|  | /* | 
|  | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | 
|  | * | 
|  | *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
|  | * | 
|  | *  Interactivity improvements by Mike Galbraith | 
|  | *  (C) 2007 Mike Galbraith <efault@gmx.de> | 
|  | * | 
|  | *  Various enhancements by Dmitry Adamushko. | 
|  | *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | 
|  | * | 
|  | *  Group scheduling enhancements by Srivatsa Vaddagiri | 
|  | *  Copyright IBM Corporation, 2007 | 
|  | *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | 
|  | * | 
|  | *  Scaled math optimizations by Thomas Gleixner | 
|  | *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | 
|  | * | 
|  | *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra | 
|  | *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Targeted preemption latency for CPU-bound tasks: | 
|  | * (default: 20ms, units: nanoseconds) | 
|  | * | 
|  | * NOTE: this latency value is not the same as the concept of | 
|  | * 'timeslice length' - timeslices in CFS are of variable length. | 
|  | * (to see the precise effective timeslice length of your workload, | 
|  | *  run vmstat and monitor the context-switches field) | 
|  | * | 
|  | * On SMP systems the value of this is multiplied by the log2 of the | 
|  | * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way | 
|  | * systems, 4x on 8-way systems, 5x on 16-way systems, etc.) | 
|  | * Targeted preemption latency for CPU-bound tasks: | 
|  | */ | 
|  | unsigned int sysctl_sched_latency __read_mostly = 20000000ULL; | 
|  |  | 
|  | /* | 
|  | * Minimal preemption granularity for CPU-bound tasks: | 
|  | * (default: 2 msec, units: nanoseconds) | 
|  | */ | 
|  | unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL; | 
|  |  | 
|  | /* | 
|  | * sys_sched_yield() compat mode | 
|  | * | 
|  | * This option switches the agressive yield implementation of the | 
|  | * old scheduler back on. | 
|  | */ | 
|  | unsigned int __read_mostly sysctl_sched_compat_yield; | 
|  |  | 
|  | /* | 
|  | * SCHED_BATCH wake-up granularity. | 
|  | * (default: 25 msec, units: nanoseconds) | 
|  | * | 
|  | * This option delays the preemption effects of decoupled workloads | 
|  | * and reduces their over-scheduling. Synchronous workloads will still | 
|  | * have immediate wakeup/sleep latencies. | 
|  | */ | 
|  | unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly = 25000000UL; | 
|  |  | 
|  | /* | 
|  | * SCHED_OTHER wake-up granularity. | 
|  | * (default: 1 msec, units: nanoseconds) | 
|  | * | 
|  | * This option delays the preemption effects of decoupled workloads | 
|  | * and reduces their over-scheduling. Synchronous workloads will still | 
|  | * have immediate wakeup/sleep latencies. | 
|  | */ | 
|  | unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000UL; | 
|  |  | 
|  | unsigned int sysctl_sched_stat_granularity __read_mostly; | 
|  |  | 
|  | /* | 
|  | * Initialized in sched_init_granularity() [to 5 times the base granularity]: | 
|  | */ | 
|  | unsigned int sysctl_sched_runtime_limit __read_mostly; | 
|  |  | 
|  | /* | 
|  | * Debugging: various feature bits | 
|  | */ | 
|  | enum { | 
|  | SCHED_FEAT_FAIR_SLEEPERS	= 1, | 
|  | SCHED_FEAT_SLEEPER_AVG		= 2, | 
|  | SCHED_FEAT_SLEEPER_LOAD_AVG	= 4, | 
|  | SCHED_FEAT_PRECISE_CPU_LOAD	= 8, | 
|  | SCHED_FEAT_START_DEBIT		= 16, | 
|  | SCHED_FEAT_SKIP_INITIAL		= 32, | 
|  | }; | 
|  |  | 
|  | unsigned int sysctl_sched_features __read_mostly = | 
|  | SCHED_FEAT_FAIR_SLEEPERS	*1 | | 
|  | SCHED_FEAT_SLEEPER_AVG		*0 | | 
|  | SCHED_FEAT_SLEEPER_LOAD_AVG	*1 | | 
|  | SCHED_FEAT_PRECISE_CPU_LOAD	*1 | | 
|  | SCHED_FEAT_START_DEBIT		*1 | | 
|  | SCHED_FEAT_SKIP_INITIAL		*0; | 
|  |  | 
|  | extern struct sched_class fair_sched_class; | 
|  |  | 
|  | /************************************************************** | 
|  | * CFS operations on generic schedulable entities: | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  |  | 
|  | /* cpu runqueue to which this cfs_rq is attached */ | 
|  | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_rq->rq; | 
|  | } | 
|  |  | 
|  | /* currently running entity (if any) on this cfs_rq */ | 
|  | static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_rq->curr; | 
|  | } | 
|  |  | 
|  | /* An entity is a task if it doesn't "own" a runqueue */ | 
|  | #define entity_is_task(se)	(!se->my_q) | 
|  |  | 
|  | static inline void | 
|  | set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | cfs_rq->curr = se; | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return container_of(cfs_rq, struct rq, cfs); | 
|  | } | 
|  |  | 
|  | static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  |  | 
|  | if (unlikely(rq->curr->sched_class != &fair_sched_class)) | 
|  | return NULL; | 
|  |  | 
|  | return &rq->curr->se; | 
|  | } | 
|  |  | 
|  | #define entity_is_task(se)	1 | 
|  |  | 
|  | static inline void | 
|  | set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | 
|  |  | 
|  | #endif	/* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | static inline struct task_struct *task_of(struct sched_entity *se) | 
|  | { | 
|  | return container_of(se, struct task_struct, se); | 
|  | } | 
|  |  | 
|  |  | 
|  | /************************************************************** | 
|  | * Scheduling class tree data structure manipulation methods: | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Enqueue an entity into the rb-tree: | 
|  | */ | 
|  | static inline void | 
|  | __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct sched_entity *entry; | 
|  | s64 key = se->fair_key; | 
|  | int leftmost = 1; | 
|  |  | 
|  | /* | 
|  | * Find the right place in the rbtree: | 
|  | */ | 
|  | while (*link) { | 
|  | parent = *link; | 
|  | entry = rb_entry(parent, struct sched_entity, run_node); | 
|  | /* | 
|  | * We dont care about collisions. Nodes with | 
|  | * the same key stay together. | 
|  | */ | 
|  | if (key - entry->fair_key < 0) { | 
|  | link = &parent->rb_left; | 
|  | } else { | 
|  | link = &parent->rb_right; | 
|  | leftmost = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Maintain a cache of leftmost tree entries (it is frequently | 
|  | * used): | 
|  | */ | 
|  | if (leftmost) | 
|  | cfs_rq->rb_leftmost = &se->run_node; | 
|  |  | 
|  | rb_link_node(&se->run_node, parent, link); | 
|  | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | 
|  | update_load_add(&cfs_rq->load, se->load.weight); | 
|  | cfs_rq->nr_running++; | 
|  | se->on_rq = 1; | 
|  |  | 
|  | schedstat_add(cfs_rq, wait_runtime, se->wait_runtime); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | if (cfs_rq->rb_leftmost == &se->run_node) | 
|  | cfs_rq->rb_leftmost = rb_next(&se->run_node); | 
|  | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | 
|  | update_load_sub(&cfs_rq->load, se->load.weight); | 
|  | cfs_rq->nr_running--; | 
|  | se->on_rq = 0; | 
|  |  | 
|  | schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime); | 
|  | } | 
|  |  | 
|  | static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_rq->rb_leftmost; | 
|  | } | 
|  |  | 
|  | static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node); | 
|  | } | 
|  |  | 
|  | /************************************************************** | 
|  | * Scheduling class statistics methods: | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Calculate the preemption granularity needed to schedule every | 
|  | * runnable task once per sysctl_sched_latency amount of time. | 
|  | * (down to a sensible low limit on granularity) | 
|  | * | 
|  | * For example, if there are 2 tasks running and latency is 10 msecs, | 
|  | * we switch tasks every 5 msecs. If we have 3 tasks running, we have | 
|  | * to switch tasks every 3.33 msecs to get a 10 msecs observed latency | 
|  | * for each task. We do finer and finer scheduling up to until we | 
|  | * reach the minimum granularity value. | 
|  | * | 
|  | * To achieve this we use the following dynamic-granularity rule: | 
|  | * | 
|  | *    gran = lat/nr - lat/nr/nr | 
|  | * | 
|  | * This comes out of the following equations: | 
|  | * | 
|  | *    kA1 + gran = kB1 | 
|  | *    kB2 + gran = kA2 | 
|  | *    kA2 = kA1 | 
|  | *    kB2 = kB1 - d + d/nr | 
|  | *    lat = d * nr | 
|  | * | 
|  | * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running), | 
|  | * '1' is start of time, '2' is end of time, 'd' is delay between | 
|  | * 1 and 2 (during which task B was running), 'nr' is number of tasks | 
|  | * running, 'lat' is the the period of each task. ('lat' is the | 
|  | * sched_latency that we aim for.) | 
|  | */ | 
|  | static long | 
|  | sched_granularity(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | unsigned int gran = sysctl_sched_latency; | 
|  | unsigned int nr = cfs_rq->nr_running; | 
|  |  | 
|  | if (nr > 1) { | 
|  | gran = gran/nr - gran/nr/nr; | 
|  | gran = max(gran, sysctl_sched_min_granularity); | 
|  | } | 
|  |  | 
|  | return gran; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We rescale the rescheduling granularity of tasks according to their | 
|  | * nice level, but only linearly, not exponentially: | 
|  | */ | 
|  | static long | 
|  | niced_granularity(struct sched_entity *curr, unsigned long granularity) | 
|  | { | 
|  | u64 tmp; | 
|  |  | 
|  | if (likely(curr->load.weight == NICE_0_LOAD)) | 
|  | return granularity; | 
|  | /* | 
|  | * Positive nice levels get the same granularity as nice-0: | 
|  | */ | 
|  | if (likely(curr->load.weight < NICE_0_LOAD)) { | 
|  | tmp = curr->load.weight * (u64)granularity; | 
|  | return (long) (tmp >> NICE_0_SHIFT); | 
|  | } | 
|  | /* | 
|  | * Negative nice level tasks get linearly finer | 
|  | * granularity: | 
|  | */ | 
|  | tmp = curr->load.inv_weight * (u64)granularity; | 
|  |  | 
|  | /* | 
|  | * It will always fit into 'long': | 
|  | */ | 
|  | return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | long limit = sysctl_sched_runtime_limit; | 
|  |  | 
|  | /* | 
|  | * Niced tasks have the same history dynamic range as | 
|  | * non-niced tasks: | 
|  | */ | 
|  | if (unlikely(se->wait_runtime > limit)) { | 
|  | se->wait_runtime = limit; | 
|  | schedstat_inc(se, wait_runtime_overruns); | 
|  | schedstat_inc(cfs_rq, wait_runtime_overruns); | 
|  | } | 
|  | if (unlikely(se->wait_runtime < -limit)) { | 
|  | se->wait_runtime = -limit; | 
|  | schedstat_inc(se, wait_runtime_underruns); | 
|  | schedstat_inc(cfs_rq, wait_runtime_underruns); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta) | 
|  | { | 
|  | se->wait_runtime += delta; | 
|  | schedstat_add(se, sum_wait_runtime, delta); | 
|  | limit_wait_runtime(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | static void | 
|  | add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta) | 
|  | { | 
|  | schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime); | 
|  | __add_wait_runtime(cfs_rq, se, delta); | 
|  | schedstat_add(cfs_rq, wait_runtime, se->wait_runtime); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the current task's runtime statistics. Skip current tasks that | 
|  | * are not in our scheduling class. | 
|  | */ | 
|  | static inline void | 
|  | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr) | 
|  | { | 
|  | unsigned long delta, delta_exec, delta_fair, delta_mine; | 
|  | struct load_weight *lw = &cfs_rq->load; | 
|  | unsigned long load = lw->weight; | 
|  |  | 
|  | delta_exec = curr->delta_exec; | 
|  | schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); | 
|  |  | 
|  | curr->sum_exec_runtime += delta_exec; | 
|  | cfs_rq->exec_clock += delta_exec; | 
|  |  | 
|  | if (unlikely(!load)) | 
|  | return; | 
|  |  | 
|  | delta_fair = calc_delta_fair(delta_exec, lw); | 
|  | delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw); | 
|  |  | 
|  | if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) { | 
|  | delta = min((u64)delta_mine, cfs_rq->sleeper_bonus); | 
|  | delta = min(delta, (unsigned long)( | 
|  | (long)sysctl_sched_runtime_limit - curr->wait_runtime)); | 
|  | cfs_rq->sleeper_bonus -= delta; | 
|  | delta_mine -= delta; | 
|  | } | 
|  |  | 
|  | cfs_rq->fair_clock += delta_fair; | 
|  | /* | 
|  | * We executed delta_exec amount of time on the CPU, | 
|  | * but we were only entitled to delta_mine amount of | 
|  | * time during that period (if nr_running == 1 then | 
|  | * the two values are equal) | 
|  | * [Note: delta_mine - delta_exec is negative]: | 
|  | */ | 
|  | add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec); | 
|  | } | 
|  |  | 
|  | static void update_curr(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct sched_entity *curr = cfs_rq_curr(cfs_rq); | 
|  | unsigned long delta_exec; | 
|  |  | 
|  | if (unlikely(!curr)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Get the amount of time the current task was running | 
|  | * since the last time we changed load (this cannot | 
|  | * overflow on 32 bits): | 
|  | */ | 
|  | delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start); | 
|  |  | 
|  | curr->delta_exec += delta_exec; | 
|  |  | 
|  | if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) { | 
|  | __update_curr(cfs_rq, curr); | 
|  | curr->delta_exec = 0; | 
|  | } | 
|  | curr->exec_start = rq_of(cfs_rq)->clock; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | se->wait_start_fair = cfs_rq->fair_clock; | 
|  | schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We calculate fair deltas here, so protect against the random effects | 
|  | * of a multiplication overflow by capping it to the runtime limit: | 
|  | */ | 
|  | #if BITS_PER_LONG == 32 | 
|  | static inline unsigned long | 
|  | calc_weighted(unsigned long delta, unsigned long weight, int shift) | 
|  | { | 
|  | u64 tmp = (u64)delta * weight >> shift; | 
|  |  | 
|  | if (unlikely(tmp > sysctl_sched_runtime_limit*2)) | 
|  | return sysctl_sched_runtime_limit*2; | 
|  | return tmp; | 
|  | } | 
|  | #else | 
|  | static inline unsigned long | 
|  | calc_weighted(unsigned long delta, unsigned long weight, int shift) | 
|  | { | 
|  | return delta * weight >> shift; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Task is being enqueued - update stats: | 
|  | */ | 
|  | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | s64 key; | 
|  |  | 
|  | /* | 
|  | * Are we enqueueing a waiting task? (for current tasks | 
|  | * a dequeue/enqueue event is a NOP) | 
|  | */ | 
|  | if (se != cfs_rq_curr(cfs_rq)) | 
|  | update_stats_wait_start(cfs_rq, se); | 
|  | /* | 
|  | * Update the key: | 
|  | */ | 
|  | key = cfs_rq->fair_clock; | 
|  |  | 
|  | /* | 
|  | * Optimize the common nice 0 case: | 
|  | */ | 
|  | if (likely(se->load.weight == NICE_0_LOAD)) { | 
|  | key -= se->wait_runtime; | 
|  | } else { | 
|  | u64 tmp; | 
|  |  | 
|  | if (se->wait_runtime < 0) { | 
|  | tmp = -se->wait_runtime; | 
|  | key += (tmp * se->load.inv_weight) >> | 
|  | (WMULT_SHIFT - NICE_0_SHIFT); | 
|  | } else { | 
|  | tmp = se->wait_runtime; | 
|  | key -= (tmp * se->load.inv_weight) >> | 
|  | (WMULT_SHIFT - NICE_0_SHIFT); | 
|  | } | 
|  | } | 
|  |  | 
|  | se->fair_key = key; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: must be called with a freshly updated rq->fair_clock. | 
|  | */ | 
|  | static inline void | 
|  | __update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | unsigned long delta_fair = se->delta_fair_run; | 
|  |  | 
|  | schedstat_set(se->wait_max, max(se->wait_max, | 
|  | rq_of(cfs_rq)->clock - se->wait_start)); | 
|  |  | 
|  | if (unlikely(se->load.weight != NICE_0_LOAD)) | 
|  | delta_fair = calc_weighted(delta_fair, se->load.weight, | 
|  | NICE_0_SHIFT); | 
|  |  | 
|  | add_wait_runtime(cfs_rq, se, delta_fair); | 
|  | } | 
|  |  | 
|  | static void | 
|  | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | unsigned long delta_fair; | 
|  |  | 
|  | if (unlikely(!se->wait_start_fair)) | 
|  | return; | 
|  |  | 
|  | delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit), | 
|  | (u64)(cfs_rq->fair_clock - se->wait_start_fair)); | 
|  |  | 
|  | se->delta_fair_run += delta_fair; | 
|  | if (unlikely(abs(se->delta_fair_run) >= | 
|  | sysctl_sched_stat_granularity)) { | 
|  | __update_stats_wait_end(cfs_rq, se); | 
|  | se->delta_fair_run = 0; | 
|  | } | 
|  |  | 
|  | se->wait_start_fair = 0; | 
|  | schedstat_set(se->wait_start, 0); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | update_curr(cfs_rq); | 
|  | /* | 
|  | * Mark the end of the wait period if dequeueing a | 
|  | * waiting task: | 
|  | */ | 
|  | if (se != cfs_rq_curr(cfs_rq)) | 
|  | update_stats_wait_end(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are picking a new current task - update its stats: | 
|  | */ | 
|  | static inline void | 
|  | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | /* | 
|  | * We are starting a new run period: | 
|  | */ | 
|  | se->exec_start = rq_of(cfs_rq)->clock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are descheduling a task - update its stats: | 
|  | */ | 
|  | static inline void | 
|  | update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | se->exec_start = 0; | 
|  | } | 
|  |  | 
|  | /************************************************** | 
|  | * Scheduling class queueing methods: | 
|  | */ | 
|  |  | 
|  | static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | unsigned long load = cfs_rq->load.weight, delta_fair; | 
|  | long prev_runtime; | 
|  |  | 
|  | /* | 
|  | * Do not boost sleepers if there's too much bonus 'in flight' | 
|  | * already: | 
|  | */ | 
|  | if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit)) | 
|  | return; | 
|  |  | 
|  | if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG) | 
|  | load = rq_of(cfs_rq)->cpu_load[2]; | 
|  |  | 
|  | delta_fair = se->delta_fair_sleep; | 
|  |  | 
|  | /* | 
|  | * Fix up delta_fair with the effect of us running | 
|  | * during the whole sleep period: | 
|  | */ | 
|  | if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG) | 
|  | delta_fair = div64_likely32((u64)delta_fair * load, | 
|  | load + se->load.weight); | 
|  |  | 
|  | if (unlikely(se->load.weight != NICE_0_LOAD)) | 
|  | delta_fair = calc_weighted(delta_fair, se->load.weight, | 
|  | NICE_0_SHIFT); | 
|  |  | 
|  | prev_runtime = se->wait_runtime; | 
|  | __add_wait_runtime(cfs_rq, se, delta_fair); | 
|  | delta_fair = se->wait_runtime - prev_runtime; | 
|  |  | 
|  | /* | 
|  | * Track the amount of bonus we've given to sleepers: | 
|  | */ | 
|  | cfs_rq->sleeper_bonus += delta_fair; | 
|  | } | 
|  |  | 
|  | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | struct task_struct *tsk = task_of(se); | 
|  | unsigned long delta_fair; | 
|  |  | 
|  | if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) || | 
|  | !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS)) | 
|  | return; | 
|  |  | 
|  | delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit), | 
|  | (u64)(cfs_rq->fair_clock - se->sleep_start_fair)); | 
|  |  | 
|  | se->delta_fair_sleep += delta_fair; | 
|  | if (unlikely(abs(se->delta_fair_sleep) >= | 
|  | sysctl_sched_stat_granularity)) { | 
|  | __enqueue_sleeper(cfs_rq, se); | 
|  | se->delta_fair_sleep = 0; | 
|  | } | 
|  |  | 
|  | se->sleep_start_fair = 0; | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | if (se->sleep_start) { | 
|  | u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; | 
|  |  | 
|  | if ((s64)delta < 0) | 
|  | delta = 0; | 
|  |  | 
|  | if (unlikely(delta > se->sleep_max)) | 
|  | se->sleep_max = delta; | 
|  |  | 
|  | se->sleep_start = 0; | 
|  | se->sum_sleep_runtime += delta; | 
|  | } | 
|  | if (se->block_start) { | 
|  | u64 delta = rq_of(cfs_rq)->clock - se->block_start; | 
|  |  | 
|  | if ((s64)delta < 0) | 
|  | delta = 0; | 
|  |  | 
|  | if (unlikely(delta > se->block_max)) | 
|  | se->block_max = delta; | 
|  |  | 
|  | se->block_start = 0; | 
|  | se->sum_sleep_runtime += delta; | 
|  |  | 
|  | /* | 
|  | * Blocking time is in units of nanosecs, so shift by 20 to | 
|  | * get a milliseconds-range estimation of the amount of | 
|  | * time that the task spent sleeping: | 
|  | */ | 
|  | if (unlikely(prof_on == SLEEP_PROFILING)) { | 
|  | profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk), | 
|  | delta >> 20); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void | 
|  | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) | 
|  | { | 
|  | /* | 
|  | * Update the fair clock. | 
|  | */ | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | if (wakeup) | 
|  | enqueue_sleeper(cfs_rq, se); | 
|  |  | 
|  | update_stats_enqueue(cfs_rq, se); | 
|  | __enqueue_entity(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | static void | 
|  | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) | 
|  | { | 
|  | update_stats_dequeue(cfs_rq, se); | 
|  | if (sleep) { | 
|  | se->sleep_start_fair = cfs_rq->fair_clock; | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | if (entity_is_task(se)) { | 
|  | struct task_struct *tsk = task_of(se); | 
|  |  | 
|  | if (tsk->state & TASK_INTERRUPTIBLE) | 
|  | se->sleep_start = rq_of(cfs_rq)->clock; | 
|  | if (tsk->state & TASK_UNINTERRUPTIBLE) | 
|  | se->block_start = rq_of(cfs_rq)->clock; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | __dequeue_entity(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preempt the current task with a newly woken task if needed: | 
|  | */ | 
|  | static void | 
|  | __check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, | 
|  | struct sched_entity *curr, unsigned long granularity) | 
|  | { | 
|  | s64 __delta = curr->fair_key - se->fair_key; | 
|  | unsigned long ideal_runtime, delta_exec; | 
|  |  | 
|  | /* | 
|  | * ideal_runtime is compared against sum_exec_runtime, which is | 
|  | * walltime, hence do not scale. | 
|  | */ | 
|  | ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running, | 
|  | (unsigned long)sysctl_sched_min_granularity); | 
|  |  | 
|  | /* | 
|  | * If we executed more than what the latency constraint suggests, | 
|  | * reduce the rescheduling granularity. This way the total latency | 
|  | * of how much a task is not scheduled converges to | 
|  | * sysctl_sched_latency: | 
|  | */ | 
|  | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | 
|  | if (delta_exec > ideal_runtime) | 
|  | granularity = 0; | 
|  |  | 
|  | /* | 
|  | * Take scheduling granularity into account - do not | 
|  | * preempt the current task unless the best task has | 
|  | * a larger than sched_granularity fairness advantage: | 
|  | * | 
|  | * scale granularity as key space is in fair_clock. | 
|  | */ | 
|  | if (__delta > niced_granularity(curr, granularity)) | 
|  | resched_task(rq_of(cfs_rq)->curr); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | /* | 
|  | * Any task has to be enqueued before it get to execute on | 
|  | * a CPU. So account for the time it spent waiting on the | 
|  | * runqueue. (note, here we rely on pick_next_task() having | 
|  | * done a put_prev_task_fair() shortly before this, which | 
|  | * updated rq->fair_clock - used by update_stats_wait_end()) | 
|  | */ | 
|  | update_stats_wait_end(cfs_rq, se); | 
|  | update_stats_curr_start(cfs_rq, se); | 
|  | set_cfs_rq_curr(cfs_rq, se); | 
|  | se->prev_sum_exec_runtime = se->sum_exec_runtime; | 
|  | } | 
|  |  | 
|  | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct sched_entity *se = __pick_next_entity(cfs_rq); | 
|  |  | 
|  | set_next_entity(cfs_rq, se); | 
|  |  | 
|  | return se; | 
|  | } | 
|  |  | 
|  | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | 
|  | { | 
|  | /* | 
|  | * If still on the runqueue then deactivate_task() | 
|  | * was not called and update_curr() has to be done: | 
|  | */ | 
|  | if (prev->on_rq) | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | update_stats_curr_end(cfs_rq, prev); | 
|  |  | 
|  | if (prev->on_rq) | 
|  | update_stats_wait_start(cfs_rq, prev); | 
|  | set_cfs_rq_curr(cfs_rq, NULL); | 
|  | } | 
|  |  | 
|  | static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | 
|  | { | 
|  | struct sched_entity *next; | 
|  |  | 
|  | /* | 
|  | * Dequeue and enqueue the task to update its | 
|  | * position within the tree: | 
|  | */ | 
|  | dequeue_entity(cfs_rq, curr, 0); | 
|  | enqueue_entity(cfs_rq, curr, 0); | 
|  |  | 
|  | /* | 
|  | * Reschedule if another task tops the current one. | 
|  | */ | 
|  | next = __pick_next_entity(cfs_rq); | 
|  | if (next == curr) | 
|  | return; | 
|  |  | 
|  | __check_preempt_curr_fair(cfs_rq, next, curr, | 
|  | sched_granularity(cfs_rq)); | 
|  | } | 
|  |  | 
|  | /************************************************** | 
|  | * CFS operations on tasks: | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  |  | 
|  | /* Walk up scheduling entities hierarchy */ | 
|  | #define for_each_sched_entity(se) \ | 
|  | for (; se; se = se->parent) | 
|  |  | 
|  | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
|  | { | 
|  | return p->se.cfs_rq; | 
|  | } | 
|  |  | 
|  | /* runqueue on which this entity is (to be) queued */ | 
|  | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
|  | { | 
|  | return se->cfs_rq; | 
|  | } | 
|  |  | 
|  | /* runqueue "owned" by this group */ | 
|  | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
|  | { | 
|  | return grp->my_q; | 
|  | } | 
|  |  | 
|  | /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on | 
|  | * another cpu ('this_cpu') | 
|  | */ | 
|  | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | 
|  | { | 
|  | /* A later patch will take group into account */ | 
|  | return &cpu_rq(this_cpu)->cfs; | 
|  | } | 
|  |  | 
|  | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | 
|  | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
|  | list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | 
|  |  | 
|  | /* Do the two (enqueued) tasks belong to the same group ? */ | 
|  | static inline int is_same_group(struct task_struct *curr, struct task_struct *p) | 
|  | { | 
|  | if (curr->se.cfs_rq == p->se.cfs_rq) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | #define for_each_sched_entity(se) \ | 
|  | for (; se; se = NULL) | 
|  |  | 
|  | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
|  | { | 
|  | return &task_rq(p)->cfs; | 
|  | } | 
|  |  | 
|  | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
|  | { | 
|  | struct task_struct *p = task_of(se); | 
|  | struct rq *rq = task_rq(p); | 
|  |  | 
|  | return &rq->cfs; | 
|  | } | 
|  |  | 
|  | /* runqueue "owned" by this group */ | 
|  | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | 
|  | { | 
|  | return &cpu_rq(this_cpu)->cfs; | 
|  | } | 
|  |  | 
|  | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
|  | for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | 
|  |  | 
|  | static inline int is_same_group(struct task_struct *curr, struct task_struct *p) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | /* | 
|  | * The enqueue_task method is called before nr_running is | 
|  | * increased. Here we update the fair scheduling stats and | 
|  | * then put the task into the rbtree: | 
|  | */ | 
|  | static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | if (se->on_rq) | 
|  | break; | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | enqueue_entity(cfs_rq, se, wakeup); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The dequeue_task method is called before nr_running is | 
|  | * decreased. We remove the task from the rbtree and | 
|  | * update the fair scheduling stats: | 
|  | */ | 
|  | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | dequeue_entity(cfs_rq, se, sleep); | 
|  | /* Don't dequeue parent if it has other entities besides us */ | 
|  | if (cfs_rq->load.weight) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_yield() support is very simple - we dequeue and enqueue. | 
|  | * | 
|  | * If compat_yield is turned on then we requeue to the end of the tree. | 
|  | */ | 
|  | static void yield_task_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
|  | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | 
|  | struct sched_entity *rightmost, *se = &p->se; | 
|  | struct rb_node *parent; | 
|  |  | 
|  | /* | 
|  | * Are we the only task in the tree? | 
|  | */ | 
|  | if (unlikely(cfs_rq->nr_running == 1)) | 
|  | return; | 
|  |  | 
|  | if (likely(!sysctl_sched_compat_yield)) { | 
|  | __update_rq_clock(rq); | 
|  | /* | 
|  | * Dequeue and enqueue the task to update its | 
|  | * position within the tree: | 
|  | */ | 
|  | dequeue_entity(cfs_rq, &p->se, 0); | 
|  | enqueue_entity(cfs_rq, &p->se, 0); | 
|  |  | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * Find the rightmost entry in the rbtree: | 
|  | */ | 
|  | do { | 
|  | parent = *link; | 
|  | link = &parent->rb_right; | 
|  | } while (*link); | 
|  |  | 
|  | rightmost = rb_entry(parent, struct sched_entity, run_node); | 
|  | /* | 
|  | * Already in the rightmost position? | 
|  | */ | 
|  | if (unlikely(rightmost == se)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Minimally necessary key value to be last in the tree: | 
|  | */ | 
|  | se->fair_key = rightmost->fair_key + 1; | 
|  |  | 
|  | if (cfs_rq->rb_leftmost == &se->run_node) | 
|  | cfs_rq->rb_leftmost = rb_next(&se->run_node); | 
|  | /* | 
|  | * Relink the task to the rightmost position: | 
|  | */ | 
|  | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | 
|  | rb_link_node(&se->run_node, parent, link); | 
|  | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preempt the current task with a newly woken task if needed: | 
|  | */ | 
|  | static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
|  | unsigned long gran; | 
|  |  | 
|  | if (unlikely(rt_prio(p->prio))) { | 
|  | update_rq_clock(rq); | 
|  | update_curr(cfs_rq); | 
|  | resched_task(curr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | gran = sysctl_sched_wakeup_granularity; | 
|  | /* | 
|  | * Batch tasks prefer throughput over latency: | 
|  | */ | 
|  | if (unlikely(p->policy == SCHED_BATCH)) | 
|  | gran = sysctl_sched_batch_wakeup_granularity; | 
|  |  | 
|  | if (is_same_group(curr, p)) | 
|  | __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran); | 
|  | } | 
|  |  | 
|  | static struct task_struct *pick_next_task_fair(struct rq *rq) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = &rq->cfs; | 
|  | struct sched_entity *se; | 
|  |  | 
|  | if (unlikely(!cfs_rq->nr_running)) | 
|  | return NULL; | 
|  |  | 
|  | do { | 
|  | se = pick_next_entity(cfs_rq); | 
|  | cfs_rq = group_cfs_rq(se); | 
|  | } while (cfs_rq); | 
|  |  | 
|  | return task_of(se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for a descheduled task: | 
|  | */ | 
|  | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | struct sched_entity *se = &prev->se; | 
|  | struct cfs_rq *cfs_rq; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | put_prev_entity(cfs_rq, se); | 
|  | } | 
|  | } | 
|  |  | 
|  | /************************************************** | 
|  | * Fair scheduling class load-balancing methods: | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Load-balancing iterator. Note: while the runqueue stays locked | 
|  | * during the whole iteration, the current task might be | 
|  | * dequeued so the iterator has to be dequeue-safe. Here we | 
|  | * achieve that by always pre-iterating before returning | 
|  | * the current task: | 
|  | */ | 
|  | static inline struct task_struct * | 
|  | __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (!curr) | 
|  | return NULL; | 
|  |  | 
|  | p = rb_entry(curr, struct task_struct, se.run_node); | 
|  | cfs_rq->rb_load_balance_curr = rb_next(curr); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct task_struct *load_balance_start_fair(void *arg) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = arg; | 
|  |  | 
|  | return __load_balance_iterator(cfs_rq, first_fair(cfs_rq)); | 
|  | } | 
|  |  | 
|  | static struct task_struct *load_balance_next_fair(void *arg) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = arg; | 
|  |  | 
|  | return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static int cfs_rq_best_prio(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct sched_entity *curr; | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (!cfs_rq->nr_running) | 
|  | return MAX_PRIO; | 
|  |  | 
|  | curr = __pick_next_entity(cfs_rq); | 
|  | p = task_of(curr); | 
|  |  | 
|  | return p->prio; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static unsigned long | 
|  | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | unsigned long max_nr_move, unsigned long max_load_move, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle, | 
|  | int *all_pinned, int *this_best_prio) | 
|  | { | 
|  | struct cfs_rq *busy_cfs_rq; | 
|  | unsigned long load_moved, total_nr_moved = 0, nr_moved; | 
|  | long rem_load_move = max_load_move; | 
|  | struct rq_iterator cfs_rq_iterator; | 
|  |  | 
|  | cfs_rq_iterator.start = load_balance_start_fair; | 
|  | cfs_rq_iterator.next = load_balance_next_fair; | 
|  |  | 
|  | for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | struct cfs_rq *this_cfs_rq; | 
|  | long imbalance; | 
|  | unsigned long maxload; | 
|  |  | 
|  | this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu); | 
|  |  | 
|  | imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight; | 
|  | /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */ | 
|  | if (imbalance <= 0) | 
|  | continue; | 
|  |  | 
|  | /* Don't pull more than imbalance/2 */ | 
|  | imbalance /= 2; | 
|  | maxload = min(rem_load_move, imbalance); | 
|  |  | 
|  | *this_best_prio = cfs_rq_best_prio(this_cfs_rq); | 
|  | #else | 
|  | # define maxload rem_load_move | 
|  | #endif | 
|  | /* pass busy_cfs_rq argument into | 
|  | * load_balance_[start|next]_fair iterators | 
|  | */ | 
|  | cfs_rq_iterator.arg = busy_cfs_rq; | 
|  | nr_moved = balance_tasks(this_rq, this_cpu, busiest, | 
|  | max_nr_move, maxload, sd, idle, all_pinned, | 
|  | &load_moved, this_best_prio, &cfs_rq_iterator); | 
|  |  | 
|  | total_nr_moved += nr_moved; | 
|  | max_nr_move -= nr_moved; | 
|  | rem_load_move -= load_moved; | 
|  |  | 
|  | if (max_nr_move <= 0 || rem_load_move <= 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return max_load_move - rem_load_move; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * scheduler tick hitting a task of our scheduling class: | 
|  | */ | 
|  | static void task_tick_fair(struct rq *rq, struct task_struct *curr) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se = &curr->se; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | entity_tick(cfs_rq, se); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Share the fairness runtime between parent and child, thus the | 
|  | * total amount of pressure for CPU stays equal - new tasks | 
|  | * get a chance to run but frequent forkers are not allowed to | 
|  | * monopolize the CPU. Note: the parent runqueue is locked, | 
|  | * the child is not running yet. | 
|  | */ | 
|  | static void task_new_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
|  | struct sched_entity *se = &p->se, *curr = cfs_rq_curr(cfs_rq); | 
|  |  | 
|  | sched_info_queued(p); | 
|  |  | 
|  | update_curr(cfs_rq); | 
|  | update_stats_enqueue(cfs_rq, se); | 
|  | /* | 
|  | * Child runs first: we let it run before the parent | 
|  | * until it reschedules once. We set up the key so that | 
|  | * it will preempt the parent: | 
|  | */ | 
|  | se->fair_key = curr->fair_key - | 
|  | niced_granularity(curr, sched_granularity(cfs_rq)) - 1; | 
|  | /* | 
|  | * The first wait is dominated by the child-runs-first logic, | 
|  | * so do not credit it with that waiting time yet: | 
|  | */ | 
|  | if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL) | 
|  | se->wait_start_fair = 0; | 
|  |  | 
|  | /* | 
|  | * The statistical average of wait_runtime is about | 
|  | * -granularity/2, so initialize the task with that: | 
|  | */ | 
|  | if (sysctl_sched_features & SCHED_FEAT_START_DEBIT) | 
|  | se->wait_runtime = -(sched_granularity(cfs_rq) / 2); | 
|  |  | 
|  | __enqueue_entity(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* Account for a task changing its policy or group. | 
|  | * | 
|  | * This routine is mostly called to set cfs_rq->curr field when a task | 
|  | * migrates between groups/classes. | 
|  | */ | 
|  | static void set_curr_task_fair(struct rq *rq) | 
|  | { | 
|  | struct sched_entity *se = &rq->curr->se; | 
|  |  | 
|  | for_each_sched_entity(se) | 
|  | set_next_entity(cfs_rq_of(se), se); | 
|  | } | 
|  | #else | 
|  | static void set_curr_task_fair(struct rq *rq) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * All the scheduling class methods: | 
|  | */ | 
|  | struct sched_class fair_sched_class __read_mostly = { | 
|  | .enqueue_task		= enqueue_task_fair, | 
|  | .dequeue_task		= dequeue_task_fair, | 
|  | .yield_task		= yield_task_fair, | 
|  |  | 
|  | .check_preempt_curr	= check_preempt_curr_fair, | 
|  |  | 
|  | .pick_next_task		= pick_next_task_fair, | 
|  | .put_prev_task		= put_prev_task_fair, | 
|  |  | 
|  | .load_balance		= load_balance_fair, | 
|  |  | 
|  | .set_curr_task          = set_curr_task_fair, | 
|  | .task_tick		= task_tick_fair, | 
|  | .task_new		= task_new_fair, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | static void print_cfs_stats(struct seq_file *m, int cpu) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  |  | 
|  | for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) | 
|  | print_cfs_rq(m, cpu, cfs_rq); | 
|  | } | 
|  | #endif |