highest_vcn + 1) { |
| /* |
| * This attribute has multiple extents. Not yet |
| * supported. |
| */ |
| ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " |
| "attribute type 0x%x, because the " |
| "attribute is highly fragmented (it " |
| "consists of multiple extents) and " |
| "this case is not implemented yet.", |
| vi->i_ino, |
| (unsigned)le32_to_cpu(ni->type)); |
| err = -EOPNOTSUPP; |
| goto bad_out; |
| } |
| } |
| /* |
| * If the size is shrinking, need to reduce the initialized_size and |
| * the data_size before reducing the allocation. |
| */ |
| if (size_change < 0) { |
| /* |
| * Make the valid size smaller (i_size is already up-to-date). |
| */ |
| write_lock_irqsave(&ni->size_lock, flags); |
| if (new_size < ni->initialized_size) { |
| ni->initialized_size = new_size; |
| a->data.non_resident.initialized_size = |
| cpu_to_sle64(new_size); |
| } |
| a->data.non_resident.data_size = cpu_to_sle64(new_size); |
| write_unlock_irqrestore(&ni->size_lock, flags); |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| /* If the allocated size is not changing, we are done. */ |
| if (!alloc_change) |
| goto unm_done; |
| /* |
| * If the size is shrinking it makes no sense for the |
| * allocation to be growing. |
| */ |
| BUG_ON(alloc_change > 0); |
| } else /* if (size_change >= 0) */ { |
| /* |
| * The file size is growing or staying the same but the |
| * allocation can be shrinking, growing or staying the same. |
| */ |
| if (alloc_change > 0) { |
| /* |
| * We need to extend the allocation and possibly update |
| * the data size. If we are updating the data size, |
| * since we are not touching the initialized_size we do |
| * not need to worry about the actual data on disk. |
| * And as far as the page cache is concerned, there |
| * will be no pages beyond the old data size and any |
| * partial region in the last page between the old and |
| * new data size (or the end of the page if the new |
| * data size is outside the page) does not need to be |
| * modified as explained above for the resident |
| * attribute truncate case. To do this, we simply drop |
| * the locks we hold and leave all the work to our |
| * friendly helper ntfs_attr_extend_allocation(). |
| */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| up_write(&ni->runlist.lock); |
| err = ntfs_attr_extend_allocation(ni, new_size, |
| size_change > 0 ? new_size : -1, -1); |
| /* |
| * ntfs_attr_extend_allocation() will have done error |
| * output already. |
| */ |
| goto done; |
| } |
| if (!alloc_change) |
| goto alloc_done; |
| } |
| /* alloc_change < 0 */ |
| /* Free the clusters. */ |
| nr_freed = ntfs_cluster_free(ni, new_alloc_size >> |
| vol->cluster_size_bits, -1, ctx); |
| m = ctx->mrec; |
| a = ctx->attr; |
| if (unlikely(nr_freed < 0)) { |
| ntfs_error(vol->sb, "Failed to release cluster(s) (error code " |
| "%lli). Unmount and run chkdsk to recover " |
| "the lost cluster(s).", (long long)nr_freed); |
| NVolSetErrors(vol); |
| nr_freed = 0; |
| } |
| /* Truncate the runlist. */ |
| err = ntfs_rl_truncate_nolock(vol, &ni->runlist, |
| new_alloc_size >> vol->cluster_size_bits); |
| /* |
| * If the runlist truncation failed and/or the search context is no |
| * longer valid, we cannot resize the attribute record or build the |
| * mapping pairs array thus we mark the inode bad so that no access to |
| * the freed clusters can happen. |
| */ |
| if (unlikely(err || IS_ERR(m))) { |
| ntfs_error(vol->sb, "Failed to %s (error code %li).%s", |
| IS_ERR(m) ? |
| "restore attribute search context" : |
| "truncate attribute runlist", |
| IS_ERR(m) ? PTR_ERR(m) : err, es); |
| err = -EIO; |
| goto bad_out; |
| } |
| /* Get the size for the shrunk mapping pairs array for the runlist. */ |
| mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); |
| if (unlikely(mp_size <= 0)) { |
| ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " |
| "attribute type 0x%x, because determining the " |
| "size for the mapping pairs failed with error " |
| "code %i.%s", vi->i_ino, |
| (unsigned)le32_to_cpu(ni->type), mp_size, es); |
| err = -EIO; |
| goto bad_out; |
| } |
| /* |
| * Shrink the attribute record for the new mapping pairs array. Note, |
| * this cannot fail since we are making the attribute smaller thus by |
| * definition there is enough space to do so. |
| */ |
| attr_len = le32_to_cpu(a->length); |
| err = ntfs_attr_record_resize(m, a, mp_size + |
| le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); |
| BUG_ON(err); |
| /* |
| * Generate the mapping pairs array directly into the attribute record. |
| */ |
| err = ntfs_mapping_pairs_build(vol, (u8*)a + |
| le16_to_cpu(a->data.non_resident.mapping_pairs_offset), |
| mp_size, ni->runlist.rl, 0, -1, NULL); |
| if (unlikely(err)) { |
| ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " |
| "attribute type 0x%x, because building the " |
| "mapping pairs failed with error code %i.%s", |
| vi->i_ino, (unsigned)le32_to_cpu(ni->type), |
| err, es); |
| err = -EIO; |
| goto bad_out; |
| } |
| /* Update the allocated/compressed size as well as the highest vcn. */ |
| a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> |
| vol->cluster_size_bits) - 1); |
| write_lock_irqsave(&ni->size_lock, flags); |
| ni->allocated_size = new_alloc_size; |
| a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); |
| if (NInoSparse(ni) || NInoCompressed(ni)) { |
| if (nr_freed) { |
| ni->itype.compressed.size -= nr_freed << |
| vol->cluster_size_bits; |
| BUG_ON(ni->itype.compressed.size < 0); |
| a->data.non_resident.compressed_size = cpu_to_sle64( |
| ni->itype.compressed.size); |
| vi->i_blocks = ni->itype.compressed.size >> 9; |
| } |
| } else |
| vi->i_blocks = new_alloc_size >> 9; |
| write_unlock_irqrestore(&ni->size_lock, flags); |
| /* |
| * We have shrunk the allocation. If this is a shrinking truncate we |
| * have already dealt with the initialized_size and the data_size above |
| * and we are done. If the truncate is only changing the allocation |
| * and not the data_size, we are also done. If this is an extending |
| * truncate, need to extend the data_size now which is ensured by the |
| * fact that @size_change is positive. |
| */ |
| alloc_done: |
| /* |
| * If the size is growing, need to update it now. If it is shrinking, |
| * we have already updated it above (before the allocation change). |
| */ |
| if (size_change > 0) |
| a->data.non_resident.data_size = cpu_to_sle64(new_size); |
| /* Ensure the modified mft record is written out. */ |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| unm_done: |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| up_write(&ni->runlist.lock); |
| done: |
| /* Update the mtime and ctime on the base inode. */ |
| /* normally ->truncate shouldn't update ctime or mtime, |
| * but ntfs did before so it got a copy & paste version |
| * of file_update_time. one day someone should fix this |
| * for real. |
| */ |
| if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { |
| struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb); |
| int sync_it = 0; |
| |
| if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) || |
| !timespec_equal(&VFS_I(base_ni)->i_ctime, &now)) |
| sync_it = 1; |
| VFS_I(base_ni)->i_mtime = now; |
| VFS_I(base_ni)->i_ctime = now; |
| |
| if (sync_it) |
| mark_inode_dirty_sync(VFS_I(base_ni)); |
| } |
| |
| if (likely(!err)) { |
| NInoClearTruncateFailed(ni); |
| ntfs_debug("Done."); |
| } |
| return err; |
| old_bad_out: |
| old_size = -1; |
| bad_out: |
| if (err != -ENOMEM && err != -EOPNOTSUPP) |
| NVolSetErrors(vol); |
| if (err != -EOPNOTSUPP) |
| NInoSetTruncateFailed(ni); |
| else if (old_size >= 0) |
| i_size_write(vi, old_size); |
| err_out: |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| if (m) |
| unmap_mft_record(base_ni); |
| up_write(&ni->runlist.lock); |
| out: |
| ntfs_debug("Failed. Returning error code %i.", err); |
| return err; |
| conv_err_out: |
| if (err != -ENOMEM && err != -EOPNOTSUPP) |
| NVolSetErrors(vol); |
| if (err != -EOPNOTSUPP) |
| NInoSetTruncateFailed(ni); |
| else |
| i_size_write(vi, old_size); |
| goto out; |
| } |
| |
| /** |
| * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value |
| * @vi: inode for which the i_size was changed |
| * |
| * Wrapper for ntfs_truncate() that has no return value. |
| * |
| * See ntfs_truncate() description above for details. |
| */ |
| #ifdef NTFS_RW |
| void ntfs_truncate_vfs(struct inode *vi) { |
| ntfs_truncate(vi); |
| } |
| #endif |
| |
| /** |
| * ntfs_setattr - called from notify_change() when an attribute is being changed |
| * @dentry: dentry whose attributes to change |
| * @attr: structure describing the attributes and the changes |
| * |
| * We have to trap VFS attempts to truncate the file described by @dentry as |
| * soon as possible, because we do not implement changes in i_size yet. So we |
| * abort all i_size changes here. |
| * |
| * We also abort all changes of user, group, and mode as we do not implement |
| * the NTFS ACLs yet. |
| * |
| * Called with ->i_mutex held. |
| */ |
| int ntfs_setattr(struct dentry *dentry, struct iattr *attr) |
| { |
| struct inode *vi = dentry->d_inode; |
| int err; |
| unsigned int ia_valid = attr->ia_valid; |
| |
| err = inode_change_ok(vi, attr); |
| if (err) |
| goto out; |
| /* We do not support NTFS ACLs yet. */ |
| if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { |
| ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " |
| "supported yet, ignoring."); |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| if (ia_valid & ATTR_SIZE) { |
| if (attr->ia_size != i_size_read(vi)) { |
| ntfs_inode *ni = NTFS_I(vi); |
| /* |
| * FIXME: For now we do not support resizing of |
| * compressed or encrypted files yet. |
| */ |
| if (NInoCompressed(ni) || NInoEncrypted(ni)) { |
| ntfs_warning(vi->i_sb, "Changes in inode size " |
| "are not supported yet for " |
| "%s files, ignoring.", |
| NInoCompressed(ni) ? |
| "compressed" : "encrypted"); |
| err = -EOPNOTSUPP; |
| } else { |
| truncate_setsize(vi, attr->ia_size); |
| ntfs_truncate_vfs(vi); |
| } |
| if (err || ia_valid == ATTR_SIZE) |
| goto out; |
| } else { |
| /* |
| * We skipped the truncate but must still update |
| * timestamps. |
| */ |
| ia_valid |= ATTR_MTIME | ATTR_CTIME; |
| } |
| } |
| if (ia_valid & ATTR_ATIME) |
| vi->i_atime = timespec_trunc(attr->ia_atime, |
| vi->i_sb->s_time_gran); |
| if (ia_valid & ATTR_MTIME) |
| vi->i_mtime = timespec_trunc(attr->ia_mtime, |
| vi->i_sb->s_time_gran); |
| if (ia_valid & ATTR_CTIME) |
| vi->i_ctime = timespec_trunc(attr->ia_ctime, |
| vi->i_sb->s_time_gran); |
| mark_inode_dirty(vi); |
| out: |
| return err; |
| } |
| |
| /** |
| * ntfs_write_inode - write out a dirty inode |
| * @vi: inode to write out |
| * @sync: if true, write out synchronously |
| * |
| * Write out a dirty inode to disk including any extent inodes if present. |
| * |
| * If @sync is true, commit the inode to disk and wait for io completion. This |
| * is done using write_mft_record(). |
| * |
| * If @sync is false, just schedule the write to happen but do not wait for i/o |
| * completion. In 2.6 kernels, scheduling usually happens just by virtue of |
| * marking the page (and in this case mft record) dirty but we do not implement |
| * this yet as write_mft_record() largely ignores the @sync parameter and |
| * always performs synchronous writes. |
| * |
| * Return 0 on success and -errno on error. |
| */ |
| int __ntfs_write_inode(struct inode *vi, int sync) |
| { |
| sle64 nt; |
| ntfs_inode *ni = NTFS_I(vi); |
| ntfs_attr_search_ctx *ctx; |
| MFT_RECORD *m; |
| STANDARD_INFORMATION *si; |
| int err = 0; |
| bool modified = false; |
| |
| ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", |
| vi->i_ino); |
| /* |
| * Dirty attribute inodes are written via their real inodes so just |
| * clean them here. Access time updates are taken care off when the |
| * real inode is written. |
| */ |
| if (NInoAttr(ni)) { |
| NInoClearDirty(ni); |
| ntfs_debug("Done."); |
| return 0; |
| } |
| /* Map, pin, and lock the mft record belonging to the inode. */ |
| m = map_mft_record(ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| goto err_out; |
| } |
| /* Update the access times in the standard information attribute. */ |
| ctx = ntfs_attr_get_search_ctx(ni, m); |
| if (unlikely(!ctx)) { |
| err = -ENOMEM; |
| goto unm_err_out; |
| } |
| err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| ntfs_attr_put_search_ctx(ctx); |
| goto unm_err_out; |
| } |
| si = (STANDARD_INFORMATION*)((u8*)ctx->attr + |
| le16_to_cpu(ctx->attr->data.resident.value_offset)); |
| /* Update the access times if they have changed. */ |
| nt = utc2ntfs(vi->i_mtime); |
| if (si->last_data_change_time != nt) { |
| ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " |
| "new = 0x%llx", vi->i_ino, (long long) |
| sle64_to_cpu(si->last_data_change_time), |
| (long long)sle64_to_cpu(nt)); |
| si->last_data_change_time = nt; |
| modified = true; |
| } |
| nt = utc2ntfs(vi->i_ctime); |
| if (si->last_mft_change_time != nt) { |
| ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " |
| "new = 0x%llx", vi->i_ino, (long long) |
| sle64_to_cpu(si->last_mft_change_time), |
| (long long)sle64_to_cpu(nt)); |
| si->last_mft_change_time = nt; |
| modified = true; |
| } |
| nt = utc2ntfs(vi->i_atime); |
| if (si->last_access_time != nt) { |
| ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " |
| "new = 0x%llx", vi->i_ino, |
| (long long)sle64_to_cpu(si->last_access_time), |
| (long long)sle64_to_cpu(nt)); |
| si->last_access_time = nt; |
| modified = true; |
| } |
| /* |
| * If we just modified the standard information attribute we need to |
| * mark the mft record it is in dirty. We do this manually so that |
| * mark_inode_dirty() is not called which would redirty the inode and |
| * hence result in an infinite loop of trying to write the inode. |
| * There is no need to mark the base inode nor the base mft record |
| * dirty, since we are going to write this mft record below in any case |
| * and the base mft record may actually not have been modified so it |
| * might not need to be written out. |
| * NOTE: It is not a problem when the inode for $MFT itself is being |
| * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES |
| * on the $MFT inode and hence ntfs_write_inode() will not be |
| * re-invoked because of it which in turn is ok since the dirtied mft |
| * record will be cleaned and written out to disk below, i.e. before |
| * this function returns. |
| */ |
| if (modified) { |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| if (!NInoTestSetDirty(ctx->ntfs_ino)) |
| mark_ntfs_record_dirty(ctx->ntfs_ino->page, |
| ctx->ntfs_ino->page_ofs); |
| } |
| ntfs_attr_put_search_ctx(ctx); |
| /* Now the access times are updated, write the base mft record. */ |
| if (NInoDirty(ni)) |
| err = write_mft_record(ni, m, sync); |
| /* Write all attached extent mft records. */ |
| mutex_lock(&ni->extent_lock); |
| if (ni->nr_extents > 0) { |
|