| /* |
| * A sensor driver for the magnetometer AK8975. |
| * |
| * Magnetic compass sensor driver for monitoring magnetic flux information. |
| * |
| * Copyright (c) 2010, NVIDIA Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/i2c.h> |
| #include <linux/interrupt.h> |
| #include <linux/err.h> |
| #include <linux/mutex.h> |
| #include <linux/delay.h> |
| #include <linux/bitops.h> |
| #include <linux/gpio.h> |
| #include <linux/of_gpio.h> |
| #include <linux/acpi.h> |
| |
| #include <linux/iio/iio.h> |
| #include <linux/iio/sysfs.h> |
| /* |
| * Register definitions, as well as various shifts and masks to get at the |
| * individual fields of the registers. |
| */ |
| #define AK8975_REG_WIA 0x00 |
| #define AK8975_DEVICE_ID 0x48 |
| |
| #define AK8975_REG_INFO 0x01 |
| |
| #define AK8975_REG_ST1 0x02 |
| #define AK8975_REG_ST1_DRDY_SHIFT 0 |
| #define AK8975_REG_ST1_DRDY_MASK (1 << AK8975_REG_ST1_DRDY_SHIFT) |
| |
| #define AK8975_REG_HXL 0x03 |
| #define AK8975_REG_HXH 0x04 |
| #define AK8975_REG_HYL 0x05 |
| #define AK8975_REG_HYH 0x06 |
| #define AK8975_REG_HZL 0x07 |
| #define AK8975_REG_HZH 0x08 |
| #define AK8975_REG_ST2 0x09 |
| #define AK8975_REG_ST2_DERR_SHIFT 2 |
| #define AK8975_REG_ST2_DERR_MASK (1 << AK8975_REG_ST2_DERR_SHIFT) |
| |
| #define AK8975_REG_ST2_HOFL_SHIFT 3 |
| #define AK8975_REG_ST2_HOFL_MASK (1 << AK8975_REG_ST2_HOFL_SHIFT) |
| |
| #define AK8975_REG_CNTL 0x0A |
| #define AK8975_REG_CNTL_MODE_SHIFT 0 |
| #define AK8975_REG_CNTL_MODE_MASK (0xF << AK8975_REG_CNTL_MODE_SHIFT) |
| #define AK8975_REG_CNTL_MODE_POWER_DOWN 0 |
| #define AK8975_REG_CNTL_MODE_ONCE 1 |
| #define AK8975_REG_CNTL_MODE_SELF_TEST 8 |
| #define AK8975_REG_CNTL_MODE_FUSE_ROM 0xF |
| |
| #define AK8975_REG_RSVC 0x0B |
| #define AK8975_REG_ASTC 0x0C |
| #define AK8975_REG_TS1 0x0D |
| #define AK8975_REG_TS2 0x0E |
| #define AK8975_REG_I2CDIS 0x0F |
| #define AK8975_REG_ASAX 0x10 |
| #define AK8975_REG_ASAY 0x11 |
| #define AK8975_REG_ASAZ 0x12 |
| |
| #define AK8975_MAX_REGS AK8975_REG_ASAZ |
| |
| /* |
| * Miscellaneous values. |
| */ |
| #define AK8975_MAX_CONVERSION_TIMEOUT 500 |
| #define AK8975_CONVERSION_DONE_POLL_TIME 10 |
| #define AK8975_DATA_READY_TIMEOUT ((100*HZ)/1000) |
| #define RAW_TO_GAUSS_8975(asa) ((((asa) + 128) * 3000) / 256) |
| #define RAW_TO_GAUSS_8963(asa) ((((asa) + 128) * 6000) / 256) |
| |
| /* Compatible Asahi Kasei Compass parts */ |
| enum asahi_compass_chipset { |
| AK8975, |
| AK8963, |
| }; |
| |
| /* |
| * Per-instance context data for the device. |
| */ |
| struct ak8975_data { |
| struct i2c_client *client; |
| struct attribute_group attrs; |
| struct mutex lock; |
| u8 asa[3]; |
| long raw_to_gauss[3]; |
| u8 reg_cache[AK8975_MAX_REGS]; |
| int eoc_gpio; |
| int eoc_irq; |
| wait_queue_head_t data_ready_queue; |
| unsigned long flags; |
| enum asahi_compass_chipset chipset; |
| }; |
| |
| static const int ak8975_index_to_reg[] = { |
| AK8975_REG_HXL, AK8975_REG_HYL, AK8975_REG_HZL, |
| }; |
| |
| /* |
| * Helper function to write to the I2C device's registers. |
| */ |
| static int ak8975_write_data(struct i2c_client *client, |
| u8 reg, u8 val, u8 mask, u8 shift) |
| { |
| struct iio_dev *indio_dev = i2c_get_clientdata(client); |
| struct ak8975_data *data = iio_priv(indio_dev); |
| u8 regval; |
| int ret; |
| |
| regval = (data->reg_cache[reg] & ~mask) | (val << shift); |
| ret = i2c_smbus_write_byte_data(client, reg, regval); |
| if (ret < 0) { |
| dev_err(&client->dev, "Write to device fails status %x\n", ret); |
| return ret; |
| } |
| data->reg_cache[reg] = regval; |
| |
| return 0; |
| } |
| |
| /* |
| * Handle data ready irq |
| */ |
| static irqreturn_t ak8975_irq_handler(int irq, void *data) |
| { |
| struct ak8975_data *ak8975 = data; |
| |
| set_bit(0, &ak8975->flags); |
| wake_up(&ak8975->data_ready_queue); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Install data ready interrupt handler |
| */ |
| static int ak8975_setup_irq(struct ak8975_data *data) |
| { |
| struct i2c_client *client = data->client; |
| int rc; |
| int irq; |
| |
| if (client->irq) |
| irq = client->irq; |
| else |
| irq = gpio_to_irq(data->eoc_gpio); |
| |
| rc = request_irq(irq, ak8975_irq_handler, |
| IRQF_TRIGGER_RISING | IRQF_ONESHOT, |
| dev_name(&client->dev), data); |
| if (rc < 0) { |
| dev_err(&client->dev, |
| "irq %d request failed, (gpio %d): %d\n", |
| irq, data->eoc_gpio, rc); |
| return rc; |
| } |
| |
| init_waitqueue_head(&data->data_ready_queue); |
| clear_bit(0, &data->flags); |
| data->eoc_irq = irq; |
| |
| return rc; |
| } |
| |
| |
| /* |
| * Perform some start-of-day setup, including reading the asa calibration |
| * values and caching them. |
| */ |
| static int ak8975_setup(struct i2c_client *client) |
| { |
| struct iio_dev *indio_dev = i2c_get_clientdata(client); |
| struct ak8975_data *data = iio_priv(indio_dev); |
| u8 device_id; |
| int ret; |
| |
| /* Confirm that the device we're talking to is really an AK8975. */ |
| ret = i2c_smbus_read_byte_data(client, AK8975_REG_WIA); |
| if (ret < 0) { |
| dev_err(&client->dev, "Error reading WIA\n"); |
| return ret; |
| } |
| device_id = ret; |
| if (device_id != AK8975_DEVICE_ID) { |
| dev_err(&client->dev, "Device ak8975 not found\n"); |
| return -ENODEV; |
| } |
| |
| /* Write the fused rom access mode. */ |
| ret = ak8975_write_data(client, |
| AK8975_REG_CNTL, |
| AK8975_REG_CNTL_MODE_FUSE_ROM, |
| AK8975_REG_CNTL_MODE_MASK, |
| AK8975_REG_CNTL_MODE_SHIFT); |
| if (ret < 0) { |
| dev_err(&client->dev, "Error in setting fuse access mode\n"); |
| return ret; |
| } |
| |
| /* Get asa data and store in the device data. */ |
| ret = i2c_smbus_read_i2c_block_data(client, AK8975_REG_ASAX, |
| 3, data->asa); |
| if (ret < 0) { |
| dev_err(&client->dev, "Not able to read asa data\n"); |
| return ret; |
| } |
| |
| /* After reading fuse ROM data set power-down mode */ |
| ret = ak8975_write_data(client, |
| AK8975_REG_CNTL, |
| AK8975_REG_CNTL_MODE_POWER_DOWN, |
| AK8975_REG_CNTL_MODE_MASK, |
| AK8975_REG_CNTL_MODE_SHIFT); |
| |
| if (data->eoc_gpio > 0 || client->irq) { |
| ret = ak8975_setup_irq(data); |
| if (ret < 0) { |
| dev_err(&client->dev, |
| "Error setting data ready interrupt\n"); |
| return ret; |
| } |
| } |
| |
| if (ret < 0) { |
| dev_err(&client->dev, "Error in setting power-down mode\n"); |
| return ret; |
| } |
| |
| /* |
| * Precalculate scale factor (in Gauss units) for each axis and |
| * store in the device data. |
| * |
| * This scale factor is axis-dependent, and is derived from 3 calibration |
| * factors ASA(x), ASA(y), and ASA(z). |
| * |
| * These ASA values are read from the sensor device at start of day, and |
| * cached in the device context struct. |
| * |
| * Adjusting the flux value with the sensitivity adjustment value should be |
| * done via the following formula: |
| * |
| * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 ) |
| * |
| * where H is the raw value, ASA is the sensitivity adjustment, and Hadj |
| * is the resultant adjusted value. |
| * |
| * We reduce the formula to: |
| * |
| * Hadj = H * (ASA + 128) / 256 |
| * |
| * H is in the range of -4096 to 4095. The magnetometer has a range of |
| * +-1229uT. To go from the raw value to uT is: |
| * |
| * HuT = H * 1229/4096, or roughly, 3/10. |
| * |
| * Since 1uT = 0.01 gauss, our final scale factor becomes: |
| * |
| * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100 |
| * Hadj = H * ((ASA + 128) * 0.003) / 256 |
| * |
| * Since ASA doesn't change, we cache the resultant scale factor into the |
| * device context in ak8975_setup(). |
| */ |
| if (data->chipset == AK8963) { |
| /* |
| * H range is +-8190 and magnetometer range is +-4912. |
| * So HuT using the above explanation for 8975, |
| * 4912/8190 = ~ 6/10. |
| * So the Hadj should use 6/10 instead of 3/10. |
| */ |
| data->raw_to_gauss[0] = RAW_TO_GAUSS_8963(data->asa[0]); |
| data->raw_to_gauss[1] = RAW_TO_GAUSS_8963(data->asa[1]); |
| data->raw_to_gauss[2] = RAW_TO_GAUSS_8963(data->asa[2]); |
| } else { |
| data->raw_to_gauss[0] = RAW_TO_GAUSS_8975(data->asa[0]); |
| data->raw_to_gauss[1] = RAW_TO_GAUSS_8975(data->asa[1]); |
| data->raw_to_gauss[2] = RAW_TO_GAUSS_8975(data->asa[2]); |
| } |
| |
| return 0; |
| } |
| |
| static int wait_conversion_complete_gpio(struct ak8975_data *data) |
| { |
| struct i2c_client *client = data->client; |
| u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT; |
| int ret; |
| |
| /* Wait for the conversion to complete. */ |
| while (timeout_ms) { |
| msleep(AK8975_CONVERSION_DONE_POLL_TIME); |
| if (gpio_get_value(data->eoc_gpio)) |
| break; |
| timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME; |
| } |
| if (!timeout_ms) { |
| dev_err(&client->dev, "Conversion timeout happened\n"); |
| return -EINVAL; |
| } |
| |
| ret = i2c_smbus_read_byte_data(client, AK8975_REG_ST1); |
| if (ret < 0) |
| dev_err(&client->dev, "Error in reading ST1\n"); |
| |
| return ret; |
| } |
| |
| static int wait_conversion_complete_polled(struct ak8975_data *data) |
| { |
| struct i2c_client *client = data->client; |
| u8 read_status; |
| u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT; |
| int ret; |
| |
| /* Wait for the conversion to complete. */ |
| while (timeout_ms) { |
| msleep(AK8975_CONVERSION_DONE_POLL_TIME); |
| ret = i2c_smbus_read_byte_data(client, AK8975_REG_ST1); |
| if (ret < 0) { |
| dev_err(&client->dev, "Error in reading ST1\n"); |
| return ret; |
| } |
| read_status = ret; |
| if (read_status) |
| break; |
| timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME; |
| } |
| if (!timeout_ms) { |
| dev_err(&client->dev, "Conversion timeout happened\n"); |
| return -EINVAL; |
| } |
| |
| return read_status; |
| } |
| |
| /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */ |
| static int wait_conversion_complete_interrupt(struct ak8975_data *data) |
| { |
| int ret; |
| |
| ret = wait_event_timeout(data->data_ready_queue, |
| test_bit(0, &data->flags), |
| AK8975_DATA_READY_TIMEOUT); |
| clear_bit(0, &data->flags); |
| |
| return ret > 0 ? 0 : -ETIME; |
| } |
| |
| /* |
| * Emits the raw flux value for the x, y, or z axis. |
| */ |
| static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val) |
| { |
| struct ak8975_data *data = iio_priv(indio_dev); |
| struct i2c_client *client = data->client; |
| int ret; |
| |
| mutex_lock(&data->lock); |
| |
| /* Set up the device for taking a sample. */ |
| ret = ak8975_write_data(client, |
| AK8975_REG_CNTL, |
| AK8975_REG_CNTL_MODE_ONCE, |
| AK8975_REG_CNTL_MODE_MASK, |
| AK8975_REG_CNTL_MODE_SHIFT); |
| if (ret < 0) { |
| dev_err(&client->dev, "Error in setting operating mode\n"); |
| goto exit; |
| } |
| |
| /* Wait for the conversion to complete. */ |
| if (data->eoc_irq) |
| ret = wait_conversion_complete_interrupt(data); |
| else if (gpio_is_valid(data->eoc_gpio)) |
| ret = wait_conversion_complete_gpio(data); |
| else |
| ret = wait_conversion_complete_polled(data); |
| if (ret < 0) |
| goto exit; |
| |
| /* This will be executed only for non-interrupt based waiting case */ |
| if (ret & AK8975_REG_ST1_DRDY_MASK) { |
| ret = i2c_smbus_read_byte_data(client, AK8975_REG_ST2); |
| if (ret < 0) { |
| dev_err(&client->dev, "Error in reading ST2\n"); |
| goto exit; |
| } |
| if (ret & (AK8975_REG_ST2_DERR_MASK | |
| AK8975_REG_ST2_HOFL_MASK)) { |
| dev_err(&client->dev, "ST2 status error 0x%x\n", ret); |
| ret = -EINVAL; |
| goto exit; |
| } |
| } |
| |
| /* Read the flux value from the appropriate register |
| (the register is specified in the iio device attributes). */ |
| ret = i2c_smbus_read_word_data(client, ak8975_index_to_reg[index]); |
| if (ret < 0) { |
| dev_err(&client->dev, "Read axis data fails\n"); |
| goto exit; |
| } |
| |
| mutex_unlock(&data->lock); |
| |
| /* Clamp to valid range. */ |
| *val = clamp_t(s16, ret, -4096, 4095); |
| return IIO_VAL_INT; |
| |
| exit: |
| mutex_unlock(&data->lock); |
| return ret; |
| } |
| |
| static int ak8975_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int *val, int *val2, |
| long mask) |
| { |
| struct ak8975_data *data = iio_priv(indio_dev); |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_RAW: |
| return ak8975_read_axis(indio_dev, chan->address, val); |
| case IIO_CHAN_INFO_SCALE: |
| *val = 0; |
| *val2 = data->raw_to_gauss[chan->address]; |
| return IIO_VAL_INT_PLUS_MICRO; |
| } |
| return -EINVAL; |
| } |
| |
| #define AK8975_CHANNEL(axis, index) \ |
| { \ |
| .type = IIO_MAGN, \ |
| .modified = 1, \ |
| .channel2 = IIO_MOD_##axis, \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ |
| BIT(IIO_CHAN_INFO_SCALE), \ |
| .address = index, \ |
| } |
| |
| static const struct iio_chan_spec ak8975_channels[] = { |
| AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2), |
| }; |
| |
| static const struct iio_info ak8975_info = { |
| .read_raw = &ak8975_read_raw, |
| .driver_module = THIS_MODULE, |
| }; |
| |
| static const struct acpi_device_id ak_acpi_match[] = { |
| {"AK8975", AK8975}, |
| {"AK8963", AK8963}, |
| {"INVN6500", AK8963}, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(acpi, ak_acpi_match); |
| |
| static char *ak8975_match_acpi_device(struct device *dev, |
| enum asahi_compass_chipset *chipset) |
| { |
| const struct acpi_device_id *id; |
| |
| id = acpi_match_device(dev->driver->acpi_match_table, dev); |
| if (!id) |
| return NULL; |
| *chipset = (int)id->driver_data; |
| |
| return (char *)dev_name(dev); |
| } |
| |
| static int ak8975_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| struct ak8975_data *data; |
| struct iio_dev *indio_dev; |
| int eoc_gpio; |
| int err; |
| char *name = NULL; |
| |
| /* Grab and set up the supplied GPIO. */ |
| if (client->dev.platform_data) |
| eoc_gpio = *(int *)(client->dev.platform_data); |
| else if (client->dev.of_node) |
| eoc_gpio = of_get_gpio(client->dev.of_node, 0); |
| else |
| eoc_gpio = -1; |
| |
| if (eoc_gpio == -EPROBE_DEFER) |
| return -EPROBE_DEFER; |
| |
| /* We may not have a GPIO based IRQ to scan, that is fine, we will |
| poll if so */ |
| if (gpio_is_valid(eoc_gpio)) { |
| err = gpio_request_one(eoc_gpio, GPIOF_IN, "ak_8975"); |
| if (err < 0) { |
| dev_err(&client->dev, |
| "failed to request GPIO %d, error %d\n", |
| eoc_gpio, err); |
| goto exit; |
| } |
| } |
| |
| /* Register with IIO */ |
| indio_dev = iio_device_alloc(sizeof(*data)); |
| if (indio_dev == NULL) { |
| err = -ENOMEM; |
| goto exit_gpio; |
| } |
| data = iio_priv(indio_dev); |
| i2c_set_clientdata(client, indio_dev); |
| |
| data->client = client; |
| data->eoc_gpio = eoc_gpio; |
| data->eoc_irq = 0; |
| |
| /* id will be NULL when enumerated via ACPI */ |
| if (id) { |
| data->chipset = |
| (enum asahi_compass_chipset)(id->driver_data); |
| name = (char *) id->name; |
| } else if (ACPI_HANDLE(&client->dev)) |
| name = ak8975_match_acpi_device(&client->dev, &data->chipset); |
| else { |
| err = -ENOSYS; |
| goto exit_free_iio; |
| } |
| dev_dbg(&client->dev, "Asahi compass chip %s\n", name); |
| |
| /* Perform some basic start-of-day setup of the device. */ |
| err = ak8975_setup(client); |
| if (err < 0) { |
| dev_err(&client->dev, "AK8975 initialization fails\n"); |
| goto exit_free_iio; |
| } |
| |
| data->client = client; |
| mutex_init(&data->lock); |
| data->eoc_gpio = eoc_gpio; |
| indio_dev->dev.parent = &client->dev; |
| indio_dev->channels = ak8975_channels; |
| indio_dev->num_channels = ARRAY_SIZE(ak8975_channels); |
| indio_dev->info = &ak8975_info; |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| indio_dev->name = name; |
| err = iio_device_register(indio_dev); |
| if (err < 0) |
| goto exit_free_iio; |
| |
| return 0; |
| |
| exit_free_iio: |
| iio_device_free(indio_dev); |
| if (data->eoc_irq) |
| free_irq(data->eoc_irq, data); |
| exit_gpio: |
| if (gpio_is_valid(eoc_gpio)) |
| gpio_free(eoc_gpio); |
| exit: |
| return err; |
| } |
| |
| static int ak8975_remove(struct i2c_client *client) |
| { |
| struct iio_dev *indio_dev = i2c_get_clientdata(client); |
| struct ak8975_data *data = iio_priv(indio_dev); |
| |
| iio_device_unregister(indio_dev); |
| |
| if (data->eoc_irq) |
| free_irq(data->eoc_irq, data); |
| |
| if (gpio_is_valid(data->eoc_gpio)) |
| gpio_free(data->eoc_gpio); |
| |
| iio_device_free(indio_dev); |
| |
| return 0; |
| } |
| |
| static const struct i2c_device_id ak8975_id[] = { |
| {"ak8975", AK8975}, |
| {"ak8963", AK8963}, |
| {} |
| }; |
| |
| MODULE_DEVICE_TABLE(i2c, ak8975_id); |
| |
| static const struct of_device_id ak8975_of_match[] = { |
| { .compatible = "asahi-kasei,ak8975", }, |
| { .compatible = "ak8975", }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, ak8975_of_match); |
| |
| static struct i2c_driver ak8975_driver = { |
| .driver = { |
| .name = "ak8975", |
| .of_match_table = ak8975_of_match, |
| .acpi_match_table = ACPI_PTR(ak_acpi_match), |
| }, |
| .probe = ak8975_probe, |
| .remove = ak8975_remove, |
| .id_table = ak8975_id, |
| }; |
| module_i2c_driver(ak8975_driver); |
| |
| MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>"); |
| MODULE_DESCRIPTION("AK8975 magnetometer driver"); |
| MODULE_LICENSE("GPL"); |