|  | /* | 
|  | * (C) Copyright Linus Torvalds 1999 | 
|  | * (C) Copyright Johannes Erdfelt 1999-2001 | 
|  | * (C) Copyright Andreas Gal 1999 | 
|  | * (C) Copyright Gregory P. Smith 1999 | 
|  | * (C) Copyright Deti Fliegl 1999 | 
|  | * (C) Copyright Randy Dunlap 2000 | 
|  | * (C) Copyright David Brownell 2000-2002 | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the | 
|  | * Free Software Foundation; either version 2 of the License, or (at your | 
|  | * option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
|  | * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | * for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software Foundation, | 
|  | * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/version.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/mm.h> | 
|  | #include <asm/io.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/workqueue.h> | 
|  |  | 
|  | #include <linux/usb.h> | 
|  |  | 
|  | #include "usb.h" | 
|  | #include "hcd.h" | 
|  | #include "hub.h" | 
|  |  | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * USB Host Controller Driver framework | 
|  | * | 
|  | * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing | 
|  | * HCD-specific behaviors/bugs. | 
|  | * | 
|  | * This does error checks, tracks devices and urbs, and delegates to a | 
|  | * "hc_driver" only for code (and data) that really needs to know about | 
|  | * hardware differences.  That includes root hub registers, i/o queues, | 
|  | * and so on ... but as little else as possible. | 
|  | * | 
|  | * Shared code includes most of the "root hub" code (these are emulated, | 
|  | * though each HC's hardware works differently) and PCI glue, plus request | 
|  | * tracking overhead.  The HCD code should only block on spinlocks or on | 
|  | * hardware handshaking; blocking on software events (such as other kernel | 
|  | * threads releasing resources, or completing actions) is all generic. | 
|  | * | 
|  | * Happens the USB 2.0 spec says this would be invisible inside the "USBD", | 
|  | * and includes mostly a "HCDI" (HCD Interface) along with some APIs used | 
|  | * only by the hub driver ... and that neither should be seen or used by | 
|  | * usb client device drivers. | 
|  | * | 
|  | * Contributors of ideas or unattributed patches include: David Brownell, | 
|  | * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... | 
|  | * | 
|  | * HISTORY: | 
|  | * 2002-02-21	Pull in most of the usb_bus support from usb.c; some | 
|  | *		associated cleanup.  "usb_hcd" still != "usb_bus". | 
|  | * 2001-12-12	Initial patch version for Linux 2.5.1 kernel. | 
|  | */ | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Keep track of which host controller drivers are loaded */ | 
|  | unsigned long usb_hcds_loaded; | 
|  | EXPORT_SYMBOL_GPL(usb_hcds_loaded); | 
|  |  | 
|  | /* host controllers we manage */ | 
|  | LIST_HEAD (usb_bus_list); | 
|  | EXPORT_SYMBOL_GPL (usb_bus_list); | 
|  |  | 
|  | /* used when allocating bus numbers */ | 
|  | #define USB_MAXBUS		64 | 
|  | struct usb_busmap { | 
|  | unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; | 
|  | }; | 
|  | static struct usb_busmap busmap; | 
|  |  | 
|  | /* used when updating list of hcds */ | 
|  | DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */ | 
|  | EXPORT_SYMBOL_GPL (usb_bus_list_lock); | 
|  |  | 
|  | /* used for controlling access to virtual root hubs */ | 
|  | static DEFINE_SPINLOCK(hcd_root_hub_lock); | 
|  |  | 
|  | /* used when updating an endpoint's URB list */ | 
|  | static DEFINE_SPINLOCK(hcd_urb_list_lock); | 
|  |  | 
|  | /* used to protect against unlinking URBs after the device is gone */ | 
|  | static DEFINE_SPINLOCK(hcd_urb_unlink_lock); | 
|  |  | 
|  | /* wait queue for synchronous unlinks */ | 
|  | DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); | 
|  |  | 
|  | static inline int is_root_hub(struct usb_device *udev) | 
|  | { | 
|  | return (udev->parent == NULL); | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Sharable chunks of root hub code. | 
|  | */ | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff) | 
|  | #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff) | 
|  |  | 
|  | /* usb 3.0 root hub device descriptor */ | 
|  | static const u8 usb3_rh_dev_descriptor[18] = { | 
|  | 0x12,       /*  __u8  bLength; */ | 
|  | 0x01,       /*  __u8  bDescriptorType; Device */ | 
|  | 0x00, 0x03, /*  __le16 bcdUSB; v3.0 */ | 
|  |  | 
|  | 0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */ | 
|  | 0x00,	    /*  __u8  bDeviceSubClass; */ | 
|  | 0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */ | 
|  | 0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */ | 
|  |  | 
|  | 0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */ | 
|  | 0x02, 0x00, /*  __le16 idProduct; device 0x0002 */ | 
|  | KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */ | 
|  |  | 
|  | 0x03,       /*  __u8  iManufacturer; */ | 
|  | 0x02,       /*  __u8  iProduct; */ | 
|  | 0x01,       /*  __u8  iSerialNumber; */ | 
|  | 0x01        /*  __u8  bNumConfigurations; */ | 
|  | }; | 
|  |  | 
|  | /* usb 2.0 root hub device descriptor */ | 
|  | static const u8 usb2_rh_dev_descriptor [18] = { | 
|  | 0x12,       /*  __u8  bLength; */ | 
|  | 0x01,       /*  __u8  bDescriptorType; Device */ | 
|  | 0x00, 0x02, /*  __le16 bcdUSB; v2.0 */ | 
|  |  | 
|  | 0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */ | 
|  | 0x00,	    /*  __u8  bDeviceSubClass; */ | 
|  | 0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */ | 
|  | 0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */ | 
|  |  | 
|  | 0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */ | 
|  | 0x02, 0x00, /*  __le16 idProduct; device 0x0002 */ | 
|  | KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */ | 
|  |  | 
|  | 0x03,       /*  __u8  iManufacturer; */ | 
|  | 0x02,       /*  __u8  iProduct; */ | 
|  | 0x01,       /*  __u8  iSerialNumber; */ | 
|  | 0x01        /*  __u8  bNumConfigurations; */ | 
|  | }; | 
|  |  | 
|  | /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ | 
|  |  | 
|  | /* usb 1.1 root hub device descriptor */ | 
|  | static const u8 usb11_rh_dev_descriptor [18] = { | 
|  | 0x12,       /*  __u8  bLength; */ | 
|  | 0x01,       /*  __u8  bDescriptorType; Device */ | 
|  | 0x10, 0x01, /*  __le16 bcdUSB; v1.1 */ | 
|  |  | 
|  | 0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */ | 
|  | 0x00,	    /*  __u8  bDeviceSubClass; */ | 
|  | 0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */ | 
|  | 0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */ | 
|  |  | 
|  | 0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */ | 
|  | 0x01, 0x00, /*  __le16 idProduct; device 0x0001 */ | 
|  | KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */ | 
|  |  | 
|  | 0x03,       /*  __u8  iManufacturer; */ | 
|  | 0x02,       /*  __u8  iProduct; */ | 
|  | 0x01,       /*  __u8  iSerialNumber; */ | 
|  | 0x01        /*  __u8  bNumConfigurations; */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Configuration descriptors for our root hubs */ | 
|  |  | 
|  | static const u8 fs_rh_config_descriptor [] = { | 
|  |  | 
|  | /* one configuration */ | 
|  | 0x09,       /*  __u8  bLength; */ | 
|  | 0x02,       /*  __u8  bDescriptorType; Configuration */ | 
|  | 0x19, 0x00, /*  __le16 wTotalLength; */ | 
|  | 0x01,       /*  __u8  bNumInterfaces; (1) */ | 
|  | 0x01,       /*  __u8  bConfigurationValue; */ | 
|  | 0x00,       /*  __u8  iConfiguration; */ | 
|  | 0xc0,       /*  __u8  bmAttributes; | 
|  | Bit 7: must be set, | 
|  | 6: Self-powered, | 
|  | 5: Remote wakeup, | 
|  | 4..0: resvd */ | 
|  | 0x00,       /*  __u8  MaxPower; */ | 
|  |  | 
|  | /* USB 1.1: | 
|  | * USB 2.0, single TT organization (mandatory): | 
|  | *	one interface, protocol 0 | 
|  | * | 
|  | * USB 2.0, multiple TT organization (optional): | 
|  | *	two interfaces, protocols 1 (like single TT) | 
|  | *	and 2 (multiple TT mode) ... config is | 
|  | *	sometimes settable | 
|  | *	NOT IMPLEMENTED | 
|  | */ | 
|  |  | 
|  | /* one interface */ | 
|  | 0x09,       /*  __u8  if_bLength; */ | 
|  | 0x04,       /*  __u8  if_bDescriptorType; Interface */ | 
|  | 0x00,       /*  __u8  if_bInterfaceNumber; */ | 
|  | 0x00,       /*  __u8  if_bAlternateSetting; */ | 
|  | 0x01,       /*  __u8  if_bNumEndpoints; */ | 
|  | 0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */ | 
|  | 0x00,       /*  __u8  if_bInterfaceSubClass; */ | 
|  | 0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */ | 
|  | 0x00,       /*  __u8  if_iInterface; */ | 
|  |  | 
|  | /* one endpoint (status change endpoint) */ | 
|  | 0x07,       /*  __u8  ep_bLength; */ | 
|  | 0x05,       /*  __u8  ep_bDescriptorType; Endpoint */ | 
|  | 0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */ | 
|  | 0x03,       /*  __u8  ep_bmAttributes; Interrupt */ | 
|  | 0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ | 
|  | 0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */ | 
|  | }; | 
|  |  | 
|  | static const u8 hs_rh_config_descriptor [] = { | 
|  |  | 
|  | /* one configuration */ | 
|  | 0x09,       /*  __u8  bLength; */ | 
|  | 0x02,       /*  __u8  bDescriptorType; Configuration */ | 
|  | 0x19, 0x00, /*  __le16 wTotalLength; */ | 
|  | 0x01,       /*  __u8  bNumInterfaces; (1) */ | 
|  | 0x01,       /*  __u8  bConfigurationValue; */ | 
|  | 0x00,       /*  __u8  iConfiguration; */ | 
|  | 0xc0,       /*  __u8  bmAttributes; | 
|  | Bit 7: must be set, | 
|  | 6: Self-powered, | 
|  | 5: Remote wakeup, | 
|  | 4..0: resvd */ | 
|  | 0x00,       /*  __u8  MaxPower; */ | 
|  |  | 
|  | /* USB 1.1: | 
|  | * USB 2.0, single TT organization (mandatory): | 
|  | *	one interface, protocol 0 | 
|  | * | 
|  | * USB 2.0, multiple TT organization (optional): | 
|  | *	two interfaces, protocols 1 (like single TT) | 
|  | *	and 2 (multiple TT mode) ... config is | 
|  | *	sometimes settable | 
|  | *	NOT IMPLEMENTED | 
|  | */ | 
|  |  | 
|  | /* one interface */ | 
|  | 0x09,       /*  __u8  if_bLength; */ | 
|  | 0x04,       /*  __u8  if_bDescriptorType; Interface */ | 
|  | 0x00,       /*  __u8  if_bInterfaceNumber; */ | 
|  | 0x00,       /*  __u8  if_bAlternateSetting; */ | 
|  | 0x01,       /*  __u8  if_bNumEndpoints; */ | 
|  | 0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */ | 
|  | 0x00,       /*  __u8  if_bInterfaceSubClass; */ | 
|  | 0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */ | 
|  | 0x00,       /*  __u8  if_iInterface; */ | 
|  |  | 
|  | /* one endpoint (status change endpoint) */ | 
|  | 0x07,       /*  __u8  ep_bLength; */ | 
|  | 0x05,       /*  __u8  ep_bDescriptorType; Endpoint */ | 
|  | 0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */ | 
|  | 0x03,       /*  __u8  ep_bmAttributes; Interrupt */ | 
|  | /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) | 
|  | * see hub.c:hub_configure() for details. */ | 
|  | (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, | 
|  | 0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */ | 
|  | }; | 
|  |  | 
|  | static const u8 ss_rh_config_descriptor[] = { | 
|  | /* one configuration */ | 
|  | 0x09,       /*  __u8  bLength; */ | 
|  | 0x02,       /*  __u8  bDescriptorType; Configuration */ | 
|  | 0x19, 0x00, /*  __le16 wTotalLength; FIXME */ | 
|  | 0x01,       /*  __u8  bNumInterfaces; (1) */ | 
|  | 0x01,       /*  __u8  bConfigurationValue; */ | 
|  | 0x00,       /*  __u8  iConfiguration; */ | 
|  | 0xc0,       /*  __u8  bmAttributes; | 
|  | Bit 7: must be set, | 
|  | 6: Self-powered, | 
|  | 5: Remote wakeup, | 
|  | 4..0: resvd */ | 
|  | 0x00,       /*  __u8  MaxPower; */ | 
|  |  | 
|  | /* one interface */ | 
|  | 0x09,       /*  __u8  if_bLength; */ | 
|  | 0x04,       /*  __u8  if_bDescriptorType; Interface */ | 
|  | 0x00,       /*  __u8  if_bInterfaceNumber; */ | 
|  | 0x00,       /*  __u8  if_bAlternateSetting; */ | 
|  | 0x01,       /*  __u8  if_bNumEndpoints; */ | 
|  | 0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */ | 
|  | 0x00,       /*  __u8  if_bInterfaceSubClass; */ | 
|  | 0x00,       /*  __u8  if_bInterfaceProtocol; */ | 
|  | 0x00,       /*  __u8  if_iInterface; */ | 
|  |  | 
|  | /* one endpoint (status change endpoint) */ | 
|  | 0x07,       /*  __u8  ep_bLength; */ | 
|  | 0x05,       /*  __u8  ep_bDescriptorType; Endpoint */ | 
|  | 0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */ | 
|  | 0x03,       /*  __u8  ep_bmAttributes; Interrupt */ | 
|  | /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) | 
|  | * see hub.c:hub_configure() for details. */ | 
|  | (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, | 
|  | 0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */ | 
|  | /* | 
|  | * All 3.0 hubs should have an endpoint companion descriptor, | 
|  | * but we're ignoring that for now.  FIXME? | 
|  | */ | 
|  | }; | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * helper routine for returning string descriptors in UTF-16LE | 
|  | * input can actually be ISO-8859-1; ASCII is its 7-bit subset | 
|  | */ | 
|  | static unsigned ascii2utf(char *s, u8 *utf, int utfmax) | 
|  | { | 
|  | unsigned retval; | 
|  |  | 
|  | for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) { | 
|  | *utf++ = *s++; | 
|  | *utf++ = 0; | 
|  | } | 
|  | if (utfmax > 0) { | 
|  | *utf = *s; | 
|  | ++retval; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rh_string - provides manufacturer, product and serial strings for root hub | 
|  | * @id: the string ID number (1: serial number, 2: product, 3: vendor) | 
|  | * @hcd: the host controller for this root hub | 
|  | * @data: return packet in UTF-16 LE | 
|  | * @len: length of the return packet | 
|  | * | 
|  | * Produces either a manufacturer, product or serial number string for the | 
|  | * virtual root hub device. | 
|  | */ | 
|  | static unsigned rh_string(int id, struct usb_hcd *hcd, u8 *data, unsigned len) | 
|  | { | 
|  | char buf [100]; | 
|  |  | 
|  | // language ids | 
|  | if (id == 0) { | 
|  | buf[0] = 4;    buf[1] = 3;	/* 4 bytes string data */ | 
|  | buf[2] = 0x09; buf[3] = 0x04;	/* MSFT-speak for "en-us" */ | 
|  | len = min_t(unsigned, len, 4); | 
|  | memcpy (data, buf, len); | 
|  | return len; | 
|  |  | 
|  | // serial number | 
|  | } else if (id == 1) { | 
|  | strlcpy (buf, hcd->self.bus_name, sizeof buf); | 
|  |  | 
|  | // product description | 
|  | } else if (id == 2) { | 
|  | strlcpy (buf, hcd->product_desc, sizeof buf); | 
|  |  | 
|  | // id 3 == vendor description | 
|  | } else if (id == 3) { | 
|  | snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, | 
|  | init_utsname()->release, hcd->driver->description); | 
|  | } | 
|  |  | 
|  | switch (len) {		/* All cases fall through */ | 
|  | default: | 
|  | len = 2 + ascii2utf (buf, data + 2, len - 2); | 
|  | case 2: | 
|  | data [1] = 3;	/* type == string */ | 
|  | case 1: | 
|  | data [0] = 2 * (strlen (buf) + 1); | 
|  | case 0: | 
|  | ;		/* Compiler wants a statement here */ | 
|  | } | 
|  | return len; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Root hub control transfers execute synchronously */ | 
|  | static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) | 
|  | { | 
|  | struct usb_ctrlrequest *cmd; | 
|  | u16		typeReq, wValue, wIndex, wLength; | 
|  | u8		*ubuf = urb->transfer_buffer; | 
|  | u8		tbuf [sizeof (struct usb_hub_descriptor)] | 
|  | __attribute__((aligned(4))); | 
|  | const u8	*bufp = tbuf; | 
|  | unsigned	len = 0; | 
|  | int		status; | 
|  | u8		patch_wakeup = 0; | 
|  | u8		patch_protocol = 0; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | spin_lock_irq(&hcd_root_hub_lock); | 
|  | status = usb_hcd_link_urb_to_ep(hcd, urb); | 
|  | spin_unlock_irq(&hcd_root_hub_lock); | 
|  | if (status) | 
|  | return status; | 
|  | urb->hcpriv = hcd;	/* Indicate it's queued */ | 
|  |  | 
|  | cmd = (struct usb_ctrlrequest *) urb->setup_packet; | 
|  | typeReq  = (cmd->bRequestType << 8) | cmd->bRequest; | 
|  | wValue   = le16_to_cpu (cmd->wValue); | 
|  | wIndex   = le16_to_cpu (cmd->wIndex); | 
|  | wLength  = le16_to_cpu (cmd->wLength); | 
|  |  | 
|  | if (wLength > urb->transfer_buffer_length) | 
|  | goto error; | 
|  |  | 
|  | urb->actual_length = 0; | 
|  | switch (typeReq) { | 
|  |  | 
|  | /* DEVICE REQUESTS */ | 
|  |  | 
|  | /* The root hub's remote wakeup enable bit is implemented using | 
|  | * driver model wakeup flags.  If this system supports wakeup | 
|  | * through USB, userspace may change the default "allow wakeup" | 
|  | * policy through sysfs or these calls. | 
|  | * | 
|  | * Most root hubs support wakeup from downstream devices, for | 
|  | * runtime power management (disabling USB clocks and reducing | 
|  | * VBUS power usage).  However, not all of them do so; silicon, | 
|  | * board, and BIOS bugs here are not uncommon, so these can't | 
|  | * be treated quite like external hubs. | 
|  | * | 
|  | * Likewise, not all root hubs will pass wakeup events upstream, | 
|  | * to wake up the whole system.  So don't assume root hub and | 
|  | * controller capabilities are identical. | 
|  | */ | 
|  |  | 
|  | case DeviceRequest | USB_REQ_GET_STATUS: | 
|  | tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) | 
|  | << USB_DEVICE_REMOTE_WAKEUP) | 
|  | | (1 << USB_DEVICE_SELF_POWERED); | 
|  | tbuf [1] = 0; | 
|  | len = 2; | 
|  | break; | 
|  | case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: | 
|  | if (wValue == USB_DEVICE_REMOTE_WAKEUP) | 
|  | device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); | 
|  | else | 
|  | goto error; | 
|  | break; | 
|  | case DeviceOutRequest | USB_REQ_SET_FEATURE: | 
|  | if (device_can_wakeup(&hcd->self.root_hub->dev) | 
|  | && wValue == USB_DEVICE_REMOTE_WAKEUP) | 
|  | device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); | 
|  | else | 
|  | goto error; | 
|  | break; | 
|  | case DeviceRequest | USB_REQ_GET_CONFIGURATION: | 
|  | tbuf [0] = 1; | 
|  | len = 1; | 
|  | /* FALLTHROUGH */ | 
|  | case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: | 
|  | break; | 
|  | case DeviceRequest | USB_REQ_GET_DESCRIPTOR: | 
|  | switch (wValue & 0xff00) { | 
|  | case USB_DT_DEVICE << 8: | 
|  | switch (hcd->driver->flags & HCD_MASK) { | 
|  | case HCD_USB3: | 
|  | bufp = usb3_rh_dev_descriptor; | 
|  | break; | 
|  | case HCD_USB2: | 
|  | bufp = usb2_rh_dev_descriptor; | 
|  | break; | 
|  | case HCD_USB11: | 
|  | bufp = usb11_rh_dev_descriptor; | 
|  | break; | 
|  | default: | 
|  | goto error; | 
|  | } | 
|  | len = 18; | 
|  | if (hcd->has_tt) | 
|  | patch_protocol = 1; | 
|  | break; | 
|  | case USB_DT_CONFIG << 8: | 
|  | switch (hcd->driver->flags & HCD_MASK) { | 
|  | case HCD_USB3: | 
|  | bufp = ss_rh_config_descriptor; | 
|  | len = sizeof ss_rh_config_descriptor; | 
|  | break; | 
|  | case HCD_USB2: | 
|  | bufp = hs_rh_config_descriptor; | 
|  | len = sizeof hs_rh_config_descriptor; | 
|  | break; | 
|  | case HCD_USB11: | 
|  | bufp = fs_rh_config_descriptor; | 
|  | len = sizeof fs_rh_config_descriptor; | 
|  | break; | 
|  | default: | 
|  | goto error; | 
|  | } | 
|  | if (device_can_wakeup(&hcd->self.root_hub->dev)) | 
|  | patch_wakeup = 1; | 
|  | break; | 
|  | case USB_DT_STRING << 8: | 
|  | if ((wValue & 0xff) < 4) | 
|  | urb->actual_length = rh_string(wValue & 0xff, | 
|  | hcd, ubuf, wLength); | 
|  | else /* unsupported IDs --> "protocol stall" */ | 
|  | goto error; | 
|  | break; | 
|  | default: | 
|  | goto error; | 
|  | } | 
|  | break; | 
|  | case DeviceRequest | USB_REQ_GET_INTERFACE: | 
|  | tbuf [0] = 0; | 
|  | len = 1; | 
|  | /* FALLTHROUGH */ | 
|  | case DeviceOutRequest | USB_REQ_SET_INTERFACE: | 
|  | break; | 
|  | case DeviceOutRequest | USB_REQ_SET_ADDRESS: | 
|  | // wValue == urb->dev->devaddr | 
|  | dev_dbg (hcd->self.controller, "root hub device address %d\n", | 
|  | wValue); | 
|  | break; | 
|  |  | 
|  | /* INTERFACE REQUESTS (no defined feature/status flags) */ | 
|  |  | 
|  | /* ENDPOINT REQUESTS */ | 
|  |  | 
|  | case EndpointRequest | USB_REQ_GET_STATUS: | 
|  | // ENDPOINT_HALT flag | 
|  | tbuf [0] = 0; | 
|  | tbuf [1] = 0; | 
|  | len = 2; | 
|  | /* FALLTHROUGH */ | 
|  | case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: | 
|  | case EndpointOutRequest | USB_REQ_SET_FEATURE: | 
|  | dev_dbg (hcd->self.controller, "no endpoint features yet\n"); | 
|  | break; | 
|  |  | 
|  | /* CLASS REQUESTS (and errors) */ | 
|  |  | 
|  | default: | 
|  | /* non-generic request */ | 
|  | switch (typeReq) { | 
|  | case GetHubStatus: | 
|  | case GetPortStatus: | 
|  | len = 4; | 
|  | break; | 
|  | case GetHubDescriptor: | 
|  | len = sizeof (struct usb_hub_descriptor); | 
|  | break; | 
|  | } | 
|  | status = hcd->driver->hub_control (hcd, | 
|  | typeReq, wValue, wIndex, | 
|  | tbuf, wLength); | 
|  | break; | 
|  | error: | 
|  | /* "protocol stall" on error */ | 
|  | status = -EPIPE; | 
|  | } | 
|  |  | 
|  | if (status) { | 
|  | len = 0; | 
|  | if (status != -EPIPE) { | 
|  | dev_dbg (hcd->self.controller, | 
|  | "CTRL: TypeReq=0x%x val=0x%x " | 
|  | "idx=0x%x len=%d ==> %d\n", | 
|  | typeReq, wValue, wIndex, | 
|  | wLength, status); | 
|  | } | 
|  | } | 
|  | if (len) { | 
|  | if (urb->transfer_buffer_length < len) | 
|  | len = urb->transfer_buffer_length; | 
|  | urb->actual_length = len; | 
|  | // always USB_DIR_IN, toward host | 
|  | memcpy (ubuf, bufp, len); | 
|  |  | 
|  | /* report whether RH hardware supports remote wakeup */ | 
|  | if (patch_wakeup && | 
|  | len > offsetof (struct usb_config_descriptor, | 
|  | bmAttributes)) | 
|  | ((struct usb_config_descriptor *)ubuf)->bmAttributes | 
|  | |= USB_CONFIG_ATT_WAKEUP; | 
|  |  | 
|  | /* report whether RH hardware has an integrated TT */ | 
|  | if (patch_protocol && | 
|  | len > offsetof(struct usb_device_descriptor, | 
|  | bDeviceProtocol)) | 
|  | ((struct usb_device_descriptor *) ubuf)-> | 
|  | bDeviceProtocol = 1; | 
|  | } | 
|  |  | 
|  | /* any errors get returned through the urb completion */ | 
|  | spin_lock_irq(&hcd_root_hub_lock); | 
|  | usb_hcd_unlink_urb_from_ep(hcd, urb); | 
|  |  | 
|  | /* This peculiar use of spinlocks echoes what real HC drivers do. | 
|  | * Avoiding calls to local_irq_disable/enable makes the code | 
|  | * RT-friendly. | 
|  | */ | 
|  | spin_unlock(&hcd_root_hub_lock); | 
|  | usb_hcd_giveback_urb(hcd, urb, status); | 
|  | spin_lock(&hcd_root_hub_lock); | 
|  |  | 
|  | spin_unlock_irq(&hcd_root_hub_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Root Hub interrupt transfers are polled using a timer if the | 
|  | * driver requests it; otherwise the driver is responsible for | 
|  | * calling usb_hcd_poll_rh_status() when an event occurs. | 
|  | * | 
|  | * Completions are called in_interrupt(), but they may or may not | 
|  | * be in_irq(). | 
|  | */ | 
|  | void usb_hcd_poll_rh_status(struct usb_hcd *hcd) | 
|  | { | 
|  | struct urb	*urb; | 
|  | int		length; | 
|  | unsigned long	flags; | 
|  | char		buffer[6];	/* Any root hubs with > 31 ports? */ | 
|  |  | 
|  | if (unlikely(!hcd->rh_registered)) | 
|  | return; | 
|  | if (!hcd->uses_new_polling && !hcd->status_urb) | 
|  | return; | 
|  |  | 
|  | length = hcd->driver->hub_status_data(hcd, buffer); | 
|  | if (length > 0) { | 
|  |  | 
|  | /* try to complete the status urb */ | 
|  | spin_lock_irqsave(&hcd_root_hub_lock, flags); | 
|  | urb = hcd->status_urb; | 
|  | if (urb) { | 
|  | hcd->poll_pending = 0; | 
|  | hcd->status_urb = NULL; | 
|  | urb->actual_length = length; | 
|  | memcpy(urb->transfer_buffer, buffer, length); | 
|  |  | 
|  | usb_hcd_unlink_urb_from_ep(hcd, urb); | 
|  | spin_unlock(&hcd_root_hub_lock); | 
|  | usb_hcd_giveback_urb(hcd, urb, 0); | 
|  | spin_lock(&hcd_root_hub_lock); | 
|  | } else { | 
|  | length = 0; | 
|  | hcd->poll_pending = 1; | 
|  | } | 
|  | spin_unlock_irqrestore(&hcd_root_hub_lock, flags); | 
|  | } | 
|  |  | 
|  | /* The USB 2.0 spec says 256 ms.  This is close enough and won't | 
|  | * exceed that limit if HZ is 100. The math is more clunky than | 
|  | * maybe expected, this is to make sure that all timers for USB devices | 
|  | * fire at the same time to give the CPU a break inbetween */ | 
|  | if (hcd->uses_new_polling ? hcd->poll_rh : | 
|  | (length == 0 && hcd->status_urb != NULL)) | 
|  | mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); | 
|  |  | 
|  | /* timer callback */ | 
|  | static void rh_timer_func (unsigned long _hcd) | 
|  | { | 
|  | usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) | 
|  | { | 
|  | int		retval; | 
|  | unsigned long	flags; | 
|  | unsigned	len = 1 + (urb->dev->maxchild / 8); | 
|  |  | 
|  | spin_lock_irqsave (&hcd_root_hub_lock, flags); | 
|  | if (hcd->status_urb || urb->transfer_buffer_length < len) { | 
|  | dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); | 
|  | retval = -EINVAL; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | retval = usb_hcd_link_urb_to_ep(hcd, urb); | 
|  | if (retval) | 
|  | goto done; | 
|  |  | 
|  | hcd->status_urb = urb; | 
|  | urb->hcpriv = hcd;	/* indicate it's queued */ | 
|  | if (!hcd->uses_new_polling) | 
|  | mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); | 
|  |  | 
|  | /* If a status change has already occurred, report it ASAP */ | 
|  | else if (hcd->poll_pending) | 
|  | mod_timer(&hcd->rh_timer, jiffies); | 
|  | retval = 0; | 
|  | done: | 
|  | spin_unlock_irqrestore (&hcd_root_hub_lock, flags); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) | 
|  | { | 
|  | if (usb_endpoint_xfer_int(&urb->ep->desc)) | 
|  | return rh_queue_status (hcd, urb); | 
|  | if (usb_endpoint_xfer_control(&urb->ep->desc)) | 
|  | return rh_call_control (hcd, urb); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Unlinks of root-hub control URBs are legal, but they don't do anything | 
|  | * since these URBs always execute synchronously. | 
|  | */ | 
|  | static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) | 
|  | { | 
|  | unsigned long	flags; | 
|  | int		rc; | 
|  |  | 
|  | spin_lock_irqsave(&hcd_root_hub_lock, flags); | 
|  | rc = usb_hcd_check_unlink_urb(hcd, urb, status); | 
|  | if (rc) | 
|  | goto done; | 
|  |  | 
|  | if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */ | 
|  | ;	/* Do nothing */ | 
|  |  | 
|  | } else {				/* Status URB */ | 
|  | if (!hcd->uses_new_polling) | 
|  | del_timer (&hcd->rh_timer); | 
|  | if (urb == hcd->status_urb) { | 
|  | hcd->status_urb = NULL; | 
|  | usb_hcd_unlink_urb_from_ep(hcd, urb); | 
|  |  | 
|  | spin_unlock(&hcd_root_hub_lock); | 
|  | usb_hcd_giveback_urb(hcd, urb, status); | 
|  | spin_lock(&hcd_root_hub_lock); | 
|  | } | 
|  | } | 
|  | done: | 
|  | spin_unlock_irqrestore(&hcd_root_hub_lock, flags); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Show & store the current value of authorized_default | 
|  | */ | 
|  | static ssize_t usb_host_authorized_default_show(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct usb_device *rh_usb_dev = to_usb_device(dev); | 
|  | struct usb_bus *usb_bus = rh_usb_dev->bus; | 
|  | struct usb_hcd *usb_hcd; | 
|  |  | 
|  | if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */ | 
|  | return -ENODEV; | 
|  | usb_hcd = bus_to_hcd(usb_bus); | 
|  | return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); | 
|  | } | 
|  |  | 
|  | static ssize_t usb_host_authorized_default_store(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t size) | 
|  | { | 
|  | ssize_t result; | 
|  | unsigned val; | 
|  | struct usb_device *rh_usb_dev = to_usb_device(dev); | 
|  | struct usb_bus *usb_bus = rh_usb_dev->bus; | 
|  | struct usb_hcd *usb_hcd; | 
|  |  | 
|  | if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */ | 
|  | return -ENODEV; | 
|  | usb_hcd = bus_to_hcd(usb_bus); | 
|  | result = sscanf(buf, "%u\n", &val); | 
|  | if (result == 1) { | 
|  | usb_hcd->authorized_default = val? 1 : 0; | 
|  | result = size; | 
|  | } | 
|  | else | 
|  | result = -EINVAL; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR(authorized_default, 0644, | 
|  | usb_host_authorized_default_show, | 
|  | usb_host_authorized_default_store); | 
|  |  | 
|  |  | 
|  | /* Group all the USB bus attributes */ | 
|  | static struct attribute *usb_bus_attrs[] = { | 
|  | &dev_attr_authorized_default.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute_group usb_bus_attr_group = { | 
|  | .name = NULL,	/* we want them in the same directory */ | 
|  | .attrs = usb_bus_attrs, | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * usb_bus_init - shared initialization code | 
|  | * @bus: the bus structure being initialized | 
|  | * | 
|  | * This code is used to initialize a usb_bus structure, memory for which is | 
|  | * separately managed. | 
|  | */ | 
|  | static void usb_bus_init (struct usb_bus *bus) | 
|  | { | 
|  | memset (&bus->devmap, 0, sizeof(struct usb_devmap)); | 
|  |  | 
|  | bus->devnum_next = 1; | 
|  |  | 
|  | bus->root_hub = NULL; | 
|  | bus->busnum = -1; | 
|  | bus->bandwidth_allocated = 0; | 
|  | bus->bandwidth_int_reqs  = 0; | 
|  | bus->bandwidth_isoc_reqs = 0; | 
|  |  | 
|  | INIT_LIST_HEAD (&bus->bus_list); | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * usb_register_bus - registers the USB host controller with the usb core | 
|  | * @bus: pointer to the bus to register | 
|  | * Context: !in_interrupt() | 
|  | * | 
|  | * Assigns a bus number, and links the controller into usbcore data | 
|  | * structures so that it can be seen by scanning the bus list. | 
|  | */ | 
|  | static int usb_register_bus(struct usb_bus *bus) | 
|  | { | 
|  | int result = -E2BIG; | 
|  | int busnum; | 
|  |  | 
|  | mutex_lock(&usb_bus_list_lock); | 
|  | busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); | 
|  | if (busnum >= USB_MAXBUS) { | 
|  | printk (KERN_ERR "%s: too many buses\n", usbcore_name); | 
|  | goto error_find_busnum; | 
|  | } | 
|  | set_bit (busnum, busmap.busmap); | 
|  | bus->busnum = busnum; | 
|  |  | 
|  | /* Add it to the local list of buses */ | 
|  | list_add (&bus->bus_list, &usb_bus_list); | 
|  | mutex_unlock(&usb_bus_list_lock); | 
|  |  | 
|  | usb_notify_add_bus(bus); | 
|  |  | 
|  | dev_info (bus->controller, "new USB bus registered, assigned bus " | 
|  | "number %d\n", bus->busnum); | 
|  | return 0; | 
|  |  | 
|  | error_find_busnum: | 
|  | mutex_unlock(&usb_bus_list_lock); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb_deregister_bus - deregisters the USB host controller | 
|  | * @bus: pointer to the bus to deregister | 
|  | * Context: !in_interrupt() | 
|  | * | 
|  | * Recycles the bus number, and unlinks the controller from usbcore data | 
|  | * structures so that it won't be seen by scanning the bus list. | 
|  | */ | 
|  | static void usb_deregister_bus (struct usb_bus *bus) | 
|  | { | 
|  | dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); | 
|  |  | 
|  | /* | 
|  | * NOTE: make sure that all the devices are removed by the | 
|  | * controller code, as well as having it call this when cleaning | 
|  | * itself up | 
|  | */ | 
|  | mutex_lock(&usb_bus_list_lock); | 
|  | list_del (&bus->bus_list); | 
|  | mutex_unlock(&usb_bus_list_lock); | 
|  |  | 
|  | usb_notify_remove_bus(bus); | 
|  |  | 
|  | clear_bit (bus->busnum, busmap.busmap); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * register_root_hub - called by usb_add_hcd() to register a root hub | 
|  | * @hcd: host controller for this root hub | 
|  | * | 
|  | * This function registers the root hub with the USB subsystem.  It sets up | 
|  | * the device properly in the device tree and then calls usb_new_device() | 
|  | * to register the usb device.  It also assigns the root hub's USB address | 
|  | * (always 1). | 
|  | */ | 
|  | static int register_root_hub(struct usb_hcd *hcd) | 
|  | { | 
|  | struct device *parent_dev = hcd->self.controller; | 
|  | struct usb_device *usb_dev = hcd->self.root_hub; | 
|  | const int devnum = 1; | 
|  | int retval; | 
|  |  | 
|  | usb_dev->devnum = devnum; | 
|  | usb_dev->bus->devnum_next = devnum + 1; | 
|  | memset (&usb_dev->bus->devmap.devicemap, 0, | 
|  | sizeof usb_dev->bus->devmap.devicemap); | 
|  | set_bit (devnum, usb_dev->bus->devmap.devicemap); | 
|  | usb_set_device_state(usb_dev, USB_STATE_ADDRESS); | 
|  |  | 
|  | mutex_lock(&usb_bus_list_lock); | 
|  |  | 
|  | usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); | 
|  | retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); | 
|  | if (retval != sizeof usb_dev->descriptor) { | 
|  | mutex_unlock(&usb_bus_list_lock); | 
|  | dev_dbg (parent_dev, "can't read %s device descriptor %d\n", | 
|  | dev_name(&usb_dev->dev), retval); | 
|  | return (retval < 0) ? retval : -EMSGSIZE; | 
|  | } | 
|  |  | 
|  | retval = usb_new_device (usb_dev); | 
|  | if (retval) { | 
|  | dev_err (parent_dev, "can't register root hub for %s, %d\n", | 
|  | dev_name(&usb_dev->dev), retval); | 
|  | } | 
|  | mutex_unlock(&usb_bus_list_lock); | 
|  |  | 
|  | if (retval == 0) { | 
|  | spin_lock_irq (&hcd_root_hub_lock); | 
|  | hcd->rh_registered = 1; | 
|  | spin_unlock_irq (&hcd_root_hub_lock); | 
|  |  | 
|  | /* Did the HC die before the root hub was registered? */ | 
|  | if (hcd->state == HC_STATE_HALT) | 
|  | usb_hc_died (hcd);	/* This time clean up */ | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * usb_calc_bus_time - approximate periodic transaction time in nanoseconds | 
|  | * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} | 
|  | * @is_input: true iff the transaction sends data to the host | 
|  | * @isoc: true for isochronous transactions, false for interrupt ones | 
|  | * @bytecount: how many bytes in the transaction. | 
|  | * | 
|  | * Returns approximate bus time in nanoseconds for a periodic transaction. | 
|  | * See USB 2.0 spec section 5.11.3; only periodic transfers need to be | 
|  | * scheduled in software, this function is only used for such scheduling. | 
|  | */ | 
|  | long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) | 
|  | { | 
|  | unsigned long	tmp; | 
|  |  | 
|  | switch (speed) { | 
|  | case USB_SPEED_LOW: 	/* INTR only */ | 
|  | if (is_input) { | 
|  | tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; | 
|  | return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); | 
|  | } else { | 
|  | tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; | 
|  | return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); | 
|  | } | 
|  | case USB_SPEED_FULL:	/* ISOC or INTR */ | 
|  | if (isoc) { | 
|  | tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; | 
|  | return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); | 
|  | } else { | 
|  | tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; | 
|  | return (9107L + BW_HOST_DELAY + tmp); | 
|  | } | 
|  | case USB_SPEED_HIGH:	/* ISOC or INTR */ | 
|  | // FIXME adjust for input vs output | 
|  | if (isoc) | 
|  | tmp = HS_NSECS_ISO (bytecount); | 
|  | else | 
|  | tmp = HS_NSECS (bytecount); | 
|  | return tmp; | 
|  | default: | 
|  | pr_debug ("%s: bogus device speed!\n", usbcore_name); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_calc_bus_time); | 
|  |  | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Generic HC operations. | 
|  | */ | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue | 
|  | * @hcd: host controller to which @urb was submitted | 
|  | * @urb: URB being submitted | 
|  | * | 
|  | * Host controller drivers should call this routine in their enqueue() | 
|  | * method.  The HCD's private spinlock must be held and interrupts must | 
|  | * be disabled.  The actions carried out here are required for URB | 
|  | * submission, as well as for endpoint shutdown and for usb_kill_urb. | 
|  | * | 
|  | * Returns 0 for no error, otherwise a negative error code (in which case | 
|  | * the enqueue() method must fail).  If no error occurs but enqueue() fails | 
|  | * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing | 
|  | * the private spinlock and returning. | 
|  | */ | 
|  | int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) | 
|  | { | 
|  | int		rc = 0; | 
|  |  | 
|  | spin_lock(&hcd_urb_list_lock); | 
|  |  | 
|  | /* Check that the URB isn't being killed */ | 
|  | if (unlikely(atomic_read(&urb->reject))) { | 
|  | rc = -EPERM; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (unlikely(!urb->ep->enabled)) { | 
|  | rc = -ENOENT; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (unlikely(!urb->dev->can_submit)) { | 
|  | rc = -EHOSTUNREACH; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the host controller's state and add the URB to the | 
|  | * endpoint's queue. | 
|  | */ | 
|  | switch (hcd->state) { | 
|  | case HC_STATE_RUNNING: | 
|  | case HC_STATE_RESUMING: | 
|  | urb->unlinked = 0; | 
|  | list_add_tail(&urb->urb_list, &urb->ep->urb_list); | 
|  | break; | 
|  | default: | 
|  | rc = -ESHUTDOWN; | 
|  | goto done; | 
|  | } | 
|  | done: | 
|  | spin_unlock(&hcd_urb_list_lock); | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); | 
|  |  | 
|  | /** | 
|  | * usb_hcd_check_unlink_urb - check whether an URB may be unlinked | 
|  | * @hcd: host controller to which @urb was submitted | 
|  | * @urb: URB being checked for unlinkability | 
|  | * @status: error code to store in @urb if the unlink succeeds | 
|  | * | 
|  | * Host controller drivers should call this routine in their dequeue() | 
|  | * method.  The HCD's private spinlock must be held and interrupts must | 
|  | * be disabled.  The actions carried out here are required for making | 
|  | * sure than an unlink is valid. | 
|  | * | 
|  | * Returns 0 for no error, otherwise a negative error code (in which case | 
|  | * the dequeue() method must fail).  The possible error codes are: | 
|  | * | 
|  | *	-EIDRM: @urb was not submitted or has already completed. | 
|  | *		The completion function may not have been called yet. | 
|  | * | 
|  | *	-EBUSY: @urb has already been unlinked. | 
|  | */ | 
|  | int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, | 
|  | int status) | 
|  | { | 
|  | struct list_head	*tmp; | 
|  |  | 
|  | /* insist the urb is still queued */ | 
|  | list_for_each(tmp, &urb->ep->urb_list) { | 
|  | if (tmp == &urb->urb_list) | 
|  | break; | 
|  | } | 
|  | if (tmp != &urb->urb_list) | 
|  | return -EIDRM; | 
|  |  | 
|  | /* Any status except -EINPROGRESS means something already started to | 
|  | * unlink this URB from the hardware.  So there's no more work to do. | 
|  | */ | 
|  | if (urb->unlinked) | 
|  | return -EBUSY; | 
|  | urb->unlinked = status; | 
|  |  | 
|  | /* IRQ setup can easily be broken so that USB controllers | 
|  | * never get completion IRQs ... maybe even the ones we need to | 
|  | * finish unlinking the initial failed usb_set_address() | 
|  | * or device descriptor fetch. | 
|  | */ | 
|  | if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) && | 
|  | !is_root_hub(urb->dev)) { | 
|  | dev_warn(hcd->self.controller, "Unlink after no-IRQ?  " | 
|  | "Controller is probably using the wrong IRQ.\n"); | 
|  | set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); | 
|  |  | 
|  | /** | 
|  | * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue | 
|  | * @hcd: host controller to which @urb was submitted | 
|  | * @urb: URB being unlinked | 
|  | * | 
|  | * Host controller drivers should call this routine before calling | 
|  | * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and | 
|  | * interrupts must be disabled.  The actions carried out here are required | 
|  | * for URB completion. | 
|  | */ | 
|  | void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) | 
|  | { | 
|  | /* clear all state linking urb to this dev (and hcd) */ | 
|  | spin_lock(&hcd_urb_list_lock); | 
|  | list_del_init(&urb->urb_list); | 
|  | spin_unlock(&hcd_urb_list_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); | 
|  |  | 
|  | /* | 
|  | * Some usb host controllers can only perform dma using a small SRAM area. | 
|  | * The usb core itself is however optimized for host controllers that can dma | 
|  | * using regular system memory - like pci devices doing bus mastering. | 
|  | * | 
|  | * To support host controllers with limited dma capabilites we provide dma | 
|  | * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. | 
|  | * For this to work properly the host controller code must first use the | 
|  | * function dma_declare_coherent_memory() to point out which memory area | 
|  | * that should be used for dma allocations. | 
|  | * | 
|  | * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for | 
|  | * dma using dma_alloc_coherent() which in turn allocates from the memory | 
|  | * area pointed out with dma_declare_coherent_memory(). | 
|  | * | 
|  | * So, to summarize... | 
|  | * | 
|  | * - We need "local" memory, canonical example being | 
|  | *   a small SRAM on a discrete controller being the | 
|  | *   only memory that the controller can read ... | 
|  | *   (a) "normal" kernel memory is no good, and | 
|  | *   (b) there's not enough to share | 
|  | * | 
|  | * - The only *portable* hook for such stuff in the | 
|  | *   DMA framework is dma_declare_coherent_memory() | 
|  | * | 
|  | * - So we use that, even though the primary requirement | 
|  | *   is that the memory be "local" (hence addressible | 
|  | *   by that device), not "coherent". | 
|  | * | 
|  | */ | 
|  |  | 
|  | static int hcd_alloc_coherent(struct usb_bus *bus, | 
|  | gfp_t mem_flags, dma_addr_t *dma_handle, | 
|  | void **vaddr_handle, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | unsigned char *vaddr; | 
|  |  | 
|  | vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), | 
|  | mem_flags, dma_handle); | 
|  | if (!vaddr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Store the virtual address of the buffer at the end | 
|  | * of the allocated dma buffer. The size of the buffer | 
|  | * may be uneven so use unaligned functions instead | 
|  | * of just rounding up. It makes sense to optimize for | 
|  | * memory footprint over access speed since the amount | 
|  | * of memory available for dma may be limited. | 
|  | */ | 
|  | put_unaligned((unsigned long)*vaddr_handle, | 
|  | (unsigned long *)(vaddr + size)); | 
|  |  | 
|  | if (dir == DMA_TO_DEVICE) | 
|  | memcpy(vaddr, *vaddr_handle, size); | 
|  |  | 
|  | *vaddr_handle = vaddr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, | 
|  | void **vaddr_handle, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | unsigned char *vaddr = *vaddr_handle; | 
|  |  | 
|  | vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); | 
|  |  | 
|  | if (dir == DMA_FROM_DEVICE) | 
|  | memcpy(vaddr, *vaddr_handle, size); | 
|  |  | 
|  | hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); | 
|  |  | 
|  | *vaddr_handle = vaddr; | 
|  | *dma_handle = 0; | 
|  | } | 
|  |  | 
|  | static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | enum dma_data_direction dir; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Map the URB's buffers for DMA access. | 
|  | * Lower level HCD code should use *_dma exclusively, | 
|  | * unless it uses pio or talks to another transport, | 
|  | * or uses the provided scatter gather list for bulk. | 
|  | */ | 
|  | if (is_root_hub(urb->dev)) | 
|  | return 0; | 
|  |  | 
|  | if (usb_endpoint_xfer_control(&urb->ep->desc) | 
|  | && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { | 
|  | if (hcd->self.uses_dma) | 
|  | urb->setup_dma = dma_map_single( | 
|  | hcd->self.controller, | 
|  | urb->setup_packet, | 
|  | sizeof(struct usb_ctrlrequest), | 
|  | DMA_TO_DEVICE); | 
|  | else if (hcd->driver->flags & HCD_LOCAL_MEM) | 
|  | ret = hcd_alloc_coherent( | 
|  | urb->dev->bus, mem_flags, | 
|  | &urb->setup_dma, | 
|  | (void **)&urb->setup_packet, | 
|  | sizeof(struct usb_ctrlrequest), | 
|  | DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; | 
|  | if (ret == 0 && urb->transfer_buffer_length != 0 | 
|  | && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { | 
|  | if (hcd->self.uses_dma) | 
|  | urb->transfer_dma = dma_map_single ( | 
|  | hcd->self.controller, | 
|  | urb->transfer_buffer, | 
|  | urb->transfer_buffer_length, | 
|  | dir); | 
|  | else if (hcd->driver->flags & HCD_LOCAL_MEM) { | 
|  | ret = hcd_alloc_coherent( | 
|  | urb->dev->bus, mem_flags, | 
|  | &urb->transfer_dma, | 
|  | &urb->transfer_buffer, | 
|  | urb->transfer_buffer_length, | 
|  | dir); | 
|  |  | 
|  | if (ret && usb_endpoint_xfer_control(&urb->ep->desc) | 
|  | && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) | 
|  | hcd_free_coherent(urb->dev->bus, | 
|  | &urb->setup_dma, | 
|  | (void **)&urb->setup_packet, | 
|  | sizeof(struct usb_ctrlrequest), | 
|  | DMA_TO_DEVICE); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) | 
|  | { | 
|  | enum dma_data_direction dir; | 
|  |  | 
|  | if (is_root_hub(urb->dev)) | 
|  | return; | 
|  |  | 
|  | if (usb_endpoint_xfer_control(&urb->ep->desc) | 
|  | && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { | 
|  | if (hcd->self.uses_dma) | 
|  | dma_unmap_single(hcd->self.controller, urb->setup_dma, | 
|  | sizeof(struct usb_ctrlrequest), | 
|  | DMA_TO_DEVICE); | 
|  | else if (hcd->driver->flags & HCD_LOCAL_MEM) | 
|  | hcd_free_coherent(urb->dev->bus, &urb->setup_dma, | 
|  | (void **)&urb->setup_packet, | 
|  | sizeof(struct usb_ctrlrequest), | 
|  | DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; | 
|  | if (urb->transfer_buffer_length != 0 | 
|  | && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { | 
|  | if (hcd->self.uses_dma) | 
|  | dma_unmap_single(hcd->self.controller, | 
|  | urb->transfer_dma, | 
|  | urb->transfer_buffer_length, | 
|  | dir); | 
|  | else if (hcd->driver->flags & HCD_LOCAL_MEM) | 
|  | hcd_free_coherent(urb->dev->bus, &urb->transfer_dma, | 
|  | &urb->transfer_buffer, | 
|  | urb->transfer_buffer_length, | 
|  | dir); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* may be called in any context with a valid urb->dev usecount | 
|  | * caller surrenders "ownership" of urb | 
|  | * expects usb_submit_urb() to have sanity checked and conditioned all | 
|  | * inputs in the urb | 
|  | */ | 
|  | int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) | 
|  | { | 
|  | int			status; | 
|  | struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus); | 
|  |  | 
|  | /* increment urb's reference count as part of giving it to the HCD | 
|  | * (which will control it).  HCD guarantees that it either returns | 
|  | * an error or calls giveback(), but not both. | 
|  | */ | 
|  | usb_get_urb(urb); | 
|  | atomic_inc(&urb->use_count); | 
|  | atomic_inc(&urb->dev->urbnum); | 
|  | usbmon_urb_submit(&hcd->self, urb); | 
|  |  | 
|  | /* NOTE requirements on root-hub callers (usbfs and the hub | 
|  | * driver, for now):  URBs' urb->transfer_buffer must be | 
|  | * valid and usb_buffer_{sync,unmap}() not be needed, since | 
|  | * they could clobber root hub response data.  Also, control | 
|  | * URBs must be submitted in process context with interrupts | 
|  | * enabled. | 
|  | */ | 
|  | status = map_urb_for_dma(hcd, urb, mem_flags); | 
|  | if (unlikely(status)) { | 
|  | usbmon_urb_submit_error(&hcd->self, urb, status); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (is_root_hub(urb->dev)) | 
|  | status = rh_urb_enqueue(hcd, urb); | 
|  | else | 
|  | status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); | 
|  |  | 
|  | if (unlikely(status)) { | 
|  | usbmon_urb_submit_error(&hcd->self, urb, status); | 
|  | unmap_urb_for_dma(hcd, urb); | 
|  | error: | 
|  | urb->hcpriv = NULL; | 
|  | INIT_LIST_HEAD(&urb->urb_list); | 
|  | atomic_dec(&urb->use_count); | 
|  | atomic_dec(&urb->dev->urbnum); | 
|  | if (atomic_read(&urb->reject)) | 
|  | wake_up(&usb_kill_urb_queue); | 
|  | usb_put_urb(urb); | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* this makes the hcd giveback() the urb more quickly, by kicking it | 
|  | * off hardware queues (which may take a while) and returning it as | 
|  | * soon as practical.  we've already set up the urb's return status, | 
|  | * but we can't know if the callback completed already. | 
|  | */ | 
|  | static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) | 
|  | { | 
|  | int		value; | 
|  |  | 
|  | if (is_root_hub(urb->dev)) | 
|  | value = usb_rh_urb_dequeue(hcd, urb, status); | 
|  | else { | 
|  |  | 
|  | /* The only reason an HCD might fail this call is if | 
|  | * it has not yet fully queued the urb to begin with. | 
|  | * Such failures should be harmless. */ | 
|  | value = hcd->driver->urb_dequeue(hcd, urb, status); | 
|  | } | 
|  | return value; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called in any context | 
|  | * | 
|  | * caller guarantees urb won't be recycled till both unlink() | 
|  | * and the urb's completion function return | 
|  | */ | 
|  | int usb_hcd_unlink_urb (struct urb *urb, int status) | 
|  | { | 
|  | struct usb_hcd		*hcd; | 
|  | int			retval = -EIDRM; | 
|  | unsigned long		flags; | 
|  |  | 
|  | /* Prevent the device and bus from going away while | 
|  | * the unlink is carried out.  If they are already gone | 
|  | * then urb->use_count must be 0, since disconnected | 
|  | * devices can't have any active URBs. | 
|  | */ | 
|  | spin_lock_irqsave(&hcd_urb_unlink_lock, flags); | 
|  | if (atomic_read(&urb->use_count) > 0) { | 
|  | retval = 0; | 
|  | usb_get_dev(urb->dev); | 
|  | } | 
|  | spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); | 
|  | if (retval == 0) { | 
|  | hcd = bus_to_hcd(urb->dev->bus); | 
|  | retval = unlink1(hcd, urb, status); | 
|  | usb_put_dev(urb->dev); | 
|  | } | 
|  |  | 
|  | if (retval == 0) | 
|  | retval = -EINPROGRESS; | 
|  | else if (retval != -EIDRM && retval != -EBUSY) | 
|  | dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", | 
|  | urb, retval); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * usb_hcd_giveback_urb - return URB from HCD to device driver | 
|  | * @hcd: host controller returning the URB | 
|  | * @urb: urb being returned to the USB device driver. | 
|  | * @status: completion status code for the URB. | 
|  | * Context: in_interrupt() | 
|  | * | 
|  | * This hands the URB from HCD to its USB device driver, using its | 
|  | * completion function.  The HCD has freed all per-urb resources | 
|  | * (and is done using urb->hcpriv).  It also released all HCD locks; | 
|  | * the device driver won't cause problems if it frees, modifies, | 
|  | * or resubmits this URB. | 
|  | * | 
|  | * If @urb was unlinked, the value of @status will be overridden by | 
|  | * @urb->unlinked.  Erroneous short transfers are detected in case | 
|  | * the HCD hasn't checked for them. | 
|  | */ | 
|  | void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) | 
|  | { | 
|  | urb->hcpriv = NULL; | 
|  | if (unlikely(urb->unlinked)) | 
|  | status = urb->unlinked; | 
|  | else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && | 
|  | urb->actual_length < urb->transfer_buffer_length && | 
|  | !status)) | 
|  | status = -EREMOTEIO; | 
|  |  | 
|  | unmap_urb_for_dma(hcd, urb); | 
|  | usbmon_urb_complete(&hcd->self, urb, status); | 
|  | usb_unanchor_urb(urb); | 
|  |  | 
|  | /* pass ownership to the completion handler */ | 
|  | urb->status = status; | 
|  | urb->complete (urb); | 
|  | atomic_dec (&urb->use_count); | 
|  | if (unlikely(atomic_read(&urb->reject))) | 
|  | wake_up (&usb_kill_urb_queue); | 
|  | usb_put_urb (urb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Cancel all URBs pending on this endpoint and wait for the endpoint's | 
|  | * queue to drain completely.  The caller must first insure that no more | 
|  | * URBs can be submitted for this endpoint. | 
|  | */ | 
|  | void usb_hcd_flush_endpoint(struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | struct usb_hcd		*hcd; | 
|  | struct urb		*urb; | 
|  |  | 
|  | if (!ep) | 
|  | return; | 
|  | might_sleep(); | 
|  | hcd = bus_to_hcd(udev->bus); | 
|  |  | 
|  | /* No more submits can occur */ | 
|  | spin_lock_irq(&hcd_urb_list_lock); | 
|  | rescan: | 
|  | list_for_each_entry (urb, &ep->urb_list, urb_list) { | 
|  | int	is_in; | 
|  |  | 
|  | if (urb->unlinked) | 
|  | continue; | 
|  | usb_get_urb (urb); | 
|  | is_in = usb_urb_dir_in(urb); | 
|  | spin_unlock(&hcd_urb_list_lock); | 
|  |  | 
|  | /* kick hcd */ | 
|  | unlink1(hcd, urb, -ESHUTDOWN); | 
|  | dev_dbg (hcd->self.controller, | 
|  | "shutdown urb %p ep%d%s%s\n", | 
|  | urb, usb_endpoint_num(&ep->desc), | 
|  | is_in ? "in" : "out", | 
|  | ({	char *s; | 
|  |  | 
|  | switch (usb_endpoint_type(&ep->desc)) { | 
|  | case USB_ENDPOINT_XFER_CONTROL: | 
|  | s = ""; break; | 
|  | case USB_ENDPOINT_XFER_BULK: | 
|  | s = "-bulk"; break; | 
|  | case USB_ENDPOINT_XFER_INT: | 
|  | s = "-intr"; break; | 
|  | default: | 
|  | s = "-iso"; break; | 
|  | }; | 
|  | s; | 
|  | })); | 
|  | usb_put_urb (urb); | 
|  |  | 
|  | /* list contents may have changed */ | 
|  | spin_lock(&hcd_urb_list_lock); | 
|  | goto rescan; | 
|  | } | 
|  | spin_unlock_irq(&hcd_urb_list_lock); | 
|  |  | 
|  | /* Wait until the endpoint queue is completely empty */ | 
|  | while (!list_empty (&ep->urb_list)) { | 
|  | spin_lock_irq(&hcd_urb_list_lock); | 
|  |  | 
|  | /* The list may have changed while we acquired the spinlock */ | 
|  | urb = NULL; | 
|  | if (!list_empty (&ep->urb_list)) { | 
|  | urb = list_entry (ep->urb_list.prev, struct urb, | 
|  | urb_list); | 
|  | usb_get_urb (urb); | 
|  | } | 
|  | spin_unlock_irq(&hcd_urb_list_lock); | 
|  |  | 
|  | if (urb) { | 
|  | usb_kill_urb (urb); | 
|  | usb_put_urb (urb); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check whether a new configuration or alt setting for an interface | 
|  | * will exceed the bandwidth for the bus (or the host controller resources). | 
|  | * Only pass in a non-NULL config or interface, not both! | 
|  | * Passing NULL for both new_config and new_intf means the device will be | 
|  | * de-configured by issuing a set configuration 0 command. | 
|  | */ | 
|  | int usb_hcd_check_bandwidth(struct usb_device *udev, | 
|  | struct usb_host_config *new_config, | 
|  | struct usb_interface *new_intf) | 
|  | { | 
|  | int num_intfs, i, j; | 
|  | struct usb_interface_cache *intf_cache; | 
|  | struct usb_host_interface *alt = 0; | 
|  | int ret = 0; | 
|  | struct usb_hcd *hcd; | 
|  | struct usb_host_endpoint *ep; | 
|  |  | 
|  | hcd = bus_to_hcd(udev->bus); | 
|  | if (!hcd->driver->check_bandwidth) | 
|  | return 0; | 
|  |  | 
|  | /* Configuration is being removed - set configuration 0 */ | 
|  | if (!new_config && !new_intf) { | 
|  | for (i = 1; i < 16; ++i) { | 
|  | ep = udev->ep_out[i]; | 
|  | if (ep) | 
|  | hcd->driver->drop_endpoint(hcd, udev, ep); | 
|  | ep = udev->ep_in[i]; | 
|  | if (ep) | 
|  | hcd->driver->drop_endpoint(hcd, udev, ep); | 
|  | } | 
|  | hcd->driver->check_bandwidth(hcd, udev); | 
|  | return 0; | 
|  | } | 
|  | /* Check if the HCD says there's enough bandwidth.  Enable all endpoints | 
|  | * each interface's alt setting 0 and ask the HCD to check the bandwidth | 
|  | * of the bus.  There will always be bandwidth for endpoint 0, so it's | 
|  | * ok to exclude it. | 
|  | */ | 
|  | if (new_config) { | 
|  | num_intfs = new_config->desc.bNumInterfaces; | 
|  | /* Remove endpoints (except endpoint 0, which is always on the | 
|  | * schedule) from the old config from the schedule | 
|  | */ | 
|  | for (i = 1; i < 16; ++i) { | 
|  | ep = udev->ep_out[i]; | 
|  | if (ep) { | 
|  | ret = hcd->driver->drop_endpoint(hcd, udev, ep); | 
|  | if (ret < 0) | 
|  | goto reset; | 
|  | } | 
|  | ep = udev->ep_in[i]; | 
|  | if (ep) { | 
|  | ret = hcd->driver->drop_endpoint(hcd, udev, ep); | 
|  | if (ret < 0) | 
|  | goto reset; | 
|  | } | 
|  | } | 
|  | for (i = 0; i < num_intfs; ++i) { | 
|  |  | 
|  | /* Dig the endpoints for alt setting 0 out of the | 
|  | * interface cache for this interface | 
|  | */ | 
|  | intf_cache = new_config->intf_cache[i]; | 
|  | for (j = 0; j < intf_cache->num_altsetting; j++) { | 
|  | if (intf_cache->altsetting[j].desc.bAlternateSetting == 0) | 
|  | alt = &intf_cache->altsetting[j]; | 
|  | } | 
|  | if (!alt) { | 
|  | printk(KERN_DEBUG "Did not find alt setting 0 for intf %d\n", i); | 
|  | continue; | 
|  | } | 
|  | for (j = 0; j < alt->desc.bNumEndpoints; j++) { | 
|  | ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); | 
|  | if (ret < 0) | 
|  | goto reset; | 
|  | } | 
|  | } | 
|  | } | 
|  | ret = hcd->driver->check_bandwidth(hcd, udev); | 
|  | reset: | 
|  | if (ret < 0) | 
|  | hcd->driver->reset_bandwidth(hcd, udev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Disables the endpoint: synchronizes with the hcd to make sure all | 
|  | * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must | 
|  | * have been called previously.  Use for set_configuration, set_interface, | 
|  | * driver removal, physical disconnect. | 
|  | * | 
|  | * example:  a qh stored in ep->hcpriv, holding state related to endpoint | 
|  | * type, maxpacket size, toggle, halt status, and scheduling. | 
|  | */ | 
|  | void usb_hcd_disable_endpoint(struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | struct usb_hcd		*hcd; | 
|  |  | 
|  | might_sleep(); | 
|  | hcd = bus_to_hcd(udev->bus); | 
|  | if (hcd->driver->endpoint_disable) | 
|  | hcd->driver->endpoint_disable(hcd, ep); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb_hcd_reset_endpoint - reset host endpoint state | 
|  | * @udev: USB device. | 
|  | * @ep:   the endpoint to reset. | 
|  | * | 
|  | * Resets any host endpoint state such as the toggle bit, sequence | 
|  | * number and current window. | 
|  | */ | 
|  | void usb_hcd_reset_endpoint(struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | struct usb_hcd *hcd = bus_to_hcd(udev->bus); | 
|  |  | 
|  | if (hcd->driver->endpoint_reset) | 
|  | hcd->driver->endpoint_reset(hcd, ep); | 
|  | else { | 
|  | int epnum = usb_endpoint_num(&ep->desc); | 
|  | int is_out = usb_endpoint_dir_out(&ep->desc); | 
|  | int is_control = usb_endpoint_xfer_control(&ep->desc); | 
|  |  | 
|  | usb_settoggle(udev, epnum, is_out, 0); | 
|  | if (is_control) | 
|  | usb_settoggle(udev, epnum, !is_out, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Protect against drivers that try to unlink URBs after the device | 
|  | * is gone, by waiting until all unlinks for @udev are finished. | 
|  | * Since we don't currently track URBs by device, simply wait until | 
|  | * nothing is running in the locked region of usb_hcd_unlink_urb(). | 
|  | */ | 
|  | void usb_hcd_synchronize_unlinks(struct usb_device *udev) | 
|  | { | 
|  | spin_lock_irq(&hcd_urb_unlink_lock); | 
|  | spin_unlock_irq(&hcd_urb_unlink_lock); | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* called in any context */ | 
|  | int usb_hcd_get_frame_number (struct usb_device *udev) | 
|  | { | 
|  | struct usb_hcd	*hcd = bus_to_hcd(udev->bus); | 
|  |  | 
|  | if (!HC_IS_RUNNING (hcd->state)) | 
|  | return -ESHUTDOWN; | 
|  | return hcd->driver->get_frame_number (hcd); | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | #ifdef	CONFIG_PM | 
|  |  | 
|  | int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) | 
|  | { | 
|  | struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self); | 
|  | int		status; | 
|  | int		old_state = hcd->state; | 
|  |  | 
|  | dev_dbg(&rhdev->dev, "bus %s%s\n", | 
|  | (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend"); | 
|  | if (!hcd->driver->bus_suspend) { | 
|  | status = -ENOENT; | 
|  | } else { | 
|  | hcd->state = HC_STATE_QUIESCING; | 
|  | status = hcd->driver->bus_suspend(hcd); | 
|  | } | 
|  | if (status == 0) { | 
|  | usb_set_device_state(rhdev, USB_STATE_SUSPENDED); | 
|  | hcd->state = HC_STATE_SUSPENDED; | 
|  | } else { | 
|  | hcd->state = old_state; | 
|  | dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", | 
|  | "suspend", status); | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) | 
|  | { | 
|  | struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self); | 
|  | int		status; | 
|  | int		old_state = hcd->state; | 
|  |  | 
|  | dev_dbg(&rhdev->dev, "usb %s%s\n", | 
|  | (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume"); | 
|  | if (!hcd->driver->bus_resume) | 
|  | return -ENOENT; | 
|  | if (hcd->state == HC_STATE_RUNNING) | 
|  | return 0; | 
|  |  | 
|  | hcd->state = HC_STATE_RESUMING; | 
|  | status = hcd->driver->bus_resume(hcd); | 
|  | if (status == 0) { | 
|  | /* TRSMRCY = 10 msec */ | 
|  | msleep(10); | 
|  | usb_set_device_state(rhdev, rhdev->actconfig | 
|  | ? USB_STATE_CONFIGURED | 
|  | : USB_STATE_ADDRESS); | 
|  | hcd->state = HC_STATE_RUNNING; | 
|  | } else { | 
|  | hcd->state = old_state; | 
|  | dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", | 
|  | "resume", status); | 
|  | if (status != -ESHUTDOWN) | 
|  | usb_hc_died(hcd); | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* Workqueue routine for root-hub remote wakeup */ | 
|  | static void hcd_resume_work(struct work_struct *work) | 
|  | { | 
|  | struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); | 
|  | struct usb_device *udev = hcd->self.root_hub; | 
|  |  | 
|  | usb_lock_device(udev); | 
|  | usb_mark_last_busy(udev); | 
|  | usb_external_resume_device(udev, PMSG_REMOTE_RESUME); | 
|  | usb_unlock_device(udev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb_hcd_resume_root_hub - called by HCD to resume its root hub | 
|  | * @hcd: host controller for this root hub | 
|  | * | 
|  | * The USB host controller calls this function when its root hub is | 
|  | * suspended (with the remote wakeup feature enabled) and a remote | 
|  | * wakeup request is received.  The routine submits a workqueue request | 
|  | * to resume the root hub (that is, manage its downstream ports again). | 
|  | */ | 
|  | void usb_hcd_resume_root_hub (struct usb_hcd *hcd) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave (&hcd_root_hub_lock, flags); | 
|  | if (hcd->rh_registered) | 
|  | queue_work(ksuspend_usb_wq, &hcd->wakeup_work); | 
|  | spin_unlock_irqrestore (&hcd_root_hub_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | #ifdef	CONFIG_USB_OTG | 
|  |  | 
|  | /** | 
|  | * usb_bus_start_enum - start immediate enumeration (for OTG) | 
|  | * @bus: the bus (must use hcd framework) | 
|  | * @port_num: 1-based number of port; usually bus->otg_port | 
|  | * Context: in_interrupt() | 
|  | * | 
|  | * Starts enumeration, with an immediate reset followed later by | 
|  | * khubd identifying and possibly configuring the device. | 
|  | * This is needed by OTG controller drivers, where it helps meet | 
|  | * HNP protocol timing requirements for starting a port reset. | 
|  | */ | 
|  | int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) | 
|  | { | 
|  | struct usb_hcd		*hcd; | 
|  | int			status = -EOPNOTSUPP; | 
|  |  | 
|  | /* NOTE: since HNP can't start by grabbing the bus's address0_sem, | 
|  | * boards with root hubs hooked up to internal devices (instead of | 
|  | * just the OTG port) may need more attention to resetting... | 
|  | */ | 
|  | hcd = container_of (bus, struct usb_hcd, self); | 
|  | if (port_num && hcd->driver->start_port_reset) | 
|  | status = hcd->driver->start_port_reset(hcd, port_num); | 
|  |  | 
|  | /* run khubd shortly after (first) root port reset finishes; | 
|  | * it may issue others, until at least 50 msecs have passed. | 
|  | */ | 
|  | if (status == 0) | 
|  | mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); | 
|  | return status; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_bus_start_enum); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * usb_hcd_irq - hook IRQs to HCD framework (bus glue) | 
|  | * @irq: the IRQ being raised | 
|  | * @__hcd: pointer to the HCD whose IRQ is being signaled | 
|  | * | 
|  | * If the controller isn't HALTed, calls the driver's irq handler. | 
|  | * Checks whether the controller is now dead. | 
|  | */ | 
|  | irqreturn_t usb_hcd_irq (int irq, void *__hcd) | 
|  | { | 
|  | struct usb_hcd		*hcd = __hcd; | 
|  | unsigned long		flags; | 
|  | irqreturn_t		rc; | 
|  |  | 
|  | /* IRQF_DISABLED doesn't work correctly with shared IRQs | 
|  | * when the first handler doesn't use it.  So let's just | 
|  | * assume it's never used. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  |  | 
|  | if (unlikely(hcd->state == HC_STATE_HALT || | 
|  | !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) { | 
|  | rc = IRQ_NONE; | 
|  | } else if (hcd->driver->irq(hcd) == IRQ_NONE) { | 
|  | rc = IRQ_NONE; | 
|  | } else { | 
|  | set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); | 
|  |  | 
|  | if (unlikely(hcd->state == HC_STATE_HALT)) | 
|  | usb_hc_died(hcd); | 
|  | rc = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * usb_hc_died - report abnormal shutdown of a host controller (bus glue) | 
|  | * @hcd: pointer to the HCD representing the controller | 
|  | * | 
|  | * This is called by bus glue to report a USB host controller that died | 
|  | * while operations may still have been pending.  It's called automatically | 
|  | * by the PCI glue, so only glue for non-PCI busses should need to call it. | 
|  | */ | 
|  | void usb_hc_died (struct usb_hcd *hcd) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | dev_err (hcd->self.controller, "HC died; cleaning up\n"); | 
|  |  | 
|  | spin_lock_irqsave (&hcd_root_hub_lock, flags); | 
|  | if (hcd->rh_registered) { | 
|  | hcd->poll_rh = 0; | 
|  |  | 
|  | /* make khubd clean up old urbs and devices */ | 
|  | usb_set_device_state (hcd->self.root_hub, | 
|  | USB_STATE_NOTATTACHED); | 
|  | usb_kick_khubd (hcd->self.root_hub); | 
|  | } | 
|  | spin_unlock_irqrestore (&hcd_root_hub_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL (usb_hc_died); | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * usb_create_hcd - create and initialize an HCD structure | 
|  | * @driver: HC driver that will use this hcd | 
|  | * @dev: device for this HC, stored in hcd->self.controller | 
|  | * @bus_name: value to store in hcd->self.bus_name | 
|  | * Context: !in_interrupt() | 
|  | * | 
|  | * Allocate a struct usb_hcd, with extra space at the end for the | 
|  | * HC driver's private data.  Initialize the generic members of the | 
|  | * hcd structure. | 
|  | * | 
|  | * If memory is unavailable, returns NULL. | 
|  | */ | 
|  | struct usb_hcd *usb_create_hcd (const struct hc_driver *driver, | 
|  | struct device *dev, const char *bus_name) | 
|  | { | 
|  | struct usb_hcd *hcd; | 
|  |  | 
|  | hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); | 
|  | if (!hcd) { | 
|  | dev_dbg (dev, "hcd alloc failed\n"); | 
|  | return NULL; | 
|  | } | 
|  | dev_set_drvdata(dev, hcd); | 
|  | kref_init(&hcd->kref); | 
|  |  | 
|  | usb_bus_init(&hcd->self); | 
|  | hcd->self.controller = dev; | 
|  | hcd->self.bus_name = bus_name; | 
|  | hcd->self.uses_dma = (dev->dma_mask != NULL); | 
|  |  | 
|  | init_timer(&hcd->rh_timer); | 
|  | hcd->rh_timer.function = rh_timer_func; | 
|  | hcd->rh_timer.data = (unsigned long) hcd; | 
|  | #ifdef CONFIG_PM | 
|  | INIT_WORK(&hcd->wakeup_work, hcd_resume_work); | 
|  | #endif | 
|  |  | 
|  | hcd->driver = driver; | 
|  | hcd->product_desc = (driver->product_desc) ? driver->product_desc : | 
|  | "USB Host Controller"; | 
|  | return hcd; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_create_hcd); | 
|  |  | 
|  | static void hcd_release (struct kref *kref) | 
|  | { | 
|  | struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); | 
|  |  | 
|  | kfree(hcd); | 
|  | } | 
|  |  | 
|  | struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) | 
|  | { | 
|  | if (hcd) | 
|  | kref_get (&hcd->kref); | 
|  | return hcd; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_get_hcd); | 
|  |  | 
|  | void usb_put_hcd (struct usb_hcd *hcd) | 
|  | { | 
|  | if (hcd) | 
|  | kref_put (&hcd->kref, hcd_release); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_put_hcd); | 
|  |  | 
|  | /** | 
|  | * usb_add_hcd - finish generic HCD structure initialization and register | 
|  | * @hcd: the usb_hcd structure to initialize | 
|  | * @irqnum: Interrupt line to allocate | 
|  | * @irqflags: Interrupt type flags | 
|  | * | 
|  | * Finish the remaining parts of generic HCD initialization: allocate the | 
|  | * buffers of consistent memory, register the bus, request the IRQ line, | 
|  | * and call the driver's reset() and start() routines. | 
|  | */ | 
|  | int usb_add_hcd(struct usb_hcd *hcd, | 
|  | unsigned int irqnum, unsigned long irqflags) | 
|  | { | 
|  | int retval; | 
|  | struct usb_device *rhdev; | 
|  |  | 
|  | dev_info(hcd->self.controller, "%s\n", hcd->product_desc); | 
|  |  | 
|  | hcd->authorized_default = hcd->wireless? 0 : 1; | 
|  | set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); | 
|  |  | 
|  | /* HC is in reset state, but accessible.  Now do the one-time init, | 
|  | * bottom up so that hcds can customize the root hubs before khubd | 
|  | * starts talking to them.  (Note, bus id is assigned early too.) | 
|  | */ | 
|  | if ((retval = hcd_buffer_create(hcd)) != 0) { | 
|  | dev_dbg(hcd->self.controller, "pool alloc failed\n"); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | if ((retval = usb_register_bus(&hcd->self)) < 0) | 
|  | goto err_register_bus; | 
|  |  | 
|  | if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { | 
|  | dev_err(hcd->self.controller, "unable to allocate root hub\n"); | 
|  | retval = -ENOMEM; | 
|  | goto err_allocate_root_hub; | 
|  | } | 
|  |  | 
|  | switch (hcd->driver->flags & HCD_MASK) { | 
|  | case HCD_USB11: | 
|  | rhdev->speed = USB_SPEED_FULL; | 
|  | break; | 
|  | case HCD_USB2: | 
|  | rhdev->speed = USB_SPEED_HIGH; | 
|  | break; | 
|  | case HCD_USB3: | 
|  | rhdev->speed = USB_SPEED_SUPER; | 
|  | break; | 
|  | default: | 
|  | goto err_allocate_root_hub; | 
|  | } | 
|  | hcd->self.root_hub = rhdev; | 
|  |  | 
|  | /* wakeup flag init defaults to "everything works" for root hubs, | 
|  | * but drivers can override it in reset() if needed, along with | 
|  | * recording the overall controller's system wakeup capability. | 
|  | */ | 
|  | device_init_wakeup(&rhdev->dev, 1); | 
|  |  | 
|  | /* "reset" is misnamed; its role is now one-time init. the controller | 
|  | * should already have been reset (and boot firmware kicked off etc). | 
|  | */ | 
|  | if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { | 
|  | dev_err(hcd->self.controller, "can't setup\n"); | 
|  | goto err_hcd_driver_setup; | 
|  | } | 
|  |  | 
|  | /* NOTE: root hub and controller capabilities may not be the same */ | 
|  | if (device_can_wakeup(hcd->self.controller) | 
|  | && device_can_wakeup(&hcd->self.root_hub->dev)) | 
|  | dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); | 
|  |  | 
|  | /* enable irqs just before we start the controller */ | 
|  | if (hcd->driver->irq) { | 
|  |  | 
|  | /* IRQF_DISABLED doesn't work as advertised when used together | 
|  | * with IRQF_SHARED. As usb_hcd_irq() will always disable | 
|  | * interrupts we can remove it here. | 
|  | */ | 
|  | if (irqflags & IRQF_SHARED) | 
|  | irqflags &= ~IRQF_DISABLED; | 
|  |  | 
|  | snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", | 
|  | hcd->driver->description, hcd->self.busnum); | 
|  | if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags, | 
|  | hcd->irq_descr, hcd)) != 0) { | 
|  | dev_err(hcd->self.controller, | 
|  | "request interrupt %d failed\n", irqnum); | 
|  | goto err_request_irq; | 
|  | } | 
|  | hcd->irq = irqnum; | 
|  | dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, | 
|  | (hcd->driver->flags & HCD_MEMORY) ? | 
|  | "io mem" : "io base", | 
|  | (unsigned long long)hcd->rsrc_start); | 
|  | } else { | 
|  | hcd->irq = -1; | 
|  | if (hcd->rsrc_start) | 
|  | dev_info(hcd->self.controller, "%s 0x%08llx\n", | 
|  | (hcd->driver->flags & HCD_MEMORY) ? | 
|  | "io mem" : "io base", | 
|  | (unsigned long long)hcd->rsrc_start); | 
|  | } | 
|  |  | 
|  | if ((retval = hcd->driver->start(hcd)) < 0) { | 
|  | dev_err(hcd->self.controller, "startup error %d\n", retval); | 
|  | goto err_hcd_driver_start; | 
|  | } | 
|  |  | 
|  | /* starting here, usbcore will pay attention to this root hub */ | 
|  | rhdev->bus_mA = min(500u, hcd->power_budget); | 
|  | if ((retval = register_root_hub(hcd)) != 0) | 
|  | goto err_register_root_hub; | 
|  |  | 
|  | retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); | 
|  | if (retval < 0) { | 
|  | printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", | 
|  | retval); | 
|  | goto error_create_attr_group; | 
|  | } | 
|  | if (hcd->uses_new_polling && hcd->poll_rh) | 
|  | usb_hcd_poll_rh_status(hcd); | 
|  | return retval; | 
|  |  | 
|  | error_create_attr_group: | 
|  | mutex_lock(&usb_bus_list_lock); | 
|  | usb_disconnect(&hcd->self.root_hub); | 
|  | mutex_unlock(&usb_bus_list_lock); | 
|  | err_register_root_hub: | 
|  | hcd->driver->stop(hcd); | 
|  | err_hcd_driver_start: | 
|  | if (hcd->irq >= 0) | 
|  | free_irq(irqnum, hcd); | 
|  | err_request_irq: | 
|  | err_hcd_driver_setup: | 
|  | hcd->self.root_hub = NULL; | 
|  | usb_put_dev(rhdev); | 
|  | err_allocate_root_hub: | 
|  | usb_deregister_bus(&hcd->self); | 
|  | err_register_bus: | 
|  | hcd_buffer_destroy(hcd); | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_add_hcd); | 
|  |  | 
|  | /** | 
|  | * usb_remove_hcd - shutdown processing for generic HCDs | 
|  | * @hcd: the usb_hcd structure to remove | 
|  | * Context: !in_interrupt() | 
|  | * | 
|  | * Disconnects the root hub, then reverses the effects of usb_add_hcd(), | 
|  | * invoking the HCD's stop() method. | 
|  | */ | 
|  | void usb_remove_hcd(struct usb_hcd *hcd) | 
|  | { | 
|  | dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); | 
|  |  | 
|  | if (HC_IS_RUNNING (hcd->state)) | 
|  | hcd->state = HC_STATE_QUIESCING; | 
|  |  | 
|  | dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); | 
|  | spin_lock_irq (&hcd_root_hub_lock); | 
|  | hcd->rh_registered = 0; | 
|  | spin_unlock_irq (&hcd_root_hub_lock); | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | cancel_work_sync(&hcd->wakeup_work); | 
|  | #endif | 
|  |  | 
|  | sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group); | 
|  | mutex_lock(&usb_bus_list_lock); | 
|  | usb_disconnect(&hcd->self.root_hub); | 
|  | mutex_unlock(&usb_bus_list_lock); | 
|  |  | 
|  | hcd->driver->stop(hcd); | 
|  | hcd->state = HC_STATE_HALT; | 
|  |  | 
|  | hcd->poll_rh = 0; | 
|  | del_timer_sync(&hcd->rh_timer); | 
|  |  | 
|  | if (hcd->irq >= 0) | 
|  | free_irq(hcd->irq, hcd); | 
|  | usb_deregister_bus(&hcd->self); | 
|  | hcd_buffer_destroy(hcd); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_remove_hcd); | 
|  |  | 
|  | void | 
|  | usb_hcd_platform_shutdown(struct platform_device* dev) | 
|  | { | 
|  | struct usb_hcd *hcd = platform_get_drvdata(dev); | 
|  |  | 
|  | if (hcd->driver->shutdown) | 
|  | hcd->driver->shutdown(hcd); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) | 
|  |  | 
|  | struct usb_mon_operations *mon_ops; | 
|  |  | 
|  | /* | 
|  | * The registration is unlocked. | 
|  | * We do it this way because we do not want to lock in hot paths. | 
|  | * | 
|  | * Notice that the code is minimally error-proof. Because usbmon needs | 
|  | * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. | 
|  | */ | 
|  |  | 
|  | int usb_mon_register (struct usb_mon_operations *ops) | 
|  | { | 
|  |  | 
|  | if (mon_ops) | 
|  | return -EBUSY; | 
|  |  | 
|  | mon_ops = ops; | 
|  | mb(); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL (usb_mon_register); | 
|  |  | 
|  | void usb_mon_deregister (void) | 
|  | { | 
|  |  | 
|  | if (mon_ops == NULL) { | 
|  | printk(KERN_ERR "USB: monitor was not registered\n"); | 
|  | return; | 
|  | } | 
|  | mon_ops = NULL; | 
|  | mb(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL (usb_mon_deregister); | 
|  |  | 
|  | #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ |