|  | /* | 
|  | *  linux/mm/page_alloc.c | 
|  | * | 
|  | *  Manages the free list, the system allocates free pages here. | 
|  | *  Note that kmalloc() lives in slab.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | *  Swap reorganised 29.12.95, Stephen Tweedie | 
|  | *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
|  | *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | 
|  | *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 
|  | *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | 
|  | *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | 
|  | *          (lots of bits borrowed from Ingo Molnar & Andrew Morton) | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/memory_hotplug.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/mempolicy.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * MCD - HACK: Find somewhere to initialize this EARLY, or make this | 
|  | * initializer cleaner | 
|  | */ | 
|  | nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; | 
|  | EXPORT_SYMBOL(node_online_map); | 
|  | nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; | 
|  | EXPORT_SYMBOL(node_possible_map); | 
|  | struct pglist_data *pgdat_list __read_mostly; | 
|  | unsigned long totalram_pages __read_mostly; | 
|  | unsigned long totalhigh_pages __read_mostly; | 
|  | long nr_swap_pages; | 
|  | int percpu_pagelist_fraction; | 
|  |  | 
|  | static void fastcall free_hot_cold_page(struct page *page, int cold); | 
|  | static void __free_pages_ok(struct page *page, unsigned int order); | 
|  |  | 
|  | /* | 
|  | * results with 256, 32 in the lowmem_reserve sysctl: | 
|  | *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | 
|  | *	1G machine -> (16M dma, 784M normal, 224M high) | 
|  | *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | 
|  | *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | 
|  | *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | 
|  | * | 
|  | * TBD: should special case ZONE_DMA32 machines here - in those we normally | 
|  | * don't need any ZONE_NORMAL reservation | 
|  | */ | 
|  | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; | 
|  |  | 
|  | EXPORT_SYMBOL(totalram_pages); | 
|  |  | 
|  | /* | 
|  | * Used by page_zone() to look up the address of the struct zone whose | 
|  | * id is encoded in the upper bits of page->flags | 
|  | */ | 
|  | struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; | 
|  | EXPORT_SYMBOL(zone_table); | 
|  |  | 
|  | static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; | 
|  | int min_free_kbytes = 1024; | 
|  |  | 
|  | unsigned long __initdata nr_kernel_pages; | 
|  | unsigned long __initdata nr_all_pages; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned seq; | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  |  | 
|  | do { | 
|  | seq = zone_span_seqbegin(zone); | 
|  | if (pfn >= zone->zone_start_pfn + zone->spanned_pages) | 
|  | ret = 1; | 
|  | else if (pfn < zone->zone_start_pfn) | 
|  | ret = 1; | 
|  | } while (zone_span_seqretry(zone, seq)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int page_is_consistent(struct zone *zone, struct page *page) | 
|  | { | 
|  | #ifdef CONFIG_HOLES_IN_ZONE | 
|  | if (!pfn_valid(page_to_pfn(page))) | 
|  | return 0; | 
|  | #endif | 
|  | if (zone != page_zone(page)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | /* | 
|  | * Temporary debugging check for pages not lying within a given zone. | 
|  | */ | 
|  | static int bad_range(struct zone *zone, struct page *page) | 
|  | { | 
|  | if (page_outside_zone_boundaries(zone, page)) | 
|  | return 1; | 
|  | if (!page_is_consistent(zone, page)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline int bad_range(struct zone *zone, struct page *page) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void bad_page(struct page *page) | 
|  | { | 
|  | printk(KERN_EMERG "Bad page state in process '%s'\n" | 
|  | KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" | 
|  | KERN_EMERG "Trying to fix it up, but a reboot is needed\n" | 
|  | KERN_EMERG "Backtrace:\n", | 
|  | current->comm, page, (int)(2*sizeof(unsigned long)), | 
|  | (unsigned long)page->flags, page->mapping, | 
|  | page_mapcount(page), page_count(page)); | 
|  | dump_stack(); | 
|  | page->flags &= ~(1 << PG_lru	| | 
|  | 1 << PG_private | | 
|  | 1 << PG_locked	| | 
|  | 1 << PG_active	| | 
|  | 1 << PG_dirty	| | 
|  | 1 << PG_reclaim | | 
|  | 1 << PG_slab    | | 
|  | 1 << PG_swapcache | | 
|  | 1 << PG_writeback ); | 
|  | set_page_count(page, 0); | 
|  | reset_page_mapcount(page); | 
|  | page->mapping = NULL; | 
|  | add_taint(TAINT_BAD_PAGE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Higher-order pages are called "compound pages".  They are structured thusly: | 
|  | * | 
|  | * The first PAGE_SIZE page is called the "head page". | 
|  | * | 
|  | * The remaining PAGE_SIZE pages are called "tail pages". | 
|  | * | 
|  | * All pages have PG_compound set.  All pages have their ->private pointing at | 
|  | * the head page (even the head page has this). | 
|  | * | 
|  | * The first tail page's ->lru.next holds the address of the compound page's | 
|  | * put_page() function.  Its ->lru.prev holds the order of allocation. | 
|  | * This usage means that zero-order pages may not be compound. | 
|  | */ | 
|  |  | 
|  | static void free_compound_page(struct page *page) | 
|  | { | 
|  | __free_pages_ok(page, (unsigned long)page[1].lru.prev); | 
|  | } | 
|  |  | 
|  | static void prep_compound_page(struct page *page, unsigned long order) | 
|  | { | 
|  | int i; | 
|  | int nr_pages = 1 << order; | 
|  |  | 
|  | page[1].lru.next = (void *)free_compound_page;	/* set dtor */ | 
|  | page[1].lru.prev = (void *)order; | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *p = page + i; | 
|  |  | 
|  | SetPageCompound(p); | 
|  | set_page_private(p, (unsigned long)page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void destroy_compound_page(struct page *page, unsigned long order) | 
|  | { | 
|  | int i; | 
|  | int nr_pages = 1 << order; | 
|  |  | 
|  | if (unlikely((unsigned long)page[1].lru.prev != order)) | 
|  | bad_page(page); | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *p = page + i; | 
|  |  | 
|  | if (unlikely(!PageCompound(p) | | 
|  | (page_private(p) != (unsigned long)page))) | 
|  | bad_page(page); | 
|  | ClearPageCompound(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * function for dealing with page's order in buddy system. | 
|  | * zone->lock is already acquired when we use these. | 
|  | * So, we don't need atomic page->flags operations here. | 
|  | */ | 
|  | static inline unsigned long page_order(struct page *page) { | 
|  | return page_private(page); | 
|  | } | 
|  |  | 
|  | static inline void set_page_order(struct page *page, int order) { | 
|  | set_page_private(page, order); | 
|  | __SetPagePrivate(page); | 
|  | } | 
|  |  | 
|  | static inline void rmv_page_order(struct page *page) | 
|  | { | 
|  | __ClearPagePrivate(page); | 
|  | set_page_private(page, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locate the struct page for both the matching buddy in our | 
|  | * pair (buddy1) and the combined O(n+1) page they form (page). | 
|  | * | 
|  | * 1) Any buddy B1 will have an order O twin B2 which satisfies | 
|  | * the following equation: | 
|  | *     B2 = B1 ^ (1 << O) | 
|  | * For example, if the starting buddy (buddy2) is #8 its order | 
|  | * 1 buddy is #10: | 
|  | *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | 
|  | * | 
|  | * 2) Any buddy B will have an order O+1 parent P which | 
|  | * satisfies the following equation: | 
|  | *     P = B & ~(1 << O) | 
|  | * | 
|  | * Assumption: *_mem_map is contigious at least up to MAX_ORDER | 
|  | */ | 
|  | static inline struct page * | 
|  | __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) | 
|  | { | 
|  | unsigned long buddy_idx = page_idx ^ (1 << order); | 
|  |  | 
|  | return page + (buddy_idx - page_idx); | 
|  | } | 
|  |  | 
|  | static inline unsigned long | 
|  | __find_combined_index(unsigned long page_idx, unsigned int order) | 
|  | { | 
|  | return (page_idx & ~(1 << order)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function checks whether a page is free && is the buddy | 
|  | * we can do coalesce a page and its buddy if | 
|  | * (a) the buddy is not in a hole && | 
|  | * (b) the buddy is free && | 
|  | * (c) the buddy is on the buddy system && | 
|  | * (d) a page and its buddy have the same order. | 
|  | * for recording page's order, we use page_private(page) and PG_private. | 
|  | * | 
|  | */ | 
|  | static inline int page_is_buddy(struct page *page, int order) | 
|  | { | 
|  | #ifdef CONFIG_HOLES_IN_ZONE | 
|  | if (!pfn_valid(page_to_pfn(page))) | 
|  | return 0; | 
|  | #endif | 
|  |  | 
|  | if (PagePrivate(page)           && | 
|  | (page_order(page) == order) && | 
|  | page_count(page) == 0) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Freeing function for a buddy system allocator. | 
|  | * | 
|  | * The concept of a buddy system is to maintain direct-mapped table | 
|  | * (containing bit values) for memory blocks of various "orders". | 
|  | * The bottom level table contains the map for the smallest allocatable | 
|  | * units of memory (here, pages), and each level above it describes | 
|  | * pairs of units from the levels below, hence, "buddies". | 
|  | * At a high level, all that happens here is marking the table entry | 
|  | * at the bottom level available, and propagating the changes upward | 
|  | * as necessary, plus some accounting needed to play nicely with other | 
|  | * parts of the VM system. | 
|  | * At each level, we keep a list of pages, which are heads of continuous | 
|  | * free pages of length of (1 << order) and marked with PG_Private.Page's | 
|  | * order is recorded in page_private(page) field. | 
|  | * So when we are allocating or freeing one, we can derive the state of the | 
|  | * other.  That is, if we allocate a small block, and both were | 
|  | * free, the remainder of the region must be split into blocks. | 
|  | * If a block is freed, and its buddy is also free, then this | 
|  | * triggers coalescing into a block of larger size. | 
|  | * | 
|  | * -- wli | 
|  | */ | 
|  |  | 
|  | static inline void __free_one_page(struct page *page, | 
|  | struct zone *zone, unsigned int order) | 
|  | { | 
|  | unsigned long page_idx; | 
|  | int order_size = 1 << order; | 
|  |  | 
|  | if (unlikely(PageCompound(page))) | 
|  | destroy_compound_page(page, order); | 
|  |  | 
|  | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); | 
|  |  | 
|  | BUG_ON(page_idx & (order_size - 1)); | 
|  | BUG_ON(bad_range(zone, page)); | 
|  |  | 
|  | zone->free_pages += order_size; | 
|  | while (order < MAX_ORDER-1) { | 
|  | unsigned long combined_idx; | 
|  | struct free_area *area; | 
|  | struct page *buddy; | 
|  |  | 
|  | buddy = __page_find_buddy(page, page_idx, order); | 
|  | if (!page_is_buddy(buddy, order)) | 
|  | break;		/* Move the buddy up one level. */ | 
|  |  | 
|  | list_del(&buddy->lru); | 
|  | area = zone->free_area + order; | 
|  | area->nr_free--; | 
|  | rmv_page_order(buddy); | 
|  | combined_idx = __find_combined_index(page_idx, order); | 
|  | page = page + (combined_idx - page_idx); | 
|  | page_idx = combined_idx; | 
|  | order++; | 
|  | } | 
|  | set_page_order(page, order); | 
|  | list_add(&page->lru, &zone->free_area[order].free_list); | 
|  | zone->free_area[order].nr_free++; | 
|  | } | 
|  |  | 
|  | static inline int free_pages_check(struct page *page) | 
|  | { | 
|  | if (unlikely(page_mapcount(page) | | 
|  | (page->mapping != NULL)  | | 
|  | (page_count(page) != 0)  | | 
|  | (page->flags & ( | 
|  | 1 << PG_lru	| | 
|  | 1 << PG_private | | 
|  | 1 << PG_locked	| | 
|  | 1 << PG_active	| | 
|  | 1 << PG_reclaim	| | 
|  | 1 << PG_slab	| | 
|  | 1 << PG_swapcache | | 
|  | 1 << PG_writeback | | 
|  | 1 << PG_reserved )))) | 
|  | bad_page(page); | 
|  | if (PageDirty(page)) | 
|  | __ClearPageDirty(page); | 
|  | /* | 
|  | * For now, we report if PG_reserved was found set, but do not | 
|  | * clear it, and do not free the page.  But we shall soon need | 
|  | * to do more, for when the ZERO_PAGE count wraps negative. | 
|  | */ | 
|  | return PageReserved(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Frees a list of pages. | 
|  | * Assumes all pages on list are in same zone, and of same order. | 
|  | * count is the number of pages to free. | 
|  | * | 
|  | * If the zone was previously in an "all pages pinned" state then look to | 
|  | * see if this freeing clears that state. | 
|  | * | 
|  | * And clear the zone's pages_scanned counter, to hold off the "all pages are | 
|  | * pinned" detection logic. | 
|  | */ | 
|  | static void free_pages_bulk(struct zone *zone, int count, | 
|  | struct list_head *list, int order) | 
|  | { | 
|  | spin_lock(&zone->lock); | 
|  | zone->all_unreclaimable = 0; | 
|  | zone->pages_scanned = 0; | 
|  | while (count--) { | 
|  | struct page *page; | 
|  |  | 
|  | BUG_ON(list_empty(list)); | 
|  | page = list_entry(list->prev, struct page, lru); | 
|  | /* have to delete it as __free_one_page list manipulates */ | 
|  | list_del(&page->lru); | 
|  | __free_one_page(page, zone, order); | 
|  | } | 
|  | spin_unlock(&zone->lock); | 
|  | } | 
|  |  | 
|  | static void free_one_page(struct zone *zone, struct page *page, int order) | 
|  | { | 
|  | LIST_HEAD(list); | 
|  | list_add(&page->lru, &list); | 
|  | free_pages_bulk(zone, 1, &list, order); | 
|  | } | 
|  |  | 
|  | static void __free_pages_ok(struct page *page, unsigned int order) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  | int reserved = 0; | 
|  |  | 
|  | arch_free_page(page, order); | 
|  | if (!PageHighMem(page)) | 
|  | mutex_debug_check_no_locks_freed(page_address(page), | 
|  | PAGE_SIZE<<order); | 
|  |  | 
|  | #ifndef CONFIG_MMU | 
|  | for (i = 1 ; i < (1 << order) ; ++i) | 
|  | __put_page(page + i); | 
|  | #endif | 
|  |  | 
|  | for (i = 0 ; i < (1 << order) ; ++i) | 
|  | reserved += free_pages_check(page + i); | 
|  | if (reserved) | 
|  | return; | 
|  |  | 
|  | kernel_map_pages(page, 1 << order, 0); | 
|  | local_irq_save(flags); | 
|  | __mod_page_state(pgfree, 1 << order); | 
|  | free_one_page(page_zone(page), page, order); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * permit the bootmem allocator to evade page validation on high-order frees | 
|  | */ | 
|  | void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) | 
|  | { | 
|  | if (order == 0) { | 
|  | __ClearPageReserved(page); | 
|  | set_page_count(page, 0); | 
|  |  | 
|  | free_hot_cold_page(page, 0); | 
|  | } else { | 
|  | LIST_HEAD(list); | 
|  | int loop; | 
|  |  | 
|  | for (loop = 0; loop < BITS_PER_LONG; loop++) { | 
|  | struct page *p = &page[loop]; | 
|  |  | 
|  | if (loop + 16 < BITS_PER_LONG) | 
|  | prefetchw(p + 16); | 
|  | __ClearPageReserved(p); | 
|  | set_page_count(p, 0); | 
|  | } | 
|  |  | 
|  | arch_free_page(page, order); | 
|  |  | 
|  | mod_page_state(pgfree, 1 << order); | 
|  |  | 
|  | list_add(&page->lru, &list); | 
|  | kernel_map_pages(page, 1 << order, 0); | 
|  | free_pages_bulk(page_zone(page), 1, &list, order); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The order of subdivision here is critical for the IO subsystem. | 
|  | * Please do not alter this order without good reasons and regression | 
|  | * testing. Specifically, as large blocks of memory are subdivided, | 
|  | * the order in which smaller blocks are delivered depends on the order | 
|  | * they're subdivided in this function. This is the primary factor | 
|  | * influencing the order in which pages are delivered to the IO | 
|  | * subsystem according to empirical testing, and this is also justified | 
|  | * by considering the behavior of a buddy system containing a single | 
|  | * large block of memory acted on by a series of small allocations. | 
|  | * This behavior is a critical factor in sglist merging's success. | 
|  | * | 
|  | * -- wli | 
|  | */ | 
|  | static inline void expand(struct zone *zone, struct page *page, | 
|  | int low, int high, struct free_area *area) | 
|  | { | 
|  | unsigned long size = 1 << high; | 
|  |  | 
|  | while (high > low) { | 
|  | area--; | 
|  | high--; | 
|  | size >>= 1; | 
|  | BUG_ON(bad_range(zone, &page[size])); | 
|  | list_add(&page[size].lru, &area->free_list); | 
|  | area->nr_free++; | 
|  | set_page_order(&page[size], high); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This page is about to be returned from the page allocator | 
|  | */ | 
|  | static int prep_new_page(struct page *page, int order) | 
|  | { | 
|  | if (unlikely(page_mapcount(page) | | 
|  | (page->mapping != NULL)  | | 
|  | (page_count(page) != 0)  | | 
|  | (page->flags & ( | 
|  | 1 << PG_lru	| | 
|  | 1 << PG_private	| | 
|  | 1 << PG_locked	| | 
|  | 1 << PG_active	| | 
|  | 1 << PG_dirty	| | 
|  | 1 << PG_reclaim	| | 
|  | 1 << PG_slab    | | 
|  | 1 << PG_swapcache | | 
|  | 1 << PG_writeback | | 
|  | 1 << PG_reserved )))) | 
|  | bad_page(page); | 
|  |  | 
|  | /* | 
|  | * For now, we report if PG_reserved was found set, but do not | 
|  | * clear it, and do not allocate the page: as a safety net. | 
|  | */ | 
|  | if (PageReserved(page)) | 
|  | return 1; | 
|  |  | 
|  | page->flags &= ~(1 << PG_uptodate | 1 << PG_error | | 
|  | 1 << PG_referenced | 1 << PG_arch_1 | | 
|  | 1 << PG_checked | 1 << PG_mappedtodisk); | 
|  | set_page_private(page, 0); | 
|  | set_page_refs(page, order); | 
|  | kernel_map_pages(page, 1 << order, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the hard work of removing an element from the buddy allocator. | 
|  | * Call me with the zone->lock already held. | 
|  | */ | 
|  | static struct page *__rmqueue(struct zone *zone, unsigned int order) | 
|  | { | 
|  | struct free_area * area; | 
|  | unsigned int current_order; | 
|  | struct page *page; | 
|  |  | 
|  | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | 
|  | area = zone->free_area + current_order; | 
|  | if (list_empty(&area->free_list)) | 
|  | continue; | 
|  |  | 
|  | page = list_entry(area->free_list.next, struct page, lru); | 
|  | list_del(&page->lru); | 
|  | rmv_page_order(page); | 
|  | area->nr_free--; | 
|  | zone->free_pages -= 1UL << order; | 
|  | expand(zone, page, order, current_order, area); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain a specified number of elements from the buddy allocator, all under | 
|  | * a single hold of the lock, for efficiency.  Add them to the supplied list. | 
|  | * Returns the number of new pages which were placed at *list. | 
|  | */ | 
|  | static int rmqueue_bulk(struct zone *zone, unsigned int order, | 
|  | unsigned long count, struct list_head *list) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | spin_lock(&zone->lock); | 
|  | for (i = 0; i < count; ++i) { | 
|  | struct page *page = __rmqueue(zone, order); | 
|  | if (unlikely(page == NULL)) | 
|  | break; | 
|  | list_add_tail(&page->lru, list); | 
|  | } | 
|  | spin_unlock(&zone->lock); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* Called from the slab reaper to drain remote pagesets */ | 
|  | void drain_remote_pages(void) | 
|  | { | 
|  | struct zone *zone; | 
|  | int i; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | for_each_zone(zone) { | 
|  | struct per_cpu_pageset *pset; | 
|  |  | 
|  | /* Do not drain local pagesets */ | 
|  | if (zone->zone_pgdat->node_id == numa_node_id()) | 
|  | continue; | 
|  |  | 
|  | pset = zone_pcp(zone, smp_processor_id()); | 
|  | for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { | 
|  | struct per_cpu_pages *pcp; | 
|  |  | 
|  | pcp = &pset->pcp[i]; | 
|  | free_pages_bulk(zone, pcp->count, &pcp->list, 0); | 
|  | pcp->count = 0; | 
|  | } | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) | 
|  | static void __drain_pages(unsigned int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct zone *zone; | 
|  | int i; | 
|  |  | 
|  | for_each_zone(zone) { | 
|  | struct per_cpu_pageset *pset; | 
|  |  | 
|  | pset = zone_pcp(zone, cpu); | 
|  | for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { | 
|  | struct per_cpu_pages *pcp; | 
|  |  | 
|  | pcp = &pset->pcp[i]; | 
|  | local_irq_save(flags); | 
|  | free_pages_bulk(zone, pcp->count, &pcp->list, 0); | 
|  | pcp->count = 0; | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  |  | 
|  | void mark_free_pages(struct zone *zone) | 
|  | { | 
|  | unsigned long zone_pfn, flags; | 
|  | int order; | 
|  | struct list_head *curr; | 
|  |  | 
|  | if (!zone->spanned_pages) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) | 
|  | ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); | 
|  |  | 
|  | for (order = MAX_ORDER - 1; order >= 0; --order) | 
|  | list_for_each(curr, &zone->free_area[order].free_list) { | 
|  | unsigned long start_pfn, i; | 
|  |  | 
|  | start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); | 
|  |  | 
|  | for (i=0; i < (1<<order); i++) | 
|  | SetPageNosaveFree(pfn_to_page(start_pfn+i)); | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | 
|  | */ | 
|  | void drain_local_pages(void) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __drain_pages(smp_processor_id()); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | #endif /* CONFIG_PM */ | 
|  |  | 
|  | static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | pg_data_t *pg = z->zone_pgdat; | 
|  | pg_data_t *orig = zonelist->zones[0]->zone_pgdat; | 
|  | struct per_cpu_pageset *p; | 
|  |  | 
|  | p = zone_pcp(z, cpu); | 
|  | if (pg == orig) { | 
|  | p->numa_hit++; | 
|  | } else { | 
|  | p->numa_miss++; | 
|  | zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; | 
|  | } | 
|  | if (pg == NODE_DATA(numa_node_id())) | 
|  | p->local_node++; | 
|  | else | 
|  | p->other_node++; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a 0-order page | 
|  | */ | 
|  | static void fastcall free_hot_cold_page(struct page *page, int cold) | 
|  | { | 
|  | struct zone *zone = page_zone(page); | 
|  | struct per_cpu_pages *pcp; | 
|  | unsigned long flags; | 
|  |  | 
|  | arch_free_page(page, 0); | 
|  |  | 
|  | if (PageAnon(page)) | 
|  | page->mapping = NULL; | 
|  | if (free_pages_check(page)) | 
|  | return; | 
|  |  | 
|  | kernel_map_pages(page, 1, 0); | 
|  |  | 
|  | pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; | 
|  | local_irq_save(flags); | 
|  | __inc_page_state(pgfree); | 
|  | list_add(&page->lru, &pcp->list); | 
|  | pcp->count++; | 
|  | if (pcp->count >= pcp->high) { | 
|  | free_pages_bulk(zone, pcp->batch, &pcp->list, 0); | 
|  | pcp->count -= pcp->batch; | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | void fastcall free_hot_page(struct page *page) | 
|  | { | 
|  | free_hot_cold_page(page, 0); | 
|  | } | 
|  |  | 
|  | void fastcall free_cold_page(struct page *page) | 
|  | { | 
|  | free_hot_cold_page(page, 1); | 
|  | } | 
|  |  | 
|  | static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); | 
|  | for(i = 0; i < (1 << order); i++) | 
|  | clear_highpage(page + i); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Really, prep_compound_page() should be called from __rmqueue_bulk().  But | 
|  | * we cheat by calling it from here, in the order > 0 path.  Saves a branch | 
|  | * or two. | 
|  | */ | 
|  | static struct page *buffered_rmqueue(struct zonelist *zonelist, | 
|  | struct zone *zone, int order, gfp_t gfp_flags) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct page *page; | 
|  | int cold = !!(gfp_flags & __GFP_COLD); | 
|  | int cpu; | 
|  |  | 
|  | again: | 
|  | cpu  = get_cpu(); | 
|  | if (likely(order == 0)) { | 
|  | struct per_cpu_pages *pcp; | 
|  |  | 
|  | pcp = &zone_pcp(zone, cpu)->pcp[cold]; | 
|  | local_irq_save(flags); | 
|  | if (!pcp->count) { | 
|  | pcp->count += rmqueue_bulk(zone, 0, | 
|  | pcp->batch, &pcp->list); | 
|  | if (unlikely(!pcp->count)) | 
|  | goto failed; | 
|  | } | 
|  | page = list_entry(pcp->list.next, struct page, lru); | 
|  | list_del(&page->lru); | 
|  | pcp->count--; | 
|  | } else { | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | page = __rmqueue(zone, order); | 
|  | spin_unlock(&zone->lock); | 
|  | if (!page) | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | __mod_page_state_zone(zone, pgalloc, 1 << order); | 
|  | zone_statistics(zonelist, zone, cpu); | 
|  | local_irq_restore(flags); | 
|  | put_cpu(); | 
|  |  | 
|  | BUG_ON(bad_range(zone, page)); | 
|  | if (prep_new_page(page, order)) | 
|  | goto again; | 
|  |  | 
|  | if (gfp_flags & __GFP_ZERO) | 
|  | prep_zero_page(page, order, gfp_flags); | 
|  |  | 
|  | if (order && (gfp_flags & __GFP_COMP)) | 
|  | prep_compound_page(page, order); | 
|  | return page; | 
|  |  | 
|  | failed: | 
|  | local_irq_restore(flags); | 
|  | put_cpu(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */ | 
|  | #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */ | 
|  | #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */ | 
|  | #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */ | 
|  | #define ALLOC_HARDER		0x10 /* try to alloc harder */ | 
|  | #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */ | 
|  | #define ALLOC_CPUSET		0x40 /* check for correct cpuset */ | 
|  |  | 
|  | /* | 
|  | * Return 1 if free pages are above 'mark'. This takes into account the order | 
|  | * of the allocation. | 
|  | */ | 
|  | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | 
|  | int classzone_idx, int alloc_flags) | 
|  | { | 
|  | /* free_pages my go negative - that's OK */ | 
|  | long min = mark, free_pages = z->free_pages - (1 << order) + 1; | 
|  | int o; | 
|  |  | 
|  | if (alloc_flags & ALLOC_HIGH) | 
|  | min -= min / 2; | 
|  | if (alloc_flags & ALLOC_HARDER) | 
|  | min -= min / 4; | 
|  |  | 
|  | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | 
|  | return 0; | 
|  | for (o = 0; o < order; o++) { | 
|  | /* At the next order, this order's pages become unavailable */ | 
|  | free_pages -= z->free_area[o].nr_free << o; | 
|  |  | 
|  | /* Require fewer higher order pages to be free */ | 
|  | min >>= 1; | 
|  |  | 
|  | if (free_pages <= min) | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_page_from_freeliest goes through the zonelist trying to allocate | 
|  | * a page. | 
|  | */ | 
|  | static struct page * | 
|  | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, | 
|  | struct zonelist *zonelist, int alloc_flags) | 
|  | { | 
|  | struct zone **z = zonelist->zones; | 
|  | struct page *page = NULL; | 
|  | int classzone_idx = zone_idx(*z); | 
|  |  | 
|  | /* | 
|  | * Go through the zonelist once, looking for a zone with enough free. | 
|  | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. | 
|  | */ | 
|  | do { | 
|  | if ((alloc_flags & ALLOC_CPUSET) && | 
|  | !cpuset_zone_allowed(*z, gfp_mask)) | 
|  | continue; | 
|  |  | 
|  | if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { | 
|  | unsigned long mark; | 
|  | if (alloc_flags & ALLOC_WMARK_MIN) | 
|  | mark = (*z)->pages_min; | 
|  | else if (alloc_flags & ALLOC_WMARK_LOW) | 
|  | mark = (*z)->pages_low; | 
|  | else | 
|  | mark = (*z)->pages_high; | 
|  | if (!zone_watermark_ok(*z, order, mark, | 
|  | classzone_idx, alloc_flags)) | 
|  | if (!zone_reclaim_mode || | 
|  | !zone_reclaim(*z, gfp_mask, order)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | page = buffered_rmqueue(zonelist, *z, order, gfp_mask); | 
|  | if (page) { | 
|  | break; | 
|  | } | 
|  | } while (*(++z) != NULL); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the 'heart' of the zoned buddy allocator. | 
|  | */ | 
|  | struct page * fastcall | 
|  | __alloc_pages(gfp_t gfp_mask, unsigned int order, | 
|  | struct zonelist *zonelist) | 
|  | { | 
|  | const gfp_t wait = gfp_mask & __GFP_WAIT; | 
|  | struct zone **z; | 
|  | struct page *page; | 
|  | struct reclaim_state reclaim_state; | 
|  | struct task_struct *p = current; | 
|  | int do_retry; | 
|  | int alloc_flags; | 
|  | int did_some_progress; | 
|  |  | 
|  | might_sleep_if(wait); | 
|  |  | 
|  | restart: | 
|  | z = zonelist->zones;  /* the list of zones suitable for gfp_mask */ | 
|  |  | 
|  | if (unlikely(*z == NULL)) { | 
|  | /* Should this ever happen?? */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, | 
|  | zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | do { | 
|  | wakeup_kswapd(*z, order); | 
|  | } while (*(++z)); | 
|  |  | 
|  | /* | 
|  | * OK, we're below the kswapd watermark and have kicked background | 
|  | * reclaim. Now things get more complex, so set up alloc_flags according | 
|  | * to how we want to proceed. | 
|  | * | 
|  | * The caller may dip into page reserves a bit more if the caller | 
|  | * cannot run direct reclaim, or if the caller has realtime scheduling | 
|  | * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will | 
|  | * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). | 
|  | */ | 
|  | alloc_flags = ALLOC_WMARK_MIN; | 
|  | if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) | 
|  | alloc_flags |= ALLOC_HARDER; | 
|  | if (gfp_mask & __GFP_HIGH) | 
|  | alloc_flags |= ALLOC_HIGH; | 
|  | alloc_flags |= ALLOC_CPUSET; | 
|  |  | 
|  | /* | 
|  | * Go through the zonelist again. Let __GFP_HIGH and allocations | 
|  | * coming from realtime tasks go deeper into reserves. | 
|  | * | 
|  | * This is the last chance, in general, before the goto nopage. | 
|  | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. | 
|  | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. | 
|  | */ | 
|  | page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | /* This allocation should allow future memory freeing. */ | 
|  |  | 
|  | if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) | 
|  | && !in_interrupt()) { | 
|  | if (!(gfp_mask & __GFP_NOMEMALLOC)) { | 
|  | nofail_alloc: | 
|  | /* go through the zonelist yet again, ignoring mins */ | 
|  | page = get_page_from_freelist(gfp_mask, order, | 
|  | zonelist, ALLOC_NO_WATERMARKS); | 
|  | if (page) | 
|  | goto got_pg; | 
|  | if (gfp_mask & __GFP_NOFAIL) { | 
|  | blk_congestion_wait(WRITE, HZ/50); | 
|  | goto nofail_alloc; | 
|  | } | 
|  | } | 
|  | goto nopage; | 
|  | } | 
|  |  | 
|  | /* Atomic allocations - we can't balance anything */ | 
|  | if (!wait) | 
|  | goto nopage; | 
|  |  | 
|  | rebalance: | 
|  | cond_resched(); | 
|  |  | 
|  | /* We now go into synchronous reclaim */ | 
|  | cpuset_memory_pressure_bump(); | 
|  | p->flags |= PF_MEMALLOC; | 
|  | reclaim_state.reclaimed_slab = 0; | 
|  | p->reclaim_state = &reclaim_state; | 
|  |  | 
|  | did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); | 
|  |  | 
|  | p->reclaim_state = NULL; | 
|  | p->flags &= ~PF_MEMALLOC; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | if (likely(did_some_progress)) { | 
|  | page = get_page_from_freelist(gfp_mask, order, | 
|  | zonelist, alloc_flags); | 
|  | if (page) | 
|  | goto got_pg; | 
|  | } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { | 
|  | /* | 
|  | * Go through the zonelist yet one more time, keep | 
|  | * very high watermark here, this is only to catch | 
|  | * a parallel oom killing, we must fail if we're still | 
|  | * under heavy pressure. | 
|  | */ | 
|  | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, | 
|  | zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | out_of_memory(zonelist, gfp_mask, order); | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't let big-order allocations loop unless the caller explicitly | 
|  | * requests that.  Wait for some write requests to complete then retry. | 
|  | * | 
|  | * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order | 
|  | * <= 3, but that may not be true in other implementations. | 
|  | */ | 
|  | do_retry = 0; | 
|  | if (!(gfp_mask & __GFP_NORETRY)) { | 
|  | if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) | 
|  | do_retry = 1; | 
|  | if (gfp_mask & __GFP_NOFAIL) | 
|  | do_retry = 1; | 
|  | } | 
|  | if (do_retry) { | 
|  | blk_congestion_wait(WRITE, HZ/50); | 
|  | goto rebalance; | 
|  | } | 
|  |  | 
|  | nopage: | 
|  | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { | 
|  | printk(KERN_WARNING "%s: page allocation failure." | 
|  | " order:%d, mode:0x%x\n", | 
|  | p->comm, order, gfp_mask); | 
|  | dump_stack(); | 
|  | show_mem(); | 
|  | } | 
|  | got_pg: | 
|  | return page; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(__alloc_pages); | 
|  |  | 
|  | /* | 
|  | * Common helper functions. | 
|  | */ | 
|  | fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | struct page * page; | 
|  | page = alloc_pages(gfp_mask, order); | 
|  | if (!page) | 
|  | return 0; | 
|  | return (unsigned long) page_address(page); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(__get_free_pages); | 
|  |  | 
|  | fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) | 
|  | { | 
|  | struct page * page; | 
|  |  | 
|  | /* | 
|  | * get_zeroed_page() returns a 32-bit address, which cannot represent | 
|  | * a highmem page | 
|  | */ | 
|  | BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | 
|  |  | 
|  | page = alloc_pages(gfp_mask | __GFP_ZERO, 0); | 
|  | if (page) | 
|  | return (unsigned long) page_address(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(get_zeroed_page); | 
|  |  | 
|  | void __pagevec_free(struct pagevec *pvec) | 
|  | { | 
|  | int i = pagevec_count(pvec); | 
|  |  | 
|  | while (--i >= 0) | 
|  | free_hot_cold_page(pvec->pages[i], pvec->cold); | 
|  | } | 
|  |  | 
|  | fastcall void __free_pages(struct page *page, unsigned int order) | 
|  | { | 
|  | if (put_page_testzero(page)) { | 
|  | if (order == 0) | 
|  | free_hot_page(page); | 
|  | else | 
|  | __free_pages_ok(page, order); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(__free_pages); | 
|  |  | 
|  | fastcall void free_pages(unsigned long addr, unsigned int order) | 
|  | { | 
|  | if (addr != 0) { | 
|  | BUG_ON(!virt_addr_valid((void *)addr)); | 
|  | __free_pages(virt_to_page((void *)addr), order); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(free_pages); | 
|  |  | 
|  | /* | 
|  | * Total amount of free (allocatable) RAM: | 
|  | */ | 
|  | unsigned int nr_free_pages(void) | 
|  | { | 
|  | unsigned int sum = 0; | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_zone(zone) | 
|  | sum += zone->free_pages; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(nr_free_pages); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) | 
|  | { | 
|  | unsigned int i, sum = 0; | 
|  |  | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) | 
|  | sum += pgdat->node_zones[i].free_pages; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static unsigned int nr_free_zone_pages(int offset) | 
|  | { | 
|  | /* Just pick one node, since fallback list is circular */ | 
|  | pg_data_t *pgdat = NODE_DATA(numa_node_id()); | 
|  | unsigned int sum = 0; | 
|  |  | 
|  | struct zonelist *zonelist = pgdat->node_zonelists + offset; | 
|  | struct zone **zonep = zonelist->zones; | 
|  | struct zone *zone; | 
|  |  | 
|  | for (zone = *zonep++; zone; zone = *zonep++) { | 
|  | unsigned long size = zone->present_pages; | 
|  | unsigned long high = zone->pages_high; | 
|  | if (size > high) | 
|  | sum += size - high; | 
|  | } | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL | 
|  | */ | 
|  | unsigned int nr_free_buffer_pages(void) | 
|  | { | 
|  | return nr_free_zone_pages(gfp_zone(GFP_USER)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Amount of free RAM allocatable within all zones | 
|  | */ | 
|  | unsigned int nr_free_pagecache_pages(void) | 
|  | { | 
|  | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | unsigned int nr_free_highpages (void) | 
|  | { | 
|  | pg_data_t *pgdat; | 
|  | unsigned int pages = 0; | 
|  |  | 
|  | for_each_pgdat(pgdat) | 
|  | pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; | 
|  |  | 
|  | return pages; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static void show_node(struct zone *zone) | 
|  | { | 
|  | printk("Node %d ", zone->zone_pgdat->node_id); | 
|  | } | 
|  | #else | 
|  | #define show_node(zone)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Accumulate the page_state information across all CPUs. | 
|  | * The result is unavoidably approximate - it can change | 
|  | * during and after execution of this function. | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct page_state, page_states) = {0}; | 
|  |  | 
|  | atomic_t nr_pagecache = ATOMIC_INIT(0); | 
|  | EXPORT_SYMBOL(nr_pagecache); | 
|  | #ifdef CONFIG_SMP | 
|  | DEFINE_PER_CPU(long, nr_pagecache_local) = 0; | 
|  | #endif | 
|  |  | 
|  | static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) | 
|  | { | 
|  | int cpu = 0; | 
|  |  | 
|  | memset(ret, 0, nr * sizeof(unsigned long)); | 
|  | cpus_and(*cpumask, *cpumask, cpu_online_map); | 
|  |  | 
|  | cpu = first_cpu(*cpumask); | 
|  | while (cpu < NR_CPUS) { | 
|  | unsigned long *in, *out, off; | 
|  |  | 
|  | if (!cpu_isset(cpu, *cpumask)) | 
|  | continue; | 
|  |  | 
|  | in = (unsigned long *)&per_cpu(page_states, cpu); | 
|  |  | 
|  | cpu = next_cpu(cpu, *cpumask); | 
|  |  | 
|  | if (likely(cpu < NR_CPUS)) | 
|  | prefetch(&per_cpu(page_states, cpu)); | 
|  |  | 
|  | out = (unsigned long *)ret; | 
|  | for (off = 0; off < nr; off++) | 
|  | *out++ += *in++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void get_page_state_node(struct page_state *ret, int node) | 
|  | { | 
|  | int nr; | 
|  | cpumask_t mask = node_to_cpumask(node); | 
|  |  | 
|  | nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); | 
|  | nr /= sizeof(unsigned long); | 
|  |  | 
|  | __get_page_state(ret, nr+1, &mask); | 
|  | } | 
|  |  | 
|  | void get_page_state(struct page_state *ret) | 
|  | { | 
|  | int nr; | 
|  | cpumask_t mask = CPU_MASK_ALL; | 
|  |  | 
|  | nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); | 
|  | nr /= sizeof(unsigned long); | 
|  |  | 
|  | __get_page_state(ret, nr + 1, &mask); | 
|  | } | 
|  |  | 
|  | void get_full_page_state(struct page_state *ret) | 
|  | { | 
|  | cpumask_t mask = CPU_MASK_ALL; | 
|  |  | 
|  | __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); | 
|  | } | 
|  |  | 
|  | unsigned long read_page_state_offset(unsigned long offset) | 
|  | { | 
|  | unsigned long ret = 0; | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | unsigned long in; | 
|  |  | 
|  | in = (unsigned long)&per_cpu(page_states, cpu) + offset; | 
|  | ret += *((unsigned long *)in); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void __mod_page_state_offset(unsigned long offset, unsigned long delta) | 
|  | { | 
|  | void *ptr; | 
|  |  | 
|  | ptr = &__get_cpu_var(page_states); | 
|  | *(unsigned long *)(ptr + offset) += delta; | 
|  | } | 
|  | EXPORT_SYMBOL(__mod_page_state_offset); | 
|  |  | 
|  | void mod_page_state_offset(unsigned long offset, unsigned long delta) | 
|  | { | 
|  | unsigned long flags; | 
|  | void *ptr; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | ptr = &__get_cpu_var(page_states); | 
|  | *(unsigned long *)(ptr + offset) += delta; | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL(mod_page_state_offset); | 
|  |  | 
|  | void __get_zone_counts(unsigned long *active, unsigned long *inactive, | 
|  | unsigned long *free, struct pglist_data *pgdat) | 
|  | { | 
|  | struct zone *zones = pgdat->node_zones; | 
|  | int i; | 
|  |  | 
|  | *active = 0; | 
|  | *inactive = 0; | 
|  | *free = 0; | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | *active += zones[i].nr_active; | 
|  | *inactive += zones[i].nr_inactive; | 
|  | *free += zones[i].free_pages; | 
|  | } | 
|  | } | 
|  |  | 
|  | void get_zone_counts(unsigned long *active, | 
|  | unsigned long *inactive, unsigned long *free) | 
|  | { | 
|  | struct pglist_data *pgdat; | 
|  |  | 
|  | *active = 0; | 
|  | *inactive = 0; | 
|  | *free = 0; | 
|  | for_each_pgdat(pgdat) { | 
|  | unsigned long l, m, n; | 
|  | __get_zone_counts(&l, &m, &n, pgdat); | 
|  | *active += l; | 
|  | *inactive += m; | 
|  | *free += n; | 
|  | } | 
|  | } | 
|  |  | 
|  | void si_meminfo(struct sysinfo *val) | 
|  | { | 
|  | val->totalram = totalram_pages; | 
|  | val->sharedram = 0; | 
|  | val->freeram = nr_free_pages(); | 
|  | val->bufferram = nr_blockdev_pages(); | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | val->totalhigh = totalhigh_pages; | 
|  | val->freehigh = nr_free_highpages(); | 
|  | #else | 
|  | val->totalhigh = 0; | 
|  | val->freehigh = 0; | 
|  | #endif | 
|  | val->mem_unit = PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(si_meminfo); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | void si_meminfo_node(struct sysinfo *val, int nid) | 
|  | { | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  |  | 
|  | val->totalram = pgdat->node_present_pages; | 
|  | val->freeram = nr_free_pages_pgdat(pgdat); | 
|  | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; | 
|  | val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; | 
|  | val->mem_unit = PAGE_SIZE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
|  |  | 
|  | /* | 
|  | * Show free area list (used inside shift_scroll-lock stuff) | 
|  | * We also calculate the percentage fragmentation. We do this by counting the | 
|  | * memory on each free list with the exception of the first item on the list. | 
|  | */ | 
|  | void show_free_areas(void) | 
|  | { | 
|  | struct page_state ps; | 
|  | int cpu, temperature; | 
|  | unsigned long active; | 
|  | unsigned long inactive; | 
|  | unsigned long free; | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_zone(zone) { | 
|  | show_node(zone); | 
|  | printk("%s per-cpu:", zone->name); | 
|  |  | 
|  | if (!populated_zone(zone)) { | 
|  | printk(" empty\n"); | 
|  | continue; | 
|  | } else | 
|  | printk("\n"); | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct per_cpu_pageset *pageset; | 
|  |  | 
|  | pageset = zone_pcp(zone, cpu); | 
|  |  | 
|  | for (temperature = 0; temperature < 2; temperature++) | 
|  | printk("cpu %d %s: high %d, batch %d used:%d\n", | 
|  | cpu, | 
|  | temperature ? "cold" : "hot", | 
|  | pageset->pcp[temperature].high, | 
|  | pageset->pcp[temperature].batch, | 
|  | pageset->pcp[temperature].count); | 
|  | } | 
|  | } | 
|  |  | 
|  | get_page_state(&ps); | 
|  | get_zone_counts(&active, &inactive, &free); | 
|  |  | 
|  | printk("Free pages: %11ukB (%ukB HighMem)\n", | 
|  | K(nr_free_pages()), | 
|  | K(nr_free_highpages())); | 
|  |  | 
|  | printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " | 
|  | "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", | 
|  | active, | 
|  | inactive, | 
|  | ps.nr_dirty, | 
|  | ps.nr_writeback, | 
|  | ps.nr_unstable, | 
|  | nr_free_pages(), | 
|  | ps.nr_slab, | 
|  | ps.nr_mapped, | 
|  | ps.nr_page_table_pages); | 
|  |  | 
|  | for_each_zone(zone) { | 
|  | int i; | 
|  |  | 
|  | show_node(zone); | 
|  | printk("%s" | 
|  | " free:%lukB" | 
|  | " min:%lukB" | 
|  | " low:%lukB" | 
|  | " high:%lukB" | 
|  | " active:%lukB" | 
|  | " inactive:%lukB" | 
|  | " present:%lukB" | 
|  | " pages_scanned:%lu" | 
|  | " all_unreclaimable? %s" | 
|  | "\n", | 
|  | zone->name, | 
|  | K(zone->free_pages), | 
|  | K(zone->pages_min), | 
|  | K(zone->pages_low), | 
|  | K(zone->pages_high), | 
|  | K(zone->nr_active), | 
|  | K(zone->nr_inactive), | 
|  | K(zone->present_pages), | 
|  | zone->pages_scanned, | 
|  | (zone->all_unreclaimable ? "yes" : "no") | 
|  | ); | 
|  | printk("lowmem_reserve[]:"); | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) | 
|  | printk(" %lu", zone->lowmem_reserve[i]); | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | for_each_zone(zone) { | 
|  | unsigned long nr, flags, order, total = 0; | 
|  |  | 
|  | show_node(zone); | 
|  | printk("%s: ", zone->name); | 
|  | if (!populated_zone(zone)) { | 
|  | printk("empty\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | for (order = 0; order < MAX_ORDER; order++) { | 
|  | nr = zone->free_area[order].nr_free; | 
|  | total += nr << order; | 
|  | printk("%lu*%lukB ", nr, K(1UL) << order); | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | printk("= %lukB\n", K(total)); | 
|  | } | 
|  |  | 
|  | show_swap_cache_info(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Builds allocation fallback zone lists. | 
|  | * | 
|  | * Add all populated zones of a node to the zonelist. | 
|  | */ | 
|  | static int __init build_zonelists_node(pg_data_t *pgdat, | 
|  | struct zonelist *zonelist, int nr_zones, int zone_type) | 
|  | { | 
|  | struct zone *zone; | 
|  |  | 
|  | BUG_ON(zone_type > ZONE_HIGHMEM); | 
|  |  | 
|  | do { | 
|  | zone = pgdat->node_zones + zone_type; | 
|  | if (populated_zone(zone)) { | 
|  | #ifndef CONFIG_HIGHMEM | 
|  | BUG_ON(zone_type > ZONE_NORMAL); | 
|  | #endif | 
|  | zonelist->zones[nr_zones++] = zone; | 
|  | check_highest_zone(zone_type); | 
|  | } | 
|  | zone_type--; | 
|  |  | 
|  | } while (zone_type >= 0); | 
|  | return nr_zones; | 
|  | } | 
|  |  | 
|  | static inline int highest_zone(int zone_bits) | 
|  | { | 
|  | int res = ZONE_NORMAL; | 
|  | if (zone_bits & (__force int)__GFP_HIGHMEM) | 
|  | res = ZONE_HIGHMEM; | 
|  | if (zone_bits & (__force int)__GFP_DMA32) | 
|  | res = ZONE_DMA32; | 
|  | if (zone_bits & (__force int)__GFP_DMA) | 
|  | res = ZONE_DMA; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | #define MAX_NODE_LOAD (num_online_nodes()) | 
|  | static int __initdata node_load[MAX_NUMNODES]; | 
|  | /** | 
|  | * find_next_best_node - find the next node that should appear in a given node's fallback list | 
|  | * @node: node whose fallback list we're appending | 
|  | * @used_node_mask: nodemask_t of already used nodes | 
|  | * | 
|  | * We use a number of factors to determine which is the next node that should | 
|  | * appear on a given node's fallback list.  The node should not have appeared | 
|  | * already in @node's fallback list, and it should be the next closest node | 
|  | * according to the distance array (which contains arbitrary distance values | 
|  | * from each node to each node in the system), and should also prefer nodes | 
|  | * with no CPUs, since presumably they'll have very little allocation pressure | 
|  | * on them otherwise. | 
|  | * It returns -1 if no node is found. | 
|  | */ | 
|  | static int __init find_next_best_node(int node, nodemask_t *used_node_mask) | 
|  | { | 
|  | int n, val; | 
|  | int min_val = INT_MAX; | 
|  | int best_node = -1; | 
|  |  | 
|  | /* Use the local node if we haven't already */ | 
|  | if (!node_isset(node, *used_node_mask)) { | 
|  | node_set(node, *used_node_mask); | 
|  | return node; | 
|  | } | 
|  |  | 
|  | for_each_online_node(n) { | 
|  | cpumask_t tmp; | 
|  |  | 
|  | /* Don't want a node to appear more than once */ | 
|  | if (node_isset(n, *used_node_mask)) | 
|  | continue; | 
|  |  | 
|  | /* Use the distance array to find the distance */ | 
|  | val = node_distance(node, n); | 
|  |  | 
|  | /* Penalize nodes under us ("prefer the next node") */ | 
|  | val += (n < node); | 
|  |  | 
|  | /* Give preference to headless and unused nodes */ | 
|  | tmp = node_to_cpumask(n); | 
|  | if (!cpus_empty(tmp)) | 
|  | val += PENALTY_FOR_NODE_WITH_CPUS; | 
|  |  | 
|  | /* Slight preference for less loaded node */ | 
|  | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | 
|  | val += node_load[n]; | 
|  |  | 
|  | if (val < min_val) { | 
|  | min_val = val; | 
|  | best_node = n; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (best_node >= 0) | 
|  | node_set(best_node, *used_node_mask); | 
|  |  | 
|  | return best_node; | 
|  | } | 
|  |  | 
|  | static void __init build_zonelists(pg_data_t *pgdat) | 
|  | { | 
|  | int i, j, k, node, local_node; | 
|  | int prev_node, load; | 
|  | struct zonelist *zonelist; | 
|  | nodemask_t used_mask; | 
|  |  | 
|  | /* initialize zonelists */ | 
|  | for (i = 0; i < GFP_ZONETYPES; i++) { | 
|  | zonelist = pgdat->node_zonelists + i; | 
|  | zonelist->zones[0] = NULL; | 
|  | } | 
|  |  | 
|  | /* NUMA-aware ordering of nodes */ | 
|  | local_node = pgdat->node_id; | 
|  | load = num_online_nodes(); | 
|  | prev_node = local_node; | 
|  | nodes_clear(used_mask); | 
|  | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | 
|  | int distance = node_distance(local_node, node); | 
|  |  | 
|  | /* | 
|  | * If another node is sufficiently far away then it is better | 
|  | * to reclaim pages in a zone before going off node. | 
|  | */ | 
|  | if (distance > RECLAIM_DISTANCE) | 
|  | zone_reclaim_mode = 1; | 
|  |  | 
|  | /* | 
|  | * We don't want to pressure a particular node. | 
|  | * So adding penalty to the first node in same | 
|  | * distance group to make it round-robin. | 
|  | */ | 
|  |  | 
|  | if (distance != node_distance(local_node, prev_node)) | 
|  | node_load[node] += load; | 
|  | prev_node = node; | 
|  | load--; | 
|  | for (i = 0; i < GFP_ZONETYPES; i++) { | 
|  | zonelist = pgdat->node_zonelists + i; | 
|  | for (j = 0; zonelist->zones[j] != NULL; j++); | 
|  |  | 
|  | k = highest_zone(i); | 
|  |  | 
|  | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | 
|  | zonelist->zones[j] = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_NUMA */ | 
|  |  | 
|  | static void __init build_zonelists(pg_data_t *pgdat) | 
|  | { | 
|  | int i, j, k, node, local_node; | 
|  |  | 
|  | local_node = pgdat->node_id; | 
|  | for (i = 0; i < GFP_ZONETYPES; i++) { | 
|  | struct zonelist *zonelist; | 
|  |  | 
|  | zonelist = pgdat->node_zonelists + i; | 
|  |  | 
|  | j = 0; | 
|  | k = highest_zone(i); | 
|  | j = build_zonelists_node(pgdat, zonelist, j, k); | 
|  | /* | 
|  | * Now we build the zonelist so that it contains the zones | 
|  | * of all the other nodes. | 
|  | * We don't want to pressure a particular node, so when | 
|  | * building the zones for node N, we make sure that the | 
|  | * zones coming right after the local ones are those from | 
|  | * node N+1 (modulo N) | 
|  | */ | 
|  | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | 
|  | if (!node_online(node)) | 
|  | continue; | 
|  | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | 
|  | } | 
|  | for (node = 0; node < local_node; node++) { | 
|  | if (!node_online(node)) | 
|  | continue; | 
|  | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | 
|  | } | 
|  |  | 
|  | zonelist->zones[j] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_NUMA */ | 
|  |  | 
|  | void __init build_all_zonelists(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_online_node(i) | 
|  | build_zonelists(NODE_DATA(i)); | 
|  | printk("Built %i zonelists\n", num_online_nodes()); | 
|  | cpuset_init_current_mems_allowed(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper functions to size the waitqueue hash table. | 
|  | * Essentially these want to choose hash table sizes sufficiently | 
|  | * large so that collisions trying to wait on pages are rare. | 
|  | * But in fact, the number of active page waitqueues on typical | 
|  | * systems is ridiculously low, less than 200. So this is even | 
|  | * conservative, even though it seems large. | 
|  | * | 
|  | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | 
|  | * waitqueues, i.e. the size of the waitq table given the number of pages. | 
|  | */ | 
|  | #define PAGES_PER_WAITQUEUE	256 | 
|  |  | 
|  | static inline unsigned long wait_table_size(unsigned long pages) | 
|  | { | 
|  | unsigned long size = 1; | 
|  |  | 
|  | pages /= PAGES_PER_WAITQUEUE; | 
|  |  | 
|  | while (size < pages) | 
|  | size <<= 1; | 
|  |  | 
|  | /* | 
|  | * Once we have dozens or even hundreds of threads sleeping | 
|  | * on IO we've got bigger problems than wait queue collision. | 
|  | * Limit the size of the wait table to a reasonable size. | 
|  | */ | 
|  | size = min(size, 4096UL); | 
|  |  | 
|  | return max(size, 4UL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is an integer logarithm so that shifts can be used later | 
|  | * to extract the more random high bits from the multiplicative | 
|  | * hash function before the remainder is taken. | 
|  | */ | 
|  | static inline unsigned long wait_table_bits(unsigned long size) | 
|  | { | 
|  | return ffz(~size); | 
|  | } | 
|  |  | 
|  | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) | 
|  |  | 
|  | static void __init calculate_zone_totalpages(struct pglist_data *pgdat, | 
|  | unsigned long *zones_size, unsigned long *zholes_size) | 
|  | { | 
|  | unsigned long realtotalpages, totalpages = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) | 
|  | totalpages += zones_size[i]; | 
|  | pgdat->node_spanned_pages = totalpages; | 
|  |  | 
|  | realtotalpages = totalpages; | 
|  | if (zholes_size) | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) | 
|  | realtotalpages -= zholes_size[i]; | 
|  | pgdat->node_present_pages = realtotalpages; | 
|  | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initially all pages are reserved - free ones are freed | 
|  | * up by free_all_bootmem() once the early boot process is | 
|  | * done. Non-atomic initialization, single-pass. | 
|  | */ | 
|  | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, | 
|  | unsigned long start_pfn) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long end_pfn = start_pfn + size; | 
|  | unsigned long pfn; | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
|  | if (!early_pfn_valid(pfn)) | 
|  | continue; | 
|  | page = pfn_to_page(pfn); | 
|  | set_page_links(page, zone, nid, pfn); | 
|  | set_page_count(page, 1); | 
|  | reset_page_mapcount(page); | 
|  | SetPageReserved(page); | 
|  | INIT_LIST_HEAD(&page->lru); | 
|  | #ifdef WANT_PAGE_VIRTUAL | 
|  | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | 
|  | if (!is_highmem_idx(zone)) | 
|  | set_page_address(page, __va(pfn << PAGE_SHIFT)); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, | 
|  | unsigned long size) | 
|  | { | 
|  | int order; | 
|  | for (order = 0; order < MAX_ORDER ; order++) { | 
|  | INIT_LIST_HEAD(&zone->free_area[order].free_list); | 
|  | zone->free_area[order].nr_free = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr) | 
|  | void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, | 
|  | unsigned long size) | 
|  | { | 
|  | unsigned long snum = pfn_to_section_nr(pfn); | 
|  | unsigned long end = pfn_to_section_nr(pfn + size); | 
|  |  | 
|  | if (FLAGS_HAS_NODE) | 
|  | zone_table[ZONETABLE_INDEX(nid, zid)] = zone; | 
|  | else | 
|  | for (; snum <= end; snum++) | 
|  | zone_table[ZONETABLE_INDEX(snum, zid)] = zone; | 
|  | } | 
|  |  | 
|  | #ifndef __HAVE_ARCH_MEMMAP_INIT | 
|  | #define memmap_init(size, nid, zone, start_pfn) \ | 
|  | memmap_init_zone((size), (nid), (zone), (start_pfn)) | 
|  | #endif | 
|  |  | 
|  | static int __cpuinit zone_batchsize(struct zone *zone) | 
|  | { | 
|  | int batch; | 
|  |  | 
|  | /* | 
|  | * The per-cpu-pages pools are set to around 1000th of the | 
|  | * size of the zone.  But no more than 1/2 of a meg. | 
|  | * | 
|  | * OK, so we don't know how big the cache is.  So guess. | 
|  | */ | 
|  | batch = zone->present_pages / 1024; | 
|  | if (batch * PAGE_SIZE > 512 * 1024) | 
|  | batch = (512 * 1024) / PAGE_SIZE; | 
|  | batch /= 4;		/* We effectively *= 4 below */ | 
|  | if (batch < 1) | 
|  | batch = 1; | 
|  |  | 
|  | /* | 
|  | * Clamp the batch to a 2^n - 1 value. Having a power | 
|  | * of 2 value was found to be more likely to have | 
|  | * suboptimal cache aliasing properties in some cases. | 
|  | * | 
|  | * For example if 2 tasks are alternately allocating | 
|  | * batches of pages, one task can end up with a lot | 
|  | * of pages of one half of the possible page colors | 
|  | * and the other with pages of the other colors. | 
|  | */ | 
|  | batch = (1 << (fls(batch + batch/2)-1)) - 1; | 
|  |  | 
|  | return batch; | 
|  | } | 
|  |  | 
|  | inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) | 
|  | { | 
|  | struct per_cpu_pages *pcp; | 
|  |  | 
|  | memset(p, 0, sizeof(*p)); | 
|  |  | 
|  | pcp = &p->pcp[0];		/* hot */ | 
|  | pcp->count = 0; | 
|  | pcp->high = 6 * batch; | 
|  | pcp->batch = max(1UL, 1 * batch); | 
|  | INIT_LIST_HEAD(&pcp->list); | 
|  |  | 
|  | pcp = &p->pcp[1];		/* cold*/ | 
|  | pcp->count = 0; | 
|  | pcp->high = 2 * batch; | 
|  | pcp->batch = max(1UL, batch/2); | 
|  | INIT_LIST_HEAD(&pcp->list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist | 
|  | * to the value high for the pageset p. | 
|  | */ | 
|  |  | 
|  | static void setup_pagelist_highmark(struct per_cpu_pageset *p, | 
|  | unsigned long high) | 
|  | { | 
|  | struct per_cpu_pages *pcp; | 
|  |  | 
|  | pcp = &p->pcp[0]; /* hot list */ | 
|  | pcp->high = high; | 
|  | pcp->batch = max(1UL, high/4); | 
|  | if ((high/4) > (PAGE_SHIFT * 8)) | 
|  | pcp->batch = PAGE_SHIFT * 8; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Boot pageset table. One per cpu which is going to be used for all | 
|  | * zones and all nodes. The parameters will be set in such a way | 
|  | * that an item put on a list will immediately be handed over to | 
|  | * the buddy list. This is safe since pageset manipulation is done | 
|  | * with interrupts disabled. | 
|  | * | 
|  | * Some NUMA counter updates may also be caught by the boot pagesets. | 
|  | * | 
|  | * The boot_pagesets must be kept even after bootup is complete for | 
|  | * unused processors and/or zones. They do play a role for bootstrapping | 
|  | * hotplugged processors. | 
|  | * | 
|  | * zoneinfo_show() and maybe other functions do | 
|  | * not check if the processor is online before following the pageset pointer. | 
|  | * Other parts of the kernel may not check if the zone is available. | 
|  | */ | 
|  | static struct per_cpu_pageset boot_pageset[NR_CPUS]; | 
|  |  | 
|  | /* | 
|  | * Dynamically allocate memory for the | 
|  | * per cpu pageset array in struct zone. | 
|  | */ | 
|  | static int __cpuinit process_zones(int cpu) | 
|  | { | 
|  | struct zone *zone, *dzone; | 
|  |  | 
|  | for_each_zone(zone) { | 
|  |  | 
|  | zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), | 
|  | GFP_KERNEL, cpu_to_node(cpu)); | 
|  | if (!zone_pcp(zone, cpu)) | 
|  | goto bad; | 
|  |  | 
|  | setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); | 
|  |  | 
|  | if (percpu_pagelist_fraction) | 
|  | setup_pagelist_highmark(zone_pcp(zone, cpu), | 
|  | (zone->present_pages / percpu_pagelist_fraction)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | bad: | 
|  | for_each_zone(dzone) { | 
|  | if (dzone == zone) | 
|  | break; | 
|  | kfree(zone_pcp(dzone, cpu)); | 
|  | zone_pcp(dzone, cpu) = NULL; | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static inline void free_zone_pagesets(int cpu) | 
|  | { | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_zone(zone) { | 
|  | struct per_cpu_pageset *pset = zone_pcp(zone, cpu); | 
|  |  | 
|  | zone_pcp(zone, cpu) = NULL; | 
|  | kfree(pset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, | 
|  | unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | int cpu = (long)hcpu; | 
|  | int ret = NOTIFY_OK; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | if (process_zones(cpu)) | 
|  | ret = NOTIFY_BAD; | 
|  | break; | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_DEAD: | 
|  | free_zone_pagesets(cpu); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct notifier_block pageset_notifier = | 
|  | { &pageset_cpuup_callback, NULL, 0 }; | 
|  |  | 
|  | void __init setup_per_cpu_pageset(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | /* Initialize per_cpu_pageset for cpu 0. | 
|  | * A cpuup callback will do this for every cpu | 
|  | * as it comes online | 
|  | */ | 
|  | err = process_zones(smp_processor_id()); | 
|  | BUG_ON(err); | 
|  | register_cpu_notifier(&pageset_notifier); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static __meminit | 
|  | void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) | 
|  | { | 
|  | int i; | 
|  | struct pglist_data *pgdat = zone->zone_pgdat; | 
|  |  | 
|  | /* | 
|  | * The per-page waitqueue mechanism uses hashed waitqueues | 
|  | * per zone. | 
|  | */ | 
|  | zone->wait_table_size = wait_table_size(zone_size_pages); | 
|  | zone->wait_table_bits =	wait_table_bits(zone->wait_table_size); | 
|  | zone->wait_table = (wait_queue_head_t *) | 
|  | alloc_bootmem_node(pgdat, zone->wait_table_size | 
|  | * sizeof(wait_queue_head_t)); | 
|  |  | 
|  | for(i = 0; i < zone->wait_table_size; ++i) | 
|  | init_waitqueue_head(zone->wait_table + i); | 
|  | } | 
|  |  | 
|  | static __meminit void zone_pcp_init(struct zone *zone) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long batch = zone_batchsize(zone); | 
|  |  | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | #ifdef CONFIG_NUMA | 
|  | /* Early boot. Slab allocator not functional yet */ | 
|  | zone_pcp(zone, cpu) = &boot_pageset[cpu]; | 
|  | setup_pageset(&boot_pageset[cpu],0); | 
|  | #else | 
|  | setup_pageset(zone_pcp(zone,cpu), batch); | 
|  | #endif | 
|  | } | 
|  | printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n", | 
|  | zone->name, zone->present_pages, batch); | 
|  | } | 
|  |  | 
|  | static __meminit void init_currently_empty_zone(struct zone *zone, | 
|  | unsigned long zone_start_pfn, unsigned long size) | 
|  | { | 
|  | struct pglist_data *pgdat = zone->zone_pgdat; | 
|  |  | 
|  | zone_wait_table_init(zone, size); | 
|  | pgdat->nr_zones = zone_idx(zone) + 1; | 
|  |  | 
|  | zone->zone_mem_map = pfn_to_page(zone_start_pfn); | 
|  | zone->zone_start_pfn = zone_start_pfn; | 
|  |  | 
|  | memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); | 
|  |  | 
|  | zone_init_free_lists(pgdat, zone, zone->spanned_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the zone data structures: | 
|  | *   - mark all pages reserved | 
|  | *   - mark all memory queues empty | 
|  | *   - clear the memory bitmaps | 
|  | */ | 
|  | static void __init free_area_init_core(struct pglist_data *pgdat, | 
|  | unsigned long *zones_size, unsigned long *zholes_size) | 
|  | { | 
|  | unsigned long j; | 
|  | int nid = pgdat->node_id; | 
|  | unsigned long zone_start_pfn = pgdat->node_start_pfn; | 
|  |  | 
|  | pgdat_resize_init(pgdat); | 
|  | pgdat->nr_zones = 0; | 
|  | init_waitqueue_head(&pgdat->kswapd_wait); | 
|  | pgdat->kswapd_max_order = 0; | 
|  |  | 
|  | for (j = 0; j < MAX_NR_ZONES; j++) { | 
|  | struct zone *zone = pgdat->node_zones + j; | 
|  | unsigned long size, realsize; | 
|  |  | 
|  | realsize = size = zones_size[j]; | 
|  | if (zholes_size) | 
|  | realsize -= zholes_size[j]; | 
|  |  | 
|  | if (j < ZONE_HIGHMEM) | 
|  | nr_kernel_pages += realsize; | 
|  | nr_all_pages += realsize; | 
|  |  | 
|  | zone->spanned_pages = size; | 
|  | zone->present_pages = realsize; | 
|  | zone->name = zone_names[j]; | 
|  | spin_lock_init(&zone->lock); | 
|  | spin_lock_init(&zone->lru_lock); | 
|  | zone_seqlock_init(zone); | 
|  | zone->zone_pgdat = pgdat; | 
|  | zone->free_pages = 0; | 
|  |  | 
|  | zone->temp_priority = zone->prev_priority = DEF_PRIORITY; | 
|  |  | 
|  | zone_pcp_init(zone); | 
|  | INIT_LIST_HEAD(&zone->active_list); | 
|  | INIT_LIST_HEAD(&zone->inactive_list); | 
|  | zone->nr_scan_active = 0; | 
|  | zone->nr_scan_inactive = 0; | 
|  | zone->nr_active = 0; | 
|  | zone->nr_inactive = 0; | 
|  | atomic_set(&zone->reclaim_in_progress, 0); | 
|  | if (!size) | 
|  | continue; | 
|  |  | 
|  | zonetable_add(zone, nid, j, zone_start_pfn, size); | 
|  | init_currently_empty_zone(zone, zone_start_pfn, size); | 
|  | zone_start_pfn += size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init alloc_node_mem_map(struct pglist_data *pgdat) | 
|  | { | 
|  | /* Skip empty nodes */ | 
|  | if (!pgdat->node_spanned_pages) | 
|  | return; | 
|  |  | 
|  | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
|  | /* ia64 gets its own node_mem_map, before this, without bootmem */ | 
|  | if (!pgdat->node_mem_map) { | 
|  | unsigned long size; | 
|  | struct page *map; | 
|  |  | 
|  | size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); | 
|  | map = alloc_remap(pgdat->node_id, size); | 
|  | if (!map) | 
|  | map = alloc_bootmem_node(pgdat, size); | 
|  | pgdat->node_mem_map = map; | 
|  | } | 
|  | #ifdef CONFIG_FLATMEM | 
|  | /* | 
|  | * With no DISCONTIG, the global mem_map is just set as node 0's | 
|  | */ | 
|  | if (pgdat == NODE_DATA(0)) | 
|  | mem_map = NODE_DATA(0)->node_mem_map; | 
|  | #endif | 
|  | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ | 
|  | } | 
|  |  | 
|  | void __init free_area_init_node(int nid, struct pglist_data *pgdat, | 
|  | unsigned long *zones_size, unsigned long node_start_pfn, | 
|  | unsigned long *zholes_size) | 
|  | { | 
|  | pgdat->node_id = nid; | 
|  | pgdat->node_start_pfn = node_start_pfn; | 
|  | calculate_zone_totalpages(pgdat, zones_size, zholes_size); | 
|  |  | 
|  | alloc_node_mem_map(pgdat); | 
|  |  | 
|  | free_area_init_core(pgdat, zones_size, zholes_size); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  | static bootmem_data_t contig_bootmem_data; | 
|  | struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; | 
|  |  | 
|  | EXPORT_SYMBOL(contig_page_data); | 
|  | #endif | 
|  |  | 
|  | void __init free_area_init(unsigned long *zones_size) | 
|  | { | 
|  | free_area_init_node(0, NODE_DATA(0), zones_size, | 
|  | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  |  | 
|  | #include <linux/seq_file.h> | 
|  |  | 
|  | static void *frag_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | pg_data_t *pgdat; | 
|  | loff_t node = *pos; | 
|  |  | 
|  | for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) | 
|  | --node; | 
|  |  | 
|  | return pgdat; | 
|  | } | 
|  |  | 
|  | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) | 
|  | { | 
|  | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  |  | 
|  | (*pos)++; | 
|  | return pgdat->pgdat_next; | 
|  | } | 
|  |  | 
|  | static void frag_stop(struct seq_file *m, void *arg) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This walks the free areas for each zone. | 
|  | */ | 
|  | static int frag_show(struct seq_file *m, void *arg) | 
|  | { | 
|  | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  | struct zone *zone; | 
|  | struct zone *node_zones = pgdat->node_zones; | 
|  | unsigned long flags; | 
|  | int order; | 
|  |  | 
|  | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | 
|  | for (order = 0; order < MAX_ORDER; ++order) | 
|  | seq_printf(m, "%6lu ", zone->free_area[order].nr_free); | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct seq_operations fragmentation_op = { | 
|  | .start	= frag_start, | 
|  | .next	= frag_next, | 
|  | .stop	= frag_stop, | 
|  | .show	= frag_show, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Output information about zones in @pgdat. | 
|  | */ | 
|  | static int zoneinfo_show(struct seq_file *m, void *arg) | 
|  | { | 
|  | pg_data_t *pgdat = arg; | 
|  | struct zone *zone; | 
|  | struct zone *node_zones = pgdat->node_zones; | 
|  | unsigned long flags; | 
|  |  | 
|  | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { | 
|  | int i; | 
|  |  | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); | 
|  | seq_printf(m, | 
|  | "\n  pages free     %lu" | 
|  | "\n        min      %lu" | 
|  | "\n        low      %lu" | 
|  | "\n        high     %lu" | 
|  | "\n        active   %lu" | 
|  | "\n        inactive %lu" | 
|  | "\n        scanned  %lu (a: %lu i: %lu)" | 
|  | "\n        spanned  %lu" | 
|  | "\n        present  %lu", | 
|  | zone->free_pages, | 
|  | zone->pages_min, | 
|  | zone->pages_low, | 
|  | zone->pages_high, | 
|  | zone->nr_active, | 
|  | zone->nr_inactive, | 
|  | zone->pages_scanned, | 
|  | zone->nr_scan_active, zone->nr_scan_inactive, | 
|  | zone->spanned_pages, | 
|  | zone->present_pages); | 
|  | seq_printf(m, | 
|  | "\n        protection: (%lu", | 
|  | zone->lowmem_reserve[0]); | 
|  | for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) | 
|  | seq_printf(m, ", %lu", zone->lowmem_reserve[i]); | 
|  | seq_printf(m, | 
|  | ")" | 
|  | "\n  pagesets"); | 
|  | for_each_online_cpu(i) { | 
|  | struct per_cpu_pageset *pageset; | 
|  | int j; | 
|  |  | 
|  | pageset = zone_pcp(zone, i); | 
|  | for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { | 
|  | if (pageset->pcp[j].count) | 
|  | break; | 
|  | } | 
|  | if (j == ARRAY_SIZE(pageset->pcp)) | 
|  | continue; | 
|  | for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { | 
|  | seq_printf(m, | 
|  | "\n    cpu: %i pcp: %i" | 
|  | "\n              count: %i" | 
|  | "\n              high:  %i" | 
|  | "\n              batch: %i", | 
|  | i, j, | 
|  | pageset->pcp[j].count, | 
|  | pageset->pcp[j].high, | 
|  | pageset->pcp[j].batch); | 
|  | } | 
|  | #ifdef CONFIG_NUMA | 
|  | seq_printf(m, | 
|  | "\n            numa_hit:       %lu" | 
|  | "\n            numa_miss:      %lu" | 
|  | "\n            numa_foreign:   %lu" | 
|  | "\n            interleave_hit: %lu" | 
|  | "\n            local_node:     %lu" | 
|  | "\n            other_node:     %lu", | 
|  | pageset->numa_hit, | 
|  | pageset->numa_miss, | 
|  | pageset->numa_foreign, | 
|  | pageset->interleave_hit, | 
|  | pageset->local_node, | 
|  | pageset->other_node); | 
|  | #endif | 
|  | } | 
|  | seq_printf(m, | 
|  | "\n  all_unreclaimable: %u" | 
|  | "\n  prev_priority:     %i" | 
|  | "\n  temp_priority:     %i" | 
|  | "\n  start_pfn:         %lu", | 
|  | zone->all_unreclaimable, | 
|  | zone->prev_priority, | 
|  | zone->temp_priority, | 
|  | zone->zone_start_pfn); | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct seq_operations zoneinfo_op = { | 
|  | .start	= frag_start, /* iterate over all zones. The same as in | 
|  | * fragmentation. */ | 
|  | .next	= frag_next, | 
|  | .stop	= frag_stop, | 
|  | .show	= zoneinfo_show, | 
|  | }; | 
|  |  | 
|  | static char *vmstat_text[] = { | 
|  | "nr_dirty", | 
|  | "nr_writeback", | 
|  | "nr_unstable", | 
|  | "nr_page_table_pages", | 
|  | "nr_mapped", | 
|  | "nr_slab", | 
|  |  | 
|  | "pgpgin", | 
|  | "pgpgout", | 
|  | "pswpin", | 
|  | "pswpout", | 
|  |  | 
|  | "pgalloc_high", | 
|  | "pgalloc_normal", | 
|  | "pgalloc_dma32", | 
|  | "pgalloc_dma", | 
|  |  | 
|  | "pgfree", | 
|  | "pgactivate", | 
|  | "pgdeactivate", | 
|  |  | 
|  | "pgfault", | 
|  | "pgmajfault", | 
|  |  | 
|  | "pgrefill_high", | 
|  | "pgrefill_normal", | 
|  | "pgrefill_dma32", | 
|  | "pgrefill_dma", | 
|  |  | 
|  | "pgsteal_high", | 
|  | "pgsteal_normal", | 
|  | "pgsteal_dma32", | 
|  | "pgsteal_dma", | 
|  |  | 
|  | "pgscan_kswapd_high", | 
|  | "pgscan_kswapd_normal", | 
|  | "pgscan_kswapd_dma32", | 
|  | "pgscan_kswapd_dma", | 
|  |  | 
|  | "pgscan_direct_high", | 
|  | "pgscan_direct_normal", | 
|  | "pgscan_direct_dma32", | 
|  | "pgscan_direct_dma", | 
|  |  | 
|  | "pginodesteal", | 
|  | "slabs_scanned", | 
|  | "kswapd_steal", | 
|  | "kswapd_inodesteal", | 
|  | "pageoutrun", | 
|  | "allocstall", | 
|  |  | 
|  | "pgrotated", | 
|  | "nr_bounce", | 
|  | }; | 
|  |  | 
|  | static void *vmstat_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | struct page_state *ps; | 
|  |  | 
|  | if (*pos >= ARRAY_SIZE(vmstat_text)) | 
|  | return NULL; | 
|  |  | 
|  | ps = kmalloc(sizeof(*ps), GFP_KERNEL); | 
|  | m->private = ps; | 
|  | if (!ps) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | get_full_page_state(ps); | 
|  | ps->pgpgin /= 2;		/* sectors -> kbytes */ | 
|  | ps->pgpgout /= 2; | 
|  | return (unsigned long *)ps + *pos; | 
|  | } | 
|  |  | 
|  | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) | 
|  | { | 
|  | (*pos)++; | 
|  | if (*pos >= ARRAY_SIZE(vmstat_text)) | 
|  | return NULL; | 
|  | return (unsigned long *)m->private + *pos; | 
|  | } | 
|  |  | 
|  | static int vmstat_show(struct seq_file *m, void *arg) | 
|  | { | 
|  | unsigned long *l = arg; | 
|  | unsigned long off = l - (unsigned long *)m->private; | 
|  |  | 
|  | seq_printf(m, "%s %lu\n", vmstat_text[off], *l); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vmstat_stop(struct seq_file *m, void *arg) | 
|  | { | 
|  | kfree(m->private); | 
|  | m->private = NULL; | 
|  | } | 
|  |  | 
|  | struct seq_operations vmstat_op = { | 
|  | .start	= vmstat_start, | 
|  | .next	= vmstat_next, | 
|  | .stop	= vmstat_stop, | 
|  | .show	= vmstat_show, | 
|  | }; | 
|  |  | 
|  | #endif /* CONFIG_PROC_FS */ | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static int page_alloc_cpu_notify(struct notifier_block *self, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | int cpu = (unsigned long)hcpu; | 
|  | long *count; | 
|  | unsigned long *src, *dest; | 
|  |  | 
|  | if (action == CPU_DEAD) { | 
|  | int i; | 
|  |  | 
|  | /* Drain local pagecache count. */ | 
|  | count = &per_cpu(nr_pagecache_local, cpu); | 
|  | atomic_add(*count, &nr_pagecache); | 
|  | *count = 0; | 
|  | local_irq_disable(); | 
|  | __drain_pages(cpu); | 
|  |  | 
|  | /* Add dead cpu's page_states to our own. */ | 
|  | dest = (unsigned long *)&__get_cpu_var(page_states); | 
|  | src = (unsigned long *)&per_cpu(page_states, cpu); | 
|  |  | 
|  | for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); | 
|  | i++) { | 
|  | dest[i] += src[i]; | 
|  | src[i] = 0; | 
|  | } | 
|  |  | 
|  | local_irq_enable(); | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | void __init page_alloc_init(void) | 
|  | { | 
|  | hotcpu_notifier(page_alloc_cpu_notify, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setup_per_zone_lowmem_reserve - called whenever | 
|  | *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone | 
|  | *	has a correct pages reserved value, so an adequate number of | 
|  | *	pages are left in the zone after a successful __alloc_pages(). | 
|  | */ | 
|  | static void setup_per_zone_lowmem_reserve(void) | 
|  | { | 
|  | struct pglist_data *pgdat; | 
|  | int j, idx; | 
|  |  | 
|  | for_each_pgdat(pgdat) { | 
|  | for (j = 0; j < MAX_NR_ZONES; j++) { | 
|  | struct zone *zone = pgdat->node_zones + j; | 
|  | unsigned long present_pages = zone->present_pages; | 
|  |  | 
|  | zone->lowmem_reserve[j] = 0; | 
|  |  | 
|  | for (idx = j-1; idx >= 0; idx--) { | 
|  | struct zone *lower_zone; | 
|  |  | 
|  | if (sysctl_lowmem_reserve_ratio[idx] < 1) | 
|  | sysctl_lowmem_reserve_ratio[idx] = 1; | 
|  |  | 
|  | lower_zone = pgdat->node_zones + idx; | 
|  | lower_zone->lowmem_reserve[j] = present_pages / | 
|  | sysctl_lowmem_reserve_ratio[idx]; | 
|  | present_pages += lower_zone->present_pages; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures | 
|  | *	that the pages_{min,low,high} values for each zone are set correctly | 
|  | *	with respect to min_free_kbytes. | 
|  | */ | 
|  | void setup_per_zone_pages_min(void) | 
|  | { | 
|  | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | 
|  | unsigned long lowmem_pages = 0; | 
|  | struct zone *zone; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Calculate total number of !ZONE_HIGHMEM pages */ | 
|  | for_each_zone(zone) { | 
|  | if (!is_highmem(zone)) | 
|  | lowmem_pages += zone->present_pages; | 
|  | } | 
|  |  | 
|  | for_each_zone(zone) { | 
|  | unsigned long tmp; | 
|  | spin_lock_irqsave(&zone->lru_lock, flags); | 
|  | tmp = (pages_min * zone->present_pages) / lowmem_pages; | 
|  | if (is_highmem(zone)) { | 
|  | /* | 
|  | * __GFP_HIGH and PF_MEMALLOC allocations usually don't | 
|  | * need highmem pages, so cap pages_min to a small | 
|  | * value here. | 
|  | * | 
|  | * The (pages_high-pages_low) and (pages_low-pages_min) | 
|  | * deltas controls asynch page reclaim, and so should | 
|  | * not be capped for highmem. | 
|  | */ | 
|  | int min_pages; | 
|  |  | 
|  | min_pages = zone->present_pages / 1024; | 
|  | if (min_pages < SWAP_CLUSTER_MAX) | 
|  | min_pages = SWAP_CLUSTER_MAX; | 
|  | if (min_pages > 128) | 
|  | min_pages = 128; | 
|  | zone->pages_min = min_pages; | 
|  | } else { | 
|  | /* | 
|  | * If it's a lowmem zone, reserve a number of pages | 
|  | * proportionate to the zone's size. | 
|  | */ | 
|  | zone->pages_min = tmp; | 
|  | } | 
|  |  | 
|  | zone->pages_low   = zone->pages_min + tmp / 4; | 
|  | zone->pages_high  = zone->pages_min + tmp / 2; | 
|  | spin_unlock_irqrestore(&zone->lru_lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise min_free_kbytes. | 
|  | * | 
|  | * For small machines we want it small (128k min).  For large machines | 
|  | * we want it large (64MB max).  But it is not linear, because network | 
|  | * bandwidth does not increase linearly with machine size.  We use | 
|  | * | 
|  | * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | 
|  | *	min_free_kbytes = sqrt(lowmem_kbytes * 16) | 
|  | * | 
|  | * which yields | 
|  | * | 
|  | * 16MB:	512k | 
|  | * 32MB:	724k | 
|  | * 64MB:	1024k | 
|  | * 128MB:	1448k | 
|  | * 256MB:	2048k | 
|  | * 512MB:	2896k | 
|  | * 1024MB:	4096k | 
|  | * 2048MB:	5792k | 
|  | * 4096MB:	8192k | 
|  | * 8192MB:	11584k | 
|  | * 16384MB:	16384k | 
|  | */ | 
|  | static int __init init_per_zone_pages_min(void) | 
|  | { | 
|  | unsigned long lowmem_kbytes; | 
|  |  | 
|  | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | 
|  |  | 
|  | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | 
|  | if (min_free_kbytes < 128) | 
|  | min_free_kbytes = 128; | 
|  | if (min_free_kbytes > 65536) | 
|  | min_free_kbytes = 65536; | 
|  | setup_per_zone_pages_min(); | 
|  | setup_per_zone_lowmem_reserve(); | 
|  | return 0; | 
|  | } | 
|  | module_init(init_per_zone_pages_min) | 
|  |  | 
|  | /* | 
|  | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | 
|  | *	that we can call two helper functions whenever min_free_kbytes | 
|  | *	changes. | 
|  | */ | 
|  | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, | 
|  | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | proc_dointvec(table, write, file, buffer, length, ppos); | 
|  | setup_per_zone_pages_min(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | 
|  | *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | 
|  | *	whenever sysctl_lowmem_reserve_ratio changes. | 
|  | * | 
|  | * The reserve ratio obviously has absolutely no relation with the | 
|  | * pages_min watermarks. The lowmem reserve ratio can only make sense | 
|  | * if in function of the boot time zone sizes. | 
|  | */ | 
|  | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, | 
|  | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | proc_dointvec_minmax(table, write, file, buffer, length, ppos); | 
|  | setup_per_zone_lowmem_reserve(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | 
|  | * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist | 
|  | * can have before it gets flushed back to buddy allocator. | 
|  | */ | 
|  |  | 
|  | int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, | 
|  | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | struct zone *zone; | 
|  | unsigned int cpu; | 
|  | int ret; | 
|  |  | 
|  | ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); | 
|  | if (!write || (ret == -EINVAL)) | 
|  | return ret; | 
|  | for_each_zone(zone) { | 
|  | for_each_online_cpu(cpu) { | 
|  | unsigned long  high; | 
|  | high = zone->present_pages / percpu_pagelist_fraction; | 
|  | setup_pagelist_highmark(zone_pcp(zone, cpu), high); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __initdata int hashdist = HASHDIST_DEFAULT; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static int __init set_hashdist(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return 0; | 
|  | hashdist = simple_strtoul(str, &str, 0); | 
|  | return 1; | 
|  | } | 
|  | __setup("hashdist=", set_hashdist); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * allocate a large system hash table from bootmem | 
|  | * - it is assumed that the hash table must contain an exact power-of-2 | 
|  | *   quantity of entries | 
|  | * - limit is the number of hash buckets, not the total allocation size | 
|  | */ | 
|  | void *__init alloc_large_system_hash(const char *tablename, | 
|  | unsigned long bucketsize, | 
|  | unsigned long numentries, | 
|  | int scale, | 
|  | int flags, | 
|  | unsigned int *_hash_shift, | 
|  | unsigned int *_hash_mask, | 
|  | unsigned long limit) | 
|  | { | 
|  | unsigned long long max = limit; | 
|  | unsigned long log2qty, size; | 
|  | void *table = NULL; | 
|  |  | 
|  | /* allow the kernel cmdline to have a say */ | 
|  | if (!numentries) { | 
|  | /* round applicable memory size up to nearest megabyte */ | 
|  | numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; | 
|  | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; | 
|  | numentries >>= 20 - PAGE_SHIFT; | 
|  | numentries <<= 20 - PAGE_SHIFT; | 
|  |  | 
|  | /* limit to 1 bucket per 2^scale bytes of low memory */ | 
|  | if (scale > PAGE_SHIFT) | 
|  | numentries >>= (scale - PAGE_SHIFT); | 
|  | else | 
|  | numentries <<= (PAGE_SHIFT - scale); | 
|  | } | 
|  | /* rounded up to nearest power of 2 in size */ | 
|  | numentries = 1UL << (long_log2(numentries) + 1); | 
|  |  | 
|  | /* limit allocation size to 1/16 total memory by default */ | 
|  | if (max == 0) { | 
|  | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | 
|  | do_div(max, bucketsize); | 
|  | } | 
|  |  | 
|  | if (numentries > max) | 
|  | numentries = max; | 
|  |  | 
|  | log2qty = long_log2(numentries); | 
|  |  | 
|  | do { | 
|  | size = bucketsize << log2qty; | 
|  | if (flags & HASH_EARLY) | 
|  | table = alloc_bootmem(size); | 
|  | else if (hashdist) | 
|  | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | 
|  | else { | 
|  | unsigned long order; | 
|  | for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) | 
|  | ; | 
|  | table = (void*) __get_free_pages(GFP_ATOMIC, order); | 
|  | } | 
|  | } while (!table && size > PAGE_SIZE && --log2qty); | 
|  |  | 
|  | if (!table) | 
|  | panic("Failed to allocate %s hash table\n", tablename); | 
|  |  | 
|  | printk("%s hash table entries: %d (order: %d, %lu bytes)\n", | 
|  | tablename, | 
|  | (1U << log2qty), | 
|  | long_log2(size) - PAGE_SHIFT, | 
|  | size); | 
|  |  | 
|  | if (_hash_shift) | 
|  | *_hash_shift = log2qty; | 
|  | if (_hash_mask) | 
|  | *_hash_mask = (1 << log2qty) - 1; | 
|  |  | 
|  | return table; | 
|  | } |