|  | /* | 
|  | *  linux/mm/page_alloc.c | 
|  | * | 
|  | *  Manages the free list, the system allocates free pages here. | 
|  | *  Note that kmalloc() lives in slab.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | *  Swap reorganised 29.12.95, Stephen Tweedie | 
|  | *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
|  | *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | 
|  | *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 
|  | *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | 
|  | *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | 
|  | *          (lots of bits borrowed from Ingo Molnar & Andrew Morton) | 
|  | */ | 
|  |  | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kmemcheck.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/memory_hotplug.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/vmstat.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/stop_machine.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/fault-inject.h> | 
|  | #include <linux/page-isolation.h> | 
|  | #include <linux/page_cgroup.h> | 
|  | #include <linux/debugobjects.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/compaction.h> | 
|  | #include <trace/events/kmem.h> | 
|  | #include <linux/ftrace_event.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/page-debug-flags.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/div64.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID | 
|  | DEFINE_PER_CPU(int, numa_node); | 
|  | EXPORT_PER_CPU_SYMBOL(numa_node); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
|  | /* | 
|  | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | 
|  | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | 
|  | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | 
|  | * defined in <linux/topology.h>. | 
|  | */ | 
|  | DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */ | 
|  | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Array of node states. | 
|  | */ | 
|  | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { | 
|  | [N_POSSIBLE] = NODE_MASK_ALL, | 
|  | [N_ONLINE] = { { [0] = 1UL } }, | 
|  | #ifndef CONFIG_NUMA | 
|  | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | 
|  | #endif | 
|  | #ifdef CONFIG_MOVABLE_NODE | 
|  | [N_MEMORY] = { { [0] = 1UL } }, | 
|  | #endif | 
|  | [N_CPU] = { { [0] = 1UL } }, | 
|  | #endif	/* NUMA */ | 
|  | }; | 
|  | EXPORT_SYMBOL(node_states); | 
|  |  | 
|  | unsigned long totalram_pages __read_mostly; | 
|  | unsigned long totalreserve_pages __read_mostly; | 
|  | /* | 
|  | * When calculating the number of globally allowed dirty pages, there | 
|  | * is a certain number of per-zone reserves that should not be | 
|  | * considered dirtyable memory.  This is the sum of those reserves | 
|  | * over all existing zones that contribute dirtyable memory. | 
|  | */ | 
|  | unsigned long dirty_balance_reserve __read_mostly; | 
|  |  | 
|  | int percpu_pagelist_fraction; | 
|  | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | /* | 
|  | * The following functions are used by the suspend/hibernate code to temporarily | 
|  | * change gfp_allowed_mask in order to avoid using I/O during memory allocations | 
|  | * while devices are suspended.  To avoid races with the suspend/hibernate code, | 
|  | * they should always be called with pm_mutex held (gfp_allowed_mask also should | 
|  | * only be modified with pm_mutex held, unless the suspend/hibernate code is | 
|  | * guaranteed not to run in parallel with that modification). | 
|  | */ | 
|  |  | 
|  | static gfp_t saved_gfp_mask; | 
|  |  | 
|  | void pm_restore_gfp_mask(void) | 
|  | { | 
|  | WARN_ON(!mutex_is_locked(&pm_mutex)); | 
|  | if (saved_gfp_mask) { | 
|  | gfp_allowed_mask = saved_gfp_mask; | 
|  | saved_gfp_mask = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void pm_restrict_gfp_mask(void) | 
|  | { | 
|  | WARN_ON(!mutex_is_locked(&pm_mutex)); | 
|  | WARN_ON(saved_gfp_mask); | 
|  | saved_gfp_mask = gfp_allowed_mask; | 
|  | gfp_allowed_mask &= ~GFP_IOFS; | 
|  | } | 
|  |  | 
|  | bool pm_suspended_storage(void) | 
|  | { | 
|  | if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | #endif /* CONFIG_PM_SLEEP */ | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | 
|  | int pageblock_order __read_mostly; | 
|  | #endif | 
|  |  | 
|  | static void __free_pages_ok(struct page *page, unsigned int order); | 
|  |  | 
|  | /* | 
|  | * results with 256, 32 in the lowmem_reserve sysctl: | 
|  | *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | 
|  | *	1G machine -> (16M dma, 784M normal, 224M high) | 
|  | *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | 
|  | *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | 
|  | *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | 
|  | * | 
|  | * TBD: should special case ZONE_DMA32 machines here - in those we normally | 
|  | * don't need any ZONE_NORMAL reservation | 
|  | */ | 
|  | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | 256, | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | 256, | 
|  | #endif | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | 32, | 
|  | #endif | 
|  | 32, | 
|  | }; | 
|  |  | 
|  | EXPORT_SYMBOL(totalram_pages); | 
|  |  | 
|  | static char * const zone_names[MAX_NR_ZONES] = { | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | "DMA", | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | "DMA32", | 
|  | #endif | 
|  | "Normal", | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | "HighMem", | 
|  | #endif | 
|  | "Movable", | 
|  | }; | 
|  |  | 
|  | int min_free_kbytes = 1024; | 
|  |  | 
|  | static unsigned long __meminitdata nr_kernel_pages; | 
|  | static unsigned long __meminitdata nr_all_pages; | 
|  | static unsigned long __meminitdata dma_reserve; | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; | 
|  | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; | 
|  | static unsigned long __initdata required_kernelcore; | 
|  | static unsigned long __initdata required_movablecore; | 
|  | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; | 
|  |  | 
|  | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | 
|  | int movable_zone; | 
|  | EXPORT_SYMBOL(movable_zone); | 
|  | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  |  | 
|  | #if MAX_NUMNODES > 1 | 
|  | int nr_node_ids __read_mostly = MAX_NUMNODES; | 
|  | int nr_online_nodes __read_mostly = 1; | 
|  | EXPORT_SYMBOL(nr_node_ids); | 
|  | EXPORT_SYMBOL(nr_online_nodes); | 
|  | #endif | 
|  |  | 
|  | int page_group_by_mobility_disabled __read_mostly; | 
|  |  | 
|  | /* | 
|  | * NOTE: | 
|  | * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly. | 
|  | * Instead, use {un}set_pageblock_isolate. | 
|  | */ | 
|  | void set_pageblock_migratetype(struct page *page, int migratetype) | 
|  | { | 
|  |  | 
|  | if (unlikely(page_group_by_mobility_disabled)) | 
|  | migratetype = MIGRATE_UNMOVABLE; | 
|  |  | 
|  | set_pageblock_flags_group(page, (unsigned long)migratetype, | 
|  | PB_migrate, PB_migrate_end); | 
|  | } | 
|  |  | 
|  | bool oom_killer_disabled __read_mostly; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned seq; | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  |  | 
|  | do { | 
|  | seq = zone_span_seqbegin(zone); | 
|  | if (pfn >= zone->zone_start_pfn + zone->spanned_pages) | 
|  | ret = 1; | 
|  | else if (pfn < zone->zone_start_pfn) | 
|  | ret = 1; | 
|  | } while (zone_span_seqretry(zone, seq)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int page_is_consistent(struct zone *zone, struct page *page) | 
|  | { | 
|  | if (!pfn_valid_within(page_to_pfn(page))) | 
|  | return 0; | 
|  | if (zone != page_zone(page)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | /* | 
|  | * Temporary debugging check for pages not lying within a given zone. | 
|  | */ | 
|  | static int bad_range(struct zone *zone, struct page *page) | 
|  | { | 
|  | if (page_outside_zone_boundaries(zone, page)) | 
|  | return 1; | 
|  | if (!page_is_consistent(zone, page)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static inline int bad_range(struct zone *zone, struct page *page) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void bad_page(struct page *page) | 
|  | { | 
|  | static unsigned long resume; | 
|  | static unsigned long nr_shown; | 
|  | static unsigned long nr_unshown; | 
|  |  | 
|  | /* Don't complain about poisoned pages */ | 
|  | if (PageHWPoison(page)) { | 
|  | reset_page_mapcount(page); /* remove PageBuddy */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow a burst of 60 reports, then keep quiet for that minute; | 
|  | * or allow a steady drip of one report per second. | 
|  | */ | 
|  | if (nr_shown == 60) { | 
|  | if (time_before(jiffies, resume)) { | 
|  | nr_unshown++; | 
|  | goto out; | 
|  | } | 
|  | if (nr_unshown) { | 
|  | printk(KERN_ALERT | 
|  | "BUG: Bad page state: %lu messages suppressed\n", | 
|  | nr_unshown); | 
|  | nr_unshown = 0; | 
|  | } | 
|  | nr_shown = 0; | 
|  | } | 
|  | if (nr_shown++ == 0) | 
|  | resume = jiffies + 60 * HZ; | 
|  |  | 
|  | printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n", | 
|  | current->comm, page_to_pfn(page)); | 
|  | dump_page(page); | 
|  |  | 
|  | print_modules(); | 
|  | dump_stack(); | 
|  | out: | 
|  | /* Leave bad fields for debug, except PageBuddy could make trouble */ | 
|  | reset_page_mapcount(page); /* remove PageBuddy */ | 
|  | add_taint(TAINT_BAD_PAGE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Higher-order pages are called "compound pages".  They are structured thusly: | 
|  | * | 
|  | * The first PAGE_SIZE page is called the "head page". | 
|  | * | 
|  | * The remaining PAGE_SIZE pages are called "tail pages". | 
|  | * | 
|  | * All pages have PG_compound set.  All tail pages have their ->first_page | 
|  | * pointing at the head page. | 
|  | * | 
|  | * The first tail page's ->lru.next holds the address of the compound page's | 
|  | * put_page() function.  Its ->lru.prev holds the order of allocation. | 
|  | * This usage means that zero-order pages may not be compound. | 
|  | */ | 
|  |  | 
|  | static void free_compound_page(struct page *page) | 
|  | { | 
|  | __free_pages_ok(page, compound_order(page)); | 
|  | } | 
|  |  | 
|  | void prep_compound_page(struct page *page, unsigned long order) | 
|  | { | 
|  | int i; | 
|  | int nr_pages = 1 << order; | 
|  |  | 
|  | set_compound_page_dtor(page, free_compound_page); | 
|  | set_compound_order(page, order); | 
|  | __SetPageHead(page); | 
|  | for (i = 1; i < nr_pages; i++) { | 
|  | struct page *p = page + i; | 
|  | __SetPageTail(p); | 
|  | set_page_count(p, 0); | 
|  | p->first_page = page; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* update __split_huge_page_refcount if you change this function */ | 
|  | static int destroy_compound_page(struct page *page, unsigned long order) | 
|  | { | 
|  | int i; | 
|  | int nr_pages = 1 << order; | 
|  | int bad = 0; | 
|  |  | 
|  | if (unlikely(compound_order(page) != order)) { | 
|  | bad_page(page); | 
|  | bad++; | 
|  | } | 
|  |  | 
|  | __ClearPageHead(page); | 
|  |  | 
|  | for (i = 1; i < nr_pages; i++) { | 
|  | struct page *p = page + i; | 
|  |  | 
|  | if (unlikely(!PageTail(p) || (p->first_page != page))) { | 
|  | bad_page(page); | 
|  | bad++; | 
|  | } | 
|  | __ClearPageTail(p); | 
|  | } | 
|  |  | 
|  | return bad; | 
|  | } | 
|  |  | 
|  | static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO | 
|  | * and __GFP_HIGHMEM from hard or soft interrupt context. | 
|  | */ | 
|  | VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); | 
|  | for (i = 0; i < (1 << order); i++) | 
|  | clear_highpage(page + i); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | unsigned int _debug_guardpage_minorder; | 
|  |  | 
|  | static int __init debug_guardpage_minorder_setup(char *buf) | 
|  | { | 
|  | unsigned long res; | 
|  |  | 
|  | if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) { | 
|  | printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); | 
|  | return 0; | 
|  | } | 
|  | _debug_guardpage_minorder = res; | 
|  | printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); | 
|  | return 0; | 
|  | } | 
|  | __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); | 
|  |  | 
|  | static inline void set_page_guard_flag(struct page *page) | 
|  | { | 
|  | __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); | 
|  | } | 
|  |  | 
|  | static inline void clear_page_guard_flag(struct page *page) | 
|  | { | 
|  | __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); | 
|  | } | 
|  | #else | 
|  | static inline void set_page_guard_flag(struct page *page) { } | 
|  | static inline void clear_page_guard_flag(struct page *page) { } | 
|  | #endif | 
|  |  | 
|  | static inline void set_page_order(struct page *page, int order) | 
|  | { | 
|  | set_page_private(page, order); | 
|  | __SetPageBuddy(page); | 
|  | } | 
|  |  | 
|  | static inline void rmv_page_order(struct page *page) | 
|  | { | 
|  | __ClearPageBuddy(page); | 
|  | set_page_private(page, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locate the struct page for both the matching buddy in our | 
|  | * pair (buddy1) and the combined O(n+1) page they form (page). | 
|  | * | 
|  | * 1) Any buddy B1 will have an order O twin B2 which satisfies | 
|  | * the following equation: | 
|  | *     B2 = B1 ^ (1 << O) | 
|  | * For example, if the starting buddy (buddy2) is #8 its order | 
|  | * 1 buddy is #10: | 
|  | *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | 
|  | * | 
|  | * 2) Any buddy B will have an order O+1 parent P which | 
|  | * satisfies the following equation: | 
|  | *     P = B & ~(1 << O) | 
|  | * | 
|  | * Assumption: *_mem_map is contiguous at least up to MAX_ORDER | 
|  | */ | 
|  | static inline unsigned long | 
|  | __find_buddy_index(unsigned long page_idx, unsigned int order) | 
|  | { | 
|  | return page_idx ^ (1 << order); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function checks whether a page is free && is the buddy | 
|  | * we can do coalesce a page and its buddy if | 
|  | * (a) the buddy is not in a hole && | 
|  | * (b) the buddy is in the buddy system && | 
|  | * (c) a page and its buddy have the same order && | 
|  | * (d) a page and its buddy are in the same zone. | 
|  | * | 
|  | * For recording whether a page is in the buddy system, we set ->_mapcount -2. | 
|  | * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. | 
|  | * | 
|  | * For recording page's order, we use page_private(page). | 
|  | */ | 
|  | static inline int page_is_buddy(struct page *page, struct page *buddy, | 
|  | int order) | 
|  | { | 
|  | if (!pfn_valid_within(page_to_pfn(buddy))) | 
|  | return 0; | 
|  |  | 
|  | if (page_zone_id(page) != page_zone_id(buddy)) | 
|  | return 0; | 
|  |  | 
|  | if (page_is_guard(buddy) && page_order(buddy) == order) { | 
|  | VM_BUG_ON(page_count(buddy) != 0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (PageBuddy(buddy) && page_order(buddy) == order) { | 
|  | VM_BUG_ON(page_count(buddy) != 0); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Freeing function for a buddy system allocator. | 
|  | * | 
|  | * The concept of a buddy system is to maintain direct-mapped table | 
|  | * (containing bit values) for memory blocks of various "orders". | 
|  | * The bottom level table contains the map for the smallest allocatable | 
|  | * units of memory (here, pages), and each level above it describes | 
|  | * pairs of units from the levels below, hence, "buddies". | 
|  | * At a high level, all that happens here is marking the table entry | 
|  | * at the bottom level available, and propagating the changes upward | 
|  | * as necessary, plus some accounting needed to play nicely with other | 
|  | * parts of the VM system. | 
|  | * At each level, we keep a list of pages, which are heads of continuous | 
|  | * free pages of length of (1 << order) and marked with _mapcount -2. Page's | 
|  | * order is recorded in page_private(page) field. | 
|  | * So when we are allocating or freeing one, we can derive the state of the | 
|  | * other.  That is, if we allocate a small block, and both were | 
|  | * free, the remainder of the region must be split into blocks. | 
|  | * If a block is freed, and its buddy is also free, then this | 
|  | * triggers coalescing into a block of larger size. | 
|  | * | 
|  | * -- nyc | 
|  | */ | 
|  |  | 
|  | static inline void __free_one_page(struct page *page, | 
|  | struct zone *zone, unsigned int order, | 
|  | int migratetype) | 
|  | { | 
|  | unsigned long page_idx; | 
|  | unsigned long combined_idx; | 
|  | unsigned long uninitialized_var(buddy_idx); | 
|  | struct page *buddy; | 
|  |  | 
|  | if (unlikely(PageCompound(page))) | 
|  | if (unlikely(destroy_compound_page(page, order))) | 
|  | return; | 
|  |  | 
|  | VM_BUG_ON(migratetype == -1); | 
|  |  | 
|  | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); | 
|  |  | 
|  | VM_BUG_ON(page_idx & ((1 << order) - 1)); | 
|  | VM_BUG_ON(bad_range(zone, page)); | 
|  |  | 
|  | while (order < MAX_ORDER-1) { | 
|  | buddy_idx = __find_buddy_index(page_idx, order); | 
|  | buddy = page + (buddy_idx - page_idx); | 
|  | if (!page_is_buddy(page, buddy, order)) | 
|  | break; | 
|  | /* | 
|  | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | 
|  | * merge with it and move up one order. | 
|  | */ | 
|  | if (page_is_guard(buddy)) { | 
|  | clear_page_guard_flag(buddy); | 
|  | set_page_private(page, 0); | 
|  | __mod_zone_freepage_state(zone, 1 << order, | 
|  | migratetype); | 
|  | } else { | 
|  | list_del(&buddy->lru); | 
|  | zone->free_area[order].nr_free--; | 
|  | rmv_page_order(buddy); | 
|  | } | 
|  | combined_idx = buddy_idx & page_idx; | 
|  | page = page + (combined_idx - page_idx); | 
|  | page_idx = combined_idx; | 
|  | order++; | 
|  | } | 
|  | set_page_order(page, order); | 
|  |  | 
|  | /* | 
|  | * If this is not the largest possible page, check if the buddy | 
|  | * of the next-highest order is free. If it is, it's possible | 
|  | * that pages are being freed that will coalesce soon. In case, | 
|  | * that is happening, add the free page to the tail of the list | 
|  | * so it's less likely to be used soon and more likely to be merged | 
|  | * as a higher order page | 
|  | */ | 
|  | if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { | 
|  | struct page *higher_page, *higher_buddy; | 
|  | combined_idx = buddy_idx & page_idx; | 
|  | higher_page = page + (combined_idx - page_idx); | 
|  | buddy_idx = __find_buddy_index(combined_idx, order + 1); | 
|  | higher_buddy = higher_page + (buddy_idx - combined_idx); | 
|  | if (page_is_buddy(higher_page, higher_buddy, order + 1)) { | 
|  | list_add_tail(&page->lru, | 
|  | &zone->free_area[order].free_list[migratetype]); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); | 
|  | out: | 
|  | zone->free_area[order].nr_free++; | 
|  | } | 
|  |  | 
|  | static inline int free_pages_check(struct page *page) | 
|  | { | 
|  | if (unlikely(page_mapcount(page) | | 
|  | (page->mapping != NULL)  | | 
|  | (atomic_read(&page->_count) != 0) | | 
|  | (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | | 
|  | (mem_cgroup_bad_page_check(page)))) { | 
|  | bad_page(page); | 
|  | return 1; | 
|  | } | 
|  | reset_page_last_nid(page); | 
|  | if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 
|  | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Frees a number of pages from the PCP lists | 
|  | * Assumes all pages on list are in same zone, and of same order. | 
|  | * count is the number of pages to free. | 
|  | * | 
|  | * If the zone was previously in an "all pages pinned" state then look to | 
|  | * see if this freeing clears that state. | 
|  | * | 
|  | * And clear the zone's pages_scanned counter, to hold off the "all pages are | 
|  | * pinned" detection logic. | 
|  | */ | 
|  | static void free_pcppages_bulk(struct zone *zone, int count, | 
|  | struct per_cpu_pages *pcp) | 
|  | { | 
|  | int migratetype = 0; | 
|  | int batch_free = 0; | 
|  | int to_free = count; | 
|  |  | 
|  | spin_lock(&zone->lock); | 
|  | zone->all_unreclaimable = 0; | 
|  | zone->pages_scanned = 0; | 
|  |  | 
|  | while (to_free) { | 
|  | struct page *page; | 
|  | struct list_head *list; | 
|  |  | 
|  | /* | 
|  | * Remove pages from lists in a round-robin fashion. A | 
|  | * batch_free count is maintained that is incremented when an | 
|  | * empty list is encountered.  This is so more pages are freed | 
|  | * off fuller lists instead of spinning excessively around empty | 
|  | * lists | 
|  | */ | 
|  | do { | 
|  | batch_free++; | 
|  | if (++migratetype == MIGRATE_PCPTYPES) | 
|  | migratetype = 0; | 
|  | list = &pcp->lists[migratetype]; | 
|  | } while (list_empty(list)); | 
|  |  | 
|  | /* This is the only non-empty list. Free them all. */ | 
|  | if (batch_free == MIGRATE_PCPTYPES) | 
|  | batch_free = to_free; | 
|  |  | 
|  | do { | 
|  | int mt;	/* migratetype of the to-be-freed page */ | 
|  |  | 
|  | page = list_entry(list->prev, struct page, lru); | 
|  | /* must delete as __free_one_page list manipulates */ | 
|  | list_del(&page->lru); | 
|  | mt = get_freepage_migratetype(page); | 
|  | /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ | 
|  | __free_one_page(page, zone, 0, mt); | 
|  | trace_mm_page_pcpu_drain(page, 0, mt); | 
|  | if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) { | 
|  | __mod_zone_page_state(zone, NR_FREE_PAGES, 1); | 
|  | if (is_migrate_cma(mt)) | 
|  | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); | 
|  | } | 
|  | } while (--to_free && --batch_free && !list_empty(list)); | 
|  | } | 
|  | spin_unlock(&zone->lock); | 
|  | } | 
|  |  | 
|  | static void free_one_page(struct zone *zone, struct page *page, int order, | 
|  | int migratetype) | 
|  | { | 
|  | spin_lock(&zone->lock); | 
|  | zone->all_unreclaimable = 0; | 
|  | zone->pages_scanned = 0; | 
|  |  | 
|  | __free_one_page(page, zone, order, migratetype); | 
|  | if (unlikely(migratetype != MIGRATE_ISOLATE)) | 
|  | __mod_zone_freepage_state(zone, 1 << order, migratetype); | 
|  | spin_unlock(&zone->lock); | 
|  | } | 
|  |  | 
|  | static bool free_pages_prepare(struct page *page, unsigned int order) | 
|  | { | 
|  | int i; | 
|  | int bad = 0; | 
|  |  | 
|  | trace_mm_page_free(page, order); | 
|  | kmemcheck_free_shadow(page, order); | 
|  |  | 
|  | if (PageAnon(page)) | 
|  | page->mapping = NULL; | 
|  | for (i = 0; i < (1 << order); i++) | 
|  | bad += free_pages_check(page + i); | 
|  | if (bad) | 
|  | return false; | 
|  |  | 
|  | if (!PageHighMem(page)) { | 
|  | debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); | 
|  | debug_check_no_obj_freed(page_address(page), | 
|  | PAGE_SIZE << order); | 
|  | } | 
|  | arch_free_page(page, order); | 
|  | kernel_map_pages(page, 1 << order, 0); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void __free_pages_ok(struct page *page, unsigned int order) | 
|  | { | 
|  | unsigned long flags; | 
|  | int migratetype; | 
|  |  | 
|  | if (!free_pages_prepare(page, order)) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __count_vm_events(PGFREE, 1 << order); | 
|  | migratetype = get_pageblock_migratetype(page); | 
|  | set_freepage_migratetype(page, migratetype); | 
|  | free_one_page(page_zone(page), page, order, migratetype); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read access to zone->managed_pages is safe because it's unsigned long, | 
|  | * but we still need to serialize writers. Currently all callers of | 
|  | * __free_pages_bootmem() except put_page_bootmem() should only be used | 
|  | * at boot time. So for shorter boot time, we shift the burden to | 
|  | * put_page_bootmem() to serialize writers. | 
|  | */ | 
|  | void __meminit __free_pages_bootmem(struct page *page, unsigned int order) | 
|  | { | 
|  | unsigned int nr_pages = 1 << order; | 
|  | unsigned int loop; | 
|  |  | 
|  | prefetchw(page); | 
|  | for (loop = 0; loop < nr_pages; loop++) { | 
|  | struct page *p = &page[loop]; | 
|  |  | 
|  | if (loop + 1 < nr_pages) | 
|  | prefetchw(p + 1); | 
|  | __ClearPageReserved(p); | 
|  | set_page_count(p, 0); | 
|  | } | 
|  |  | 
|  | page_zone(page)->managed_pages += 1 << order; | 
|  | set_page_refcounted(page); | 
|  | __free_pages(page, order); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  | /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ | 
|  | void __init init_cma_reserved_pageblock(struct page *page) | 
|  | { | 
|  | unsigned i = pageblock_nr_pages; | 
|  | struct page *p = page; | 
|  |  | 
|  | do { | 
|  | __ClearPageReserved(p); | 
|  | set_page_count(p, 0); | 
|  | } while (++p, --i); | 
|  |  | 
|  | set_page_refcounted(page); | 
|  | set_pageblock_migratetype(page, MIGRATE_CMA); | 
|  | __free_pages(page, pageblock_order); | 
|  | totalram_pages += pageblock_nr_pages; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The order of subdivision here is critical for the IO subsystem. | 
|  | * Please do not alter this order without good reasons and regression | 
|  | * testing. Specifically, as large blocks of memory are subdivided, | 
|  | * the order in which smaller blocks are delivered depends on the order | 
|  | * they're subdivided in this function. This is the primary factor | 
|  | * influencing the order in which pages are delivered to the IO | 
|  | * subsystem according to empirical testing, and this is also justified | 
|  | * by considering the behavior of a buddy system containing a single | 
|  | * large block of memory acted on by a series of small allocations. | 
|  | * This behavior is a critical factor in sglist merging's success. | 
|  | * | 
|  | * -- nyc | 
|  | */ | 
|  | static inline void expand(struct zone *zone, struct page *page, | 
|  | int low, int high, struct free_area *area, | 
|  | int migratetype) | 
|  | { | 
|  | unsigned long size = 1 << high; | 
|  |  | 
|  | while (high > low) { | 
|  | area--; | 
|  | high--; | 
|  | size >>= 1; | 
|  | VM_BUG_ON(bad_range(zone, &page[size])); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | if (high < debug_guardpage_minorder()) { | 
|  | /* | 
|  | * Mark as guard pages (or page), that will allow to | 
|  | * merge back to allocator when buddy will be freed. | 
|  | * Corresponding page table entries will not be touched, | 
|  | * pages will stay not present in virtual address space | 
|  | */ | 
|  | INIT_LIST_HEAD(&page[size].lru); | 
|  | set_page_guard_flag(&page[size]); | 
|  | set_page_private(&page[size], high); | 
|  | /* Guard pages are not available for any usage */ | 
|  | __mod_zone_freepage_state(zone, -(1 << high), | 
|  | migratetype); | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  | list_add(&page[size].lru, &area->free_list[migratetype]); | 
|  | area->nr_free++; | 
|  | set_page_order(&page[size], high); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This page is about to be returned from the page allocator | 
|  | */ | 
|  | static inline int check_new_page(struct page *page) | 
|  | { | 
|  | if (unlikely(page_mapcount(page) | | 
|  | (page->mapping != NULL)  | | 
|  | (atomic_read(&page->_count) != 0)  | | 
|  | (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | | 
|  | (mem_cgroup_bad_page_check(page)))) { | 
|  | bad_page(page); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < (1 << order); i++) { | 
|  | struct page *p = page + i; | 
|  | if (unlikely(check_new_page(p))) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | set_page_private(page, 0); | 
|  | set_page_refcounted(page); | 
|  |  | 
|  | arch_alloc_page(page, order); | 
|  | kernel_map_pages(page, 1 << order, 1); | 
|  |  | 
|  | if (gfp_flags & __GFP_ZERO) | 
|  | prep_zero_page(page, order, gfp_flags); | 
|  |  | 
|  | if (order && (gfp_flags & __GFP_COMP)) | 
|  | prep_compound_page(page, order); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Go through the free lists for the given migratetype and remove | 
|  | * the smallest available page from the freelists | 
|  | */ | 
|  | static inline | 
|  | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | 
|  | int migratetype) | 
|  | { | 
|  | unsigned int current_order; | 
|  | struct free_area * area; | 
|  | struct page *page; | 
|  |  | 
|  | /* Find a page of the appropriate size in the preferred list */ | 
|  | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | 
|  | area = &(zone->free_area[current_order]); | 
|  | if (list_empty(&area->free_list[migratetype])) | 
|  | continue; | 
|  |  | 
|  | page = list_entry(area->free_list[migratetype].next, | 
|  | struct page, lru); | 
|  | list_del(&page->lru); | 
|  | rmv_page_order(page); | 
|  | area->nr_free--; | 
|  | expand(zone, page, order, current_order, area, migratetype); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This array describes the order lists are fallen back to when | 
|  | * the free lists for the desirable migrate type are depleted | 
|  | */ | 
|  | static int fallbacks[MIGRATE_TYPES][4] = { | 
|  | [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE }, | 
|  | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE }, | 
|  | #ifdef CONFIG_CMA | 
|  | [MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, | 
|  | [MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */ | 
|  | #else | 
|  | [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE }, | 
|  | #endif | 
|  | [MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */ | 
|  | [MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Move the free pages in a range to the free lists of the requested type. | 
|  | * Note that start_page and end_pages are not aligned on a pageblock | 
|  | * boundary. If alignment is required, use move_freepages_block() | 
|  | */ | 
|  | int move_freepages(struct zone *zone, | 
|  | struct page *start_page, struct page *end_page, | 
|  | int migratetype) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long order; | 
|  | int pages_moved = 0; | 
|  |  | 
|  | #ifndef CONFIG_HOLES_IN_ZONE | 
|  | /* | 
|  | * page_zone is not safe to call in this context when | 
|  | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | 
|  | * anyway as we check zone boundaries in move_freepages_block(). | 
|  | * Remove at a later date when no bug reports exist related to | 
|  | * grouping pages by mobility | 
|  | */ | 
|  | BUG_ON(page_zone(start_page) != page_zone(end_page)); | 
|  | #endif | 
|  |  | 
|  | for (page = start_page; page <= end_page;) { | 
|  | /* Make sure we are not inadvertently changing nodes */ | 
|  | VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); | 
|  |  | 
|  | if (!pfn_valid_within(page_to_pfn(page))) { | 
|  | page++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!PageBuddy(page)) { | 
|  | page++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | order = page_order(page); | 
|  | list_move(&page->lru, | 
|  | &zone->free_area[order].free_list[migratetype]); | 
|  | set_freepage_migratetype(page, migratetype); | 
|  | page += 1 << order; | 
|  | pages_moved += 1 << order; | 
|  | } | 
|  |  | 
|  | return pages_moved; | 
|  | } | 
|  |  | 
|  | int move_freepages_block(struct zone *zone, struct page *page, | 
|  | int migratetype) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn; | 
|  | struct page *start_page, *end_page; | 
|  |  | 
|  | start_pfn = page_to_pfn(page); | 
|  | start_pfn = start_pfn & ~(pageblock_nr_pages-1); | 
|  | start_page = pfn_to_page(start_pfn); | 
|  | end_page = start_page + pageblock_nr_pages - 1; | 
|  | end_pfn = start_pfn + pageblock_nr_pages - 1; | 
|  |  | 
|  | /* Do not cross zone boundaries */ | 
|  | if (start_pfn < zone->zone_start_pfn) | 
|  | start_page = page; | 
|  | if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) | 
|  | return 0; | 
|  |  | 
|  | return move_freepages(zone, start_page, end_page, migratetype); | 
|  | } | 
|  |  | 
|  | static void change_pageblock_range(struct page *pageblock_page, | 
|  | int start_order, int migratetype) | 
|  | { | 
|  | int nr_pageblocks = 1 << (start_order - pageblock_order); | 
|  |  | 
|  | while (nr_pageblocks--) { | 
|  | set_pageblock_migratetype(pageblock_page, migratetype); | 
|  | pageblock_page += pageblock_nr_pages; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Remove an element from the buddy allocator from the fallback list */ | 
|  | static inline struct page * | 
|  | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) | 
|  | { | 
|  | struct free_area * area; | 
|  | int current_order; | 
|  | struct page *page; | 
|  | int migratetype, i; | 
|  |  | 
|  | /* Find the largest possible block of pages in the other list */ | 
|  | for (current_order = MAX_ORDER-1; current_order >= order; | 
|  | --current_order) { | 
|  | for (i = 0;; i++) { | 
|  | migratetype = fallbacks[start_migratetype][i]; | 
|  |  | 
|  | /* MIGRATE_RESERVE handled later if necessary */ | 
|  | if (migratetype == MIGRATE_RESERVE) | 
|  | break; | 
|  |  | 
|  | area = &(zone->free_area[current_order]); | 
|  | if (list_empty(&area->free_list[migratetype])) | 
|  | continue; | 
|  |  | 
|  | page = list_entry(area->free_list[migratetype].next, | 
|  | struct page, lru); | 
|  | area->nr_free--; | 
|  |  | 
|  | /* | 
|  | * If breaking a large block of pages, move all free | 
|  | * pages to the preferred allocation list. If falling | 
|  | * back for a reclaimable kernel allocation, be more | 
|  | * aggressive about taking ownership of free pages | 
|  | * | 
|  | * On the other hand, never change migration | 
|  | * type of MIGRATE_CMA pageblocks nor move CMA | 
|  | * pages on different free lists. We don't | 
|  | * want unmovable pages to be allocated from | 
|  | * MIGRATE_CMA areas. | 
|  | */ | 
|  | if (!is_migrate_cma(migratetype) && | 
|  | (unlikely(current_order >= pageblock_order / 2) || | 
|  | start_migratetype == MIGRATE_RECLAIMABLE || | 
|  | page_group_by_mobility_disabled)) { | 
|  | int pages; | 
|  | pages = move_freepages_block(zone, page, | 
|  | start_migratetype); | 
|  |  | 
|  | /* Claim the whole block if over half of it is free */ | 
|  | if (pages >= (1 << (pageblock_order-1)) || | 
|  | page_group_by_mobility_disabled) | 
|  | set_pageblock_migratetype(page, | 
|  | start_migratetype); | 
|  |  | 
|  | migratetype = start_migratetype; | 
|  | } | 
|  |  | 
|  | /* Remove the page from the freelists */ | 
|  | list_del(&page->lru); | 
|  | rmv_page_order(page); | 
|  |  | 
|  | /* Take ownership for orders >= pageblock_order */ | 
|  | if (current_order >= pageblock_order && | 
|  | !is_migrate_cma(migratetype)) | 
|  | change_pageblock_range(page, current_order, | 
|  | start_migratetype); | 
|  |  | 
|  | expand(zone, page, order, current_order, area, | 
|  | is_migrate_cma(migratetype) | 
|  | ? migratetype : start_migratetype); | 
|  |  | 
|  | trace_mm_page_alloc_extfrag(page, order, current_order, | 
|  | start_migratetype, migratetype); | 
|  |  | 
|  | return page; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the hard work of removing an element from the buddy allocator. | 
|  | * Call me with the zone->lock already held. | 
|  | */ | 
|  | static struct page *__rmqueue(struct zone *zone, unsigned int order, | 
|  | int migratetype) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | retry_reserve: | 
|  | page = __rmqueue_smallest(zone, order, migratetype); | 
|  |  | 
|  | if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { | 
|  | page = __rmqueue_fallback(zone, order, migratetype); | 
|  |  | 
|  | /* | 
|  | * Use MIGRATE_RESERVE rather than fail an allocation. goto | 
|  | * is used because __rmqueue_smallest is an inline function | 
|  | * and we want just one call site | 
|  | */ | 
|  | if (!page) { | 
|  | migratetype = MIGRATE_RESERVE; | 
|  | goto retry_reserve; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_mm_page_alloc_zone_locked(page, order, migratetype); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain a specified number of elements from the buddy allocator, all under | 
|  | * a single hold of the lock, for efficiency.  Add them to the supplied list. | 
|  | * Returns the number of new pages which were placed at *list. | 
|  | */ | 
|  | static int rmqueue_bulk(struct zone *zone, unsigned int order, | 
|  | unsigned long count, struct list_head *list, | 
|  | int migratetype, int cold) | 
|  | { | 
|  | int mt = migratetype, i; | 
|  |  | 
|  | spin_lock(&zone->lock); | 
|  | for (i = 0; i < count; ++i) { | 
|  | struct page *page = __rmqueue(zone, order, migratetype); | 
|  | if (unlikely(page == NULL)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Split buddy pages returned by expand() are received here | 
|  | * in physical page order. The page is added to the callers and | 
|  | * list and the list head then moves forward. From the callers | 
|  | * perspective, the linked list is ordered by page number in | 
|  | * some conditions. This is useful for IO devices that can | 
|  | * merge IO requests if the physical pages are ordered | 
|  | * properly. | 
|  | */ | 
|  | if (likely(cold == 0)) | 
|  | list_add(&page->lru, list); | 
|  | else | 
|  | list_add_tail(&page->lru, list); | 
|  | if (IS_ENABLED(CONFIG_CMA)) { | 
|  | mt = get_pageblock_migratetype(page); | 
|  | if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) | 
|  | mt = migratetype; | 
|  | } | 
|  | set_freepage_migratetype(page, mt); | 
|  | list = &page->lru; | 
|  | if (is_migrate_cma(mt)) | 
|  | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, | 
|  | -(1 << order)); | 
|  | } | 
|  | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); | 
|  | spin_unlock(&zone->lock); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Called from the vmstat counter updater to drain pagesets of this | 
|  | * currently executing processor on remote nodes after they have | 
|  | * expired. | 
|  | * | 
|  | * Note that this function must be called with the thread pinned to | 
|  | * a single processor. | 
|  | */ | 
|  | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) | 
|  | { | 
|  | unsigned long flags; | 
|  | int to_drain; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | if (pcp->count >= pcp->batch) | 
|  | to_drain = pcp->batch; | 
|  | else | 
|  | to_drain = pcp->count; | 
|  | if (to_drain > 0) { | 
|  | free_pcppages_bulk(zone, to_drain, pcp); | 
|  | pcp->count -= to_drain; | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Drain pages of the indicated processor. | 
|  | * | 
|  | * The processor must either be the current processor and the | 
|  | * thread pinned to the current processor or a processor that | 
|  | * is not online. | 
|  | */ | 
|  | static void drain_pages(unsigned int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | struct per_cpu_pageset *pset; | 
|  | struct per_cpu_pages *pcp; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | pset = per_cpu_ptr(zone->pageset, cpu); | 
|  |  | 
|  | pcp = &pset->pcp; | 
|  | if (pcp->count) { | 
|  | free_pcppages_bulk(zone, pcp->count, pcp); | 
|  | pcp->count = 0; | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | 
|  | */ | 
|  | void drain_local_pages(void *arg) | 
|  | { | 
|  | drain_pages(smp_processor_id()); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. | 
|  | * | 
|  | * Note that this code is protected against sending an IPI to an offline | 
|  | * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: | 
|  | * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but | 
|  | * nothing keeps CPUs from showing up after we populated the cpumask and | 
|  | * before the call to on_each_cpu_mask(). | 
|  | */ | 
|  | void drain_all_pages(void) | 
|  | { | 
|  | int cpu; | 
|  | struct per_cpu_pageset *pcp; | 
|  | struct zone *zone; | 
|  |  | 
|  | /* | 
|  | * Allocate in the BSS so we wont require allocation in | 
|  | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | 
|  | */ | 
|  | static cpumask_t cpus_with_pcps; | 
|  |  | 
|  | /* | 
|  | * We don't care about racing with CPU hotplug event | 
|  | * as offline notification will cause the notified | 
|  | * cpu to drain that CPU pcps and on_each_cpu_mask | 
|  | * disables preemption as part of its processing | 
|  | */ | 
|  | for_each_online_cpu(cpu) { | 
|  | bool has_pcps = false; | 
|  | for_each_populated_zone(zone) { | 
|  | pcp = per_cpu_ptr(zone->pageset, cpu); | 
|  | if (pcp->pcp.count) { | 
|  | has_pcps = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (has_pcps) | 
|  | cpumask_set_cpu(cpu, &cpus_with_pcps); | 
|  | else | 
|  | cpumask_clear_cpu(cpu, &cpus_with_pcps); | 
|  | } | 
|  | on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIBERNATION | 
|  |  | 
|  | void mark_free_pages(struct zone *zone) | 
|  | { | 
|  | unsigned long pfn, max_zone_pfn; | 
|  | unsigned long flags; | 
|  | int order, t; | 
|  | struct list_head *curr; | 
|  |  | 
|  | if (!zone->spanned_pages) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  |  | 
|  | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; | 
|  | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | 
|  | if (pfn_valid(pfn)) { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  |  | 
|  | if (!swsusp_page_is_forbidden(page)) | 
|  | swsusp_unset_page_free(page); | 
|  | } | 
|  |  | 
|  | for_each_migratetype_order(order, t) { | 
|  | list_for_each(curr, &zone->free_area[order].free_list[t]) { | 
|  | unsigned long i; | 
|  |  | 
|  | pfn = page_to_pfn(list_entry(curr, struct page, lru)); | 
|  | for (i = 0; i < (1UL << order); i++) | 
|  | swsusp_set_page_free(pfn_to_page(pfn + i)); | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  | #endif /* CONFIG_PM */ | 
|  |  | 
|  | /* | 
|  | * Free a 0-order page | 
|  | * cold == 1 ? free a cold page : free a hot page | 
|  | */ | 
|  | void free_hot_cold_page(struct page *page, int cold) | 
|  | { | 
|  | struct zone *zone = page_zone(page); | 
|  | struct per_cpu_pages *pcp; | 
|  | unsigned long flags; | 
|  | int migratetype; | 
|  |  | 
|  | if (!free_pages_prepare(page, 0)) | 
|  | return; | 
|  |  | 
|  | migratetype = get_pageblock_migratetype(page); | 
|  | set_freepage_migratetype(page, migratetype); | 
|  | local_irq_save(flags); | 
|  | __count_vm_event(PGFREE); | 
|  |  | 
|  | /* | 
|  | * We only track unmovable, reclaimable and movable on pcp lists. | 
|  | * Free ISOLATE pages back to the allocator because they are being | 
|  | * offlined but treat RESERVE as movable pages so we can get those | 
|  | * areas back if necessary. Otherwise, we may have to free | 
|  | * excessively into the page allocator | 
|  | */ | 
|  | if (migratetype >= MIGRATE_PCPTYPES) { | 
|  | if (unlikely(migratetype == MIGRATE_ISOLATE)) { | 
|  | free_one_page(zone, page, 0, migratetype); | 
|  | goto out; | 
|  | } | 
|  | migratetype = MIGRATE_MOVABLE; | 
|  | } | 
|  |  | 
|  | pcp = &this_cpu_ptr(zone->pageset)->pcp; | 
|  | if (cold) | 
|  | list_add_tail(&page->lru, &pcp->lists[migratetype]); | 
|  | else | 
|  | list_add(&page->lru, &pcp->lists[migratetype]); | 
|  | pcp->count++; | 
|  | if (pcp->count >= pcp->high) { | 
|  | free_pcppages_bulk(zone, pcp->batch, pcp); | 
|  | pcp->count -= pcp->batch; | 
|  | } | 
|  |  | 
|  | out: | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a list of 0-order pages | 
|  | */ | 
|  | void free_hot_cold_page_list(struct list_head *list, int cold) | 
|  | { | 
|  | struct page *page, *next; | 
|  |  | 
|  | list_for_each_entry_safe(page, next, list, lru) { | 
|  | trace_mm_page_free_batched(page, cold); | 
|  | free_hot_cold_page(page, cold); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * split_page takes a non-compound higher-order page, and splits it into | 
|  | * n (1<<order) sub-pages: page[0..n] | 
|  | * Each sub-page must be freed individually. | 
|  | * | 
|  | * Note: this is probably too low level an operation for use in drivers. | 
|  | * Please consult with lkml before using this in your driver. | 
|  | */ | 
|  | void split_page(struct page *page, unsigned int order) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | VM_BUG_ON(PageCompound(page)); | 
|  | VM_BUG_ON(!page_count(page)); | 
|  |  | 
|  | #ifdef CONFIG_KMEMCHECK | 
|  | /* | 
|  | * Split shadow pages too, because free(page[0]) would | 
|  | * otherwise free the whole shadow. | 
|  | */ | 
|  | if (kmemcheck_page_is_tracked(page)) | 
|  | split_page(virt_to_page(page[0].shadow), order); | 
|  | #endif | 
|  |  | 
|  | for (i = 1; i < (1 << order); i++) | 
|  | set_page_refcounted(page + i); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Similar to the split_page family of functions except that the page | 
|  | * required at the given order and being isolated now to prevent races | 
|  | * with parallel allocators | 
|  | */ | 
|  | int capture_free_page(struct page *page, int alloc_order, int migratetype) | 
|  | { | 
|  | unsigned int order; | 
|  | unsigned long watermark; | 
|  | struct zone *zone; | 
|  | int mt; | 
|  |  | 
|  | BUG_ON(!PageBuddy(page)); | 
|  |  | 
|  | zone = page_zone(page); | 
|  | order = page_order(page); | 
|  | mt = get_pageblock_migratetype(page); | 
|  |  | 
|  | if (mt != MIGRATE_ISOLATE) { | 
|  | /* Obey watermarks as if the page was being allocated */ | 
|  | watermark = low_wmark_pages(zone) + (1 << order); | 
|  | if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) | 
|  | return 0; | 
|  |  | 
|  | __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt); | 
|  | } | 
|  |  | 
|  | /* Remove page from free list */ | 
|  | list_del(&page->lru); | 
|  | zone->free_area[order].nr_free--; | 
|  | rmv_page_order(page); | 
|  |  | 
|  | if (alloc_order != order) | 
|  | expand(zone, page, alloc_order, order, | 
|  | &zone->free_area[order], migratetype); | 
|  |  | 
|  | /* Set the pageblock if the captured page is at least a pageblock */ | 
|  | if (order >= pageblock_order - 1) { | 
|  | struct page *endpage = page + (1 << order) - 1; | 
|  | for (; page < endpage; page += pageblock_nr_pages) { | 
|  | int mt = get_pageblock_migratetype(page); | 
|  | if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) | 
|  | set_pageblock_migratetype(page, | 
|  | MIGRATE_MOVABLE); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1UL << alloc_order; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Similar to split_page except the page is already free. As this is only | 
|  | * being used for migration, the migratetype of the block also changes. | 
|  | * As this is called with interrupts disabled, the caller is responsible | 
|  | * for calling arch_alloc_page() and kernel_map_page() after interrupts | 
|  | * are enabled. | 
|  | * | 
|  | * Note: this is probably too low level an operation for use in drivers. | 
|  | * Please consult with lkml before using this in your driver. | 
|  | */ | 
|  | int split_free_page(struct page *page) | 
|  | { | 
|  | unsigned int order; | 
|  | int nr_pages; | 
|  |  | 
|  | BUG_ON(!PageBuddy(page)); | 
|  | order = page_order(page); | 
|  |  | 
|  | nr_pages = capture_free_page(page, order, 0); | 
|  | if (!nr_pages) | 
|  | return 0; | 
|  |  | 
|  | /* Split into individual pages */ | 
|  | set_page_refcounted(page); | 
|  | split_page(page, order); | 
|  | return nr_pages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Really, prep_compound_page() should be called from __rmqueue_bulk().  But | 
|  | * we cheat by calling it from here, in the order > 0 path.  Saves a branch | 
|  | * or two. | 
|  | */ | 
|  | static inline | 
|  | struct page *buffered_rmqueue(struct zone *preferred_zone, | 
|  | struct zone *zone, int order, gfp_t gfp_flags, | 
|  | int migratetype) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct page *page; | 
|  | int cold = !!(gfp_flags & __GFP_COLD); | 
|  |  | 
|  | again: | 
|  | if (likely(order == 0)) { | 
|  | struct per_cpu_pages *pcp; | 
|  | struct list_head *list; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | pcp = &this_cpu_ptr(zone->pageset)->pcp; | 
|  | list = &pcp->lists[migratetype]; | 
|  | if (list_empty(list)) { | 
|  | pcp->count += rmqueue_bulk(zone, 0, | 
|  | pcp->batch, list, | 
|  | migratetype, cold); | 
|  | if (unlikely(list_empty(list))) | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (cold) | 
|  | page = list_entry(list->prev, struct page, lru); | 
|  | else | 
|  | page = list_entry(list->next, struct page, lru); | 
|  |  | 
|  | list_del(&page->lru); | 
|  | pcp->count--; | 
|  | } else { | 
|  | if (unlikely(gfp_flags & __GFP_NOFAIL)) { | 
|  | /* | 
|  | * __GFP_NOFAIL is not to be used in new code. | 
|  | * | 
|  | * All __GFP_NOFAIL callers should be fixed so that they | 
|  | * properly detect and handle allocation failures. | 
|  | * | 
|  | * We most definitely don't want callers attempting to | 
|  | * allocate greater than order-1 page units with | 
|  | * __GFP_NOFAIL. | 
|  | */ | 
|  | WARN_ON_ONCE(order > 1); | 
|  | } | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | page = __rmqueue(zone, order, migratetype); | 
|  | spin_unlock(&zone->lock); | 
|  | if (!page) | 
|  | goto failed; | 
|  | __mod_zone_freepage_state(zone, -(1 << order), | 
|  | get_pageblock_migratetype(page)); | 
|  | } | 
|  |  | 
|  | __count_zone_vm_events(PGALLOC, zone, 1 << order); | 
|  | zone_statistics(preferred_zone, zone, gfp_flags); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | VM_BUG_ON(bad_range(zone, page)); | 
|  | if (prep_new_page(page, order, gfp_flags)) | 
|  | goto again; | 
|  | return page; | 
|  |  | 
|  | failed: | 
|  | local_irq_restore(flags); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIL_PAGE_ALLOC | 
|  |  | 
|  | static struct { | 
|  | struct fault_attr attr; | 
|  |  | 
|  | u32 ignore_gfp_highmem; | 
|  | u32 ignore_gfp_wait; | 
|  | u32 min_order; | 
|  | } fail_page_alloc = { | 
|  | .attr = FAULT_ATTR_INITIALIZER, | 
|  | .ignore_gfp_wait = 1, | 
|  | .ignore_gfp_highmem = 1, | 
|  | .min_order = 1, | 
|  | }; | 
|  |  | 
|  | static int __init setup_fail_page_alloc(char *str) | 
|  | { | 
|  | return setup_fault_attr(&fail_page_alloc.attr, str); | 
|  | } | 
|  | __setup("fail_page_alloc=", setup_fail_page_alloc); | 
|  |  | 
|  | static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | if (order < fail_page_alloc.min_order) | 
|  | return false; | 
|  | if (gfp_mask & __GFP_NOFAIL) | 
|  | return false; | 
|  | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) | 
|  | return false; | 
|  | if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) | 
|  | return false; | 
|  |  | 
|  | return should_fail(&fail_page_alloc.attr, 1 << order); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | 
|  |  | 
|  | static int __init fail_page_alloc_debugfs(void) | 
|  | { | 
|  | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; | 
|  | struct dentry *dir; | 
|  |  | 
|  | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, | 
|  | &fail_page_alloc.attr); | 
|  | if (IS_ERR(dir)) | 
|  | return PTR_ERR(dir); | 
|  |  | 
|  | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, | 
|  | &fail_page_alloc.ignore_gfp_wait)) | 
|  | goto fail; | 
|  | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, | 
|  | &fail_page_alloc.ignore_gfp_highmem)) | 
|  | goto fail; | 
|  | if (!debugfs_create_u32("min-order", mode, dir, | 
|  | &fail_page_alloc.min_order)) | 
|  | goto fail; | 
|  |  | 
|  | return 0; | 
|  | fail: | 
|  | debugfs_remove_recursive(dir); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | late_initcall(fail_page_alloc_debugfs); | 
|  |  | 
|  | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | 
|  |  | 
|  | #else /* CONFIG_FAIL_PAGE_ALLOC */ | 
|  |  | 
|  | static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | 
|  |  | 
|  | /* | 
|  | * Return true if free pages are above 'mark'. This takes into account the order | 
|  | * of the allocation. | 
|  | */ | 
|  | static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, | 
|  | int classzone_idx, int alloc_flags, long free_pages) | 
|  | { | 
|  | /* free_pages my go negative - that's OK */ | 
|  | long min = mark; | 
|  | long lowmem_reserve = z->lowmem_reserve[classzone_idx]; | 
|  | int o; | 
|  |  | 
|  | free_pages -= (1 << order) - 1; | 
|  | if (alloc_flags & ALLOC_HIGH) | 
|  | min -= min / 2; | 
|  | if (alloc_flags & ALLOC_HARDER) | 
|  | min -= min / 4; | 
|  | #ifdef CONFIG_CMA | 
|  | /* If allocation can't use CMA areas don't use free CMA pages */ | 
|  | if (!(alloc_flags & ALLOC_CMA)) | 
|  | free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); | 
|  | #endif | 
|  | if (free_pages <= min + lowmem_reserve) | 
|  | return false; | 
|  | for (o = 0; o < order; o++) { | 
|  | /* At the next order, this order's pages become unavailable */ | 
|  | free_pages -= z->free_area[o].nr_free << o; | 
|  |  | 
|  | /* Require fewer higher order pages to be free */ | 
|  | min >>= 1; | 
|  |  | 
|  | if (free_pages <= min) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_ISOLATION | 
|  | static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) | 
|  | { | 
|  | if (unlikely(zone->nr_pageblock_isolate)) | 
|  | return zone->nr_pageblock_isolate * pageblock_nr_pages; | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, | 
|  | int classzone_idx, int alloc_flags) | 
|  | { | 
|  | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | 
|  | zone_page_state(z, NR_FREE_PAGES)); | 
|  | } | 
|  |  | 
|  | bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, | 
|  | int classzone_idx, int alloc_flags) | 
|  | { | 
|  | long free_pages = zone_page_state(z, NR_FREE_PAGES); | 
|  |  | 
|  | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | 
|  | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | 
|  |  | 
|  | /* | 
|  | * If the zone has MIGRATE_ISOLATE type free pages, we should consider | 
|  | * it.  nr_zone_isolate_freepages is never accurate so kswapd might not | 
|  | * sleep although it could do so.  But this is more desirable for memory | 
|  | * hotplug than sleeping which can cause a livelock in the direct | 
|  | * reclaim path. | 
|  | */ | 
|  | free_pages -= nr_zone_isolate_freepages(z); | 
|  | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | 
|  | free_pages); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to | 
|  | * skip over zones that are not allowed by the cpuset, or that have | 
|  | * been recently (in last second) found to be nearly full.  See further | 
|  | * comments in mmzone.h.  Reduces cache footprint of zonelist scans | 
|  | * that have to skip over a lot of full or unallowed zones. | 
|  | * | 
|  | * If the zonelist cache is present in the passed in zonelist, then | 
|  | * returns a pointer to the allowed node mask (either the current | 
|  | * tasks mems_allowed, or node_states[N_MEMORY].) | 
|  | * | 
|  | * If the zonelist cache is not available for this zonelist, does | 
|  | * nothing and returns NULL. | 
|  | * | 
|  | * If the fullzones BITMAP in the zonelist cache is stale (more than | 
|  | * a second since last zap'd) then we zap it out (clear its bits.) | 
|  | * | 
|  | * We hold off even calling zlc_setup, until after we've checked the | 
|  | * first zone in the zonelist, on the theory that most allocations will | 
|  | * be satisfied from that first zone, so best to examine that zone as | 
|  | * quickly as we can. | 
|  | */ | 
|  | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | 
|  | { | 
|  | struct zonelist_cache *zlc;	/* cached zonelist speedup info */ | 
|  | nodemask_t *allowednodes;	/* zonelist_cache approximation */ | 
|  |  | 
|  | zlc = zonelist->zlcache_ptr; | 
|  | if (!zlc) | 
|  | return NULL; | 
|  |  | 
|  | if (time_after(jiffies, zlc->last_full_zap + HZ)) { | 
|  | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | 
|  | zlc->last_full_zap = jiffies; | 
|  | } | 
|  |  | 
|  | allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? | 
|  | &cpuset_current_mems_allowed : | 
|  | &node_states[N_MEMORY]; | 
|  | return allowednodes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given 'z' scanning a zonelist, run a couple of quick checks to see | 
|  | * if it is worth looking at further for free memory: | 
|  | *  1) Check that the zone isn't thought to be full (doesn't have its | 
|  | *     bit set in the zonelist_cache fullzones BITMAP). | 
|  | *  2) Check that the zones node (obtained from the zonelist_cache | 
|  | *     z_to_n[] mapping) is allowed in the passed in allowednodes mask. | 
|  | * Return true (non-zero) if zone is worth looking at further, or | 
|  | * else return false (zero) if it is not. | 
|  | * | 
|  | * This check -ignores- the distinction between various watermarks, | 
|  | * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is | 
|  | * found to be full for any variation of these watermarks, it will | 
|  | * be considered full for up to one second by all requests, unless | 
|  | * we are so low on memory on all allowed nodes that we are forced | 
|  | * into the second scan of the zonelist. | 
|  | * | 
|  | * In the second scan we ignore this zonelist cache and exactly | 
|  | * apply the watermarks to all zones, even it is slower to do so. | 
|  | * We are low on memory in the second scan, and should leave no stone | 
|  | * unturned looking for a free page. | 
|  | */ | 
|  | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, | 
|  | nodemask_t *allowednodes) | 
|  | { | 
|  | struct zonelist_cache *zlc;	/* cached zonelist speedup info */ | 
|  | int i;				/* index of *z in zonelist zones */ | 
|  | int n;				/* node that zone *z is on */ | 
|  |  | 
|  | zlc = zonelist->zlcache_ptr; | 
|  | if (!zlc) | 
|  | return 1; | 
|  |  | 
|  | i = z - zonelist->_zonerefs; | 
|  | n = zlc->z_to_n[i]; | 
|  |  | 
|  | /* This zone is worth trying if it is allowed but not full */ | 
|  | return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given 'z' scanning a zonelist, set the corresponding bit in | 
|  | * zlc->fullzones, so that subsequent attempts to allocate a page | 
|  | * from that zone don't waste time re-examining it. | 
|  | */ | 
|  | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) | 
|  | { | 
|  | struct zonelist_cache *zlc;	/* cached zonelist speedup info */ | 
|  | int i;				/* index of *z in zonelist zones */ | 
|  |  | 
|  | zlc = zonelist->zlcache_ptr; | 
|  | if (!zlc) | 
|  | return; | 
|  |  | 
|  | i = z - zonelist->_zonerefs; | 
|  |  | 
|  | set_bit(i, zlc->fullzones); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * clear all zones full, called after direct reclaim makes progress so that | 
|  | * a zone that was recently full is not skipped over for up to a second | 
|  | */ | 
|  | static void zlc_clear_zones_full(struct zonelist *zonelist) | 
|  | { | 
|  | struct zonelist_cache *zlc;	/* cached zonelist speedup info */ | 
|  |  | 
|  | zlc = zonelist->zlcache_ptr; | 
|  | if (!zlc) | 
|  | return; | 
|  |  | 
|  | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | 
|  | } | 
|  |  | 
|  | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | 
|  | { | 
|  | return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); | 
|  | } | 
|  |  | 
|  | static void __paginginit init_zone_allows_reclaim(int nid) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_online_node(i) | 
|  | if (node_distance(nid, i) <= RECLAIM_DISTANCE) | 
|  | node_set(i, NODE_DATA(nid)->reclaim_nodes); | 
|  | else | 
|  | zone_reclaim_mode = 1; | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_NUMA */ | 
|  |  | 
|  | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, | 
|  | nodemask_t *allowednodes) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void zlc_clear_zones_full(struct zonelist *zonelist) | 
|  | { | 
|  | } | 
|  |  | 
|  | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void init_zone_allows_reclaim(int nid) | 
|  | { | 
|  | } | 
|  | #endif	/* CONFIG_NUMA */ | 
|  |  | 
|  | /* | 
|  | * get_page_from_freelist goes through the zonelist trying to allocate | 
|  | * a page. | 
|  | */ | 
|  | static struct page * | 
|  | get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, | 
|  | struct zonelist *zonelist, int high_zoneidx, int alloc_flags, | 
|  | struct zone *preferred_zone, int migratetype) | 
|  | { | 
|  | struct zoneref *z; | 
|  | struct page *page = NULL; | 
|  | int classzone_idx; | 
|  | struct zone *zone; | 
|  | nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ | 
|  | int zlc_active = 0;		/* set if using zonelist_cache */ | 
|  | int did_zlc_setup = 0;		/* just call zlc_setup() one time */ | 
|  |  | 
|  | classzone_idx = zone_idx(preferred_zone); | 
|  | zonelist_scan: | 
|  | /* | 
|  | * Scan zonelist, looking for a zone with enough free. | 
|  | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. | 
|  | */ | 
|  | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
|  | high_zoneidx, nodemask) { | 
|  | if (IS_ENABLED(CONFIG_NUMA) && zlc_active && | 
|  | !zlc_zone_worth_trying(zonelist, z, allowednodes)) | 
|  | continue; | 
|  | if ((alloc_flags & ALLOC_CPUSET) && | 
|  | !cpuset_zone_allowed_softwall(zone, gfp_mask)) | 
|  | continue; | 
|  | /* | 
|  | * When allocating a page cache page for writing, we | 
|  | * want to get it from a zone that is within its dirty | 
|  | * limit, such that no single zone holds more than its | 
|  | * proportional share of globally allowed dirty pages. | 
|  | * The dirty limits take into account the zone's | 
|  | * lowmem reserves and high watermark so that kswapd | 
|  | * should be able to balance it without having to | 
|  | * write pages from its LRU list. | 
|  | * | 
|  | * This may look like it could increase pressure on | 
|  | * lower zones by failing allocations in higher zones | 
|  | * before they are full.  But the pages that do spill | 
|  | * over are limited as the lower zones are protected | 
|  | * by this very same mechanism.  It should not become | 
|  | * a practical burden to them. | 
|  | * | 
|  | * XXX: For now, allow allocations to potentially | 
|  | * exceed the per-zone dirty limit in the slowpath | 
|  | * (ALLOC_WMARK_LOW unset) before going into reclaim, | 
|  | * which is important when on a NUMA setup the allowed | 
|  | * zones are together not big enough to reach the | 
|  | * global limit.  The proper fix for these situations | 
|  | * will require awareness of zones in the | 
|  | * dirty-throttling and the flusher threads. | 
|  | */ | 
|  | if ((alloc_flags & ALLOC_WMARK_LOW) && | 
|  | (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) | 
|  | goto this_zone_full; | 
|  |  | 
|  | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | 
|  | if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { | 
|  | unsigned long mark; | 
|  | int ret; | 
|  |  | 
|  | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; | 
|  | if (zone_watermark_ok(zone, order, mark, | 
|  | classzone_idx, alloc_flags)) | 
|  | goto try_this_zone; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_NUMA) && | 
|  | !did_zlc_setup && nr_online_nodes > 1) { | 
|  | /* | 
|  | * we do zlc_setup if there are multiple nodes | 
|  | * and before considering the first zone allowed | 
|  | * by the cpuset. | 
|  | */ | 
|  | allowednodes = zlc_setup(zonelist, alloc_flags); | 
|  | zlc_active = 1; | 
|  | did_zlc_setup = 1; | 
|  | } | 
|  |  | 
|  | if (zone_reclaim_mode == 0 || | 
|  | !zone_allows_reclaim(preferred_zone, zone)) | 
|  | goto this_zone_full; | 
|  |  | 
|  | /* | 
|  | * As we may have just activated ZLC, check if the first | 
|  | * eligible zone has failed zone_reclaim recently. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_NUMA) && zlc_active && | 
|  | !zlc_zone_worth_trying(zonelist, z, allowednodes)) | 
|  | continue; | 
|  |  | 
|  | ret = zone_reclaim(zone, gfp_mask, order); | 
|  | switch (ret) { | 
|  | case ZONE_RECLAIM_NOSCAN: | 
|  | /* did not scan */ | 
|  | continue; | 
|  | case ZONE_RECLAIM_FULL: | 
|  | /* scanned but unreclaimable */ | 
|  | continue; | 
|  | default: | 
|  | /* did we reclaim enough */ | 
|  | if (!zone_watermark_ok(zone, order, mark, | 
|  | classzone_idx, alloc_flags)) | 
|  | goto this_zone_full; | 
|  | } | 
|  | } | 
|  |  | 
|  | try_this_zone: | 
|  | page = buffered_rmqueue(preferred_zone, zone, order, | 
|  | gfp_mask, migratetype); | 
|  | if (page) | 
|  | break; | 
|  | this_zone_full: | 
|  | if (IS_ENABLED(CONFIG_NUMA)) | 
|  | zlc_mark_zone_full(zonelist, z); | 
|  | } | 
|  |  | 
|  | if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { | 
|  | /* Disable zlc cache for second zonelist scan */ | 
|  | zlc_active = 0; | 
|  | goto zonelist_scan; | 
|  | } | 
|  |  | 
|  | if (page) | 
|  | /* | 
|  | * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was | 
|  | * necessary to allocate the page. The expectation is | 
|  | * that the caller is taking steps that will free more | 
|  | * memory. The caller should avoid the page being used | 
|  | * for !PFMEMALLOC purposes. | 
|  | */ | 
|  | page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Large machines with many possible nodes should not always dump per-node | 
|  | * meminfo in irq context. | 
|  | */ | 
|  | static inline bool should_suppress_show_mem(void) | 
|  | { | 
|  | bool ret = false; | 
|  |  | 
|  | #if NODES_SHIFT > 8 | 
|  | ret = in_interrupt(); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static DEFINE_RATELIMIT_STATE(nopage_rs, | 
|  | DEFAULT_RATELIMIT_INTERVAL, | 
|  | DEFAULT_RATELIMIT_BURST); | 
|  |  | 
|  | void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) | 
|  | { | 
|  | unsigned int filter = SHOW_MEM_FILTER_NODES; | 
|  |  | 
|  | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || | 
|  | debug_guardpage_minorder() > 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * This documents exceptions given to allocations in certain | 
|  | * contexts that are allowed to allocate outside current's set | 
|  | * of allowed nodes. | 
|  | */ | 
|  | if (!(gfp_mask & __GFP_NOMEMALLOC)) | 
|  | if (test_thread_flag(TIF_MEMDIE) || | 
|  | (current->flags & (PF_MEMALLOC | PF_EXITING))) | 
|  | filter &= ~SHOW_MEM_FILTER_NODES; | 
|  | if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) | 
|  | filter &= ~SHOW_MEM_FILTER_NODES; | 
|  |  | 
|  | if (fmt) { | 
|  | struct va_format vaf; | 
|  | va_list args; | 
|  |  | 
|  | va_start(args, fmt); | 
|  |  | 
|  | vaf.fmt = fmt; | 
|  | vaf.va = &args; | 
|  |  | 
|  | pr_warn("%pV", &vaf); | 
|  |  | 
|  | va_end(args); | 
|  | } | 
|  |  | 
|  | pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", | 
|  | current->comm, order, gfp_mask); | 
|  |  | 
|  | dump_stack(); | 
|  | if (!should_suppress_show_mem()) | 
|  | show_mem(filter); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | should_alloc_retry(gfp_t gfp_mask, unsigned int order, | 
|  | unsigned long did_some_progress, | 
|  | unsigned long pages_reclaimed) | 
|  | { | 
|  | /* Do not loop if specifically requested */ | 
|  | if (gfp_mask & __GFP_NORETRY) | 
|  | return 0; | 
|  |  | 
|  | /* Always retry if specifically requested */ | 
|  | if (gfp_mask & __GFP_NOFAIL) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim | 
|  | * making forward progress without invoking OOM. Suspend also disables | 
|  | * storage devices so kswapd will not help. Bail if we are suspending. | 
|  | */ | 
|  | if (!did_some_progress && pm_suspended_storage()) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER | 
|  | * means __GFP_NOFAIL, but that may not be true in other | 
|  | * implementations. | 
|  | */ | 
|  | if (order <= PAGE_ALLOC_COSTLY_ORDER) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is | 
|  | * specified, then we retry until we no longer reclaim any pages | 
|  | * (above), or we've reclaimed an order of pages at least as | 
|  | * large as the allocation's order. In both cases, if the | 
|  | * allocation still fails, we stop retrying. | 
|  | */ | 
|  | if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline struct page * | 
|  | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | 
|  | struct zonelist *zonelist, enum zone_type high_zoneidx, | 
|  | nodemask_t *nodemask, struct zone *preferred_zone, | 
|  | int migratetype) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | /* Acquire the OOM killer lock for the zones in zonelist */ | 
|  | if (!try_set_zonelist_oom(zonelist, gfp_mask)) { | 
|  | schedule_timeout_uninterruptible(1); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Go through the zonelist yet one more time, keep very high watermark | 
|  | * here, this is only to catch a parallel oom killing, we must fail if | 
|  | * we're still under heavy pressure. | 
|  | */ | 
|  | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, | 
|  | order, zonelist, high_zoneidx, | 
|  | ALLOC_WMARK_HIGH|ALLOC_CPUSET, | 
|  | preferred_zone, migratetype); | 
|  | if (page) | 
|  | goto out; | 
|  |  | 
|  | if (!(gfp_mask & __GFP_NOFAIL)) { | 
|  | /* The OOM killer will not help higher order allocs */ | 
|  | if (order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | goto out; | 
|  | /* The OOM killer does not needlessly kill tasks for lowmem */ | 
|  | if (high_zoneidx < ZONE_NORMAL) | 
|  | goto out; | 
|  | /* | 
|  | * GFP_THISNODE contains __GFP_NORETRY and we never hit this. | 
|  | * Sanity check for bare calls of __GFP_THISNODE, not real OOM. | 
|  | * The caller should handle page allocation failure by itself if | 
|  | * it specifies __GFP_THISNODE. | 
|  | * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. | 
|  | */ | 
|  | if (gfp_mask & __GFP_THISNODE) | 
|  | goto out; | 
|  | } | 
|  | /* Exhausted what can be done so it's blamo time */ | 
|  | out_of_memory(zonelist, gfp_mask, order, nodemask, false); | 
|  |  | 
|  | out: | 
|  | clear_zonelist_oom(zonelist, gfp_mask); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | /* Try memory compaction for high-order allocations before reclaim */ | 
|  | static struct page * | 
|  | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | 
|  | struct zonelist *zonelist, enum zone_type high_zoneidx, | 
|  | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | 
|  | int migratetype, bool sync_migration, | 
|  | bool *contended_compaction, bool *deferred_compaction, | 
|  | unsigned long *did_some_progress) | 
|  | { | 
|  | struct page *page = NULL; | 
|  |  | 
|  | if (!order) | 
|  | return NULL; | 
|  |  | 
|  | if (compaction_deferred(preferred_zone, order)) { | 
|  | *deferred_compaction = true; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | current->flags |= PF_MEMALLOC; | 
|  | *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, | 
|  | nodemask, sync_migration, | 
|  | contended_compaction, &page); | 
|  | current->flags &= ~PF_MEMALLOC; | 
|  |  | 
|  | /* If compaction captured a page, prep and use it */ | 
|  | if (page) { | 
|  | prep_new_page(page, order, gfp_mask); | 
|  | goto got_page; | 
|  | } | 
|  |  | 
|  | if (*did_some_progress != COMPACT_SKIPPED) { | 
|  | /* Page migration frees to the PCP lists but we want merging */ | 
|  | drain_pages(get_cpu()); | 
|  | put_cpu(); | 
|  |  | 
|  | page = get_page_from_freelist(gfp_mask, nodemask, | 
|  | order, zonelist, high_zoneidx, | 
|  | alloc_flags & ~ALLOC_NO_WATERMARKS, | 
|  | preferred_zone, migratetype); | 
|  | if (page) { | 
|  | got_page: | 
|  | preferred_zone->compact_blockskip_flush = false; | 
|  | preferred_zone->compact_considered = 0; | 
|  | preferred_zone->compact_defer_shift = 0; | 
|  | if (order >= preferred_zone->compact_order_failed) | 
|  | preferred_zone->compact_order_failed = order + 1; | 
|  | count_vm_event(COMPACTSUCCESS); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's bad if compaction run occurs and fails. | 
|  | * The most likely reason is that pages exist, | 
|  | * but not enough to satisfy watermarks. | 
|  | */ | 
|  | count_vm_event(COMPACTFAIL); | 
|  |  | 
|  | /* | 
|  | * As async compaction considers a subset of pageblocks, only | 
|  | * defer if the failure was a sync compaction failure. | 
|  | */ | 
|  | if (sync_migration) | 
|  | defer_compaction(preferred_zone, order); | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | #else | 
|  | static inline struct page * | 
|  | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | 
|  | struct zonelist *zonelist, enum zone_type high_zoneidx, | 
|  | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | 
|  | int migratetype, bool sync_migration, | 
|  | bool *contended_compaction, bool *deferred_compaction, | 
|  | unsigned long *did_some_progress) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif /* CONFIG_COMPACTION */ | 
|  |  | 
|  | /* Perform direct synchronous page reclaim */ | 
|  | static int | 
|  | __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, | 
|  | nodemask_t *nodemask) | 
|  | { | 
|  | struct reclaim_state reclaim_state; | 
|  | int progress; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | /* We now go into synchronous reclaim */ | 
|  | cpuset_memory_pressure_bump(); | 
|  | current->flags |= PF_MEMALLOC; | 
|  | lockdep_set_current_reclaim_state(gfp_mask); | 
|  | reclaim_state.reclaimed_slab = 0; | 
|  | current->reclaim_state = &reclaim_state; | 
|  |  | 
|  | progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); | 
|  |  | 
|  | current->reclaim_state = NULL; | 
|  | lockdep_clear_current_reclaim_state(); | 
|  | current->flags &= ~PF_MEMALLOC; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | return progress; | 
|  | } | 
|  |  | 
|  | /* The really slow allocator path where we enter direct reclaim */ | 
|  | static inline struct page * | 
|  | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | 
|  | struct zonelist *zonelist, enum zone_type high_zoneidx, | 
|  | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | 
|  | int migratetype, unsigned long *did_some_progress) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | bool drained = false; | 
|  |  | 
|  | *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, | 
|  | nodemask); | 
|  | if (unlikely(!(*did_some_progress))) | 
|  | return NULL; | 
|  |  | 
|  | /* After successful reclaim, reconsider all zones for allocation */ | 
|  | if (IS_ENABLED(CONFIG_NUMA)) | 
|  | zlc_clear_zones_full(zonelist); | 
|  |  | 
|  | retry: | 
|  | page = get_page_from_freelist(gfp_mask, nodemask, order, | 
|  | zonelist, high_zoneidx, | 
|  | alloc_flags & ~ALLOC_NO_WATERMARKS, | 
|  | preferred_zone, migratetype); | 
|  |  | 
|  | /* | 
|  | * If an allocation failed after direct reclaim, it could be because | 
|  | * pages are pinned on the per-cpu lists. Drain them and try again | 
|  | */ | 
|  | if (!page && !drained) { | 
|  | drain_all_pages(); | 
|  | drained = true; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called in the allocator slow-path if the allocation request is of | 
|  | * sufficient urgency to ignore watermarks and take other desperate measures | 
|  | */ | 
|  | static inline struct page * | 
|  | __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, | 
|  | struct zonelist *zonelist, enum zone_type high_zoneidx, | 
|  | nodemask_t *nodemask, struct zone *preferred_zone, | 
|  | int migratetype) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | do { | 
|  | page = get_page_from_freelist(gfp_mask, nodemask, order, | 
|  | zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, | 
|  | preferred_zone, migratetype); | 
|  |  | 
|  | if (!page && gfp_mask & __GFP_NOFAIL) | 
|  | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); | 
|  | } while (!page && (gfp_mask & __GFP_NOFAIL)); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, | 
|  | enum zone_type high_zoneidx, | 
|  | enum zone_type classzone_idx) | 
|  | { | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) | 
|  | wakeup_kswapd(zone, order, classzone_idx); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | gfp_to_alloc_flags(gfp_t gfp_mask) | 
|  | { | 
|  | int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; | 
|  | const gfp_t wait = gfp_mask & __GFP_WAIT; | 
|  |  | 
|  | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ | 
|  | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); | 
|  |  | 
|  | /* | 
|  | * The caller may dip into page reserves a bit more if the caller | 
|  | * cannot run direct reclaim, or if the caller has realtime scheduling | 
|  | * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will | 
|  | * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). | 
|  | */ | 
|  | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); | 
|  |  | 
|  | if (!wait) { | 
|  | /* | 
|  | * Not worth trying to allocate harder for | 
|  | * __GFP_NOMEMALLOC even if it can't schedule. | 
|  | */ | 
|  | if  (!(gfp_mask & __GFP_NOMEMALLOC)) | 
|  | alloc_flags |= ALLOC_HARDER; | 
|  | /* | 
|  | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. | 
|  | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. | 
|  | */ | 
|  | alloc_flags &= ~ALLOC_CPUSET; | 
|  | } else if (unlikely(rt_task(current)) && !in_interrupt()) | 
|  | alloc_flags |= ALLOC_HARDER; | 
|  |  | 
|  | if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { | 
|  | if (gfp_mask & __GFP_MEMALLOC) | 
|  | alloc_flags |= ALLOC_NO_WATERMARKS; | 
|  | else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) | 
|  | alloc_flags |= ALLOC_NO_WATERMARKS; | 
|  | else if (!in_interrupt() && | 
|  | ((current->flags & PF_MEMALLOC) || | 
|  | unlikely(test_thread_flag(TIF_MEMDIE)))) | 
|  | alloc_flags |= ALLOC_NO_WATERMARKS; | 
|  | } | 
|  | #ifdef CONFIG_CMA | 
|  | if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) | 
|  | alloc_flags |= ALLOC_CMA; | 
|  | #endif | 
|  | return alloc_flags; | 
|  | } | 
|  |  | 
|  | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) | 
|  | { | 
|  | return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); | 
|  | } | 
|  |  | 
|  | static inline struct page * | 
|  | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | 
|  | struct zonelist *zonelist, enum zone_type high_zoneidx, | 
|  | nodemask_t *nodemask, struct zone *preferred_zone, | 
|  | int migratetype) | 
|  | { | 
|  | const gfp_t wait = gfp_mask & __GFP_WAIT; | 
|  | struct page *page = NULL; | 
|  | int alloc_flags; | 
|  | unsigned long pages_reclaimed = 0; | 
|  | unsigned long did_some_progress; | 
|  | bool sync_migration = false; | 
|  | bool deferred_compaction = false; | 
|  | bool contended_compaction = false; | 
|  |  | 
|  | /* | 
|  | * In the slowpath, we sanity check order to avoid ever trying to | 
|  | * reclaim >= MAX_ORDER areas which will never succeed. Callers may | 
|  | * be using allocators in order of preference for an area that is | 
|  | * too large. | 
|  | */ | 
|  | if (order >= MAX_ORDER) { | 
|  | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and | 
|  | * __GFP_NOWARN set) should not cause reclaim since the subsystem | 
|  | * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim | 
|  | * using a larger set of nodes after it has established that the | 
|  | * allowed per node queues are empty and that nodes are | 
|  | * over allocated. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_NUMA) && | 
|  | (gfp_mask & GFP_THISNODE) == GFP_THISNODE) | 
|  | goto nopage; | 
|  |  | 
|  | restart: | 
|  | if (!(gfp_mask & __GFP_NO_KSWAPD)) | 
|  | wake_all_kswapd(order, zonelist, high_zoneidx, | 
|  | zone_idx(preferred_zone)); | 
|  |  | 
|  | /* | 
|  | * OK, we're below the kswapd watermark and have kicked background | 
|  | * reclaim. Now things get more complex, so set up alloc_flags according | 
|  | * to how we want to proceed. | 
|  | */ | 
|  | alloc_flags = gfp_to_alloc_flags(gfp_mask); | 
|  |  | 
|  | /* | 
|  | * Find the true preferred zone if the allocation is unconstrained by | 
|  | * cpusets. | 
|  | */ | 
|  | if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) | 
|  | first_zones_zonelist(zonelist, high_zoneidx, NULL, | 
|  | &preferred_zone); | 
|  |  | 
|  | rebalance: | 
|  | /* This is the last chance, in general, before the goto nopage. */ | 
|  | page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, | 
|  | high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, | 
|  | preferred_zone, migratetype); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | /* Allocate without watermarks if the context allows */ | 
|  | if (alloc_flags & ALLOC_NO_WATERMARKS) { | 
|  | /* | 
|  | * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds | 
|  | * the allocation is high priority and these type of | 
|  | * allocations are system rather than user orientated | 
|  | */ | 
|  | zonelist = node_zonelist(numa_node_id(), gfp_mask); | 
|  |  | 
|  | page = __alloc_pages_high_priority(gfp_mask, order, | 
|  | zonelist, high_zoneidx, nodemask, | 
|  | preferred_zone, migratetype); | 
|  | if (page) { | 
|  | goto got_pg; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Atomic allocations - we can't balance anything */ | 
|  | if (!wait) | 
|  | goto nopage; | 
|  |  | 
|  | /* Avoid recursion of direct reclaim */ | 
|  | if (current->flags & PF_MEMALLOC) | 
|  | goto nopage; | 
|  |  | 
|  | /* Avoid allocations with no watermarks from looping endlessly */ | 
|  | if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) | 
|  | goto nopage; | 
|  |  | 
|  | /* | 
|  | * Try direct compaction. The first pass is asynchronous. Subsequent | 
|  | * attempts after direct reclaim are synchronous | 
|  | */ | 
|  | page = __alloc_pages_direct_compact(gfp_mask, order, | 
|  | zonelist, high_zoneidx, | 
|  | nodemask, | 
|  | alloc_flags, preferred_zone, | 
|  | migratetype, sync_migration, | 
|  | &contended_compaction, | 
|  | &deferred_compaction, | 
|  | &did_some_progress); | 
|  | if (page) | 
|  | goto got_pg; | 
|  | sync_migration = true; | 
|  |  | 
|  | /* | 
|  | * If compaction is deferred for high-order allocations, it is because | 
|  | * sync compaction recently failed. In this is the case and the caller | 
|  | * requested a movable allocation that does not heavily disrupt the | 
|  | * system then fail the allocation instead of entering direct reclaim. | 
|  | */ | 
|  | if ((deferred_compaction || contended_compaction) && | 
|  | (gfp_mask & __GFP_NO_KSWAPD)) | 
|  | goto nopage; | 
|  |  | 
|  | /* Try direct reclaim and then allocating */ | 
|  | page = __alloc_pages_direct_reclaim(gfp_mask, order, | 
|  | zonelist, high_zoneidx, | 
|  | nodemask, | 
|  | alloc_flags, preferred_zone, | 
|  | migratetype, &did_some_progress); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | /* | 
|  | * If we failed to make any progress reclaiming, then we are | 
|  | * running out of options and have to consider going OOM | 
|  | */ | 
|  | if (!did_some_progress) { | 
|  | if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { | 
|  | if (oom_killer_disabled) | 
|  | goto nopage; | 
|  | /* Coredumps can quickly deplete all memory reserves */ | 
|  | if ((current->flags & PF_DUMPCORE) && | 
|  | !(gfp_mask & __GFP_NOFAIL)) | 
|  | goto nopage; | 
|  | page = __alloc_pages_may_oom(gfp_mask, order, | 
|  | zonelist, high_zoneidx, | 
|  | nodemask, preferred_zone, | 
|  | migratetype); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | if (!(gfp_mask & __GFP_NOFAIL)) { | 
|  | /* | 
|  | * The oom killer is not called for high-order | 
|  | * allocations that may fail, so if no progress | 
|  | * is being made, there are no other options and | 
|  | * retrying is unlikely to help. | 
|  | */ | 
|  | if (order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | goto nopage; | 
|  | /* | 
|  | * The oom killer is not called for lowmem | 
|  | * allocations to prevent needlessly killing | 
|  | * innocent tasks. | 
|  | */ | 
|  | if (high_zoneidx < ZONE_NORMAL) | 
|  | goto nopage; | 
|  | } | 
|  |  | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check if we should retry the allocation */ | 
|  | pages_reclaimed += did_some_progress; | 
|  | if (should_alloc_retry(gfp_mask, order, did_some_progress, | 
|  | pages_reclaimed)) { | 
|  | /* Wait for some write requests to complete then retry */ | 
|  | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); | 
|  | goto rebalance; | 
|  | } else { | 
|  | /* | 
|  | * High-order allocations do not necessarily loop after | 
|  | * direct reclaim and reclaim/compaction depends on compaction | 
|  | * being called after reclaim so call directly if necessary | 
|  | */ | 
|  | page = __alloc_pages_direct_compact(gfp_mask, order, | 
|  | zonelist, high_zoneidx, | 
|  | nodemask, | 
|  | alloc_flags, preferred_zone, | 
|  | migratetype, sync_migration, | 
|  | &contended_compaction, | 
|  | &deferred_compaction, | 
|  | &did_some_progress); | 
|  | if (page) | 
|  | goto got_pg; | 
|  | } | 
|  |  | 
|  | nopage: | 
|  | warn_alloc_failed(gfp_mask, order, NULL); | 
|  | return page; | 
|  | got_pg: | 
|  | if (kmemcheck_enabled) | 
|  | kmemcheck_pagealloc_alloc(page, order, gfp_mask); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the 'heart' of the zoned buddy allocator. | 
|  | */ | 
|  | struct page * | 
|  | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, | 
|  | struct zonelist *zonelist, nodemask_t *nodemask) | 
|  | { | 
|  | enum zone_type high_zoneidx = gfp_zone(gfp_mask); | 
|  | struct zone *preferred_zone; | 
|  | struct page *page = NULL; | 
|  | int migratetype = allocflags_to_migratetype(gfp_mask); | 
|  | unsigned int cpuset_mems_cookie; | 
|  | int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; | 
|  | struct mem_cgroup *memcg = NULL; | 
|  |  | 
|  | gfp_mask &= gfp_allowed_mask; | 
|  |  | 
|  | lockdep_trace_alloc(gfp_mask); | 
|  |  | 
|  | might_sleep_if(gfp_mask & __GFP_WAIT); | 
|  |  | 
|  | if (should_fail_alloc_page(gfp_mask, order)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Check the zones suitable for the gfp_mask contain at least one | 
|  | * valid zone. It's possible to have an empty zonelist as a result | 
|  | * of GFP_THISNODE and a memoryless node | 
|  | */ | 
|  | if (unlikely(!zonelist->_zonerefs->zone)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Will only have any effect when __GFP_KMEMCG is set.  This is | 
|  | * verified in the (always inline) callee | 
|  | */ | 
|  | if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) | 
|  | return NULL; | 
|  |  | 
|  | retry_cpuset: | 
|  | cpuset_mems_cookie = get_mems_allowed(); | 
|  |  | 
|  | /* The preferred zone is used for statistics later */ | 
|  | first_zones_zonelist(zonelist, high_zoneidx, | 
|  | nodemask ? : &cpuset_current_mems_allowed, | 
|  | &preferred_zone); | 
|  | if (!preferred_zone) | 
|  | goto out; | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  | if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) | 
|  | alloc_flags |= ALLOC_CMA; | 
|  | #endif | 
|  | /* First allocation attempt */ | 
|  | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, | 
|  | zonelist, high_zoneidx, alloc_flags, | 
|  | preferred_zone, migratetype); | 
|  | if (unlikely(!page)) | 
|  | page = __alloc_pages_slowpath(gfp_mask, order, | 
|  | zonelist, high_zoneidx, nodemask, | 
|  | preferred_zone, migratetype); | 
|  |  | 
|  | trace_mm_page_alloc(page, order, gfp_mask, migratetype); | 
|  |  | 
|  | out: | 
|  | /* | 
|  | * When updating a task's mems_allowed, it is possible to race with | 
|  | * parallel threads in such a way that an allocation can fail while | 
|  | * the mask is being updated. If a page allocation is about to fail, | 
|  | * check if the cpuset changed during allocation and if so, retry. | 
|  | */ | 
|  | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) | 
|  | goto retry_cpuset; | 
|  |  | 
|  | memcg_kmem_commit_charge(page, memcg, order); | 
|  |  | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL(__alloc_pages_nodemask); | 
|  |  | 
|  | /* | 
|  | * Common helper functions. | 
|  | */ | 
|  | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * __get_free_pages() returns a 32-bit address, which cannot represent | 
|  | * a highmem page | 
|  | */ | 
|  | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | 
|  |  | 
|  | page = alloc_pages(gfp_mask, order); | 
|  | if (!page) | 
|  | return 0; | 
|  | return (unsigned long) page_address(page); | 
|  | } | 
|  | EXPORT_SYMBOL(__get_free_pages); | 
|  |  | 
|  | unsigned long get_zeroed_page(gfp_t gfp_mask) | 
|  | { | 
|  | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(get_zeroed_page); | 
|  |  | 
|  | void __free_pages(struct page *page, unsigned int order) | 
|  | { | 
|  | if (put_page_testzero(page)) { | 
|  | if (order == 0) | 
|  | free_hot_cold_page(page, 0); | 
|  | else | 
|  | __free_pages_ok(page, order); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(__free_pages); | 
|  |  | 
|  | void free_pages(unsigned long addr, unsigned int order) | 
|  | { | 
|  | if (addr != 0) { | 
|  | VM_BUG_ON(!virt_addr_valid((void *)addr)); | 
|  | __free_pages(virt_to_page((void *)addr), order); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(free_pages); | 
|  |  | 
|  | /* | 
|  | * __free_memcg_kmem_pages and free_memcg_kmem_pages will free | 
|  | * pages allocated with __GFP_KMEMCG. | 
|  | * | 
|  | * Those pages are accounted to a particular memcg, embedded in the | 
|  | * corresponding page_cgroup. To avoid adding a hit in the allocator to search | 
|  | * for that information only to find out that it is NULL for users who have no | 
|  | * interest in that whatsoever, we provide these functions. | 
|  | * | 
|  | * The caller knows better which flags it relies on. | 
|  | */ | 
|  | void __free_memcg_kmem_pages(struct page *page, unsigned int order) | 
|  | { | 
|  | memcg_kmem_uncharge_pages(page, order); | 
|  | __free_pages(page, order); | 
|  | } | 
|  |  | 
|  | void free_memcg_kmem_pages(unsigned long addr, unsigned int order) | 
|  | { | 
|  | if (addr != 0) { | 
|  | VM_BUG_ON(!virt_addr_valid((void *)addr)); | 
|  | __free_memcg_kmem_pages(virt_to_page((void *)addr), order); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) | 
|  | { | 
|  | if (addr) { | 
|  | unsigned long alloc_end = addr + (PAGE_SIZE << order); | 
|  | unsigned long used = addr + PAGE_ALIGN(size); | 
|  |  | 
|  | split_page(virt_to_page((void *)addr), order); | 
|  | while (used < alloc_end) { | 
|  | free_page(used); | 
|  | used += PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | return (void *)addr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | 
|  | * @size: the number of bytes to allocate | 
|  | * @gfp_mask: GFP flags for the allocation | 
|  | * | 
|  | * This function is similar to alloc_pages(), except that it allocates the | 
|  | * minimum number of pages to satisfy the request.  alloc_pages() can only | 
|  | * allocate memory in power-of-two pages. | 
|  | * | 
|  | * This function is also limited by MAX_ORDER. | 
|  | * | 
|  | * Memory allocated by this function must be released by free_pages_exact(). | 
|  | */ | 
|  | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | 
|  | { | 
|  | unsigned int order = get_order(size); | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = __get_free_pages(gfp_mask, order); | 
|  | return make_alloc_exact(addr, order, size); | 
|  | } | 
|  | EXPORT_SYMBOL(alloc_pages_exact); | 
|  |  | 
|  | /** | 
|  | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | 
|  | *			   pages on a node. | 
|  | * @nid: the preferred node ID where memory should be allocated | 
|  | * @size: the number of bytes to allocate | 
|  | * @gfp_mask: GFP flags for the allocation | 
|  | * | 
|  | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | 
|  | * back. | 
|  | * Note this is not alloc_pages_exact_node() which allocates on a specific node, | 
|  | * but is not exact. | 
|  | */ | 
|  | void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) | 
|  | { | 
|  | unsigned order = get_order(size); | 
|  | struct page *p = alloc_pages_node(nid, gfp_mask, order); | 
|  | if (!p) | 
|  | return NULL; | 
|  | return make_alloc_exact((unsigned long)page_address(p), order, size); | 
|  | } | 
|  | EXPORT_SYMBOL(alloc_pages_exact_nid); | 
|  |  | 
|  | /** | 
|  | * free_pages_exact - release memory allocated via alloc_pages_exact() | 
|  | * @virt: the value returned by alloc_pages_exact. | 
|  | * @size: size of allocation, same value as passed to alloc_pages_exact(). | 
|  | * | 
|  | * Release the memory allocated by a previous call to alloc_pages_exact. | 
|  | */ | 
|  | void free_pages_exact(void *virt, size_t size) | 
|  | { | 
|  | unsigned long addr = (unsigned long)virt; | 
|  | unsigned long end = addr + PAGE_ALIGN(size); | 
|  |  | 
|  | while (addr < end) { | 
|  | free_page(addr); | 
|  | addr += PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(free_pages_exact); | 
|  |  | 
|  | static unsigned int nr_free_zone_pages(int offset) | 
|  | { | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  |  | 
|  | /* Just pick one node, since fallback list is circular */ | 
|  | unsigned int sum = 0; | 
|  |  | 
|  | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); | 
|  |  | 
|  | for_each_zone_zonelist(zone, z, zonelist, offset) { | 
|  | unsigned long size = zone->present_pages; | 
|  | unsigned long high = high_wmark_pages(zone); | 
|  | if (size > high) | 
|  | sum += size - high; | 
|  | } | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL | 
|  | */ | 
|  | unsigned int nr_free_buffer_pages(void) | 
|  | { | 
|  | return nr_free_zone_pages(gfp_zone(GFP_USER)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); | 
|  |  | 
|  | /* | 
|  | * Amount of free RAM allocatable within all zones | 
|  | */ | 
|  | unsigned int nr_free_pagecache_pages(void) | 
|  | { | 
|  | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); | 
|  | } | 
|  |  | 
|  | static inline void show_node(struct zone *zone) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_NUMA)) | 
|  | printk("Node %d ", zone_to_nid(zone)); | 
|  | } | 
|  |  | 
|  | void si_meminfo(struct sysinfo *val) | 
|  | { | 
|  | val->totalram = totalram_pages; | 
|  | val->sharedram = 0; | 
|  | val->freeram = global_page_state(NR_FREE_PAGES); | 
|  | val->bufferram = nr_blockdev_pages(); | 
|  | val->totalhigh = totalhigh_pages; | 
|  | val->freehigh = nr_free_highpages(); | 
|  | val->mem_unit = PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(si_meminfo); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | void si_meminfo_node(struct sysinfo *val, int nid) | 
|  | { | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  |  | 
|  | val->totalram = pgdat->node_present_pages; | 
|  | val->freeram = node_page_state(nid, NR_FREE_PAGES); | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; | 
|  | val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], | 
|  | NR_FREE_PAGES); | 
|  | #else | 
|  | val->totalhigh = 0; | 
|  | val->freehigh = 0; | 
|  | #endif | 
|  | val->mem_unit = PAGE_SIZE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Determine whether the node should be displayed or not, depending on whether | 
|  | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | 
|  | */ | 
|  | bool skip_free_areas_node(unsigned int flags, int nid) | 
|  | { | 
|  | bool ret = false; | 
|  | unsigned int cpuset_mems_cookie; | 
|  |  | 
|  | if (!(flags & SHOW_MEM_FILTER_NODES)) | 
|  | goto out; | 
|  |  | 
|  | do { | 
|  | cpuset_mems_cookie = get_mems_allowed(); | 
|  | ret = !node_isset(nid, cpuset_current_mems_allowed); | 
|  | } while (!put_mems_allowed(cpuset_mems_cookie)); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
|  |  | 
|  | static void show_migration_types(unsigned char type) | 
|  | { | 
|  | static const char types[MIGRATE_TYPES] = { | 
|  | [MIGRATE_UNMOVABLE]	= 'U', | 
|  | [MIGRATE_RECLAIMABLE]	= 'E', | 
|  | [MIGRATE_MOVABLE]	= 'M', | 
|  | [MIGRATE_RESERVE]	= 'R', | 
|  | #ifdef CONFIG_CMA | 
|  | [MIGRATE_CMA]		= 'C', | 
|  | #endif | 
|  | [MIGRATE_ISOLATE]	= 'I', | 
|  | }; | 
|  | char tmp[MIGRATE_TYPES + 1]; | 
|  | char *p = tmp; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MIGRATE_TYPES; i++) { | 
|  | if (type & (1 << i)) | 
|  | *p++ = types[i]; | 
|  | } | 
|  |  | 
|  | *p = '\0'; | 
|  | printk("(%s) ", tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Show free area list (used inside shift_scroll-lock stuff) | 
|  | * We also calculate the percentage fragmentation. We do this by counting the | 
|  | * memory on each free list with the exception of the first item on the list. | 
|  | * Suppresses nodes that are not allowed by current's cpuset if | 
|  | * SHOW_MEM_FILTER_NODES is passed. | 
|  | */ | 
|  | void show_free_areas(unsigned int filter) | 
|  | { | 
|  | int cpu; | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | if (skip_free_areas_node(filter, zone_to_nid(zone))) | 
|  | continue; | 
|  | show_node(zone); | 
|  | printk("%s per-cpu:\n", zone->name); | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct per_cpu_pageset *pageset; | 
|  |  | 
|  | pageset = per_cpu_ptr(zone->pageset, cpu); | 
|  |  | 
|  | printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", | 
|  | cpu, pageset->pcp.high, | 
|  | pageset->pcp.batch, pageset->pcp.count); | 
|  | } | 
|  | } | 
|  |  | 
|  | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" | 
|  | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" | 
|  | " unevictable:%lu" | 
|  | " dirty:%lu writeback:%lu unstable:%lu\n" | 
|  | " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" | 
|  | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" | 
|  | " free_cma:%lu\n", | 
|  | global_page_state(NR_ACTIVE_ANON), | 
|  | global_page_state(NR_INACTIVE_ANON), | 
|  | global_page_state(NR_ISOLATED_ANON), | 
|  | global_page_state(NR_ACTIVE_FILE), | 
|  | global_page_state(NR_INACTIVE_FILE), | 
|  | global_page_state(NR_ISOLATED_FILE), | 
|  | global_page_state(NR_UNEVICTABLE), | 
|  | global_page_state(NR_FILE_DIRTY), | 
|  | global_page_state(NR_WRITEBACK), | 
|  | global_page_state(NR_UNSTABLE_NFS), | 
|  | global_page_state(NR_FREE_PAGES), | 
|  | global_page_state(NR_SLAB_RECLAIMABLE), | 
|  | global_page_state(NR_SLAB_UNRECLAIMABLE), | 
|  | global_page_state(NR_FILE_MAPPED), | 
|  | global_page_state(NR_SHMEM), | 
|  | global_page_state(NR_PAGETABLE), | 
|  | global_page_state(NR_BOUNCE), | 
|  | global_page_state(NR_FREE_CMA_PAGES)); | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | int i; | 
|  |  | 
|  | if (skip_free_areas_node(filter, zone_to_nid(zone))) | 
|  | continue; | 
|  | show_node(zone); | 
|  | printk("%s" | 
|  | " free:%lukB" | 
|  | " min:%lukB" | 
|  | " low:%lukB" | 
|  | " high:%lukB" | 
|  | " active_anon:%lukB" | 
|  | " inactive_anon:%lukB" | 
|  | " active_file:%lukB" | 
|  | " inactive_file:%lukB" | 
|  | " unevictable:%lukB" | 
|  | " isolated(anon):%lukB" | 
|  | " isolated(file):%lukB" | 
|  | " present:%lukB" | 
|  | " managed:%lukB" | 
|  | " mlocked:%lukB" | 
|  | " dirty:%lukB" | 
|  | " writeback:%lukB" | 
|  | " mapped:%lukB" | 
|  | " shmem:%lukB" | 
|  | " slab_reclaimable:%lukB" | 
|  | " slab_unreclaimable:%lukB" | 
|  | " kernel_stack:%lukB" | 
|  | " pagetables:%lukB" | 
|  | " unstable:%lukB" | 
|  | " bounce:%lukB" | 
|  | " free_cma:%lukB" | 
|  | " writeback_tmp:%lukB" | 
|  | " pages_scanned:%lu" | 
|  | " all_unreclaimable? %s" | 
|  | "\n", | 
|  | zone->name, | 
|  | K(zone_page_state(zone, NR_FREE_PAGES)), | 
|  | K(min_wmark_pages(zone)), | 
|  | K(low_wmark_pages(zone)), | 
|  | K(high_wmark_pages(zone)), | 
|  | K(zone_page_state(zone, NR_ACTIVE_ANON)), | 
|  | K(zone_page_state(zone, NR_INACTIVE_ANON)), | 
|  | K(zone_page_state(zone, NR_ACTIVE_FILE)), | 
|  | K(zone_page_state(zone, NR_INACTIVE_FILE)), | 
|  | K(zone_page_state(zone, NR_UNEVICTABLE)), | 
|  | K(zone_page_state(zone, NR_ISOLATED_ANON)), | 
|  | K(zone_page_state(zone, NR_ISOLATED_FILE)), | 
|  | K(zone->present_pages), | 
|  | K(zone->managed_pages), | 
|  | K(zone_page_state(zone, NR_MLOCK)), | 
|  | K(zone_page_state(zone, NR_FILE_DIRTY)), | 
|  | K(zone_page_state(zone, NR_WRITEBACK)), | 
|  | K(zone_page_state(zone, NR_FILE_MAPPED)), | 
|  | K(zone_page_state(zone, NR_SHMEM)), | 
|  | K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), | 
|  | K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), | 
|  | zone_page_state(zone, NR_KERNEL_STACK) * | 
|  | THREAD_SIZE / 1024, | 
|  | K(zone_page_state(zone, NR_PAGETABLE)), | 
|  | K(zone_page_state(zone, NR_UNSTABLE_NFS)), | 
|  | K(zone_page_state(zone, NR_BOUNCE)), | 
|  | K(zone_page_state(zone, NR_FREE_CMA_PAGES)), | 
|  | K(zone_page_state(zone, NR_WRITEBACK_TEMP)), | 
|  | zone->pages_scanned, | 
|  | (zone->all_unreclaimable ? "yes" : "no") | 
|  | ); | 
|  | printk("lowmem_reserve[]:"); | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) | 
|  | printk(" %lu", zone->lowmem_reserve[i]); | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | unsigned long nr[MAX_ORDER], flags, order, total = 0; | 
|  | unsigned char types[MAX_ORDER]; | 
|  |  | 
|  | if (skip_free_areas_node(filter, zone_to_nid(zone))) | 
|  | continue; | 
|  | show_node(zone); | 
|  | printk("%s: ", zone->name); | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | for (order = 0; order < MAX_ORDER; order++) { | 
|  | struct free_area *area = &zone->free_area[order]; | 
|  | int type; | 
|  |  | 
|  | nr[order] = area->nr_free; | 
|  | total += nr[order] << order; | 
|  |  | 
|  | types[order] = 0; | 
|  | for (type = 0; type < MIGRATE_TYPES; type++) { | 
|  | if (!list_empty(&area->free_list[type])) | 
|  | types[order] |= 1 << type; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | for (order = 0; order < MAX_ORDER; order++) { | 
|  | printk("%lu*%lukB ", nr[order], K(1UL) << order); | 
|  | if (nr[order]) | 
|  | show_migration_types(types[order]); | 
|  | } | 
|  | printk("= %lukB\n", K(total)); | 
|  | } | 
|  |  | 
|  | printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); | 
|  |  | 
|  | show_swap_cache_info(); | 
|  | } | 
|  |  | 
|  | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) | 
|  | { | 
|  | zoneref->zone = zone; | 
|  | zoneref->zone_idx = zone_idx(zone); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Builds allocation fallback zone lists. | 
|  | * | 
|  | * Add all populated zones of a node to the zonelist. | 
|  | */ | 
|  | static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, | 
|  | int nr_zones, enum zone_type zone_type) | 
|  | { | 
|  | struct zone *zone; | 
|  |  | 
|  | BUG_ON(zone_type >= MAX_NR_ZONES); | 
|  | zone_type++; | 
|  |  | 
|  | do { | 
|  | zone_type--; | 
|  | zone = pgdat->node_zones + zone_type; | 
|  | if (populated_zone(zone)) { | 
|  | zoneref_set_zone(zone, | 
|  | &zonelist->_zonerefs[nr_zones++]); | 
|  | check_highest_zone(zone_type); | 
|  | } | 
|  |  | 
|  | } while (zone_type); | 
|  | return nr_zones; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *  zonelist_order: | 
|  | *  0 = automatic detection of better ordering. | 
|  | *  1 = order by ([node] distance, -zonetype) | 
|  | *  2 = order by (-zonetype, [node] distance) | 
|  | * | 
|  | *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create | 
|  | *  the same zonelist. So only NUMA can configure this param. | 
|  | */ | 
|  | #define ZONELIST_ORDER_DEFAULT  0 | 
|  | #define ZONELIST_ORDER_NODE     1 | 
|  | #define ZONELIST_ORDER_ZONE     2 | 
|  |  | 
|  | /* zonelist order in the kernel. | 
|  | * set_zonelist_order() will set this to NODE or ZONE. | 
|  | */ | 
|  | static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; | 
|  | static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* The value user specified ....changed by config */ | 
|  | static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; | 
|  | /* string for sysctl */ | 
|  | #define NUMA_ZONELIST_ORDER_LEN	16 | 
|  | char numa_zonelist_order[16] = "default"; | 
|  |  | 
|  | /* | 
|  | * interface for configure zonelist ordering. | 
|  | * command line option "numa_zonelist_order" | 
|  | *	= "[dD]efault	- default, automatic configuration. | 
|  | *	= "[nN]ode 	- order by node locality, then by zone within node | 
|  | *	= "[zZ]one      - order by zone, then by locality within zone | 
|  | */ | 
|  |  | 
|  | static int __parse_numa_zonelist_order(char *s) | 
|  | { | 
|  | if (*s == 'd' || *s == 'D') { | 
|  | user_zonelist_order = ZONELIST_ORDER_DEFAULT; | 
|  | } else if (*s == 'n' || *s == 'N') { | 
|  | user_zonelist_order = ZONELIST_ORDER_NODE; | 
|  | } else if (*s == 'z' || *s == 'Z') { | 
|  | user_zonelist_order = ZONELIST_ORDER_ZONE; | 
|  | } else { | 
|  | printk(KERN_WARNING | 
|  | "Ignoring invalid numa_zonelist_order value:  " | 
|  | "%s\n", s); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __init int setup_numa_zonelist_order(char *s) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!s) | 
|  | return 0; | 
|  |  | 
|  | ret = __parse_numa_zonelist_order(s); | 
|  | if (ret == 0) | 
|  | strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | early_param("numa_zonelist_order", setup_numa_zonelist_order); | 
|  |  | 
|  | /* | 
|  | * sysctl handler for numa_zonelist_order | 
|  | */ | 
|  | int numa_zonelist_order_handler(ctl_table *table, int write, | 
|  | void __user *buffer, size_t *length, | 
|  | loff_t *ppos) | 
|  | { | 
|  | char saved_string[NUMA_ZONELIST_ORDER_LEN]; | 
|  | int ret; | 
|  | static DEFINE_MUTEX(zl_order_mutex); | 
|  |  | 
|  | mutex_lock(&zl_order_mutex); | 
|  | if (write) | 
|  | strcpy(saved_string, (char*)table->data); | 
|  | ret = proc_dostring(table, write, buffer, length, ppos); | 
|  | if (ret) | 
|  | goto out; | 
|  | if (write) { | 
|  | int oldval = user_zonelist_order; | 
|  | if (__parse_numa_zonelist_order((char*)table->data)) { | 
|  | /* | 
|  | * bogus value.  restore saved string | 
|  | */ | 
|  | strncpy((char*)table->data, saved_string, | 
|  | NUMA_ZONELIST_ORDER_LEN); | 
|  | user_zonelist_order = oldval; | 
|  | } else if (oldval != user_zonelist_order) { | 
|  | mutex_lock(&zonelists_mutex); | 
|  | build_all_zonelists(NULL, NULL); | 
|  | mutex_unlock(&zonelists_mutex); | 
|  | } | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&zl_order_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | #define MAX_NODE_LOAD (nr_online_nodes) | 
|  | static int node_load[MAX_NUMNODES]; | 
|  |  | 
|  | /** | 
|  | * find_next_best_node - find the next node that should appear in a given node's fallback list | 
|  | * @node: node whose fallback list we're appending | 
|  | * @used_node_mask: nodemask_t of already used nodes | 
|  | * | 
|  | * We use a number of factors to determine which is the next node that should | 
|  | * appear on a given node's fallback list.  The node should not have appeared | 
|  | * already in @node's fallback list, and it should be the next closest node | 
|  | * according to the distance array (which contains arbitrary distance values | 
|  | * from each node to each node in the system), and should also prefer nodes | 
|  | * with no CPUs, since presumably they'll have very little allocation pressure | 
|  | * on them otherwise. | 
|  | * It returns -1 if no node is found. | 
|  | */ | 
|  | static int find_next_best_node(int node, nodemask_t *used_node_mask) | 
|  | { | 
|  | int n, val; | 
|  | int min_val = INT_MAX; | 
|  | int best_node = -1; | 
|  | const struct cpumask *tmp = cpumask_of_node(0); | 
|  |  | 
|  | /* Use the local node if we haven't already */ | 
|  | if (!node_isset(node, *used_node_mask)) { | 
|  | node_set(node, *used_node_mask); | 
|  | return node; | 
|  | } | 
|  |  | 
|  | for_each_node_state(n, N_MEMORY) { | 
|  |  | 
|  | /* Don't want a node to appear more than once */ | 
|  | if (node_isset(n, *used_node_mask)) | 
|  | continue; | 
|  |  | 
|  | /* Use the distance array to find the distance */ | 
|  | val = node_distance(node, n); | 
|  |  | 
|  | /* Penalize nodes under us ("prefer the next node") */ | 
|  | val += (n < node); | 
|  |  | 
|  | /* Give preference to headless and unused nodes */ | 
|  | tmp = cpumask_of_node(n); | 
|  | if (!cpumask_empty(tmp)) | 
|  | val += PENALTY_FOR_NODE_WITH_CPUS; | 
|  |  | 
|  | /* Slight preference for less loaded node */ | 
|  | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | 
|  | val += node_load[n]; | 
|  |  | 
|  | if (val < min_val) { | 
|  | min_val = val; | 
|  | best_node = n; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (best_node >= 0) | 
|  | node_set(best_node, *used_node_mask); | 
|  |  | 
|  | return best_node; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Build zonelists ordered by node and zones within node. | 
|  | * This results in maximum locality--normal zone overflows into local | 
|  | * DMA zone, if any--but risks exhausting DMA zone. | 
|  | */ | 
|  | static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) | 
|  | { | 
|  | int j; | 
|  | struct zonelist *zonelist; | 
|  |  | 
|  | zonelist = &pgdat->node_zonelists[0]; | 
|  | for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) | 
|  | ; | 
|  | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | 
|  | MAX_NR_ZONES - 1); | 
|  | zonelist->_zonerefs[j].zone = NULL; | 
|  | zonelist->_zonerefs[j].zone_idx = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build gfp_thisnode zonelists | 
|  | */ | 
|  | static void build_thisnode_zonelists(pg_data_t *pgdat) | 
|  | { | 
|  | int j; | 
|  | struct zonelist *zonelist; | 
|  |  | 
|  | zonelist = &pgdat->node_zonelists[1]; | 
|  | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); | 
|  | zonelist->_zonerefs[j].zone = NULL; | 
|  | zonelist->_zonerefs[j].zone_idx = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build zonelists ordered by zone and nodes within zones. | 
|  | * This results in conserving DMA zone[s] until all Normal memory is | 
|  | * exhausted, but results in overflowing to remote node while memory | 
|  | * may still exist in local DMA zone. | 
|  | */ | 
|  | static int node_order[MAX_NUMNODES]; | 
|  |  | 
|  | static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) | 
|  | { | 
|  | int pos, j, node; | 
|  | int zone_type;		/* needs to be signed */ | 
|  | struct zone *z; | 
|  | struct zonelist *zonelist; | 
|  |  | 
|  | zonelist = &pgdat->node_zonelists[0]; | 
|  | pos = 0; | 
|  | for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { | 
|  | for (j = 0; j < nr_nodes; j++) { | 
|  | node = node_order[j]; | 
|  | z = &NODE_DATA(node)->node_zones[zone_type]; | 
|  | if (populated_zone(z)) { | 
|  | zoneref_set_zone(z, | 
|  | &zonelist->_zonerefs[pos++]); | 
|  | check_highest_zone(zone_type); | 
|  | } | 
|  | } | 
|  | } | 
|  | zonelist->_zonerefs[pos].zone = NULL; | 
|  | zonelist->_zonerefs[pos].zone_idx = 0; | 
|  | } | 
|  |  | 
|  | static int default_zonelist_order(void) | 
|  | { | 
|  | int nid, zone_type; | 
|  | unsigned long low_kmem_size,total_size; | 
|  | struct zone *z; | 
|  | int average_size; | 
|  | /* | 
|  | * ZONE_DMA and ZONE_DMA32 can be very small area in the system. | 
|  | * If they are really small and used heavily, the system can fall | 
|  | * into OOM very easily. | 
|  | * This function detect ZONE_DMA/DMA32 size and configures zone order. | 
|  | */ | 
|  | /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ | 
|  | low_kmem_size = 0; | 
|  | total_size = 0; | 
|  | for_each_online_node(nid) { | 
|  | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | 
|  | z = &NODE_DATA(nid)->node_zones[zone_type]; | 
|  | if (populated_zone(z)) { | 
|  | if (zone_type < ZONE_NORMAL) | 
|  | low_kmem_size += z->present_pages; | 
|  | total_size += z->present_pages; | 
|  | } else if (zone_type == ZONE_NORMAL) { | 
|  | /* | 
|  | * If any node has only lowmem, then node order | 
|  | * is preferred to allow kernel allocations | 
|  | * locally; otherwise, they can easily infringe | 
|  | * on other nodes when there is an abundance of | 
|  | * lowmem available to allocate from. | 
|  | */ | 
|  | return ZONELIST_ORDER_NODE; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!low_kmem_size ||  /* there are no DMA area. */ | 
|  | low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ | 
|  | return ZONELIST_ORDER_NODE; | 
|  | /* | 
|  | * look into each node's config. | 
|  | * If there is a node whose DMA/DMA32 memory is very big area on | 
|  | * local memory, NODE_ORDER may be suitable. | 
|  | */ | 
|  | average_size = total_size / | 
|  | (nodes_weight(node_states[N_MEMORY]) + 1); | 
|  | for_each_online_node(nid) { | 
|  | low_kmem_size = 0; | 
|  | total_size = 0; | 
|  | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | 
|  | z = &NODE_DATA(nid)->node_zones[zone_type]; | 
|  | if (populated_zone(z)) { | 
|  | if (zone_type < ZONE_NORMAL) | 
|  | low_kmem_size += z->present_pages; | 
|  | total_size += z->present_pages; | 
|  | } | 
|  | } | 
|  | if (low_kmem_size && | 
|  | total_size > average_size && /* ignore small node */ | 
|  | low_kmem_size > total_size * 70/100) | 
|  | return ZONELIST_ORDER_NODE; | 
|  | } | 
|  | return ZONELIST_ORDER_ZONE; | 
|  | } | 
|  |  | 
|  | static void set_zonelist_order(void) | 
|  | { | 
|  | if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) | 
|  | current_zonelist_order = default_zonelist_order(); | 
|  | else | 
|  | current_zonelist_order = user_zonelist_order; | 
|  | } | 
|  |  | 
|  | static void build_zonelists(pg_data_t *pgdat) | 
|  | { | 
|  | int j, node, load; | 
|  | enum zone_type i; | 
|  | nodemask_t used_mask; | 
|  | int local_node, prev_node; | 
|  | struct zonelist *zonelist; | 
|  | int order = current_zonelist_order; | 
|  |  | 
|  | /* initialize zonelists */ | 
|  | for (i = 0; i < MAX_ZONELISTS; i++) { | 
|  | zonelist = pgdat->node_zonelists + i; | 
|  | zonelist->_zonerefs[0].zone = NULL; | 
|  | zonelist->_zonerefs[0].zone_idx = 0; | 
|  | } | 
|  |  | 
|  | /* NUMA-aware ordering of nodes */ | 
|  | local_node = pgdat->node_id; | 
|  | load = nr_online_nodes; | 
|  | prev_node = local_node; | 
|  | nodes_clear(used_mask); | 
|  |  | 
|  | memset(node_order, 0, sizeof(node_order)); | 
|  | j = 0; | 
|  |  | 
|  | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | 
|  | /* | 
|  | * We don't want to pressure a particular node. | 
|  | * So adding penalty to the first node in same | 
|  | * distance group to make it round-robin. | 
|  | */ | 
|  | if (node_distance(local_node, node) != | 
|  | node_distance(local_node, prev_node)) | 
|  | node_load[node] = load; | 
|  |  | 
|  | prev_node = node; | 
|  | load--; | 
|  | if (order == ZONELIST_ORDER_NODE) | 
|  | build_zonelists_in_node_order(pgdat, node); | 
|  | else | 
|  | node_order[j++] = node;	/* remember order */ | 
|  | } | 
|  |  | 
|  | if (order == ZONELIST_ORDER_ZONE) { | 
|  | /* calculate node order -- i.e., DMA last! */ | 
|  | build_zonelists_in_zone_order(pgdat, j); | 
|  | } | 
|  |  | 
|  | build_thisnode_zonelists(pgdat); | 
|  | } | 
|  |  | 
|  | /* Construct the zonelist performance cache - see further mmzone.h */ | 
|  | static void build_zonelist_cache(pg_data_t *pgdat) | 
|  | { | 
|  | struct zonelist *zonelist; | 
|  | struct zonelist_cache *zlc; | 
|  | struct zoneref *z; | 
|  |  | 
|  | zonelist = &pgdat->node_zonelists[0]; | 
|  | zonelist->zlcache_ptr = zlc = &zonelist->zlcache; | 
|  | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | 
|  | for (z = zonelist->_zonerefs; z->zone; z++) | 
|  | zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
|  | /* | 
|  | * Return node id of node used for "local" allocations. | 
|  | * I.e., first node id of first zone in arg node's generic zonelist. | 
|  | * Used for initializing percpu 'numa_mem', which is used primarily | 
|  | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | 
|  | */ | 
|  | int local_memory_node(int node) | 
|  | { | 
|  | struct zone *zone; | 
|  |  | 
|  | (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), | 
|  | gfp_zone(GFP_KERNEL), | 
|  | NULL, | 
|  | &zone); | 
|  | return zone->node; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #else	/* CONFIG_NUMA */ | 
|  |  | 
|  | static void set_zonelist_order(void) | 
|  | { | 
|  | current_zonelist_order = ZONELIST_ORDER_ZONE; | 
|  | } | 
|  |  | 
|  | static void build_zonelists(pg_data_t *pgdat) | 
|  | { | 
|  | int node, local_node; | 
|  | enum zone_type j; | 
|  | struct zonelist *zonelist; | 
|  |  | 
|  | local_node = pgdat->node_id; | 
|  |  | 
|  | zonelist = &pgdat->node_zonelists[0]; | 
|  | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); | 
|  |  | 
|  | /* | 
|  | * Now we build the zonelist so that it contains the zones | 
|  | * of all the other nodes. | 
|  | * We don't want to pressure a particular node, so when | 
|  | * building the zones for node N, we make sure that the | 
|  | * zones coming right after the local ones are those from | 
|  | * node N+1 (modulo N) | 
|  | */ | 
|  | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | 
|  | if (!node_online(node)) | 
|  | continue; | 
|  | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | 
|  | MAX_NR_ZONES - 1); | 
|  | } | 
|  | for (node = 0; node < local_node; node++) { | 
|  | if (!node_online(node)) | 
|  | continue; | 
|  | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | 
|  | MAX_NR_ZONES - 1); | 
|  | } | 
|  |  | 
|  | zonelist->_zonerefs[j].zone = NULL; | 
|  | zonelist->_zonerefs[j].zone_idx = 0; | 
|  | } | 
|  |  | 
|  | /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ | 
|  | static void build_zonelist_cache(pg_data_t *pgdat) | 
|  | { | 
|  | pgdat->node_zonelists[0].zlcache_ptr = NULL; | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_NUMA */ | 
|  |  | 
|  | /* | 
|  | * Boot pageset table. One per cpu which is going to be used for all | 
|  | * zones and all nodes. The parameters will be set in such a way | 
|  | * that an item put on a list will immediately be handed over to | 
|  | * the buddy list. This is safe since pageset manipulation is done | 
|  | * with interrupts disabled. | 
|  | * | 
|  | * The boot_pagesets must be kept even after bootup is complete for | 
|  | * unused processors and/or zones. They do play a role for bootstrapping | 
|  | * hotplugged processors. | 
|  | * | 
|  | * zoneinfo_show() and maybe other functions do | 
|  | * not check if the processor is online before following the pageset pointer. | 
|  | * Other parts of the kernel may not check if the zone is available. | 
|  | */ | 
|  | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | 
|  | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | 
|  | static void setup_zone_pageset(struct zone *zone); | 
|  |  | 
|  | /* | 
|  | * Global mutex to protect against size modification of zonelists | 
|  | * as well as to serialize pageset setup for the new populated zone. | 
|  | */ | 
|  | DEFINE_MUTEX(zonelists_mutex); | 
|  |  | 
|  | /* return values int ....just for stop_machine() */ | 
|  | static int __build_all_zonelists(void *data) | 
|  | { | 
|  | int nid; | 
|  | int cpu; | 
|  | pg_data_t *self = data; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | memset(node_load, 0, sizeof(node_load)); | 
|  | #endif | 
|  |  | 
|  | if (self && !node_online(self->node_id)) { | 
|  | build_zonelists(self); | 
|  | build_zonelist_cache(self); | 
|  | } | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  |  | 
|  | build_zonelists(pgdat); | 
|  | build_zonelist_cache(pgdat); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the boot_pagesets that are going to be used | 
|  | * for bootstrapping processors. The real pagesets for | 
|  | * each zone will be allocated later when the per cpu | 
|  | * allocator is available. | 
|  | * | 
|  | * boot_pagesets are used also for bootstrapping offline | 
|  | * cpus if the system is already booted because the pagesets | 
|  | * are needed to initialize allocators on a specific cpu too. | 
|  | * F.e. the percpu allocator needs the page allocator which | 
|  | * needs the percpu allocator in order to allocate its pagesets | 
|  | * (a chicken-egg dilemma). | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | setup_pageset(&per_cpu(boot_pageset, cpu), 0); | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
|  | /* | 
|  | * We now know the "local memory node" for each node-- | 
|  | * i.e., the node of the first zone in the generic zonelist. | 
|  | * Set up numa_mem percpu variable for on-line cpus.  During | 
|  | * boot, only the boot cpu should be on-line;  we'll init the | 
|  | * secondary cpus' numa_mem as they come on-line.  During | 
|  | * node/memory hotplug, we'll fixup all on-line cpus. | 
|  | */ | 
|  | if (cpu_online(cpu)) | 
|  | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with zonelists_mutex held always | 
|  | * unless system_state == SYSTEM_BOOTING. | 
|  | */ | 
|  | void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) | 
|  | { | 
|  | set_zonelist_order(); | 
|  |  | 
|  | if (system_state == SYSTEM_BOOTING) { | 
|  | __build_all_zonelists(NULL); | 
|  | mminit_verify_zonelist(); | 
|  | cpuset_init_current_mems_allowed(); | 
|  | } else { | 
|  | /* we have to stop all cpus to guarantee there is no user | 
|  | of zonelist */ | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | if (zone) | 
|  | setup_zone_pageset(zone); | 
|  | #endif | 
|  | stop_machine(__build_all_zonelists, pgdat, NULL); | 
|  | /* cpuset refresh routine should be here */ | 
|  | } | 
|  | vm_total_pages = nr_free_pagecache_pages(); | 
|  | /* | 
|  | * Disable grouping by mobility if the number of pages in the | 
|  | * system is too low to allow the mechanism to work. It would be | 
|  | * more accurate, but expensive to check per-zone. This check is | 
|  | * made on memory-hotadd so a system can start with mobility | 
|  | * disabled and enable it later | 
|  | */ | 
|  | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) | 
|  | page_group_by_mobility_disabled = 1; | 
|  | else | 
|  | page_group_by_mobility_disabled = 0; | 
|  |  | 
|  | printk("Built %i zonelists in %s order, mobility grouping %s.  " | 
|  | "Total pages: %ld\n", | 
|  | nr_online_nodes, | 
|  | zonelist_order_name[current_zonelist_order], | 
|  | page_group_by_mobility_disabled ? "off" : "on", | 
|  | vm_total_pages); | 
|  | #ifdef CONFIG_NUMA | 
|  | printk("Policy zone: %s\n", zone_names[policy_zone]); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper functions to size the waitqueue hash table. | 
|  | * Essentially these want to choose hash table sizes sufficiently | 
|  | * large so that collisions trying to wait on pages are rare. | 
|  | * But in fact, the number of active page waitqueues on typical | 
|  | * systems is ridiculously low, less than 200. So this is even | 
|  | * conservative, even though it seems large. | 
|  | * | 
|  | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | 
|  | * waitqueues, i.e. the size of the waitq table given the number of pages. | 
|  | */ | 
|  | #define PAGES_PER_WAITQUEUE	256 | 
|  |  | 
|  | #ifndef CONFIG_MEMORY_HOTPLUG | 
|  | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | 
|  | { | 
|  | unsigned long size = 1; | 
|  |  | 
|  | pages /= PAGES_PER_WAITQUEUE; | 
|  |  | 
|  | while (size < pages) | 
|  | size <<= 1; | 
|  |  | 
|  | /* | 
|  | * Once we have dozens or even hundreds of threads sleeping | 
|  | * on IO we've got bigger problems than wait queue collision. | 
|  | * Limit the size of the wait table to a reasonable size. | 
|  | */ | 
|  | size = min(size, 4096UL); | 
|  |  | 
|  | return max(size, 4UL); | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * A zone's size might be changed by hot-add, so it is not possible to determine | 
|  | * a suitable size for its wait_table.  So we use the maximum size now. | 
|  | * | 
|  | * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie: | 
|  | * | 
|  | *    i386 (preemption config)    : 4096 x 16 = 64Kbyte. | 
|  | *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. | 
|  | *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte. | 
|  | * | 
|  | * The maximum entries are prepared when a zone's memory is (512K + 256) pages | 
|  | * or more by the traditional way. (See above).  It equals: | 
|  | * | 
|  | *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte. | 
|  | *    ia64(16K page size)                 : =  ( 8G + 4M)byte. | 
|  | *    powerpc (64K page size)             : =  (32G +16M)byte. | 
|  | */ | 
|  | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | 
|  | { | 
|  | return 4096UL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This is an integer logarithm so that shifts can be used later | 
|  | * to extract the more random high bits from the multiplicative | 
|  | * hash function before the remainder is taken. | 
|  | */ | 
|  | static inline unsigned long wait_table_bits(unsigned long size) | 
|  | { | 
|  | return ffz(~size); | 
|  | } | 
|  |  | 
|  | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) | 
|  |  | 
|  | /* | 
|  | * Check if a pageblock contains reserved pages | 
|  | */ | 
|  | static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
|  | if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark a number of pageblocks as MIGRATE_RESERVE. The number | 
|  | * of blocks reserved is based on min_wmark_pages(zone). The memory within | 
|  | * the reserve will tend to store contiguous free pages. Setting min_free_kbytes | 
|  | * higher will lead to a bigger reserve which will get freed as contiguous | 
|  | * blocks as reclaim kicks in | 
|  | */ | 
|  | static void setup_zone_migrate_reserve(struct zone *zone) | 
|  | { | 
|  | unsigned long start_pfn, pfn, end_pfn, block_end_pfn; | 
|  | struct page *page; | 
|  | unsigned long block_migratetype; | 
|  | int reserve; | 
|  |  | 
|  | /* | 
|  | * Get the start pfn, end pfn and the number of blocks to reserve | 
|  | * We have to be careful to be aligned to pageblock_nr_pages to | 
|  | * make sure that we always check pfn_valid for the first page in | 
|  | * the block. | 
|  | */ | 
|  | start_pfn = zone->zone_start_pfn; | 
|  | end_pfn = start_pfn + zone->spanned_pages; | 
|  | start_pfn = roundup(start_pfn, pageblock_nr_pages); | 
|  | reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> | 
|  | pageblock_order; | 
|  |  | 
|  | /* | 
|  | * Reserve blocks are generally in place to help high-order atomic | 
|  | * allocations that are short-lived. A min_free_kbytes value that | 
|  | * would result in more than 2 reserve blocks for atomic allocations | 
|  | * is assumed to be in place to help anti-fragmentation for the | 
|  | * future allocation of hugepages at runtime. | 
|  | */ | 
|  | reserve = min(2, reserve); | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { | 
|  | if (!pfn_valid(pfn)) | 
|  | continue; | 
|  | page = pfn_to_page(pfn); | 
|  |  | 
|  | /* Watch out for overlapping nodes */ | 
|  | if (page_to_nid(page) != zone_to_nid(zone)) | 
|  | continue; | 
|  |  | 
|  | block_migratetype = get_pageblock_migratetype(page); | 
|  |  | 
|  | /* Only test what is necessary when the reserves are not met */ | 
|  | if (reserve > 0) { | 
|  | /* | 
|  | * Blocks with reserved pages will never free, skip | 
|  | * them. | 
|  | */ | 
|  | block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); | 
|  | if (pageblock_is_reserved(pfn, block_end_pfn)) | 
|  | continue; | 
|  |  | 
|  | /* If this block is reserved, account for it */ | 
|  | if (block_migratetype == MIGRATE_RESERVE) { | 
|  | reserve--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Suitable for reserving if this block is movable */ | 
|  | if (block_migratetype == MIGRATE_MOVABLE) { | 
|  | set_pageblock_migratetype(page, | 
|  | MIGRATE_RESERVE); | 
|  | move_freepages_block(zone, page, | 
|  | MIGRATE_RESERVE); | 
|  | reserve--; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the reserve is met and this is a previous reserved block, | 
|  | * take it back | 
|  | */ | 
|  | if (block_migratetype == MIGRATE_RESERVE) { | 
|  | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
|  | move_freepages_block(zone, page, MIGRATE_MOVABLE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initially all pages are reserved - free ones are freed | 
|  | * up by free_all_bootmem() once the early boot process is | 
|  | * done. Non-atomic initialization, single-pass. | 
|  | */ | 
|  | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, | 
|  | unsigned long start_pfn, enum memmap_context context) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long end_pfn = start_pfn + size; | 
|  | unsigned long pfn; | 
|  | struct zone *z; | 
|  |  | 
|  | if (highest_memmap_pfn < end_pfn - 1) | 
|  | highest_memmap_pfn = end_pfn - 1; | 
|  |  | 
|  | z = &NODE_DATA(nid)->node_zones[zone]; | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
|  | /* | 
|  | * There can be holes in boot-time mem_map[]s | 
|  | * handed to this function.  They do not | 
|  | * exist on hotplugged memory. | 
|  | */ | 
|  | if (context == MEMMAP_EARLY) { | 
|  | if (!early_pfn_valid(pfn)) | 
|  | continue; | 
|  | if (!early_pfn_in_nid(pfn, nid)) | 
|  | continue; | 
|  | } | 
|  | page = pfn_to_page(pfn); | 
|  | set_page_links(page, zone, nid, pfn); | 
|  | mminit_verify_page_links(page, zone, nid, pfn); | 
|  | init_page_count(page); | 
|  | reset_page_mapcount(page); | 
|  | reset_page_last_nid(page); | 
|  | SetPageReserved(page); | 
|  | /* | 
|  | * Mark the block movable so that blocks are reserved for | 
|  | * movable at startup. This will force kernel allocations | 
|  | * to reserve their blocks rather than leaking throughout | 
|  | * the address space during boot when many long-lived | 
|  | * kernel allocations are made. Later some blocks near | 
|  | * the start are marked MIGRATE_RESERVE by | 
|  | * setup_zone_migrate_reserve() | 
|  | * | 
|  | * bitmap is created for zone's valid pfn range. but memmap | 
|  | * can be created for invalid pages (for alignment) | 
|  | * check here not to call set_pageblock_migratetype() against | 
|  | * pfn out of zone. | 
|  | */ | 
|  | if ((z->zone_start_pfn <= pfn) | 
|  | && (pfn < z->zone_start_pfn + z->spanned_pages) | 
|  | && !(pfn & (pageblock_nr_pages - 1))) | 
|  | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
|  |  | 
|  | INIT_LIST_HEAD(&page->lru); | 
|  | #ifdef WANT_PAGE_VIRTUAL | 
|  | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | 
|  | if (!is_highmem_idx(zone)) | 
|  | set_page_address(page, __va(pfn << PAGE_SHIFT)); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __meminit zone_init_free_lists(struct zone *zone) | 
|  | { | 
|  | int order, t; | 
|  | for_each_migratetype_order(order, t) { | 
|  | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | 
|  | zone->free_area[order].nr_free = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef __HAVE_ARCH_MEMMAP_INIT | 
|  | #define memmap_init(size, nid, zone, start_pfn) \ | 
|  | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) | 
|  | #endif | 
|  |  | 
|  | static int __meminit zone_batchsize(struct zone *zone) | 
|  | { | 
|  | #ifdef CONFIG_MMU | 
|  | int batch; | 
|  |  | 
|  | /* | 
|  | * The per-cpu-pages pools are set to around 1000th of the | 
|  | * size of the zone.  But no more than 1/2 of a meg. | 
|  | * | 
|  | * OK, so we don't know how big the cache is.  So guess. | 
|  | */ | 
|  | batch = zone->present_pages / 1024; | 
|  | if (batch * PAGE_SIZE > 512 * 1024) | 
|  | batch = (512 * 1024) / PAGE_SIZE; | 
|  | batch /= 4;		/* We effectively *= 4 below */ | 
|  | if (batch < 1) | 
|  | batch = 1; | 
|  |  | 
|  | /* | 
|  | * Clamp the batch to a 2^n - 1 value. Having a power | 
|  | * of 2 value was found to be more likely to have | 
|  | * suboptimal cache aliasing properties in some cases. | 
|  | * | 
|  | * For example if 2 tasks are alternately allocating | 
|  | * batches of pages, one task can end up with a lot | 
|  | * of pages of one half of the possible page colors | 
|  | * and the other with pages of the other colors. | 
|  | */ | 
|  | batch = rounddown_pow_of_two(batch + batch/2) - 1; | 
|  |  | 
|  | return batch; | 
|  |  | 
|  | #else | 
|  | /* The deferral and batching of frees should be suppressed under NOMMU | 
|  | * conditions. | 
|  | * | 
|  | * The problem is that NOMMU needs to be able to allocate large chunks | 
|  | * of contiguous memory as there's no hardware page translation to | 
|  | * assemble apparent contiguous memory from discontiguous pages. | 
|  | * | 
|  | * Queueing large contiguous runs of pages for batching, however, | 
|  | * causes the pages to actually be freed in smaller chunks.  As there | 
|  | * can be a significant delay between the individual batches being | 
|  | * recycled, this leads to the once large chunks of space being | 
|  | * fragmented and becoming unavailable for high-order allocations. | 
|  | */ | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) | 
|  | { | 
|  | struct per_cpu_pages *pcp; | 
|  | int migratetype; | 
|  |  | 
|  | memset(p, 0, sizeof(*p)); | 
|  |  | 
|  | pcp = &p->pcp; | 
|  | pcp->count = 0; | 
|  | pcp->high = 6 * batch; | 
|  | pcp->batch = max(1UL, 1 * batch); | 
|  | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) | 
|  | INIT_LIST_HEAD(&pcp->lists[migratetype]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist | 
|  | * to the value high for the pageset p. | 
|  | */ | 
|  |  | 
|  | static void setup_pagelist_highmark(struct per_cpu_pageset *p, | 
|  | unsigned long high) | 
|  | { | 
|  | struct per_cpu_pages *pcp; | 
|  |  | 
|  | pcp = &p->pcp; | 
|  | pcp->high = high; | 
|  | pcp->batch = max(1UL, high/4); | 
|  | if ((high/4) > (PAGE_SHIFT * 8)) | 
|  | pcp->batch = PAGE_SHIFT * 8; | 
|  | } | 
|  |  | 
|  | static void __meminit setup_zone_pageset(struct zone *zone) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | zone->pageset = alloc_percpu(struct per_cpu_pageset); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | 
|  |  | 
|  | setup_pageset(pcp, zone_batchsize(zone)); | 
|  |  | 
|  | if (percpu_pagelist_fraction) | 
|  | setup_pagelist_highmark(pcp, | 
|  | (zone->present_pages / | 
|  | percpu_pagelist_fraction)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate per cpu pagesets and initialize them. | 
|  | * Before this call only boot pagesets were available. | 
|  | */ | 
|  | void __init setup_per_cpu_pageset(void) | 
|  | { | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_populated_zone(zone) | 
|  | setup_zone_pageset(zone); | 
|  | } | 
|  |  | 
|  | static noinline __init_refok | 
|  | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) | 
|  | { | 
|  | int i; | 
|  | struct pglist_data *pgdat = zone->zone_pgdat; | 
|  | size_t alloc_size; | 
|  |  | 
|  | /* | 
|  | * The per-page waitqueue mechanism uses hashed waitqueues | 
|  | * per zone. | 
|  | */ | 
|  | zone->wait_table_hash_nr_entries = | 
|  | wait_table_hash_nr_entries(zone_size_pages); | 
|  | zone->wait_table_bits = | 
|  | wait_table_bits(zone->wait_table_hash_nr_entries); | 
|  | alloc_size = zone->wait_table_hash_nr_entries | 
|  | * sizeof(wait_queue_head_t); | 
|  |  | 
|  | if (!slab_is_available()) { | 
|  | zone->wait_table = (wait_queue_head_t *) | 
|  | alloc_bootmem_node_nopanic(pgdat, alloc_size); | 
|  | } else { | 
|  | /* | 
|  | * This case means that a zone whose size was 0 gets new memory | 
|  | * via memory hot-add. | 
|  | * But it may be the case that a new node was hot-added.  In | 
|  | * this case vmalloc() will not be able to use this new node's | 
|  | * memory - this wait_table must be initialized to use this new | 
|  | * node itself as well. | 
|  | * To use this new node's memory, further consideration will be | 
|  | * necessary. | 
|  | */ | 
|  | zone->wait_table = vmalloc(alloc_size); | 
|  | } | 
|  | if (!zone->wait_table) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) | 
|  | init_waitqueue_head(zone->wait_table + i); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __meminit void zone_pcp_init(struct zone *zone) | 
|  | { | 
|  | /* | 
|  | * per cpu subsystem is not up at this point. The following code | 
|  | * relies on the ability of the linker to provide the | 
|  | * offset of a (static) per cpu variable into the per cpu area. | 
|  | */ | 
|  | zone->pageset = &boot_pageset; | 
|  |  | 
|  | if (zone->present_pages) | 
|  | printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n", | 
|  | zone->name, zone->present_pages, | 
|  | zone_batchsize(zone)); | 
|  | } | 
|  |  | 
|  | int __meminit init_currently_empty_zone(struct zone *zone, | 
|  | unsigned long zone_start_pfn, | 
|  | unsigned long size, | 
|  | enum memmap_context context) | 
|  | { | 
|  | struct pglist_data *pgdat = zone->zone_pgdat; | 
|  | int ret; | 
|  | ret = zone_wait_table_init(zone, size); | 
|  | if (ret) | 
|  | return ret; | 
|  | pgdat->nr_zones = zone_idx(zone) + 1; | 
|  |  | 
|  | zone->zone_start_pfn = zone_start_pfn; | 
|  |  | 
|  | mminit_dprintk(MMINIT_TRACE, "memmap_init", | 
|  | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | 
|  | pgdat->node_id, | 
|  | (unsigned long)zone_idx(zone), | 
|  | zone_start_pfn, (zone_start_pfn + size)); | 
|  |  | 
|  | zone_init_free_lists(zone); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID | 
|  | /* | 
|  | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | 
|  | * Architectures may implement their own version but if add_active_range() | 
|  | * was used and there are no special requirements, this is a convenient | 
|  | * alternative | 
|  | */ | 
|  | int __meminit __early_pfn_to_nid(unsigned long pfn) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn; | 
|  | int i, nid; | 
|  |  | 
|  | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) | 
|  | if (start_pfn <= pfn && pfn < end_pfn) | 
|  | return nid; | 
|  | /* This is a memory hole */ | 
|  | return -1; | 
|  | } | 
|  | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | 
|  |  | 
|  | int __meminit early_pfn_to_nid(unsigned long pfn) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | nid = __early_pfn_to_nid(pfn); | 
|  | if (nid >= 0) | 
|  | return nid; | 
|  | /* just returns 0 */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NODES_SPAN_OTHER_NODES | 
|  | bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | nid = __early_pfn_to_nid(pfn); | 
|  | if (nid >= 0 && nid != node) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * free_bootmem_with_active_regions - Call free_bootmem_node for each active range | 
|  | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. | 
|  | * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node | 
|  | * | 
|  | * If an architecture guarantees that all ranges registered with | 
|  | * add_active_ranges() contain no holes and may be freed, this | 
|  | * this function may be used instead of calling free_bootmem() manually. | 
|  | */ | 
|  | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn; | 
|  | int i, this_nid; | 
|  |  | 
|  | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { | 
|  | start_pfn = min(start_pfn, max_low_pfn); | 
|  | end_pfn = min(end_pfn, max_low_pfn); | 
|  |  | 
|  | if (start_pfn < end_pfn) | 
|  | free_bootmem_node(NODE_DATA(this_nid), | 
|  | PFN_PHYS(start_pfn), | 
|  | (end_pfn - start_pfn) << PAGE_SHIFT); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sparse_memory_present_with_active_regions - Call memory_present for each active range | 
|  | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. | 
|  | * | 
|  | * If an architecture guarantees that all ranges registered with | 
|  | * add_active_ranges() contain no holes and may be freed, this | 
|  | * function may be used instead of calling memory_present() manually. | 
|  | */ | 
|  | void __init sparse_memory_present_with_active_regions(int nid) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn; | 
|  | int i, this_nid; | 
|  |  | 
|  | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) | 
|  | memory_present(this_nid, start_pfn, end_pfn); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_pfn_range_for_nid - Return the start and end page frames for a node | 
|  | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. | 
|  | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | 
|  | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | 
|  | * | 
|  | * It returns the start and end page frame of a node based on information | 
|  | * provided by an arch calling add_active_range(). If called for a node | 
|  | * with no available memory, a warning is printed and the start and end | 
|  | * PFNs will be 0. | 
|  | */ | 
|  | void __meminit get_pfn_range_for_nid(unsigned int nid, | 
|  | unsigned long *start_pfn, unsigned long *end_pfn) | 
|  | { | 
|  | unsigned long this_start_pfn, this_end_pfn; | 
|  | int i; | 
|  |  | 
|  | *start_pfn = -1UL; | 
|  | *end_pfn = 0; | 
|  |  | 
|  | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { | 
|  | *start_pfn = min(*start_pfn, this_start_pfn); | 
|  | *end_pfn = max(*end_pfn, this_end_pfn); | 
|  | } | 
|  |  | 
|  | if (*start_pfn == -1UL) | 
|  | *start_pfn = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This finds a zone that can be used for ZONE_MOVABLE pages. The | 
|  | * assumption is made that zones within a node are ordered in monotonic | 
|  | * increasing memory addresses so that the "highest" populated zone is used | 
|  | */ | 
|  | static void __init find_usable_zone_for_movable(void) | 
|  | { | 
|  | int zone_index; | 
|  | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | 
|  | if (zone_index == ZONE_MOVABLE) | 
|  | continue; | 
|  |  | 
|  | if (arch_zone_highest_possible_pfn[zone_index] > | 
|  | arch_zone_lowest_possible_pfn[zone_index]) | 
|  | break; | 
|  | } | 
|  |  | 
|  | VM_BUG_ON(zone_index == -1); | 
|  | movable_zone = zone_index; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | 
|  | * because it is sized independent of architecture. Unlike the other zones, | 
|  | * the starting point for ZONE_MOVABLE is not fixed. It may be different | 
|  | * in each node depending on the size of each node and how evenly kernelcore | 
|  | * is distributed. This helper function adjusts the zone ranges | 
|  | * provided by the architecture for a given node by using the end of the | 
|  | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | 
|  | * zones within a node are in order of monotonic increases memory addresses | 
|  | */ | 
|  | static void __meminit adjust_zone_range_for_zone_movable(int nid, | 
|  | unsigned long zone_type, | 
|  | unsigned long node_start_pfn, | 
|  | unsigned long node_end_pfn, | 
|  | unsigned long *zone_start_pfn, | 
|  | unsigned long *zone_end_pfn) | 
|  | { | 
|  | /* Only adjust if ZONE_MOVABLE is on this node */ | 
|  | if (zone_movable_pfn[nid]) { | 
|  | /* Size ZONE_MOVABLE */ | 
|  | if (zone_type == ZONE_MOVABLE) { | 
|  | *zone_start_pfn = zone_movable_pfn[nid]; | 
|  | *zone_end_pfn = min(node_end_pfn, | 
|  | arch_zone_highest_possible_pfn[movable_zone]); | 
|  |  | 
|  | /* Adjust for ZONE_MOVABLE starting within this range */ | 
|  | } else if (*zone_start_pfn < zone_movable_pfn[nid] && | 
|  | *zone_end_pfn > zone_movable_pfn[nid]) { | 
|  | *zone_end_pfn = zone_movable_pfn[nid]; | 
|  |  | 
|  | /* Check if this whole range is within ZONE_MOVABLE */ | 
|  | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | 
|  | *zone_start_pfn = *zone_end_pfn; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of pages a zone spans in a node, including holes | 
|  | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | 
|  | */ | 
|  | static unsigned long __meminit zone_spanned_pages_in_node(int nid, | 
|  | unsigned long zone_type, | 
|  | unsigned long *ignored) | 
|  | { | 
|  | unsigned long node_start_pfn, node_end_pfn; | 
|  | unsigned long zone_start_pfn, zone_end_pfn; | 
|  |  | 
|  | /* Get the start and end of the node and zone */ | 
|  | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); | 
|  | zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; | 
|  | zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | 
|  | adjust_zone_range_for_zone_movable(nid, zone_type, | 
|  | node_start_pfn, node_end_pfn, | 
|  | &zone_start_pfn, &zone_end_pfn); | 
|  |  | 
|  | /* Check that this node has pages within the zone's required range */ | 
|  | if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) | 
|  | return 0; | 
|  |  | 
|  | /* Move the zone boundaries inside the node if necessary */ | 
|  | zone_end_pfn = min(zone_end_pfn, node_end_pfn); | 
|  | zone_start_pfn = max(zone_start_pfn, node_start_pfn); | 
|  |  | 
|  | /* Return the spanned pages */ | 
|  | return zone_end_pfn - zone_start_pfn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | 
|  | * then all holes in the requested range will be accounted for. | 
|  | */ | 
|  | unsigned long __meminit __absent_pages_in_range(int nid, | 
|  | unsigned long range_start_pfn, | 
|  | unsigned long range_end_pfn) | 
|  | { | 
|  | unsigned long nr_absent = range_end_pfn - range_start_pfn; | 
|  | unsigned long start_pfn, end_pfn; | 
|  | int i; | 
|  |  | 
|  | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
|  | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | 
|  | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | 
|  | nr_absent -= end_pfn - start_pfn; | 
|  | } | 
|  | return nr_absent; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * absent_pages_in_range - Return number of page frames in holes within a range | 
|  | * @start_pfn: The start PFN to start searching for holes | 
|  | * @end_pfn: The end PFN to stop searching for holes | 
|  | * | 
|  | * It returns the number of pages frames in memory holes within a range. | 
|  | */ | 
|  | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | 
|  | } | 
|  |  | 
|  | /* Return the number of page frames in holes in a zone on a node */ | 
|  | static unsigned long __meminit zone_absent_pages_in_node(int nid, | 
|  | unsigned long zone_type, | 
|  | unsigned long *ignored) | 
|  | { | 
|  | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; | 
|  | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | 
|  | unsigned long node_start_pfn, node_end_pfn; | 
|  | unsigned long zone_start_pfn, zone_end_pfn; | 
|  |  | 
|  | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); | 
|  | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); | 
|  | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | 
|  |  | 
|  | adjust_zone_range_for_zone_movable(nid, zone_type, | 
|  | node_start_pfn, node_end_pfn, | 
|  | &zone_start_pfn, &zone_end_pfn); | 
|  | return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, | 
|  | unsigned long zone_type, | 
|  | unsigned long *zones_size) | 
|  | { | 
|  | return zones_size[zone_type]; | 
|  | } | 
|  |  | 
|  | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, | 
|  | unsigned long zone_type, | 
|  | unsigned long *zholes_size) | 
|  | { | 
|  | if (!zholes_size) | 
|  | return 0; | 
|  |  | 
|  | return zholes_size[zone_type]; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  |  | 
|  | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, | 
|  | unsigned long *zones_size, unsigned long *zholes_size) | 
|  | { | 
|  | unsigned long realtotalpages, totalpages = 0; | 
|  | enum zone_type i; | 
|  |  | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) | 
|  | totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, | 
|  | zones_size); | 
|  | pgdat->node_spanned_pages = totalpages; | 
|  |  | 
|  | realtotalpages = totalpages; | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) | 
|  | realtotalpages -= | 
|  | zone_absent_pages_in_node(pgdat->node_id, i, | 
|  | zholes_size); | 
|  | pgdat->node_present_pages = realtotalpages; | 
|  | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | 
|  | realtotalpages); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SPARSEMEM | 
|  | /* | 
|  | * Calculate the size of the zone->blockflags rounded to an unsigned long | 
|  | * Start by making sure zonesize is a multiple of pageblock_order by rounding | 
|  | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | 
|  | * round what is now in bits to nearest long in bits, then return it in | 
|  | * bytes. | 
|  | */ | 
|  | static unsigned long __init usemap_size(unsigned long zonesize) | 
|  | { | 
|  | unsigned long usemapsize; | 
|  |  | 
|  | usemapsize = roundup(zonesize, pageblock_nr_pages); | 
|  | usemapsize = usemapsize >> pageblock_order; | 
|  | usemapsize *= NR_PAGEBLOCK_BITS; | 
|  | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | 
|  |  | 
|  | return usemapsize / 8; | 
|  | } | 
|  |  | 
|  | static void __init setup_usemap(struct pglist_data *pgdat, | 
|  | struct zone *zone, unsigned long zonesize) | 
|  | { | 
|  | unsigned long usemapsize = usemap_size(zonesize); | 
|  | zone->pageblock_flags = NULL; | 
|  | if (usemapsize) | 
|  | zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, | 
|  | usemapsize); | 
|  | } | 
|  | #else | 
|  | static inline void setup_usemap(struct pglist_data *pgdat, | 
|  | struct zone *zone, unsigned long zonesize) {} | 
|  | #endif /* CONFIG_SPARSEMEM */ | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | 
|  |  | 
|  | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ | 
|  | void __init set_pageblock_order(void) | 
|  | { | 
|  | unsigned int order; | 
|  |  | 
|  | /* Check that pageblock_nr_pages has not already been setup */ | 
|  | if (pageblock_order) | 
|  | return; | 
|  |  | 
|  | if (HPAGE_SHIFT > PAGE_SHIFT) | 
|  | order = HUGETLB_PAGE_ORDER; | 
|  | else | 
|  | order = MAX_ORDER - 1; | 
|  |  | 
|  | /* | 
|  | * Assume the largest contiguous order of interest is a huge page. | 
|  | * This value may be variable depending on boot parameters on IA64 and | 
|  | * powerpc. | 
|  | */ | 
|  | pageblock_order = order; | 
|  | } | 
|  | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | 
|  |  | 
|  | /* | 
|  | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | 
|  | * is unused as pageblock_order is set at compile-time. See | 
|  | * include/linux/pageblock-flags.h for the values of pageblock_order based on | 
|  | * the kernel config | 
|  | */ | 
|  | void __init set_pageblock_order(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | 
|  |  | 
|  | static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, | 
|  | unsigned long present_pages) | 
|  | { | 
|  | unsigned long pages = spanned_pages; | 
|  |  | 
|  | /* | 
|  | * Provide a more accurate estimation if there are holes within | 
|  | * the zone and SPARSEMEM is in use. If there are holes within the | 
|  | * zone, each populated memory region may cost us one or two extra | 
|  | * memmap pages due to alignment because memmap pages for each | 
|  | * populated regions may not naturally algined on page boundary. | 
|  | * So the (present_pages >> 4) heuristic is a tradeoff for that. | 
|  | */ | 
|  | if (spanned_pages > present_pages + (present_pages >> 4) && | 
|  | IS_ENABLED(CONFIG_SPARSEMEM)) | 
|  | pages = present_pages; | 
|  |  | 
|  | return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the zone data structures: | 
|  | *   - mark all pages reserved | 
|  | *   - mark all memory queues empty | 
|  | *   - clear the memory bitmaps | 
|  | * | 
|  | * NOTE: pgdat should get zeroed by caller. | 
|  | */ | 
|  | static void __paginginit free_area_init_core(struct pglist_data *pgdat, | 
|  | unsigned long *zones_size, unsigned long *zholes_size) | 
|  | { | 
|  | enum zone_type j; | 
|  | int nid = pgdat->node_id; | 
|  | unsigned long zone_start_pfn = pgdat->node_start_pfn; | 
|  | int ret; | 
|  |  | 
|  | pgdat_resize_init(pgdat); | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | spin_lock_init(&pgdat->numabalancing_migrate_lock); | 
|  | pgdat->numabalancing_migrate_nr_pages = 0; | 
|  | pgdat->numabalancing_migrate_next_window = jiffies; | 
|  | #endif | 
|  | init_waitqueue_head(&pgdat->kswapd_wait); | 
|  | init_waitqueue_head(&pgdat->pfmemalloc_wait); | 
|  | pgdat_page_cgroup_init(pgdat); | 
|  |  | 
|  | for (j = 0; j < MAX_NR_ZONES; j++) { | 
|  | struct zone *zone = pgdat->node_zones + j; | 
|  | unsigned long size, realsize, freesize, memmap_pages; | 
|  |  | 
|  | size = zone_spanned_pages_in_node(nid, j, zones_size); | 
|  | realsize = freesize = size - zone_absent_pages_in_node(nid, j, | 
|  | zholes_size); | 
|  |  | 
|  | /* | 
|  | * Adjust freesize so that it accounts for how much memory | 
|  | * is used by this zone for memmap. This affects the watermark | 
|  | * and per-cpu initialisations | 
|  | */ | 
|  | memmap_pages = calc_memmap_size(size, realsize); | 
|  | if (freesize >= memmap_pages) { | 
|  | freesize -= memmap_pages; | 
|  | if (memmap_pages) | 
|  | printk(KERN_DEBUG | 
|  | "  %s zone: %lu pages used for memmap\n", | 
|  | zone_names[j], memmap_pages); | 
|  | } else | 
|  | printk(KERN_WARNING | 
|  | "  %s zone: %lu pages exceeds freesize %lu\n", | 
|  | zone_names[j], memmap_pages, freesize); | 
|  |  | 
|  | /* Account for reserved pages */ | 
|  | if (j == 0 && freesize > dma_reserve) { | 
|  | freesize -= dma_reserve; | 
|  | printk(KERN_DEBUG "  %s zone: %lu pages reserved\n", | 
|  | zone_names[0], dma_reserve); | 
|  | } | 
|  |  | 
|  | if (!is_highmem_idx(j)) | 
|  | nr_kernel_pages += freesize; | 
|  | /* Charge for highmem memmap if there are enough kernel pages */ | 
|  | else if (nr_kernel_pages > memmap_pages * 2) | 
|  | nr_kernel_pages -= memmap_pages; | 
|  | nr_all_pages += freesize; | 
|  |  | 
|  | zone->spanned_pages = size; | 
|  | zone->present_pages = freesize; | 
|  | /* | 
|  | * Set an approximate value for lowmem here, it will be adjusted | 
|  | * when the bootmem allocator frees pages into the buddy system. | 
|  | * And all highmem pages will be managed by the buddy system. | 
|  | */ | 
|  | zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; | 
|  | #ifdef CONFIG_NUMA | 
|  | zone->node = nid; | 
|  | zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) | 
|  | / 100; | 
|  | zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; | 
|  | #endif | 
|  | zone->name = zone_names[j]; | 
|  | spin_lock_init(&zone->lock); | 
|  | spin_lock_init(&zone->lru_lock); | 
|  | zone_seqlock_init(zone); | 
|  | zone->zone_pgdat = pgdat; | 
|  |  | 
|  | zone_pcp_init(zone); | 
|  | lruvec_init(&zone->lruvec); | 
|  | if (!size) | 
|  | continue; | 
|  |  | 
|  | set_pageblock_order(); | 
|  | setup_usemap(pgdat, zone, size); | 
|  | ret = init_currently_empty_zone(zone, zone_start_pfn, | 
|  | size, MEMMAP_EARLY); | 
|  | BUG_ON(ret); | 
|  | memmap_init(size, nid, j, zone_start_pfn); | 
|  | zone_start_pfn += size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) | 
|  | { | 
|  | /* Skip empty nodes */ | 
|  | if (!pgdat->node_spanned_pages) | 
|  | return; | 
|  |  | 
|  | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
|  | /* ia64 gets its own node_mem_map, before this, without bootmem */ | 
|  | if (!pgdat->node_mem_map) { | 
|  | unsigned long size, start, end; | 
|  | struct page *map; | 
|  |  | 
|  | /* | 
|  | * The zone's endpoints aren't required to be MAX_ORDER | 
|  | * aligned but the node_mem_map endpoints must be in order | 
|  | * for the buddy allocator to function correctly. | 
|  | */ | 
|  | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | 
|  | end = pgdat->node_start_pfn + pgdat->node_spanned_pages; | 
|  | end = ALIGN(end, MAX_ORDER_NR_PAGES); | 
|  | size =  (end - start) * sizeof(struct page); | 
|  | map = alloc_remap(pgdat->node_id, size); | 
|  | if (!map) | 
|  | map = alloc_bootmem_node_nopanic(pgdat, size); | 
|  | pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); | 
|  | } | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  | /* | 
|  | * With no DISCONTIG, the global mem_map is just set as node 0's | 
|  | */ | 
|  | if (pgdat == NODE_DATA(0)) { | 
|  | mem_map = NODE_DATA(0)->node_mem_map; | 
|  | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) | 
|  | mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); | 
|  | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  | } | 
|  | #endif | 
|  | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ | 
|  | } | 
|  |  | 
|  | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, | 
|  | unsigned long node_start_pfn, unsigned long *zholes_size) | 
|  | { | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  |  | 
|  | /* pg_data_t should be reset to zero when it's allocated */ | 
|  | WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); | 
|  |  | 
|  | pgdat->node_id = nid; | 
|  | pgdat->node_start_pfn = node_start_pfn; | 
|  | init_zone_allows_reclaim(nid); | 
|  | calculate_node_totalpages(pgdat, zones_size, zholes_size); | 
|  |  | 
|  | alloc_node_mem_map(pgdat); | 
|  | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
|  | printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", | 
|  | nid, (unsigned long)pgdat, | 
|  | (unsigned long)pgdat->node_mem_map); | 
|  | #endif | 
|  |  | 
|  | free_area_init_core(pgdat, zones_size, zholes_size); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  |  | 
|  | #if MAX_NUMNODES > 1 | 
|  | /* | 
|  | * Figure out the number of possible node ids. | 
|  | */ | 
|  | static void __init setup_nr_node_ids(void) | 
|  | { | 
|  | unsigned int node; | 
|  | unsigned int highest = 0; | 
|  |  | 
|  | for_each_node_mask(node, node_possible_map) | 
|  | highest = node; | 
|  | nr_node_ids = highest + 1; | 
|  | } | 
|  | #else | 
|  | static inline void setup_nr_node_ids(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * node_map_pfn_alignment - determine the maximum internode alignment | 
|  | * | 
|  | * This function should be called after node map is populated and sorted. | 
|  | * It calculates the maximum power of two alignment which can distinguish | 
|  | * all the nodes. | 
|  | * | 
|  | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | 
|  | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the | 
|  | * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is | 
|  | * shifted, 1GiB is enough and this function will indicate so. | 
|  | * | 
|  | * This is used to test whether pfn -> nid mapping of the chosen memory | 
|  | * model has fine enough granularity to avoid incorrect mapping for the | 
|  | * populated node map. | 
|  | * | 
|  | * Returns the determined alignment in pfn's.  0 if there is no alignment | 
|  | * requirement (single node). | 
|  | */ | 
|  | unsigned long __init node_map_pfn_alignment(void) | 
|  | { | 
|  | unsigned long accl_mask = 0, last_end = 0; | 
|  | unsigned long start, end, mask; | 
|  | int last_nid = -1; | 
|  | int i, nid; | 
|  |  | 
|  | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { | 
|  | if (!start || last_nid < 0 || last_nid == nid) { | 
|  | last_nid = nid; | 
|  | last_end = end; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start with a mask granular enough to pin-point to the | 
|  | * start pfn and tick off bits one-by-one until it becomes | 
|  | * too coarse to separate the current node from the last. | 
|  | */ | 
|  | mask = ~((1 << __ffs(start)) - 1); | 
|  | while (mask && last_end <= (start & (mask << 1))) | 
|  | mask <<= 1; | 
|  |  | 
|  | /* accumulate all internode masks */ | 
|  | accl_mask |= mask; | 
|  | } | 
|  |  | 
|  | /* convert mask to number of pages */ | 
|  | return ~accl_mask + 1; | 
|  | } | 
|  |  | 
|  | /* Find the lowest pfn for a node */ | 
|  | static unsigned long __init find_min_pfn_for_node(int nid) | 
|  | { | 
|  | unsigned long min_pfn = ULONG_MAX; | 
|  | unsigned long start_pfn; | 
|  | int i; | 
|  |  | 
|  | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) | 
|  | min_pfn = min(min_pfn, start_pfn); | 
|  |  | 
|  | if (min_pfn == ULONG_MAX) { | 
|  | printk(KERN_WARNING | 
|  | "Could not find start_pfn for node %d\n", nid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return min_pfn; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_min_pfn_with_active_regions - Find the minimum PFN registered | 
|  | * | 
|  | * It returns the minimum PFN based on information provided via | 
|  | * add_active_range(). | 
|  | */ | 
|  | unsigned long __init find_min_pfn_with_active_regions(void) | 
|  | { | 
|  | return find_min_pfn_for_node(MAX_NUMNODES); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * early_calculate_totalpages() | 
|  | * Sum pages in active regions for movable zone. | 
|  | * Populate N_MEMORY for calculating usable_nodes. | 
|  | */ | 
|  | static unsigned long __init early_calculate_totalpages(void) | 
|  | { | 
|  | unsigned long totalpages = 0; | 
|  | unsigned long start_pfn, end_pfn; | 
|  | int i, nid; | 
|  |  | 
|  | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
|  | unsigned long pages = end_pfn - start_pfn; | 
|  |  | 
|  | totalpages += pages; | 
|  | if (pages) | 
|  | node_set_state(nid, N_MEMORY); | 
|  | } | 
|  | return totalpages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the PFN the Movable zone begins in each node. Kernel memory | 
|  | * is spread evenly between nodes as long as the nodes have enough | 
|  | * memory. When they don't, some nodes will have more kernelcore than | 
|  | * others | 
|  | */ | 
|  | static void __init find_zone_movable_pfns_for_nodes(void) | 
|  | { | 
|  | int i, nid; | 
|  | unsigned long usable_startpfn; | 
|  | unsigned long kernelcore_node, kernelcore_remaining; | 
|  | /* save the state before borrow the nodemask */ | 
|  | nodemask_t saved_node_state = node_states[N_MEMORY]; | 
|  | unsigned long totalpages = early_calculate_totalpages(); | 
|  | int usable_nodes = nodes_weight(node_states[N_MEMORY]); | 
|  |  | 
|  | /* | 
|  | * If movablecore was specified, calculate what size of | 
|  | * kernelcore that corresponds so that memory usable for | 
|  | * any allocation type is evenly spread. If both kernelcore | 
|  | * and movablecore are specified, then the value of kernelcore | 
|  | * will be used for required_kernelcore if it's greater than | 
|  | * what movablecore would have allowed. | 
|  | */ | 
|  | if (required_movablecore) { | 
|  | unsigned long corepages; | 
|  |  | 
|  | /* | 
|  | * Round-up so that ZONE_MOVABLE is at least as large as what | 
|  | * was requested by the user | 
|  | */ | 
|  | required_movablecore = | 
|  | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | 
|  | corepages = totalpages - required_movablecore; | 
|  |  | 
|  | required_kernelcore = max(required_kernelcore, corepages); | 
|  | } | 
|  |  | 
|  | /* If kernelcore was not specified, there is no ZONE_MOVABLE */ | 
|  | if (!required_kernelcore) | 
|  | goto out; | 
|  |  | 
|  | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | 
|  | find_usable_zone_for_movable(); | 
|  | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; | 
|  |  | 
|  | restart: | 
|  | /* Spread kernelcore memory as evenly as possible throughout nodes */ | 
|  | kernelcore_node = required_kernelcore / usable_nodes; | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | unsigned long start_pfn, end_pfn; | 
|  |  | 
|  | /* | 
|  | * Recalculate kernelcore_node if the division per node | 
|  | * now exceeds what is necessary to satisfy the requested | 
|  | * amount of memory for the kernel | 
|  | */ | 
|  | if (required_kernelcore < kernelcore_node) | 
|  | kernelcore_node = required_kernelcore / usable_nodes; | 
|  |  | 
|  | /* | 
|  | * As the map is walked, we track how much memory is usable | 
|  | * by the kernel using kernelcore_remaining. When it is | 
|  | * 0, the rest of the node is usable by ZONE_MOVABLE | 
|  | */ | 
|  | kernelcore_remaining = kernelcore_node; | 
|  |  | 
|  | /* Go through each range of PFNs within this node */ | 
|  | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
|  | unsigned long size_pages; | 
|  |  | 
|  | start_pfn = max(start_pfn, zone_movable_pfn[nid]); | 
|  | if (start_pfn >= end_pfn) | 
|  | continue; | 
|  |  | 
|  | /* Account for what is only usable for kernelcore */ | 
|  | if (start_pfn < usable_startpfn) { | 
|  | unsigned long kernel_pages; | 
|  | kernel_pages = min(end_pfn, usable_startpfn) | 
|  | - start_pfn; | 
|  |  | 
|  | kernelcore_remaining -= min(kernel_pages, | 
|  | kernelcore_remaining); | 
|  | required_kernelcore -= min(kernel_pages, | 
|  | required_kernelcore); | 
|  |  | 
|  | /* Continue if range is now fully accounted */ | 
|  | if (end_pfn <= usable_startpfn) { | 
|  |  | 
|  | /* | 
|  | * Push zone_movable_pfn to the end so | 
|  | * that if we have to rebalance | 
|  | * kernelcore across nodes, we will | 
|  | * not double account here | 
|  | */ | 
|  | zone_movable_pfn[nid] = end_pfn; | 
|  | continue; | 
|  | } | 
|  | start_pfn = usable_startpfn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The usable PFN range for ZONE_MOVABLE is from | 
|  | * start_pfn->end_pfn. Calculate size_pages as the | 
|  | * number of pages used as kernelcore | 
|  | */ | 
|  | size_pages = end_pfn - start_pfn; | 
|  | if (size_pages > kernelcore_remaining) | 
|  | size_pages = kernelcore_remaining; | 
|  | zone_movable_pfn[nid] = start_pfn + size_pages; | 
|  |  | 
|  | /* | 
|  | * Some kernelcore has been met, update counts and | 
|  | * break if the kernelcore for this node has been | 
|  | * satisified | 
|  | */ | 
|  | required_kernelcore -= min(required_kernelcore, | 
|  | size_pages); | 
|  | kernelcore_remaining -= size_pages; | 
|  | if (!kernelcore_remaining) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is still required_kernelcore, we do another pass with one | 
|  | * less node in the count. This will push zone_movable_pfn[nid] further | 
|  | * along on the nodes that still have memory until kernelcore is | 
|  | * satisified | 
|  | */ | 
|  | usable_nodes--; | 
|  | if (usable_nodes && required_kernelcore > usable_nodes) | 
|  | goto restart; | 
|  |  | 
|  | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ | 
|  | for (nid = 0; nid < MAX_NUMNODES; nid++) | 
|  | zone_movable_pfn[nid] = | 
|  | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | 
|  |  | 
|  | out: | 
|  | /* restore the node_state */ | 
|  | node_states[N_MEMORY] = saved_node_state; | 
|  | } | 
|  |  | 
|  | /* Any regular or high memory on that node ? */ | 
|  | static void check_for_memory(pg_data_t *pgdat, int nid) | 
|  | { | 
|  | enum zone_type zone_type; | 
|  |  | 
|  | if (N_MEMORY == N_NORMAL_MEMORY) | 
|  | return; | 
|  |  | 
|  | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | 
|  | struct zone *zone = &pgdat->node_zones[zone_type]; | 
|  | if (zone->present_pages) { | 
|  | node_set_state(nid, N_HIGH_MEMORY); | 
|  | if (N_NORMAL_MEMORY != N_HIGH_MEMORY && | 
|  | zone_type <= ZONE_NORMAL) | 
|  | node_set_state(nid, N_NORMAL_MEMORY); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_area_init_nodes - Initialise all pg_data_t and zone data | 
|  | * @max_zone_pfn: an array of max PFNs for each zone | 
|  | * | 
|  | * This will call free_area_init_node() for each active node in the system. | 
|  | * Using the page ranges provided by add_active_range(), the size of each | 
|  | * zone in each node and their holes is calculated. If the maximum PFN | 
|  | * between two adjacent zones match, it is assumed that the zone is empty. | 
|  | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | 
|  | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | 
|  | * starts where the previous one ended. For example, ZONE_DMA32 starts | 
|  | * at arch_max_dma_pfn. | 
|  | */ | 
|  | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn; | 
|  | int i, nid; | 
|  |  | 
|  | /* Record where the zone boundaries are */ | 
|  | memset(arch_zone_lowest_possible_pfn, 0, | 
|  | sizeof(arch_zone_lowest_possible_pfn)); | 
|  | memset(arch_zone_highest_possible_pfn, 0, | 
|  | sizeof(arch_zone_highest_possible_pfn)); | 
|  | arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); | 
|  | arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; | 
|  | for (i = 1; i < MAX_NR_ZONES; i++) { | 
|  | if (i == ZONE_MOVABLE) | 
|  | continue; | 
|  | arch_zone_lowest_possible_pfn[i] = | 
|  | arch_zone_highest_possible_pfn[i-1]; | 
|  | arch_zone_highest_possible_pfn[i] = | 
|  | max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); | 
|  | } | 
|  | arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; | 
|  | arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; | 
|  |  | 
|  | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | 
|  | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | 
|  | find_zone_movable_pfns_for_nodes(); | 
|  |  | 
|  | /* Print out the zone ranges */ | 
|  | printk("Zone ranges:\n"); | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | if (i == ZONE_MOVABLE) | 
|  | continue; | 
|  | printk(KERN_CONT "  %-8s ", zone_names[i]); | 
|  | if (arch_zone_lowest_possible_pfn[i] == | 
|  | arch_zone_highest_possible_pfn[i]) | 
|  | printk(KERN_CONT "empty\n"); | 
|  | else | 
|  | printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", | 
|  | arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, | 
|  | (arch_zone_highest_possible_pfn[i] | 
|  | << PAGE_SHIFT) - 1); | 
|  | } | 
|  |  | 
|  | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | 
|  | printk("Movable zone start for each node\n"); | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | if (zone_movable_pfn[i]) | 
|  | printk("  Node %d: %#010lx\n", i, | 
|  | zone_movable_pfn[i] << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /* Print out the early node map */ | 
|  | printk("Early memory node ranges\n"); | 
|  | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) | 
|  | printk("  node %3d: [mem %#010lx-%#010lx]\n", nid, | 
|  | start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); | 
|  |  | 
|  | /* Initialise every node */ | 
|  | mminit_verify_pageflags_layout(); | 
|  | setup_nr_node_ids(); | 
|  | for_each_online_node(nid) { | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | free_area_init_node(nid, NULL, | 
|  | find_min_pfn_for_node(nid), NULL); | 
|  |  | 
|  | /* Any memory on that node */ | 
|  | if (pgdat->node_present_pages) | 
|  | node_set_state(nid, N_MEMORY); | 
|  | check_for_memory(pgdat, nid); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init cmdline_parse_core(char *p, unsigned long *core) | 
|  | { | 
|  | unsigned long long coremem; | 
|  | if (!p) | 
|  | return -EINVAL; | 
|  |  | 
|  | coremem = memparse(p, &p); | 
|  | *core = coremem >> PAGE_SHIFT; | 
|  |  | 
|  | /* Paranoid check that UL is enough for the coremem value */ | 
|  | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kernelcore=size sets the amount of memory for use for allocations that | 
|  | * cannot be reclaimed or migrated. | 
|  | */ | 
|  | static int __init cmdline_parse_kernelcore(char *p) | 
|  | { | 
|  | return cmdline_parse_core(p, &required_kernelcore); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * movablecore=size sets the amount of memory for use for allocations that | 
|  | * can be reclaimed or migrated. | 
|  | */ | 
|  | static int __init cmdline_parse_movablecore(char *p) | 
|  | { | 
|  | return cmdline_parse_core(p, &required_movablecore); | 
|  | } | 
|  |  | 
|  | early_param("kernelcore", cmdline_parse_kernelcore); | 
|  | early_param("movablecore", cmdline_parse_movablecore); | 
|  |  | 
|  | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  |  | 
|  | /** | 
|  | * set_dma_reserve - set the specified number of pages reserved in the first zone | 
|  | * @new_dma_reserve: The number of pages to mark reserved | 
|  | * | 
|  | * The per-cpu batchsize and zone watermarks are determined by present_pages. | 
|  | * In the DMA zone, a significant percentage may be consumed by kernel image | 
|  | * and other unfreeable allocations which can skew the watermarks badly. This | 
|  | * function may optionally be used to account for unfreeable pages in the | 
|  | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | 
|  | * smaller per-cpu batchsize. | 
|  | */ | 
|  | void __init set_dma_reserve(unsigned long new_dma_reserve) | 
|  | { | 
|  | dma_reserve = new_dma_reserve; | 
|  | } | 
|  |  | 
|  | void __init free_area_init(unsigned long *zones_size) | 
|  | { | 
|  | free_area_init_node(0, zones_size, | 
|  | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); | 
|  | } | 
|  |  | 
|  | static int page_alloc_cpu_notify(struct notifier_block *self, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | int cpu = (unsigned long)hcpu; | 
|  |  | 
|  | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { | 
|  | lru_add_drain_cpu(cpu); | 
|  | drain_pages(cpu); | 
|  |  | 
|  | /* | 
|  | * Spill the event counters of the dead processor | 
|  | * into the current processors event counters. | 
|  | * This artificially elevates the count of the current | 
|  | * processor. | 
|  | */ | 
|  | vm_events_fold_cpu(cpu); | 
|  |  | 
|  | /* | 
|  | * Zero the differential counters of the dead processor | 
|  | * so that the vm statistics are consistent. | 
|  | * | 
|  | * This is only okay since the processor is dead and cannot | 
|  | * race with what we are doing. | 
|  | */ | 
|  | refresh_cpu_vm_stats(cpu); | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | void __init page_alloc_init(void) | 
|  | { | 
|  | hotcpu_notifier(page_alloc_cpu_notify, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio | 
|  | *	or min_free_kbytes changes. | 
|  | */ | 
|  | static void calculate_totalreserve_pages(void) | 
|  | { | 
|  | struct pglist_data *pgdat; | 
|  | unsigned long reserve_pages = 0; | 
|  | enum zone_type i, j; | 
|  |  | 
|  | for_each_online_pgdat(pgdat) { | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | struct zone *zone = pgdat->node_zones + i; | 
|  | unsigned long max = 0; | 
|  |  | 
|  | /* Find valid and maximum lowmem_reserve in the zone */ | 
|  | for (j = i; j < MAX_NR_ZONES; j++) { | 
|  | if (zone->lowmem_reserve[j] > max) | 
|  | max = zone->lowmem_reserve[j]; | 
|  | } | 
|  |  | 
|  | /* we treat the high watermark as reserved pages. */ | 
|  | max += high_wmark_pages(zone); | 
|  |  | 
|  | if (max > zone->present_pages) | 
|  | max = zone->present_pages; | 
|  | reserve_pages += max; | 
|  | /* | 
|  | * Lowmem reserves are not available to | 
|  | * GFP_HIGHUSER page cache allocations and | 
|  | * kswapd tries to balance zones to their high | 
|  | * watermark.  As a result, neither should be | 
|  | * regarded as dirtyable memory, to prevent a | 
|  | * situation where reclaim has to clean pages | 
|  | * in order to balance the zones. | 
|  | */ | 
|  | zone->dirty_balance_reserve = max; | 
|  | } | 
|  | } | 
|  | dirty_balance_reserve = reserve_pages; | 
|  | totalreserve_pages = reserve_pages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setup_per_zone_lowmem_reserve - called whenever | 
|  | *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone | 
|  | *	has a correct pages reserved value, so an adequate number of | 
|  | *	pages are left in the zone after a successful __alloc_pages(). | 
|  | */ | 
|  | static void setup_per_zone_lowmem_reserve(void) | 
|  | { | 
|  | struct pglist_data *pgdat; | 
|  | enum zone_type j, idx; | 
|  |  | 
|  | for_each_online_pgdat(pgdat) { | 
|  | for (j = 0; j < MAX_NR_ZONES; j++) { | 
|  | struct zone *zone = pgdat->node_zones + j; | 
|  | unsigned long present_pages = zone->present_pages; | 
|  |  | 
|  | zone->lowmem_reserve[j] = 0; | 
|  |  | 
|  | idx = j; | 
|  | while (idx) { | 
|  | struct zone *lower_zone; | 
|  |  | 
|  | idx--; | 
|  |  | 
|  | if (sysctl_lowmem_reserve_ratio[idx] < 1) | 
|  | sysctl_lowmem_reserve_ratio[idx] = 1; | 
|  |  | 
|  | lower_zone = pgdat->node_zones + idx; | 
|  | lower_zone->lowmem_reserve[j] = present_pages / | 
|  | sysctl_lowmem_reserve_ratio[idx]; | 
|  | present_pages += lower_zone->present_pages; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* update totalreserve_pages */ | 
|  | calculate_totalreserve_pages(); | 
|  | } | 
|  |  | 
|  | static void __setup_per_zone_wmarks(void) | 
|  | { | 
|  | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | 
|  | unsigned long lowmem_pages = 0; | 
|  | struct zone *zone; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Calculate total number of !ZONE_HIGHMEM pages */ | 
|  | for_each_zone(zone) { | 
|  | if (!is_highmem(zone)) | 
|  | lowmem_pages += zone->present_pages; | 
|  | } | 
|  |  | 
|  | for_each_zone(zone) { | 
|  | u64 tmp; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | tmp = (u64)pages_min * zone->present_pages; | 
|  | do_div(tmp, lowmem_pages); | 
|  | if (is_highmem(zone)) { | 
|  | /* | 
|  | * __GFP_HIGH and PF_MEMALLOC allocations usually don't | 
|  | * need highmem pages, so cap pages_min to a small | 
|  | * value here. | 
|  | * | 
|  | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) | 
|  | * deltas controls asynch page reclaim, and so should | 
|  | * not be capped for highmem. | 
|  | */ | 
|  | int min_pages; | 
|  |  | 
|  | min_pages = zone->present_pages / 1024; | 
|  | if (min_pages < SWAP_CLUSTER_MAX) | 
|  | min_pages = SWAP_CLUSTER_MAX; | 
|  | if (min_pages > 128) | 
|  | min_pages = 128; | 
|  | zone->watermark[WMARK_MIN] = min_pages; | 
|  | } else { | 
|  | /* | 
|  | * If it's a lowmem zone, reserve a number of pages | 
|  | * proportionate to the zone's size. | 
|  | */ | 
|  | zone->watermark[WMARK_MIN] = tmp; | 
|  | } | 
|  |  | 
|  | zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2); | 
|  | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); | 
|  |  | 
|  | setup_zone_migrate_reserve(zone); | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  |  | 
|  | /* update totalreserve_pages */ | 
|  | calculate_totalreserve_pages(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * setup_per_zone_wmarks - called when min_free_kbytes changes | 
|  | * or when memory is hot-{added|removed} | 
|  | * | 
|  | * Ensures that the watermark[min,low,high] values for each zone are set | 
|  | * correctly with respect to min_free_kbytes. | 
|  | */ | 
|  | void setup_per_zone_wmarks(void) | 
|  | { | 
|  | mutex_lock(&zonelists_mutex); | 
|  | __setup_per_zone_wmarks(); | 
|  | mutex_unlock(&zonelists_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The inactive anon list should be small enough that the VM never has to | 
|  | * do too much work, but large enough that each inactive page has a chance | 
|  | * to be referenced again before it is swapped out. | 
|  | * | 
|  | * The inactive_anon ratio is the target ratio of ACTIVE_ANON to | 
|  | * INACTIVE_ANON pages on this zone's LRU, maintained by the | 
|  | * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of | 
|  | * the anonymous pages are kept on the inactive list. | 
|  | * | 
|  | * total     target    max | 
|  | * memory    ratio     inactive anon | 
|  | * ------------------------------------- | 
|  | *   10MB       1         5MB | 
|  | *  100MB       1        50MB | 
|  | *    1GB       3       250MB | 
|  | *   10GB      10       0.9GB | 
|  | *  100GB      31         3GB | 
|  | *    1TB     101        10GB | 
|  | *   10TB     320        32GB | 
|  | */ | 
|  | static void __meminit calculate_zone_inactive_ratio(struct zone *zone) | 
|  | { | 
|  | unsigned int gb, ratio; | 
|  |  | 
|  | /* Zone size in gigabytes */ | 
|  | gb = zone->present_pages >> (30 - PAGE_SHIFT); | 
|  | if (gb) | 
|  | ratio = int_sqrt(10 * gb); | 
|  | else | 
|  | ratio = 1; | 
|  |  | 
|  | zone->inactive_ratio = ratio; | 
|  | } | 
|  |  | 
|  | static void __meminit setup_per_zone_inactive_ratio(void) | 
|  | { | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_zone(zone) | 
|  | calculate_zone_inactive_ratio(zone); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise min_free_kbytes. | 
|  | * | 
|  | * For small machines we want it small (128k min).  For large machines | 
|  | * we want it large (64MB max).  But it is not linear, because network | 
|  | * bandwidth does not increase linearly with machine size.  We use | 
|  | * | 
|  | * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | 
|  | *	min_free_kbytes = sqrt(lowmem_kbytes * 16) | 
|  | * | 
|  | * which yields | 
|  | * | 
|  | * 16MB:	512k | 
|  | * 32MB:	724k | 
|  | * 64MB:	1024k | 
|  | * 128MB:	1448k | 
|  | * 256MB:	2048k | 
|  | * 512MB:	2896k | 
|  | * 1024MB:	4096k | 
|  | * 2048MB:	5792k | 
|  | * 4096MB:	8192k | 
|  | * 8192MB:	11584k | 
|  | * 16384MB:	16384k | 
|  | */ | 
|  | int __meminit init_per_zone_wmark_min(void) | 
|  | { | 
|  | unsigned long lowmem_kbytes; | 
|  |  | 
|  | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | 
|  |  | 
|  | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | 
|  | if (min_free_kbytes < 128) | 
|  | min_free_kbytes = 128; | 
|  | if (min_free_kbytes > 65536) | 
|  | min_free_kbytes = 65536; | 
|  | setup_per_zone_wmarks(); | 
|  | refresh_zone_stat_thresholds(); | 
|  | setup_per_zone_lowmem_reserve(); | 
|  | setup_per_zone_inactive_ratio(); | 
|  | return 0; | 
|  | } | 
|  | module_init(init_per_zone_wmark_min) | 
|  |  | 
|  | /* | 
|  | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | 
|  | *	that we can call two helper functions whenever min_free_kbytes | 
|  | *	changes. | 
|  | */ | 
|  | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, | 
|  | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | proc_dointvec(table, write, buffer, length, ppos); | 
|  | if (write) | 
|  | setup_per_zone_wmarks(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, | 
|  | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | struct zone *zone; | 
|  | int rc; | 
|  |  | 
|  | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | for_each_zone(zone) | 
|  | zone->min_unmapped_pages = (zone->present_pages * | 
|  | sysctl_min_unmapped_ratio) / 100; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, | 
|  | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | struct zone *zone; | 
|  | int rc; | 
|  |  | 
|  | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | for_each_zone(zone) | 
|  | zone->min_slab_pages = (zone->present_pages * | 
|  | sysctl_min_slab_ratio) / 100; | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | 
|  | *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | 
|  | *	whenever sysctl_lowmem_reserve_ratio changes. | 
|  | * | 
|  | * The reserve ratio obviously has absolutely no relation with the | 
|  | * minimum watermarks. The lowmem reserve ratio can only make sense | 
|  | * if in function of the boot time zone sizes. | 
|  | */ | 
|  | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, | 
|  | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | setup_per_zone_lowmem_reserve(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | 
|  | * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist | 
|  | * can have before it gets flushed back to buddy allocator. | 
|  | */ | 
|  |  | 
|  | int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, | 
|  | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | struct zone *zone; | 
|  | unsigned int cpu; | 
|  | int ret; | 
|  |  | 
|  | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | if (!write || (ret < 0)) | 
|  | return ret; | 
|  | for_each_populated_zone(zone) { | 
|  | for_each_possible_cpu(cpu) { | 
|  | unsigned long  high; | 
|  | high = zone->present_pages / percpu_pagelist_fraction; | 
|  | setup_pagelist_highmark( | 
|  | per_cpu_ptr(zone->pageset, cpu), high); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int hashdist = HASHDIST_DEFAULT; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static int __init set_hashdist(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return 0; | 
|  | hashdist = simple_strtoul(str, &str, 0); | 
|  | return 1; | 
|  | } | 
|  | __setup("hashdist=", set_hashdist); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * allocate a large system hash table from bootmem | 
|  | * - it is assumed that the hash table must contain an exact power-of-2 | 
|  | *   quantity of entries | 
|  | * - limit is the number of hash buckets, not the total allocation size | 
|  | */ | 
|  | void *__init alloc_large_system_hash(const char *tablename, | 
|  | unsigned long bucketsize, | 
|  | unsigned long numentries, | 
|  | int scale, | 
|  | int flags, | 
|  | unsigned int *_hash_shift, | 
|  | unsigned int *_hash_mask, | 
|  | unsigned long low_limit, | 
|  | unsigned long high_limit) | 
|  | { | 
|  | unsigned long long max = high_limit; | 
|  | unsigned long log2qty, size; | 
|  | void *table = NULL; | 
|  |  | 
|  | /* allow the kernel cmdline to have a say */ | 
|  | if (!numentries) { | 
|  | /* round applicable memory size up to nearest megabyte */ | 
|  | numentries = nr_kernel_pages; | 
|  | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; | 
|  | numentries >>= 20 - PAGE_SHIFT; | 
|  | numentries <<= 20 - PAGE_SHIFT; | 
|  |  | 
|  | /* limit to 1 bucket per 2^scale bytes of low memory */ | 
|  | if (scale > PAGE_SHIFT) | 
|  | numentries >>= (scale - PAGE_SHIFT); | 
|  | else | 
|  | numentries <<= (PAGE_SHIFT - scale); | 
|  |  | 
|  | /* Make sure we've got at least a 0-order allocation.. */ | 
|  | if (unlikely(flags & HASH_SMALL)) { | 
|  | /* Makes no sense without HASH_EARLY */ | 
|  | WARN_ON(!(flags & HASH_EARLY)); | 
|  | if (!(numentries >> *_hash_shift)) { | 
|  | numentries = 1UL << *_hash_shift; | 
|  | BUG_ON(!numentries); | 
|  | } | 
|  | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | 
|  | numentries = PAGE_SIZE / bucketsize; | 
|  | } | 
|  | numentries = roundup_pow_of_two(numentries); | 
|  |  | 
|  | /* limit allocation size to 1/16 total memory by default */ | 
|  | if (max == 0) { | 
|  | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | 
|  | do_div(max, bucketsize); | 
|  | } | 
|  | max = min(max, 0x80000000ULL); | 
|  |  | 
|  | if (numentries < low_limit) | 
|  | numentries = low_limit; | 
|  | if (numentries > max) | 
|  | numentries = max; | 
|  |  | 
|  | log2qty = ilog2(numentries); | 
|  |  | 
|  | do { | 
|  | size = bucketsize << log2qty; | 
|  | if (flags & HASH_EARLY) | 
|  | table = alloc_bootmem_nopanic(size); | 
|  | else if (hashdist) | 
|  | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | 
|  | else { | 
|  | /* | 
|  | * If bucketsize is not a power-of-two, we may free | 
|  | * some pages at the end of hash table which | 
|  | * alloc_pages_exact() automatically does | 
|  | */ | 
|  | if (get_order(size) < MAX_ORDER) { | 
|  | table = alloc_pages_exact(size, GFP_ATOMIC); | 
|  | kmemleak_alloc(table, size, 1, GFP_ATOMIC); | 
|  | } | 
|  | } | 
|  | } while (!table && size > PAGE_SIZE && --log2qty); | 
|  |  | 
|  | if (!table) | 
|  | panic("Failed to allocate %s hash table\n", tablename); | 
|  |  | 
|  | printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", | 
|  | tablename, | 
|  | (1UL << log2qty), | 
|  | ilog2(size) - PAGE_SHIFT, | 
|  | size); | 
|  |  | 
|  | if (_hash_shift) | 
|  | *_hash_shift = log2qty; | 
|  | if (_hash_mask) | 
|  | *_hash_mask = (1 << log2qty) - 1; | 
|  |  | 
|  | return table; | 
|  | } | 
|  |  | 
|  | /* Return a pointer to the bitmap storing bits affecting a block of pages */ | 
|  | static inline unsigned long *get_pageblock_bitmap(struct zone *zone, | 
|  | unsigned long pfn) | 
|  | { | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  | return __pfn_to_section(pfn)->pageblock_flags; | 
|  | #else | 
|  | return zone->pageblock_flags; | 
|  | #endif /* CONFIG_SPARSEMEM */ | 
|  | } | 
|  |  | 
|  | static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) | 
|  | { | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  | pfn &= (PAGES_PER_SECTION-1); | 
|  | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | 
|  | #else | 
|  | pfn = pfn - zone->zone_start_pfn; | 
|  | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | 
|  | #endif /* CONFIG_SPARSEMEM */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages | 
|  | * @page: The page within the block of interest | 
|  | * @start_bitidx: The first bit of interest to retrieve | 
|  | * @end_bitidx: The last bit of interest | 
|  | * returns pageblock_bits flags | 
|  | */ | 
|  | unsigned long get_pageblock_flags_group(struct page *page, | 
|  | int start_bitidx, int end_bitidx) | 
|  | { | 
|  | struct zone *zone; | 
|  | unsigned long *bitmap; | 
|  | unsigned long pfn, bitidx; | 
|  | unsigned long flags = 0; | 
|  | unsigned long value = 1; | 
|  |  | 
|  | zone = page_zone(page); | 
|  | pfn = page_to_pfn(page); | 
|  | bitmap = get_pageblock_bitmap(zone, pfn); | 
|  | bitidx = pfn_to_bitidx(zone, pfn); | 
|  |  | 
|  | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) | 
|  | if (test_bit(bitidx + start_bitidx, bitmap)) | 
|  | flags |= value; | 
|  |  | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages | 
|  | * @page: The page within the block of interest | 
|  | * @start_bitidx: The first bit of interest | 
|  | * @end_bitidx: The last bit of interest | 
|  | * @flags: The flags to set | 
|  | */ | 
|  | void set_pageblock_flags_group(struct page *page, unsigned long flags, | 
|  | int start_bitidx, int end_bitidx) | 
|  | { | 
|  | struct zone *zone; | 
|  | unsigned long *bitmap; | 
|  | unsigned long pfn, bitidx; | 
|  | unsigned long value = 1; | 
|  |  | 
|  | zone = page_zone(page); | 
|  | pfn = page_to_pfn(page); | 
|  | bitmap = get_pageblock_bitmap(zone, pfn); | 
|  | bitidx = pfn_to_bitidx(zone, pfn); | 
|  | VM_BUG_ON(pfn < zone->zone_start_pfn); | 
|  | VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); | 
|  |  | 
|  | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) | 
|  | if (flags & value) | 
|  | __set_bit(bitidx + start_bitidx, bitmap); | 
|  | else | 
|  | __clear_bit(bitidx + start_bitidx, bitmap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function checks whether pageblock includes unmovable pages or not. | 
|  | * If @count is not zero, it is okay to include less @count unmovable pages | 
|  | * | 
|  | * PageLRU check wihtout isolation or lru_lock could race so that | 
|  | * MIGRATE_MOVABLE block might include unmovable pages. It means you can't | 
|  | * expect this function should be exact. | 
|  | */ | 
|  | bool has_unmovable_pages(struct zone *zone, struct page *page, int count, | 
|  | bool skip_hwpoisoned_pages) | 
|  | { | 
|  | unsigned long pfn, iter, found; | 
|  | int mt; | 
|  |  | 
|  | /* | 
|  | * For avoiding noise data, lru_add_drain_all() should be called | 
|  | * If ZONE_MOVABLE, the zone never contains unmovable pages | 
|  | */ | 
|  | if (zone_idx(zone) == ZONE_MOVABLE) | 
|  | return false; | 
|  | mt = get_pageblock_migratetype(page); | 
|  | if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) | 
|  | return false; | 
|  |  | 
|  | pfn = page_to_pfn(page); | 
|  | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | 
|  | unsigned long check = pfn + iter; | 
|  |  | 
|  | if (!pfn_valid_within(check)) | 
|  | continue; | 
|  |  | 
|  | page = pfn_to_page(check); | 
|  | /* | 
|  | * We can't use page_count without pin a page | 
|  | * because another CPU can free compound page. | 
|  | * This check already skips compound tails of THP | 
|  | * because their page->_count is zero at all time. | 
|  | */ | 
|  | if (!atomic_read(&page->_count)) { | 
|  | if (PageBuddy(page)) | 
|  | iter += (1 << page_order(page)) - 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The HWPoisoned page may be not in buddy system, and | 
|  | * page_count() is not 0. | 
|  | */ | 
|  | if (skip_hwpoisoned_pages && PageHWPoison(page)) | 
|  | continue; | 
|  |  | 
|  | if (!PageLRU(page)) | 
|  | found++; | 
|  | /* | 
|  | * If there are RECLAIMABLE pages, we need to check it. | 
|  | * But now, memory offline itself doesn't call shrink_slab() | 
|  | * and it still to be fixed. | 
|  | */ | 
|  | /* | 
|  | * If the page is not RAM, page_count()should be 0. | 
|  | * we don't need more check. This is an _used_ not-movable page. | 
|  | * | 
|  | * The problematic thing here is PG_reserved pages. PG_reserved | 
|  | * is set to both of a memory hole page and a _used_ kernel | 
|  | * page at boot. | 
|  | */ | 
|  | if (found > count) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool is_pageblock_removable_nolock(struct page *page) | 
|  | { | 
|  | struct zone *zone; | 
|  | unsigned long pfn; | 
|  |  | 
|  | /* | 
|  | * We have to be careful here because we are iterating over memory | 
|  | * sections which are not zone aware so we might end up outside of | 
|  | * the zone but still within the section. | 
|  | * We have to take care about the node as well. If the node is offline | 
|  | * its NODE_DATA will be NULL - see page_zone. | 
|  | */ | 
|  | if (!node_online(page_to_nid(page))) | 
|  | return false; | 
|  |  | 
|  | zone = page_zone(page); | 
|  | pfn = page_to_pfn(page); | 
|  | if (zone->zone_start_pfn > pfn || | 
|  | zone->zone_start_pfn + zone->spanned_pages <= pfn) | 
|  | return false; | 
|  |  | 
|  | return !has_unmovable_pages(zone, page, 0, true); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  |  | 
|  | static unsigned long pfn_max_align_down(unsigned long pfn) | 
|  | { | 
|  | return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, | 
|  | pageblock_nr_pages) - 1); | 
|  | } | 
|  |  | 
|  | static unsigned long pfn_max_align_up(unsigned long pfn) | 
|  | { | 
|  | return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, | 
|  | pageblock_nr_pages)); | 
|  | } | 
|  |  | 
|  | /* [start, end) must belong to a single zone. */ | 
|  | static int __alloc_contig_migrate_range(struct compact_control *cc, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | /* This function is based on compact_zone() from compaction.c. */ | 
|  | unsigned long nr_reclaimed; | 
|  | unsigned long pfn = start; | 
|  | unsigned int tries = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | migrate_prep(); | 
|  |  | 
|  | while (pfn < end || !list_empty(&cc->migratepages)) { | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (list_empty(&cc->migratepages)) { | 
|  | cc->nr_migratepages = 0; | 
|  | pfn = isolate_migratepages_range(cc->zone, cc, | 
|  | pfn, end, true); | 
|  | if (!pfn) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  | tries = 0; | 
|  | } else if (++tries == 5) { | 
|  | ret = ret < 0 ? ret : -EBUSY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, | 
|  | &cc->migratepages); | 
|  | cc->nr_migratepages -= nr_reclaimed; | 
|  |  | 
|  | ret = migrate_pages(&cc->migratepages, | 
|  | alloc_migrate_target, | 
|  | 0, false, MIGRATE_SYNC, | 
|  | MR_CMA); | 
|  | } | 
|  |  | 
|  | putback_movable_pages(&cc->migratepages); | 
|  | return ret > 0 ? 0 : ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_contig_range() -- tries to allocate given range of pages | 
|  | * @start:	start PFN to allocate | 
|  | * @end:	one-past-the-last PFN to allocate | 
|  | * @migratetype:	migratetype of the underlaying pageblocks (either | 
|  | *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks | 
|  | *			in range must have the same migratetype and it must | 
|  | *			be either of the two. | 
|  | * | 
|  | * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES | 
|  | * aligned, however it's the caller's responsibility to guarantee that | 
|  | * we are the only thread that changes migrate type of pageblocks the | 
|  | * pages fall in. | 
|  | * | 
|  | * The PFN range must belong to a single zone. | 
|  | * | 
|  | * Returns zero on success or negative error code.  On success all | 
|  | * pages which PFN is in [start, end) are allocated for the caller and | 
|  | * need to be freed with free_contig_range(). | 
|  | */ | 
|  | int alloc_contig_range(unsigned long start, unsigned long end, | 
|  | unsigned migratetype) | 
|  | { | 
|  | unsigned long outer_start, outer_end; | 
|  | int ret = 0, order; | 
|  |  | 
|  | struct compact_control cc = { | 
|  | .nr_migratepages = 0, | 
|  | .order = -1, | 
|  | .zone = page_zone(pfn_to_page(start)), | 
|  | .sync = true, | 
|  | .ignore_skip_hint = true, | 
|  | }; | 
|  | INIT_LIST_HEAD(&cc.migratepages); | 
|  |  | 
|  | /* | 
|  | * What we do here is we mark all pageblocks in range as | 
|  | * MIGRATE_ISOLATE.  Because pageblock and max order pages may | 
|  | * have different sizes, and due to the way page allocator | 
|  | * work, we align the range to biggest of the two pages so | 
|  | * that page allocator won't try to merge buddies from | 
|  | * different pageblocks and change MIGRATE_ISOLATE to some | 
|  | * other migration type. | 
|  | * | 
|  | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | 
|  | * migrate the pages from an unaligned range (ie. pages that | 
|  | * we are interested in).  This will put all the pages in | 
|  | * range back to page allocator as MIGRATE_ISOLATE. | 
|  | * | 
|  | * When this is done, we take the pages in range from page | 
|  | * allocator removing them from the buddy system.  This way | 
|  | * page allocator will never consider using them. | 
|  | * | 
|  | * This lets us mark the pageblocks back as | 
|  | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | 
|  | * aligned range but not in the unaligned, original range are | 
|  | * put back to page allocator so that buddy can use them. | 
|  | */ | 
|  |  | 
|  | ret = start_isolate_page_range(pfn_max_align_down(start), | 
|  | pfn_max_align_up(end), migratetype, | 
|  | false); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = __alloc_contig_migrate_range(&cc, start, end); | 
|  | if (ret) | 
|  | goto done; | 
|  |  | 
|  | /* | 
|  | * Pages from [start, end) are within a MAX_ORDER_NR_PAGES | 
|  | * aligned blocks that are marked as MIGRATE_ISOLATE.  What's | 
|  | * more, all pages in [start, end) are free in page allocator. | 
|  | * What we are going to do is to allocate all pages from | 
|  | * [start, end) (that is remove them from page allocator). | 
|  | * | 
|  | * The only problem is that pages at the beginning and at the | 
|  | * end of interesting range may be not aligned with pages that | 
|  | * page allocator holds, ie. they can be part of higher order | 
|  | * pages.  Because of this, we reserve the bigger range and | 
|  | * once this is done free the pages we are not interested in. | 
|  | * | 
|  | * We don't have to hold zone->lock here because the pages are | 
|  | * isolated thus they won't get removed from buddy. | 
|  | */ | 
|  |  | 
|  | lru_add_drain_all(); | 
|  | drain_all_pages(); | 
|  |  | 
|  | order = 0; | 
|  | outer_start = start; | 
|  | while (!PageBuddy(pfn_to_page(outer_start))) { | 
|  | if (++order >= MAX_ORDER) { | 
|  | ret = -EBUSY; | 
|  | goto done; | 
|  | } | 
|  | outer_start &= ~0UL << order; | 
|  | } | 
|  |  | 
|  | /* Make sure the range is really isolated. */ | 
|  | if (test_pages_isolated(outer_start, end, false)) { | 
|  | pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", | 
|  | outer_start, end); | 
|  | ret = -EBUSY; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Grab isolated pages from freelists. */ | 
|  | outer_end = isolate_freepages_range(&cc, outer_start, end); | 
|  | if (!outer_end) { | 
|  | ret = -EBUSY; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Free head and tail (if any) */ | 
|  | if (start != outer_start) | 
|  | free_contig_range(outer_start, start - outer_start); | 
|  | if (end != outer_end) | 
|  | free_contig_range(end, outer_end - end); | 
|  |  | 
|  | done: | 
|  | undo_isolate_page_range(pfn_max_align_down(start), | 
|  | pfn_max_align_up(end), migratetype); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void free_contig_range(unsigned long pfn, unsigned nr_pages) | 
|  | { | 
|  | unsigned int count = 0; | 
|  |  | 
|  | for (; nr_pages--; pfn++) { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  |  | 
|  | count += page_count(page) != 1; | 
|  | __free_page(page); | 
|  | } | 
|  | WARN(count != 0, "%d pages are still in use!\n", count); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | static int __meminit __zone_pcp_update(void *data) | 
|  | { | 
|  | struct zone *zone = data; | 
|  | int cpu; | 
|  | unsigned long batch = zone_batchsize(zone), flags; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct per_cpu_pageset *pset; | 
|  | struct per_cpu_pages *pcp; | 
|  |  | 
|  | pset = per_cpu_ptr(zone->pageset, cpu); | 
|  | pcp = &pset->pcp; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | if (pcp->count > 0) | 
|  | free_pcppages_bulk(zone, pcp->count, pcp); | 
|  | drain_zonestat(zone, pset); | 
|  | setup_pageset(pset, batch); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __meminit zone_pcp_update(struct zone *zone) | 
|  | { | 
|  | stop_machine(__zone_pcp_update, zone, NULL); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void zone_pcp_reset(struct zone *zone) | 
|  | { | 
|  | unsigned long flags; | 
|  | int cpu; | 
|  | struct per_cpu_pageset *pset; | 
|  |  | 
|  | /* avoid races with drain_pages()  */ | 
|  | local_irq_save(flags); | 
|  | if (zone->pageset != &boot_pageset) { | 
|  | for_each_online_cpu(cpu) { | 
|  | pset = per_cpu_ptr(zone->pageset, cpu); | 
|  | drain_zonestat(zone, pset); | 
|  | } | 
|  | free_percpu(zone->pageset); | 
|  | zone->pageset = &boot_pageset; | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTREMOVE | 
|  | /* | 
|  | * All pages in the range must be isolated before calling this. | 
|  | */ | 
|  | void | 
|  | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | struct page *page; | 
|  | struct zone *zone; | 
|  | int order, i; | 
|  | unsigned long pfn; | 
|  | unsigned long flags; | 
|  | /* find the first valid pfn */ | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn++) | 
|  | if (pfn_valid(pfn)) | 
|  | break; | 
|  | if (pfn == end_pfn) | 
|  | return; | 
|  | zone = page_zone(pfn_to_page(pfn)); | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | pfn = start_pfn; | 
|  | while (pfn < end_pfn) { | 
|  | if (!pfn_valid(pfn)) { | 
|  | pfn++; | 
|  | continue; | 
|  | } | 
|  | page = pfn_to_page(pfn); | 
|  | /* | 
|  | * The HWPoisoned page may be not in buddy system, and | 
|  | * page_count() is not 0. | 
|  | */ | 
|  | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | 
|  | pfn++; | 
|  | SetPageReserved(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BUG_ON(page_count(page)); | 
|  | BUG_ON(!PageBuddy(page)); | 
|  | order = page_order(page); | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | printk(KERN_INFO "remove from free list %lx %d %lx\n", | 
|  | pfn, 1 << order, end_pfn); | 
|  | #endif | 
|  | list_del(&page->lru); | 
|  | rmv_page_order(page); | 
|  | zone->free_area[order].nr_free--; | 
|  | for (i = 0; i < (1 << order); i++) | 
|  | SetPageReserved((page+i)); | 
|  | pfn += (1 << order); | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_FAILURE | 
|  | bool is_free_buddy_page(struct page *page) | 
|  | { | 
|  | struct zone *zone = page_zone(page); | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | unsigned long flags; | 
|  | int order; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | for (order = 0; order < MAX_ORDER; order++) { | 
|  | struct page *page_head = page - (pfn & ((1 << order) - 1)); | 
|  |  | 
|  | if (PageBuddy(page_head) && page_order(page_head) >= order) | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  |  | 
|  | return order < MAX_ORDER; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct trace_print_flags pageflag_names[] = { | 
|  | {1UL << PG_locked,		"locked"	}, | 
|  | {1UL << PG_error,		"error"		}, | 
|  | {1UL << PG_referenced,		"referenced"	}, | 
|  | {1UL << PG_uptodate,		"uptodate"	}, | 
|  | {1UL << PG_dirty,		"dirty"		}, | 
|  | {1UL << PG_lru,			"lru"		}, | 
|  | {1UL << PG_active,		"active"	}, | 
|  | {1UL << PG_slab,		"slab"		}, | 
|  | {1UL << PG_owner_priv_1,	"owner_priv_1"	}, | 
|  | {1UL << PG_arch_1,		"arch_1"	}, | 
|  | {1UL << PG_reserved,		"reserved"	}, | 
|  | {1UL << PG_private,		"private"	}, | 
|  | {1UL << PG_private_2,		"private_2"	}, | 
|  | {1UL << PG_writeback,		"writeback"	}, | 
|  | #ifdef CONFIG_PAGEFLAGS_EXTENDED | 
|  | {1UL << PG_head,		"head"		}, | 
|  | {1UL << PG_tail,		"tail"		}, | 
|  | #else | 
|  | {1UL << PG_compound,		"compound"	}, | 
|  | #endif | 
|  | {1UL << PG_swapcache,		"swapcache"	}, | 
|  | {1UL << PG_mappedtodisk,	"mappedtodisk"	}, | 
|  | {1UL << PG_reclaim,		"reclaim"	}, | 
|  | {1UL << PG_swapbacked,		"swapbacked"	}, | 
|  | {1UL << PG_unevictable,		"unevictable"	}, | 
|  | #ifdef CONFIG_MMU | 
|  | {1UL << PG_mlocked,		"mlocked"	}, | 
|  | #endif | 
|  | #ifdef CONFIG_ARCH_USES_PG_UNCACHED | 
|  | {1UL << PG_uncached,		"uncached"	}, | 
|  | #endif | 
|  | #ifdef CONFIG_MEMORY_FAILURE | 
|  | {1UL << PG_hwpoison,		"hwpoison"	}, | 
|  | #endif | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | {1UL << PG_compound_lock,	"compound_lock"	}, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static void dump_page_flags(unsigned long flags) | 
|  | { | 
|  | const char *delim = ""; | 
|  | unsigned long mask; | 
|  | int i; | 
|  |  | 
|  | BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); | 
|  |  | 
|  | printk(KERN_ALERT "page flags: %#lx(", flags); | 
|  |  | 
|  | /* remove zone id */ | 
|  | flags &= (1UL << NR_PAGEFLAGS) - 1; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { | 
|  |  | 
|  | mask = pageflag_names[i].mask; | 
|  | if ((flags & mask) != mask) | 
|  | continue; | 
|  |  | 
|  | flags &= ~mask; | 
|  | printk("%s%s", delim, pageflag_names[i].name); | 
|  | delim = "|"; | 
|  | } | 
|  |  | 
|  | /* check for left over flags */ | 
|  | if (flags) | 
|  | printk("%s%#lx", delim, flags); | 
|  |  | 
|  | printk(")\n"); | 
|  | } | 
|  |  | 
|  | void dump_page(struct page *page) | 
|  | { | 
|  | printk(KERN_ALERT | 
|  | "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", | 
|  | page, atomic_read(&page->_count), page_mapcount(page), | 
|  | page->mapping, page->index); | 
|  | dump_page_flags(page->flags); | 
|  | mem_cgroup_print_bad_page(page); | 
|  | } |