| /* | 
 |  * Re-map IO memory to kernel address space so that we can access it. | 
 |  * This is needed for high PCI addresses that aren't mapped in the | 
 |  * 640k-1MB IO memory area on PC's | 
 |  * | 
 |  * (C) Copyright 1995 1996 Linus Torvalds | 
 |  */ | 
 |  | 
 | #include <linux/bootmem.h> | 
 | #include <linux/init.h> | 
 | #include <linux/io.h> | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/mmiotrace.h> | 
 |  | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/e820.h> | 
 | #include <asm/fixmap.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/pat.h> | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 |  | 
 | static inline int phys_addr_valid(unsigned long addr) | 
 | { | 
 | 	return addr < (1UL << boot_cpu_data.x86_phys_bits); | 
 | } | 
 |  | 
 | unsigned long __phys_addr(unsigned long x) | 
 | { | 
 | 	if (x >= __START_KERNEL_map) { | 
 | 		x -= __START_KERNEL_map; | 
 | 		VIRTUAL_BUG_ON(x >= KERNEL_IMAGE_SIZE); | 
 | 		x += phys_base; | 
 | 	} else { | 
 | 		VIRTUAL_BUG_ON(x < PAGE_OFFSET); | 
 | 		x -= PAGE_OFFSET; | 
 | 		VIRTUAL_BUG_ON(system_state == SYSTEM_BOOTING ? x > MAXMEM : | 
 | 					!phys_addr_valid(x)); | 
 | 	} | 
 | 	return x; | 
 | } | 
 | EXPORT_SYMBOL(__phys_addr); | 
 |  | 
 | bool __virt_addr_valid(unsigned long x) | 
 | { | 
 | 	if (x >= __START_KERNEL_map) { | 
 | 		x -= __START_KERNEL_map; | 
 | 		if (x >= KERNEL_IMAGE_SIZE) | 
 | 			return false; | 
 | 		x += phys_base; | 
 | 	} else { | 
 | 		if (x < PAGE_OFFSET) | 
 | 			return false; | 
 | 		x -= PAGE_OFFSET; | 
 | 		if (system_state == SYSTEM_BOOTING ? | 
 | 				x > MAXMEM : !phys_addr_valid(x)) { | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return pfn_valid(x >> PAGE_SHIFT); | 
 | } | 
 | EXPORT_SYMBOL(__virt_addr_valid); | 
 |  | 
 | #else | 
 |  | 
 | static inline int phys_addr_valid(unsigned long addr) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_VIRTUAL | 
 | unsigned long __phys_addr(unsigned long x) | 
 | { | 
 | 	/* VMALLOC_* aren't constants; not available at the boot time */ | 
 | 	VIRTUAL_BUG_ON(x < PAGE_OFFSET); | 
 | 	VIRTUAL_BUG_ON(system_state != SYSTEM_BOOTING && | 
 | 		is_vmalloc_addr((void *) x)); | 
 | 	return x - PAGE_OFFSET; | 
 | } | 
 | EXPORT_SYMBOL(__phys_addr); | 
 | #endif | 
 |  | 
 | bool __virt_addr_valid(unsigned long x) | 
 | { | 
 | 	if (x < PAGE_OFFSET) | 
 | 		return false; | 
 | 	if (system_state != SYSTEM_BOOTING && is_vmalloc_addr((void *) x)) | 
 | 		return false; | 
 | 	return pfn_valid((x - PAGE_OFFSET) >> PAGE_SHIFT); | 
 | } | 
 | EXPORT_SYMBOL(__virt_addr_valid); | 
 |  | 
 | #endif | 
 |  | 
 | int page_is_ram(unsigned long pagenr) | 
 | { | 
 | 	resource_size_t addr, end; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * A special case is the first 4Kb of memory; | 
 | 	 * This is a BIOS owned area, not kernel ram, but generally | 
 | 	 * not listed as such in the E820 table. | 
 | 	 */ | 
 | 	if (pagenr == 0) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Second special case: Some BIOSen report the PC BIOS | 
 | 	 * area (640->1Mb) as ram even though it is not. | 
 | 	 */ | 
 | 	if (pagenr >= (BIOS_BEGIN >> PAGE_SHIFT) && | 
 | 		    pagenr < (BIOS_END >> PAGE_SHIFT)) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 0; i < e820.nr_map; i++) { | 
 | 		/* | 
 | 		 * Not usable memory: | 
 | 		 */ | 
 | 		if (e820.map[i].type != E820_RAM) | 
 | 			continue; | 
 | 		addr = (e820.map[i].addr + PAGE_SIZE-1) >> PAGE_SHIFT; | 
 | 		end = (e820.map[i].addr + e820.map[i].size) >> PAGE_SHIFT; | 
 |  | 
 |  | 
 | 		if ((pagenr >= addr) && (pagenr < end)) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pagerange_is_ram(unsigned long start, unsigned long end) | 
 | { | 
 | 	int ram_page = 0, not_rampage = 0; | 
 | 	unsigned long page_nr; | 
 |  | 
 | 	for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT); | 
 | 	     ++page_nr) { | 
 | 		if (page_is_ram(page_nr)) | 
 | 			ram_page = 1; | 
 | 		else | 
 | 			not_rampage = 1; | 
 |  | 
 | 		if (ram_page == not_rampage) | 
 | 			return -1; | 
 | 	} | 
 |  | 
 | 	return ram_page; | 
 | } | 
 |  | 
 | /* | 
 |  * Fix up the linear direct mapping of the kernel to avoid cache attribute | 
 |  * conflicts. | 
 |  */ | 
 | int ioremap_change_attr(unsigned long vaddr, unsigned long size, | 
 | 			       unsigned long prot_val) | 
 | { | 
 | 	unsigned long nrpages = size >> PAGE_SHIFT; | 
 | 	int err; | 
 |  | 
 | 	switch (prot_val) { | 
 | 	case _PAGE_CACHE_UC: | 
 | 	default: | 
 | 		err = _set_memory_uc(vaddr, nrpages); | 
 | 		break; | 
 | 	case _PAGE_CACHE_WC: | 
 | 		err = _set_memory_wc(vaddr, nrpages); | 
 | 		break; | 
 | 	case _PAGE_CACHE_WB: | 
 | 		err = _set_memory_wb(vaddr, nrpages); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Remap an arbitrary physical address space into the kernel virtual | 
 |  * address space. Needed when the kernel wants to access high addresses | 
 |  * directly. | 
 |  * | 
 |  * NOTE! We need to allow non-page-aligned mappings too: we will obviously | 
 |  * have to convert them into an offset in a page-aligned mapping, but the | 
 |  * caller shouldn't need to know that small detail. | 
 |  */ | 
 | static void __iomem *__ioremap_caller(resource_size_t phys_addr, | 
 | 		unsigned long size, unsigned long prot_val, void *caller) | 
 | { | 
 | 	unsigned long pfn, offset, vaddr; | 
 | 	resource_size_t last_addr; | 
 | 	const resource_size_t unaligned_phys_addr = phys_addr; | 
 | 	const unsigned long unaligned_size = size; | 
 | 	struct vm_struct *area; | 
 | 	unsigned long new_prot_val; | 
 | 	pgprot_t prot; | 
 | 	int retval; | 
 | 	void __iomem *ret_addr; | 
 |  | 
 | 	/* Don't allow wraparound or zero size */ | 
 | 	last_addr = phys_addr + size - 1; | 
 | 	if (!size || last_addr < phys_addr) | 
 | 		return NULL; | 
 |  | 
 | 	if (!phys_addr_valid(phys_addr)) { | 
 | 		printk(KERN_WARNING "ioremap: invalid physical address %llx\n", | 
 | 		       (unsigned long long)phys_addr); | 
 | 		WARN_ON_ONCE(1); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Don't remap the low PCI/ISA area, it's always mapped.. | 
 | 	 */ | 
 | 	if (is_ISA_range(phys_addr, last_addr)) | 
 | 		return (__force void __iomem *)phys_to_virt(phys_addr); | 
 |  | 
 | 	/* | 
 | 	 * Check if the request spans more than any BAR in the iomem resource | 
 | 	 * tree. | 
 | 	 */ | 
 | 	WARN_ON(iomem_map_sanity_check(phys_addr, size)); | 
 |  | 
 | 	/* | 
 | 	 * Don't allow anybody to remap normal RAM that we're using.. | 
 | 	 */ | 
 | 	for (pfn = phys_addr >> PAGE_SHIFT; | 
 | 				(pfn << PAGE_SHIFT) < (last_addr & PAGE_MASK); | 
 | 				pfn++) { | 
 |  | 
 | 		int is_ram = page_is_ram(pfn); | 
 |  | 
 | 		if (is_ram && pfn_valid(pfn) && !PageReserved(pfn_to_page(pfn))) | 
 | 			return NULL; | 
 | 		WARN_ON_ONCE(is_ram); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Mappings have to be page-aligned | 
 | 	 */ | 
 | 	offset = phys_addr & ~PAGE_MASK; | 
 | 	phys_addr &= PAGE_MASK; | 
 | 	size = PAGE_ALIGN(last_addr+1) - phys_addr; | 
 |  | 
 | 	retval = reserve_memtype(phys_addr, (u64)phys_addr + size, | 
 | 						prot_val, &new_prot_val); | 
 | 	if (retval) { | 
 | 		pr_debug("Warning: reserve_memtype returned %d\n", retval); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (prot_val != new_prot_val) { | 
 | 		/* | 
 | 		 * Do not fallback to certain memory types with certain | 
 | 		 * requested type: | 
 | 		 * - request is uc-, return cannot be write-back | 
 | 		 * - request is uc-, return cannot be write-combine | 
 | 		 * - request is write-combine, return cannot be write-back | 
 | 		 */ | 
 | 		if ((prot_val == _PAGE_CACHE_UC_MINUS && | 
 | 		     (new_prot_val == _PAGE_CACHE_WB || | 
 | 		      new_prot_val == _PAGE_CACHE_WC)) || | 
 | 		    (prot_val == _PAGE_CACHE_WC && | 
 | 		     new_prot_val == _PAGE_CACHE_WB)) { | 
 | 			pr_debug( | 
 | 		"ioremap error for 0x%llx-0x%llx, requested 0x%lx, got 0x%lx\n", | 
 | 				(unsigned long long)phys_addr, | 
 | 				(unsigned long long)(phys_addr + size), | 
 | 				prot_val, new_prot_val); | 
 | 			free_memtype(phys_addr, phys_addr + size); | 
 | 			return NULL; | 
 | 		} | 
 | 		prot_val = new_prot_val; | 
 | 	} | 
 |  | 
 | 	switch (prot_val) { | 
 | 	case _PAGE_CACHE_UC: | 
 | 	default: | 
 | 		prot = PAGE_KERNEL_IO_NOCACHE; | 
 | 		break; | 
 | 	case _PAGE_CACHE_UC_MINUS: | 
 | 		prot = PAGE_KERNEL_IO_UC_MINUS; | 
 | 		break; | 
 | 	case _PAGE_CACHE_WC: | 
 | 		prot = PAGE_KERNEL_IO_WC; | 
 | 		break; | 
 | 	case _PAGE_CACHE_WB: | 
 | 		prot = PAGE_KERNEL_IO; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ok, go for it.. | 
 | 	 */ | 
 | 	area = get_vm_area_caller(size, VM_IOREMAP, caller); | 
 | 	if (!area) | 
 | 		return NULL; | 
 | 	area->phys_addr = phys_addr; | 
 | 	vaddr = (unsigned long) area->addr; | 
 | 	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) { | 
 | 		free_memtype(phys_addr, phys_addr + size); | 
 | 		free_vm_area(area); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (ioremap_change_attr(vaddr, size, prot_val) < 0) { | 
 | 		free_memtype(phys_addr, phys_addr + size); | 
 | 		vunmap(area->addr); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	ret_addr = (void __iomem *) (vaddr + offset); | 
 | 	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); | 
 |  | 
 | 	return ret_addr; | 
 | } | 
 |  | 
 | /** | 
 |  * ioremap_nocache     -   map bus memory into CPU space | 
 |  * @offset:    bus address of the memory | 
 |  * @size:      size of the resource to map | 
 |  * | 
 |  * ioremap_nocache performs a platform specific sequence of operations to | 
 |  * make bus memory CPU accessible via the readb/readw/readl/writeb/ | 
 |  * writew/writel functions and the other mmio helpers. The returned | 
 |  * address is not guaranteed to be usable directly as a virtual | 
 |  * address. | 
 |  * | 
 |  * This version of ioremap ensures that the memory is marked uncachable | 
 |  * on the CPU as well as honouring existing caching rules from things like | 
 |  * the PCI bus. Note that there are other caches and buffers on many | 
 |  * busses. In particular driver authors should read up on PCI writes | 
 |  * | 
 |  * It's useful if some control registers are in such an area and | 
 |  * write combining or read caching is not desirable: | 
 |  * | 
 |  * Must be freed with iounmap. | 
 |  */ | 
 | void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size) | 
 | { | 
 | 	/* | 
 | 	 * Ideally, this should be: | 
 | 	 *	pat_enabled ? _PAGE_CACHE_UC : _PAGE_CACHE_UC_MINUS; | 
 | 	 * | 
 | 	 * Till we fix all X drivers to use ioremap_wc(), we will use | 
 | 	 * UC MINUS. | 
 | 	 */ | 
 | 	unsigned long val = _PAGE_CACHE_UC_MINUS; | 
 |  | 
 | 	return __ioremap_caller(phys_addr, size, val, | 
 | 				__builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(ioremap_nocache); | 
 |  | 
 | /** | 
 |  * ioremap_wc	-	map memory into CPU space write combined | 
 |  * @offset:	bus address of the memory | 
 |  * @size:	size of the resource to map | 
 |  * | 
 |  * This version of ioremap ensures that the memory is marked write combining. | 
 |  * Write combining allows faster writes to some hardware devices. | 
 |  * | 
 |  * Must be freed with iounmap. | 
 |  */ | 
 | void __iomem *ioremap_wc(unsigned long phys_addr, unsigned long size) | 
 | { | 
 | 	if (pat_enabled) | 
 | 		return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WC, | 
 | 					__builtin_return_address(0)); | 
 | 	else | 
 | 		return ioremap_nocache(phys_addr, size); | 
 | } | 
 | EXPORT_SYMBOL(ioremap_wc); | 
 |  | 
 | void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) | 
 | { | 
 | 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WB, | 
 | 				__builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(ioremap_cache); | 
 |  | 
 | static void __iomem *ioremap_default(resource_size_t phys_addr, | 
 | 					unsigned long size) | 
 | { | 
 | 	unsigned long flags; | 
 | 	void __iomem *ret; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * - WB for WB-able memory and no other conflicting mappings | 
 | 	 * - UC_MINUS for non-WB-able memory with no other conflicting mappings | 
 | 	 * - Inherit from confliting mappings otherwise | 
 | 	 */ | 
 | 	err = reserve_memtype(phys_addr, phys_addr + size, -1, &flags); | 
 | 	if (err < 0) | 
 | 		return NULL; | 
 |  | 
 | 	ret = __ioremap_caller(phys_addr, size, flags, | 
 | 			       __builtin_return_address(0)); | 
 |  | 
 | 	free_memtype(phys_addr, phys_addr + size); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, | 
 | 				unsigned long prot_val) | 
 | { | 
 | 	return __ioremap_caller(phys_addr, size, (prot_val & _PAGE_CACHE_MASK), | 
 | 				__builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(ioremap_prot); | 
 |  | 
 | /** | 
 |  * iounmap - Free a IO remapping | 
 |  * @addr: virtual address from ioremap_* | 
 |  * | 
 |  * Caller must ensure there is only one unmapping for the same pointer. | 
 |  */ | 
 | void iounmap(volatile void __iomem *addr) | 
 | { | 
 | 	struct vm_struct *p, *o; | 
 |  | 
 | 	if ((void __force *)addr <= high_memory) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * __ioremap special-cases the PCI/ISA range by not instantiating a | 
 | 	 * vm_area and by simply returning an address into the kernel mapping | 
 | 	 * of ISA space.   So handle that here. | 
 | 	 */ | 
 | 	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && | 
 | 	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) | 
 | 		return; | 
 |  | 
 | 	addr = (volatile void __iomem *) | 
 | 		(PAGE_MASK & (unsigned long __force)addr); | 
 |  | 
 | 	mmiotrace_iounmap(addr); | 
 |  | 
 | 	/* Use the vm area unlocked, assuming the caller | 
 | 	   ensures there isn't another iounmap for the same address | 
 | 	   in parallel. Reuse of the virtual address is prevented by | 
 | 	   leaving it in the global lists until we're done with it. | 
 | 	   cpa takes care of the direct mappings. */ | 
 | 	read_lock(&vmlist_lock); | 
 | 	for (p = vmlist; p; p = p->next) { | 
 | 		if (p->addr == (void __force *)addr) | 
 | 			break; | 
 | 	} | 
 | 	read_unlock(&vmlist_lock); | 
 |  | 
 | 	if (!p) { | 
 | 		printk(KERN_ERR "iounmap: bad address %p\n", addr); | 
 | 		dump_stack(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p)); | 
 |  | 
 | 	/* Finally remove it */ | 
 | 	o = remove_vm_area((void __force *)addr); | 
 | 	BUG_ON(p != o || o == NULL); | 
 | 	kfree(p); | 
 | } | 
 | EXPORT_SYMBOL(iounmap); | 
 |  | 
 | /* | 
 |  * Convert a physical pointer to a virtual kernel pointer for /dev/mem | 
 |  * access | 
 |  */ | 
 | void *xlate_dev_mem_ptr(unsigned long phys) | 
 | { | 
 | 	void *addr; | 
 | 	unsigned long start = phys & PAGE_MASK; | 
 |  | 
 | 	/* If page is RAM, we can use __va. Otherwise ioremap and unmap. */ | 
 | 	if (page_is_ram(start >> PAGE_SHIFT)) | 
 | 		return __va(phys); | 
 |  | 
 | 	addr = (void __force *)ioremap_default(start, PAGE_SIZE); | 
 | 	if (addr) | 
 | 		addr = (void *)((unsigned long)addr | (phys & ~PAGE_MASK)); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | void unxlate_dev_mem_ptr(unsigned long phys, void *addr) | 
 | { | 
 | 	if (page_is_ram(phys >> PAGE_SHIFT)) | 
 | 		return; | 
 |  | 
 | 	iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK)); | 
 | 	return; | 
 | } | 
 |  | 
 | static int __initdata early_ioremap_debug; | 
 |  | 
 | static int __init early_ioremap_debug_setup(char *str) | 
 | { | 
 | 	early_ioremap_debug = 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("early_ioremap_debug", early_ioremap_debug_setup); | 
 |  | 
 | static __initdata int after_paging_init; | 
 | static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; | 
 |  | 
 | static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) | 
 | { | 
 | 	/* Don't assume we're using swapper_pg_dir at this point */ | 
 | 	pgd_t *base = __va(read_cr3()); | 
 | 	pgd_t *pgd = &base[pgd_index(addr)]; | 
 | 	pud_t *pud = pud_offset(pgd, addr); | 
 | 	pmd_t *pmd = pmd_offset(pud, addr); | 
 |  | 
 | 	return pmd; | 
 | } | 
 |  | 
 | static inline pte_t * __init early_ioremap_pte(unsigned long addr) | 
 | { | 
 | 	return &bm_pte[pte_index(addr)]; | 
 | } | 
 |  | 
 | void __init early_ioremap_init(void) | 
 | { | 
 | 	pmd_t *pmd; | 
 |  | 
 | 	if (early_ioremap_debug) | 
 | 		printk(KERN_INFO "early_ioremap_init()\n"); | 
 |  | 
 | 	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); | 
 | 	memset(bm_pte, 0, sizeof(bm_pte)); | 
 | 	pmd_populate_kernel(&init_mm, pmd, bm_pte); | 
 |  | 
 | 	/* | 
 | 	 * The boot-ioremap range spans multiple pmds, for which | 
 | 	 * we are not prepared: | 
 | 	 */ | 
 | 	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { | 
 | 		WARN_ON(1); | 
 | 		printk(KERN_WARNING "pmd %p != %p\n", | 
 | 		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); | 
 | 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", | 
 | 			fix_to_virt(FIX_BTMAP_BEGIN)); | 
 | 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n", | 
 | 			fix_to_virt(FIX_BTMAP_END)); | 
 |  | 
 | 		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END); | 
 | 		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n", | 
 | 		       FIX_BTMAP_BEGIN); | 
 | 	} | 
 | } | 
 |  | 
 | void __init early_ioremap_clear(void) | 
 | { | 
 | 	pmd_t *pmd; | 
 |  | 
 | 	if (early_ioremap_debug) | 
 | 		printk(KERN_INFO "early_ioremap_clear()\n"); | 
 |  | 
 | 	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); | 
 | 	pmd_clear(pmd); | 
 | 	paravirt_release_pte(__pa(bm_pte) >> PAGE_SHIFT); | 
 | 	__flush_tlb_all(); | 
 | } | 
 |  | 
 | void __init early_ioremap_reset(void) | 
 | { | 
 | 	enum fixed_addresses idx; | 
 | 	unsigned long addr, phys; | 
 | 	pte_t *pte; | 
 |  | 
 | 	after_paging_init = 1; | 
 | 	for (idx = FIX_BTMAP_BEGIN; idx >= FIX_BTMAP_END; idx--) { | 
 | 		addr = fix_to_virt(idx); | 
 | 		pte = early_ioremap_pte(addr); | 
 | 		if (pte_present(*pte)) { | 
 | 			phys = pte_val(*pte) & PAGE_MASK; | 
 | 			set_fixmap(idx, phys); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void __init __early_set_fixmap(enum fixed_addresses idx, | 
 | 				   unsigned long phys, pgprot_t flags) | 
 | { | 
 | 	unsigned long addr = __fix_to_virt(idx); | 
 | 	pte_t *pte; | 
 |  | 
 | 	if (idx >= __end_of_fixed_addresses) { | 
 | 		BUG(); | 
 | 		return; | 
 | 	} | 
 | 	pte = early_ioremap_pte(addr); | 
 |  | 
 | 	if (pgprot_val(flags)) | 
 | 		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); | 
 | 	else | 
 | 		pte_clear(&init_mm, addr, pte); | 
 | 	__flush_tlb_one(addr); | 
 | } | 
 |  | 
 | static inline void __init early_set_fixmap(enum fixed_addresses idx, | 
 | 					   unsigned long phys, pgprot_t prot) | 
 | { | 
 | 	if (after_paging_init) | 
 | 		__set_fixmap(idx, phys, prot); | 
 | 	else | 
 | 		__early_set_fixmap(idx, phys, prot); | 
 | } | 
 |  | 
 | static inline void __init early_clear_fixmap(enum fixed_addresses idx) | 
 | { | 
 | 	if (after_paging_init) | 
 | 		clear_fixmap(idx); | 
 | 	else | 
 | 		__early_set_fixmap(idx, 0, __pgprot(0)); | 
 | } | 
 |  | 
 | static void __iomem *prev_map[FIX_BTMAPS_SLOTS] __initdata; | 
 | static unsigned long prev_size[FIX_BTMAPS_SLOTS] __initdata; | 
 | static int __init check_early_ioremap_leak(void) | 
 | { | 
 | 	int count = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < FIX_BTMAPS_SLOTS; i++) | 
 | 		if (prev_map[i]) | 
 | 			count++; | 
 |  | 
 | 	if (!count) | 
 | 		return 0; | 
 | 	WARN(1, KERN_WARNING | 
 | 	       "Debug warning: early ioremap leak of %d areas detected.\n", | 
 | 		count); | 
 | 	printk(KERN_WARNING | 
 | 		"please boot with early_ioremap_debug and report the dmesg.\n"); | 
 |  | 
 | 	return 1; | 
 | } | 
 | late_initcall(check_early_ioremap_leak); | 
 |  | 
 | static void __init __iomem *__early_ioremap(unsigned long phys_addr, unsigned long size, pgprot_t prot) | 
 | { | 
 | 	unsigned long offset, last_addr; | 
 | 	unsigned int nrpages; | 
 | 	enum fixed_addresses idx0, idx; | 
 | 	int i, slot; | 
 |  | 
 | 	WARN_ON(system_state != SYSTEM_BOOTING); | 
 |  | 
 | 	slot = -1; | 
 | 	for (i = 0; i < FIX_BTMAPS_SLOTS; i++) { | 
 | 		if (!prev_map[i]) { | 
 | 			slot = i; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (slot < 0) { | 
 | 		printk(KERN_INFO "early_iomap(%08lx, %08lx) not found slot\n", | 
 | 			 phys_addr, size); | 
 | 		WARN_ON(1); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (early_ioremap_debug) { | 
 | 		printk(KERN_INFO "early_ioremap(%08lx, %08lx) [%d] => ", | 
 | 		       phys_addr, size, slot); | 
 | 		dump_stack(); | 
 | 	} | 
 |  | 
 | 	/* Don't allow wraparound or zero size */ | 
 | 	last_addr = phys_addr + size - 1; | 
 | 	if (!size || last_addr < phys_addr) { | 
 | 		WARN_ON(1); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	prev_size[slot] = size; | 
 | 	/* | 
 | 	 * Mappings have to be page-aligned | 
 | 	 */ | 
 | 	offset = phys_addr & ~PAGE_MASK; | 
 | 	phys_addr &= PAGE_MASK; | 
 | 	size = PAGE_ALIGN(last_addr + 1) - phys_addr; | 
 |  | 
 | 	/* | 
 | 	 * Mappings have to fit in the FIX_BTMAP area. | 
 | 	 */ | 
 | 	nrpages = size >> PAGE_SHIFT; | 
 | 	if (nrpages > NR_FIX_BTMAPS) { | 
 | 		WARN_ON(1); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ok, go for it.. | 
 | 	 */ | 
 | 	idx0 = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot; | 
 | 	idx = idx0; | 
 | 	while (nrpages > 0) { | 
 | 		early_set_fixmap(idx, phys_addr, prot); | 
 | 		phys_addr += PAGE_SIZE; | 
 | 		--idx; | 
 | 		--nrpages; | 
 | 	} | 
 | 	if (early_ioremap_debug) | 
 | 		printk(KERN_CONT "%08lx + %08lx\n", offset, fix_to_virt(idx0)); | 
 |  | 
 | 	prev_map[slot] = (void __iomem *)(offset + fix_to_virt(idx0)); | 
 | 	return prev_map[slot]; | 
 | } | 
 |  | 
 | /* Remap an IO device */ | 
 | void __init __iomem *early_ioremap(unsigned long phys_addr, unsigned long size) | 
 | { | 
 | 	return __early_ioremap(phys_addr, size, PAGE_KERNEL_IO); | 
 | } | 
 |  | 
 | /* Remap memory */ | 
 | void __init __iomem *early_memremap(unsigned long phys_addr, unsigned long size) | 
 | { | 
 | 	return __early_ioremap(phys_addr, size, PAGE_KERNEL); | 
 | } | 
 |  | 
 | void __init early_iounmap(void __iomem *addr, unsigned long size) | 
 | { | 
 | 	unsigned long virt_addr; | 
 | 	unsigned long offset; | 
 | 	unsigned int nrpages; | 
 | 	enum fixed_addresses idx; | 
 | 	int i, slot; | 
 |  | 
 | 	slot = -1; | 
 | 	for (i = 0; i < FIX_BTMAPS_SLOTS; i++) { | 
 | 		if (prev_map[i] == addr) { | 
 | 			slot = i; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (slot < 0) { | 
 | 		printk(KERN_INFO "early_iounmap(%p, %08lx) not found slot\n", | 
 | 			 addr, size); | 
 | 		WARN_ON(1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (prev_size[slot] != size) { | 
 | 		printk(KERN_INFO "early_iounmap(%p, %08lx) [%d] size not consistent %08lx\n", | 
 | 			 addr, size, slot, prev_size[slot]); | 
 | 		WARN_ON(1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (early_ioremap_debug) { | 
 | 		printk(KERN_INFO "early_iounmap(%p, %08lx) [%d]\n", addr, | 
 | 		       size, slot); | 
 | 		dump_stack(); | 
 | 	} | 
 |  | 
 | 	virt_addr = (unsigned long)addr; | 
 | 	if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN)) { | 
 | 		WARN_ON(1); | 
 | 		return; | 
 | 	} | 
 | 	offset = virt_addr & ~PAGE_MASK; | 
 | 	nrpages = PAGE_ALIGN(offset + size - 1) >> PAGE_SHIFT; | 
 |  | 
 | 	idx = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot; | 
 | 	while (nrpages > 0) { | 
 | 		early_clear_fixmap(idx); | 
 | 		--idx; | 
 | 		--nrpages; | 
 | 	} | 
 | 	prev_map[slot] = NULL; | 
 | } | 
 |  | 
 | void __this_fixmap_does_not_exist(void) | 
 | { | 
 | 	WARN_ON(1); | 
 | } |