| /* |
| * arch/sh/kernel/setup.c |
| * |
| * This file handles the architecture-dependent parts of initialization |
| * |
| * Copyright (C) 1999 Niibe Yutaka |
| * Copyright (C) 2002 - 2007 Paul Mundt |
| */ |
| #include <linux/screen_info.h> |
| #include <linux/ioport.h> |
| #include <linux/init.h> |
| #include <linux/initrd.h> |
| #include <linux/bootmem.h> |
| #include <linux/console.h> |
| #include <linux/seq_file.h> |
| #include <linux/root_dev.h> |
| #include <linux/utsname.h> |
| #include <linux/nodemask.h> |
| #include <linux/cpu.h> |
| #include <linux/pfn.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/kexec.h> |
| #include <linux/module.h> |
| #include <linux/smp.h> |
| #include <linux/err.h> |
| #include <linux/debugfs.h> |
| #include <linux/crash_dump.h> |
| #include <linux/mmzone.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/platform_device.h> |
| #include <linux/lmb.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/page.h> |
| #include <asm/elf.h> |
| #include <asm/sections.h> |
| #include <asm/irq.h> |
| #include <asm/setup.h> |
| #include <asm/clock.h> |
| #include <asm/mmu_context.h> |
| |
| /* |
| * Initialize loops_per_jiffy as 10000000 (1000MIPS). |
| * This value will be used at the very early stage of serial setup. |
| * The bigger value means no problem. |
| */ |
| struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { |
| [0] = { |
| .type = CPU_SH_NONE, |
| .family = CPU_FAMILY_UNKNOWN, |
| .loops_per_jiffy = 10000000, |
| }, |
| }; |
| EXPORT_SYMBOL(cpu_data); |
| |
| /* |
| * The machine vector. First entry in .machvec.init, or clobbered by |
| * sh_mv= on the command line, prior to .machvec.init teardown. |
| */ |
| struct sh_machine_vector sh_mv = { .mv_name = "generic", }; |
| EXPORT_SYMBOL(sh_mv); |
| |
| #ifdef CONFIG_VT |
| struct screen_info screen_info; |
| #endif |
| |
| extern int root_mountflags; |
| |
| #define RAMDISK_IMAGE_START_MASK 0x07FF |
| #define RAMDISK_PROMPT_FLAG 0x8000 |
| #define RAMDISK_LOAD_FLAG 0x4000 |
| |
| static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; |
| |
| static struct resource code_resource = { |
| .name = "Kernel code", |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM, |
| }; |
| |
| static struct resource data_resource = { |
| .name = "Kernel data", |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM, |
| }; |
| |
| static struct resource bss_resource = { |
| .name = "Kernel bss", |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM, |
| }; |
| |
| unsigned long memory_start; |
| EXPORT_SYMBOL(memory_start); |
| unsigned long memory_end = 0; |
| EXPORT_SYMBOL(memory_end); |
| |
| static struct resource mem_resources[MAX_NUMNODES]; |
| |
| int l1i_cache_shape, l1d_cache_shape, l2_cache_shape; |
| |
| static int __init early_parse_mem(char *p) |
| { |
| unsigned long size; |
| |
| memory_start = (unsigned long)__va(__MEMORY_START); |
| size = memparse(p, &p); |
| |
| if (size > __MEMORY_SIZE) { |
| printk(KERN_ERR |
| "Using mem= to increase the size of kernel memory " |
| "is not allowed.\n" |
| " Recompile the kernel with the correct value for " |
| "CONFIG_MEMORY_SIZE.\n"); |
| return 0; |
| } |
| |
| memory_end = memory_start + size; |
| |
| return 0; |
| } |
| early_param("mem", early_parse_mem); |
| |
| /* |
| * Register fully available low RAM pages with the bootmem allocator. |
| */ |
| static void __init register_bootmem_low_pages(void) |
| { |
| unsigned long curr_pfn, last_pfn, pages; |
| |
| /* |
| * We are rounding up the start address of usable memory: |
| */ |
| curr_pfn = PFN_UP(__MEMORY_START); |
| |
| /* |
| * ... and at the end of the usable range downwards: |
| */ |
| last_pfn = PFN_DOWN(__pa(memory_end)); |
| |
| if (last_pfn > max_low_pfn) |
| last_pfn = max_low_pfn; |
| |
| pages = last_pfn - curr_pfn; |
| free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); |
| } |
| |
| #ifdef CONFIG_KEXEC |
| static void __init reserve_crashkernel(void) |
| { |
| unsigned long long free_mem; |
| unsigned long long crash_size, crash_base; |
| void *vp; |
| int ret; |
| |
| free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; |
| |
| ret = parse_crashkernel(boot_command_line, free_mem, |
| &crash_size, &crash_base); |
| if (ret == 0 && crash_size) { |
| if (crash_base <= 0) { |
| vp = alloc_bootmem_nopanic(crash_size); |
| if (!vp) { |
| printk(KERN_INFO "crashkernel allocation " |
| "failed\n"); |
| return; |
| } |
| crash_base = __pa(vp); |
| } else if (reserve_bootmem(crash_base, crash_size, |
| BOOTMEM_EXCLUSIVE) < 0) { |
| printk(KERN_INFO "crashkernel reservation failed - " |
| "memory is in use\n"); |
| return; |
| } |
| |
| printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " |
| "for crashkernel (System RAM: %ldMB)\n", |
| (unsigned long)(crash_size >> 20), |
| (unsigned long)(crash_base >> 20), |
| (unsigned long)(free_mem >> 20)); |
| crashk_res.start = crash_base; |
| crashk_res.end = crash_base + crash_size - 1; |
| insert_resource(&iomem_resource, &crashk_res); |
| } |
| } |
| #else |
| static inline void __init reserve_crashkernel(void) |
| {} |
| #endif |
| |
| void __cpuinit calibrate_delay(void) |
| { |
| struct clk *clk = clk_get(NULL, "cpu_clk"); |
| |
| if (IS_ERR(clk)) |
| panic("Need a sane CPU clock definition!"); |
| |
| loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ; |
| |
| printk(KERN_INFO "Calibrating delay loop (skipped)... " |
| "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n", |
| loops_per_jiffy/(500000/HZ), |
| (loops_per_jiffy/(5000/HZ)) % 100, |
| loops_per_jiffy); |
| } |
| |
| void __init __add_active_range(unsigned int nid, unsigned long start_pfn, |
| unsigned long end_pfn) |
| { |
| struct resource *res = &mem_resources[nid]; |
| |
| WARN_ON(res->name); /* max one active range per node for now */ |
| |
| res->name = "System RAM"; |
| res->start = start_pfn << PAGE_SHIFT; |
| res->end = (end_pfn << PAGE_SHIFT) - 1; |
| res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| if (request_resource(&iomem_resource, res)) { |
| pr_err("unable to request memory_resource 0x%lx 0x%lx\n", |
| start_pfn, end_pfn); |
| return; |
| } |
| |
| /* |
| * We don't know which RAM region contains kernel data, |
| * so we try it repeatedly and let the resource manager |
| * test it. |
| */ |
| request_resource(res, &code_resource); |
| request_resource(res, &data_resource); |
| request_resource(res, &bss_resource); |
| |
| add_active_range(nid, start_pfn, end_pfn); |
| } |
| |
| void __init setup_bootmem_allocator(unsigned long free_pfn) |
| { |
| unsigned long bootmap_size; |
| unsigned long bootmap_pages, bootmem_paddr; |
| u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT; |
| int i; |
| |
| bootmap_pages = bootmem_bootmap_pages(total_pages); |
| |
| bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); |
| |
| /* |
| * Find a proper area for the bootmem bitmap. After this |
| * bootstrap step all allocations (until the page allocator |
| * is intact) must be done via bootmem_alloc(). |
| */ |
| bootmap_size = init_bootmem_node(NODE_DATA(0), |
| bootmem_paddr >> PAGE_SHIFT, |
| min_low_pfn, max_low_pfn); |
| |
| /* Add active regions with valid PFNs. */ |
| for (i = 0; i < lmb.memory.cnt; i++) { |
| unsigned long start_pfn, end_pfn; |
| start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; |
| end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); |
| __add_active_range(0, start_pfn, end_pfn); |
| } |
| |
| /* |
| * Add all physical memory to the bootmem map and mark each |
| * area as present. |
| */ |
| register_bootmem_low_pages(); |
| |
| /* Reserve the sections we're already using. */ |
| for (i = 0; i < lmb.reserved.cnt; i++) |
| reserve_bootmem(lmb.reserved.region[i].base, |
| lmb_size_bytes(&lmb.reserved, i), |
| BOOTMEM_DEFAULT); |
| |
| node_set_online(0); |
| |
| sparse_memory_present_with_active_regions(0); |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| ROOT_DEV = Root_RAM0; |
| |
| if (LOADER_TYPE && INITRD_START) { |
| unsigned long initrd_start_phys = INITRD_START + __MEMORY_START; |
| |
| if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) { |
| reserve_bootmem(initrd_start_phys, INITRD_SIZE, |
| BOOTMEM_DEFAULT); |
| initrd_start = (unsigned long)__va(initrd_start_phys); |
| initrd_end = initrd_start + INITRD_SIZE; |
| } else { |
| printk("initrd extends beyond end of memory " |
| "(0x%08lx > 0x%08lx)\ndisabling initrd\n", |
| initrd_start_phys + INITRD_SIZE, |
| (unsigned long)PFN_PHYS(max_low_pfn)); |
| initrd_start = 0; |
| } |
| } |
| #endif |
| |
| reserve_crashkernel(); |
| } |
| |
| #ifndef CONFIG_NEED_MULTIPLE_NODES |
| static void __init setup_memory(void) |
| { |
| unsigned long start_pfn; |
| u64 base = min_low_pfn << PAGE_SHIFT; |
| u64 size = (max_low_pfn << PAGE_SHIFT) - base; |
| |
| /* |
| * Partially used pages are not usable - thus |
| * we are rounding upwards: |
| */ |
| start_pfn = PFN_UP(__pa(_end)); |
| |
| lmb_add(base, size); |
| |
| /* |
| * Reserve the kernel text and |
| * Reserve the bootmem bitmap. We do this in two steps (first step |
| * was init_bootmem()), because this catches the (definitely buggy) |
| * case of us accidentally initializing the bootmem allocator with |
| * an invalid RAM area. |
| */ |
| lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET, |
| (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) - |
| (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET)); |
| |
| /* |
| * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET. |
| */ |
| if (CONFIG_ZERO_PAGE_OFFSET != 0) |
| lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET); |
| |
| lmb_analyze(); |
| lmb_dump_all(); |
| |
| setup_bootmem_allocator(start_pfn); |
| } |
| #else |
| extern void __init setup_memory(void); |
| #endif |
| |
| /* |
| * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by |
| * is_kdump_kernel() to determine if we are booting after a panic. Hence |
| * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE. |
| */ |
| #ifdef CONFIG_CRASH_DUMP |
| /* elfcorehdr= specifies the location of elf core header |
| * stored by the crashed kernel. |
| */ |
| static int __init parse_elfcorehdr(char *arg) |
| { |
| if (!arg) |
| return -EINVAL; |
| elfcorehdr_addr = memparse(arg, &arg); |
| return 0; |
| } |
| early_param("elfcorehdr", parse_elfcorehdr); |
| #endif |
| |
| void __init __attribute__ ((weak)) plat_early_device_setup(void) |
| { |
| } |
| |
| void __init setup_arch(char **cmdline_p) |
| { |
| enable_mmu(); |
| |
| ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); |
| |
| printk(KERN_NOTICE "Boot params:\n" |
| "... MOUNT_ROOT_RDONLY - %08lx\n" |
| "... RAMDISK_FLAGS - %08lx\n" |
| "... ORIG_ROOT_DEV - %08lx\n" |
| "... LOADER_TYPE - %08lx\n" |
| "... INITRD_START - %08lx\n" |
| "... INITRD_SIZE - %08lx\n", |
| MOUNT_ROOT_RDONLY, RAMDISK_FLAGS, |
| ORIG_ROOT_DEV, LOADER_TYPE, |
| INITRD_START, INITRD_SIZE); |
| |
| #ifdef CONFIG_BLK_DEV_RAM |
| rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; |
| rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); |
| rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); |
| #endif |
| |
| if (!MOUNT_ROOT_RDONLY) |
| root_mountflags &= ~MS_RDONLY; |
| init_mm.start_code = (unsigned long) _text; |
| init_mm.end_code = (unsigned long) _etext; |
| init_mm.end_data = (unsigned long) _edata; |
| init_mm.brk = (unsigned long) _end; |
| |
| code_resource.start = virt_to_phys(_text); |
| code_resource.end = virt_to_phys(_etext)-1; |
| data_resource.start = virt_to_phys(_etext); |
| data_resource.end = virt_to_phys(_edata)-1; |
| bss_resource.start = virt_to_phys(__bss_start); |
| bss_resource.end = virt_to_phys(_ebss)-1; |
| |
| memory_start = (unsigned long)__va(__MEMORY_START); |
| if (!memory_end) |
| memory_end = memory_start + __MEMORY_SIZE; |
| |
| #ifdef CONFIG_CMDLINE_OVERWRITE |
| strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); |
| #else |
| strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); |
| #ifdef CONFIG_CMDLINE_EXTEND |
| strlcat(command_line, " ", sizeof(command_line)); |
| strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line)); |
| #endif |
| #endif |
| |
| /* Save unparsed command line copy for /proc/cmdline */ |
| memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); |
| *cmdline_p = command_line; |
| |
| parse_early_param(); |
| |
| uncached_init(); |
| |
| plat_early_device_setup(); |
| |
| /* Let earlyprintk output early console messages */ |
| early_platform_driver_probe("earlyprintk", 1, 1); |
| |
| sh_mv_setup(); |
| |
| /* |
| * Find the highest page frame number we have available |
| */ |
| max_pfn = PFN_DOWN(__pa(memory_end)); |
| |
| /* |
| * Determine low and high memory ranges: |
| */ |
| max_low_pfn = max_pfn; |
| min_low_pfn = __MEMORY_START >> PAGE_SHIFT; |
| |
| nodes_clear(node_online_map); |
| |
| pmb_init(); |
| lmb_init(); |
| setup_memory(); |
| sparse_init(); |
| |
| #ifdef CONFIG_DUMMY_CONSOLE |
| conswitchp = &dummy_con; |
| #endif |
| paging_init(); |
| |
| ioremap_fixed_init(); |
| |
| /* Perform the machine specific initialisation */ |
| if (likely(sh_mv.mv_setup)) |
| sh_mv.mv_setup(cmdline_p); |
| |
| #ifdef CONFIG_SMP |
| plat_smp_setup(); |
| #endif |
| } |
| |
| /* processor boot mode configuration */ |
| int generic_mode_pins(void) |
| { |
| pr_warning("generic_mode_pins(): missing mode pin configuration\n"); |
| return 0; |
| } |
| |
| int test_mode_pin(int pin) |
| { |
| return sh_mv.mv_mode_pins() & pin; |
| } |
| |
| static const char *cpu_name[] = { |
| [CPU_SH7201] = "SH7201", |
| [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263", |
| [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", |
| [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", |
| [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", |
| [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", |
| [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720", |
| [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729", |
| [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S", |
| [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751", |
| [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760", |
| [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", |
| [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770", |
| [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781", |
| [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785", |
| [CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757", |
| [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3", |
| [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103", |
| [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723", |
| [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724", |
| [CPU_SH_NONE] = "Unknown" |
| }; |
| |
| const char *get_cpu_subtype(struct sh_cpuinfo *c) |
| { |
| return cpu_name[c->type]; |
| } |
| EXPORT_SYMBOL(get_cpu_subtype); |
| |
| #ifdef CONFIG_PROC_FS |
| /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ |
| static const char *cpu_flags[] = { |
| "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", |
| "ptea", "llsc", "l2", "op32", "pteaex", NULL |
| }; |
| |
| static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) |
| { |
| unsigned long i; |
| |
| seq_printf(m, "cpu flags\t:"); |
| |
| if (!c->flags) { |
| seq_printf(m, " %s\n", cpu_flags[0]); |
| return; |
| } |
| |
| for (i = 0; cpu_flags[i]; i++) |
| if ((c->flags & (1 << i))) |
| seq_printf(m, " %s", cpu_flags[i+1]); |
| |
| seq_printf(m, "\n"); |
| } |
| |
| static void show_cacheinfo(struct seq_file *m, const char *type, |
| struct cache_info info) |
| { |
| unsigned int cache_size; |
| |
| cache_size = info.ways * info.sets * info.linesz; |
| |
| seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", |
| type, cache_size >> 10, info.ways); |
| } |
| |
| /* |
| * Get CPU information for use by the procfs. |
| */ |
| static int show_cpuinfo(struct seq_file *m, void *v) |
| { |
| struct sh_cpuinfo *c = v; |
| unsigned int cpu = c - cpu_data; |
| |
| if (!cpu_online(cpu)) |
| return 0; |
| |
| if (cpu == 0) |
| seq_printf(m, "machine\t\t: %s\n", get_system_type()); |
| else |
| seq_printf(m, "\n"); |
| |
| seq_printf(m, "processor\t: %d\n", cpu); |
| seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); |
| seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); |
| if (c->cut_major == -1) |
| seq_printf(m, "cut\t\t: unknown\n"); |
| else if (c->cut_minor == -1) |
| seq_printf(m, "cut\t\t: %d.x\n", c->cut_major); |
| else |
| seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor); |
| |
| show_cpuflags(m, c); |
| |
| seq_printf(m, "cache type\t: "); |
| |
| /* |
| * Check for what type of cache we have, we support both the |
| * unified cache on the SH-2 and SH-3, as well as the harvard |
| * style cache on the SH-4. |
| */ |
| if (c->icache.flags & SH_CACHE_COMBINED) { |
| seq_printf(m, "unified\n"); |
| show_cacheinfo(m, "cache", c->icache); |
| } else { |
| seq_printf(m, "split (harvard)\n"); |
| show_cacheinfo(m, "icache", c->icache); |
| show_cacheinfo(m, "dcache", c->dcache); |
| } |
| |
| /* Optional secondary cache */ |
| if (c->flags & CPU_HAS_L2_CACHE) |
| show_cacheinfo(m, "scache", c->scache); |
| |
| seq_printf(m, "bogomips\t: %lu.%02lu\n", |
| c->loops_per_jiffy/(500000/HZ), |
| (c->loops_per_jiffy/(5000/HZ)) % 100); |
| |
| return 0; |
| } |
| |
| static void *c_start(struct seq_file *m, loff_t *pos) |
| { |
| return *pos < NR_CPUS ? cpu_data + *pos : NULL; |
| } |
| static void *c_next(struct seq_file *m, void *v, loff_t *pos) |
| { |
| ++*pos; |
| return c_start(m, pos); |
| } |
| static void c_stop(struct seq_file *m, void *v) |
| { |
| } |
| const struct seq_operations cpuinfo_op = { |
| .start = c_start, |
| .next = c_next, |
| .stop = c_stop, |
| .show = show_cpuinfo, |
| }; |
| #endif /* CONFIG_PROC_FS */ |
| |
| struct dentry *sh_debugfs_root; |
| |
| static int __init sh_debugfs_init(void) |
| { |
| sh_debugfs_root = debugfs_create_dir("sh", NULL); |
| if (!sh_debugfs_root) |
| return -ENOMEM; |
| if (IS_ERR(sh_debugfs_root)) |
| return PTR_ERR(sh_debugfs_root); |
| |
| return 0; |
| } |
| arch_initcall(sh_debugfs_init); |