|  | /* | 
|  | * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_types.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_dmapi.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_dir2_sf.h" | 
|  | #include "xfs_attr_sf.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_ialloc.h" | 
|  | #include "xfs_log_priv.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_log_recover.h" | 
|  | #include "xfs_extfree_item.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_rw.h" | 
|  | #include "xfs_utils.h" | 
|  |  | 
|  | STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *); | 
|  | STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); | 
|  | STATIC void	xlog_recover_insert_item_backq(xlog_recover_item_t **q, | 
|  | xlog_recover_item_t *item); | 
|  | #if defined(DEBUG) | 
|  | STATIC void	xlog_recover_check_summary(xlog_t *); | 
|  | #else | 
|  | #define	xlog_recover_check_summary(log) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Sector aligned buffer routines for buffer create/read/write/access | 
|  | */ | 
|  |  | 
|  | #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)	\ | 
|  | ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ | 
|  | ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) | 
|  | #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)	((bno) & ~(log)->l_sectbb_mask) | 
|  |  | 
|  | xfs_buf_t * | 
|  | xlog_get_bp( | 
|  | xlog_t		*log, | 
|  | int		nbblks) | 
|  | { | 
|  | if (nbblks <= 0 || nbblks > log->l_logBBsize) { | 
|  | xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks); | 
|  | XFS_ERROR_REPORT("xlog_get_bp(1)", | 
|  | XFS_ERRLEVEL_HIGH, log->l_mp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (log->l_sectbb_log) { | 
|  | if (nbblks > 1) | 
|  | nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); | 
|  | nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); | 
|  | } | 
|  | return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp); | 
|  | } | 
|  |  | 
|  | void | 
|  | xlog_put_bp( | 
|  | xfs_buf_t	*bp) | 
|  | { | 
|  | xfs_buf_free(bp); | 
|  | } | 
|  |  | 
|  | STATIC xfs_caddr_t | 
|  | xlog_align( | 
|  | xlog_t		*log, | 
|  | xfs_daddr_t	blk_no, | 
|  | int		nbblks, | 
|  | xfs_buf_t	*bp) | 
|  | { | 
|  | xfs_caddr_t	ptr; | 
|  |  | 
|  | if (!log->l_sectbb_log) | 
|  | return XFS_BUF_PTR(bp); | 
|  |  | 
|  | ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); | 
|  | ASSERT(XFS_BUF_SIZE(bp) >= | 
|  | BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * nbblks should be uint, but oh well.  Just want to catch that 32-bit length. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_bread_noalign( | 
|  | xlog_t		*log, | 
|  | xfs_daddr_t	blk_no, | 
|  | int		nbblks, | 
|  | xfs_buf_t	*bp) | 
|  | { | 
|  | int		error; | 
|  |  | 
|  | if (nbblks <= 0 || nbblks > log->l_logBBsize) { | 
|  | xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks); | 
|  | XFS_ERROR_REPORT("xlog_bread(1)", | 
|  | XFS_ERRLEVEL_HIGH, log->l_mp); | 
|  | return EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | if (log->l_sectbb_log) { | 
|  | blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); | 
|  | nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); | 
|  | } | 
|  |  | 
|  | ASSERT(nbblks > 0); | 
|  | ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); | 
|  | ASSERT(bp); | 
|  |  | 
|  | XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); | 
|  | XFS_BUF_READ(bp); | 
|  | XFS_BUF_BUSY(bp); | 
|  | XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); | 
|  | XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); | 
|  |  | 
|  | xfsbdstrat(log->l_mp, bp); | 
|  | error = xfs_iowait(bp); | 
|  | if (error) | 
|  | xfs_ioerror_alert("xlog_bread", log->l_mp, | 
|  | bp, XFS_BUF_ADDR(bp)); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xlog_bread( | 
|  | xlog_t		*log, | 
|  | xfs_daddr_t	blk_no, | 
|  | int		nbblks, | 
|  | xfs_buf_t	*bp, | 
|  | xfs_caddr_t	*offset) | 
|  | { | 
|  | int		error; | 
|  |  | 
|  | error = xlog_bread_noalign(log, blk_no, nbblks, bp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | *offset = xlog_align(log, blk_no, nbblks, bp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write out the buffer at the given block for the given number of blocks. | 
|  | * The buffer is kept locked across the write and is returned locked. | 
|  | * This can only be used for synchronous log writes. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_bwrite( | 
|  | xlog_t		*log, | 
|  | xfs_daddr_t	blk_no, | 
|  | int		nbblks, | 
|  | xfs_buf_t	*bp) | 
|  | { | 
|  | int		error; | 
|  |  | 
|  | if (nbblks <= 0 || nbblks > log->l_logBBsize) { | 
|  | xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks); | 
|  | XFS_ERROR_REPORT("xlog_bwrite(1)", | 
|  | XFS_ERRLEVEL_HIGH, log->l_mp); | 
|  | return EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | if (log->l_sectbb_log) { | 
|  | blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); | 
|  | nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); | 
|  | } | 
|  |  | 
|  | ASSERT(nbblks > 0); | 
|  | ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); | 
|  |  | 
|  | XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); | 
|  | XFS_BUF_ZEROFLAGS(bp); | 
|  | XFS_BUF_BUSY(bp); | 
|  | XFS_BUF_HOLD(bp); | 
|  | XFS_BUF_PSEMA(bp, PRIBIO); | 
|  | XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); | 
|  | XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); | 
|  |  | 
|  | if ((error = xfs_bwrite(log->l_mp, bp))) | 
|  | xfs_ioerror_alert("xlog_bwrite", log->l_mp, | 
|  | bp, XFS_BUF_ADDR(bp)); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | /* | 
|  | * dump debug superblock and log record information | 
|  | */ | 
|  | STATIC void | 
|  | xlog_header_check_dump( | 
|  | xfs_mount_t		*mp, | 
|  | xlog_rec_header_t	*head) | 
|  | { | 
|  | int			b; | 
|  |  | 
|  | cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __func__); | 
|  | for (b = 0; b < 16; b++) | 
|  | cmn_err(CE_DEBUG, "%02x", ((__uint8_t *)&mp->m_sb.sb_uuid)[b]); | 
|  | cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT); | 
|  | cmn_err(CE_DEBUG, "    log : uuid = "); | 
|  | for (b = 0; b < 16; b++) | 
|  | cmn_err(CE_DEBUG, "%02x", ((__uint8_t *)&head->h_fs_uuid)[b]); | 
|  | cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt)); | 
|  | } | 
|  | #else | 
|  | #define xlog_header_check_dump(mp, head) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * check log record header for recovery | 
|  | */ | 
|  | STATIC int | 
|  | xlog_header_check_recover( | 
|  | xfs_mount_t		*mp, | 
|  | xlog_rec_header_t	*head) | 
|  | { | 
|  | ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); | 
|  |  | 
|  | /* | 
|  | * IRIX doesn't write the h_fmt field and leaves it zeroed | 
|  | * (XLOG_FMT_UNKNOWN). This stops us from trying to recover | 
|  | * a dirty log created in IRIX. | 
|  | */ | 
|  | if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) { | 
|  | xlog_warn( | 
|  | "XFS: dirty log written in incompatible format - can't recover"); | 
|  | xlog_header_check_dump(mp, head); | 
|  | XFS_ERROR_REPORT("xlog_header_check_recover(1)", | 
|  | XFS_ERRLEVEL_HIGH, mp); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { | 
|  | xlog_warn( | 
|  | "XFS: dirty log entry has mismatched uuid - can't recover"); | 
|  | xlog_header_check_dump(mp, head); | 
|  | XFS_ERROR_REPORT("xlog_header_check_recover(2)", | 
|  | XFS_ERRLEVEL_HIGH, mp); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * read the head block of the log and check the header | 
|  | */ | 
|  | STATIC int | 
|  | xlog_header_check_mount( | 
|  | xfs_mount_t		*mp, | 
|  | xlog_rec_header_t	*head) | 
|  | { | 
|  | ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); | 
|  |  | 
|  | if (uuid_is_nil(&head->h_fs_uuid)) { | 
|  | /* | 
|  | * IRIX doesn't write the h_fs_uuid or h_fmt fields. If | 
|  | * h_fs_uuid is nil, we assume this log was last mounted | 
|  | * by IRIX and continue. | 
|  | */ | 
|  | xlog_warn("XFS: nil uuid in log - IRIX style log"); | 
|  | } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { | 
|  | xlog_warn("XFS: log has mismatched uuid - can't recover"); | 
|  | xlog_header_check_dump(mp, head); | 
|  | XFS_ERROR_REPORT("xlog_header_check_mount", | 
|  | XFS_ERRLEVEL_HIGH, mp); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xlog_recover_iodone( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | if (XFS_BUF_GETERROR(bp)) { | 
|  | /* | 
|  | * We're not going to bother about retrying | 
|  | * this during recovery. One strike! | 
|  | */ | 
|  | xfs_ioerror_alert("xlog_recover_iodone", | 
|  | bp->b_mount, bp, XFS_BUF_ADDR(bp)); | 
|  | xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); | 
|  | } | 
|  | bp->b_mount = NULL; | 
|  | XFS_BUF_CLR_IODONE_FUNC(bp); | 
|  | xfs_biodone(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine finds (to an approximation) the first block in the physical | 
|  | * log which contains the given cycle.  It uses a binary search algorithm. | 
|  | * Note that the algorithm can not be perfect because the disk will not | 
|  | * necessarily be perfect. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_find_cycle_start( | 
|  | xlog_t		*log, | 
|  | xfs_buf_t	*bp, | 
|  | xfs_daddr_t	first_blk, | 
|  | xfs_daddr_t	*last_blk, | 
|  | uint		cycle) | 
|  | { | 
|  | xfs_caddr_t	offset; | 
|  | xfs_daddr_t	mid_blk; | 
|  | uint		mid_cycle; | 
|  | int		error; | 
|  |  | 
|  | mid_blk = BLK_AVG(first_blk, *last_blk); | 
|  | while (mid_blk != first_blk && mid_blk != *last_blk) { | 
|  | error = xlog_bread(log, mid_blk, 1, bp, &offset); | 
|  | if (error) | 
|  | return error; | 
|  | mid_cycle = xlog_get_cycle(offset); | 
|  | if (mid_cycle == cycle) { | 
|  | *last_blk = mid_blk; | 
|  | /* last_half_cycle == mid_cycle */ | 
|  | } else { | 
|  | first_blk = mid_blk; | 
|  | /* first_half_cycle == mid_cycle */ | 
|  | } | 
|  | mid_blk = BLK_AVG(first_blk, *last_blk); | 
|  | } | 
|  | ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || | 
|  | (mid_blk == *last_blk && mid_blk-1 == first_blk)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the range of blocks does not contain the cycle number | 
|  | * given.  The scan needs to occur from front to back and the ptr into the | 
|  | * region must be updated since a later routine will need to perform another | 
|  | * test.  If the region is completely good, we end up returning the same | 
|  | * last block number. | 
|  | * | 
|  | * Set blkno to -1 if we encounter no errors.  This is an invalid block number | 
|  | * since we don't ever expect logs to get this large. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_find_verify_cycle( | 
|  | xlog_t		*log, | 
|  | xfs_daddr_t	start_blk, | 
|  | int		nbblks, | 
|  | uint		stop_on_cycle_no, | 
|  | xfs_daddr_t	*new_blk) | 
|  | { | 
|  | xfs_daddr_t	i, j; | 
|  | uint		cycle; | 
|  | xfs_buf_t	*bp; | 
|  | xfs_daddr_t	bufblks; | 
|  | xfs_caddr_t	buf = NULL; | 
|  | int		error = 0; | 
|  |  | 
|  | bufblks = 1 << ffs(nbblks); | 
|  |  | 
|  | while (!(bp = xlog_get_bp(log, bufblks))) { | 
|  | /* can't get enough memory to do everything in one big buffer */ | 
|  | bufblks >>= 1; | 
|  | if (bufblks <= log->l_sectbb_log) | 
|  | return ENOMEM; | 
|  | } | 
|  |  | 
|  | for (i = start_blk; i < start_blk + nbblks; i += bufblks) { | 
|  | int	bcount; | 
|  |  | 
|  | bcount = min(bufblks, (start_blk + nbblks - i)); | 
|  |  | 
|  | error = xlog_bread(log, i, bcount, bp, &buf); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | for (j = 0; j < bcount; j++) { | 
|  | cycle = xlog_get_cycle(buf); | 
|  | if (cycle == stop_on_cycle_no) { | 
|  | *new_blk = i+j; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | buf += BBSIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | *new_blk = -1; | 
|  |  | 
|  | out: | 
|  | xlog_put_bp(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Potentially backup over partial log record write. | 
|  | * | 
|  | * In the typical case, last_blk is the number of the block directly after | 
|  | * a good log record.  Therefore, we subtract one to get the block number | 
|  | * of the last block in the given buffer.  extra_bblks contains the number | 
|  | * of blocks we would have read on a previous read.  This happens when the | 
|  | * last log record is split over the end of the physical log. | 
|  | * | 
|  | * extra_bblks is the number of blocks potentially verified on a previous | 
|  | * call to this routine. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_find_verify_log_record( | 
|  | xlog_t			*log, | 
|  | xfs_daddr_t		start_blk, | 
|  | xfs_daddr_t		*last_blk, | 
|  | int			extra_bblks) | 
|  | { | 
|  | xfs_daddr_t		i; | 
|  | xfs_buf_t		*bp; | 
|  | xfs_caddr_t		offset = NULL; | 
|  | xlog_rec_header_t	*head = NULL; | 
|  | int			error = 0; | 
|  | int			smallmem = 0; | 
|  | int			num_blks = *last_blk - start_blk; | 
|  | int			xhdrs; | 
|  |  | 
|  | ASSERT(start_blk != 0 || *last_blk != start_blk); | 
|  |  | 
|  | if (!(bp = xlog_get_bp(log, num_blks))) { | 
|  | if (!(bp = xlog_get_bp(log, 1))) | 
|  | return ENOMEM; | 
|  | smallmem = 1; | 
|  | } else { | 
|  | error = xlog_bread(log, start_blk, num_blks, bp, &offset); | 
|  | if (error) | 
|  | goto out; | 
|  | offset += ((num_blks - 1) << BBSHIFT); | 
|  | } | 
|  |  | 
|  | for (i = (*last_blk) - 1; i >= 0; i--) { | 
|  | if (i < start_blk) { | 
|  | /* valid log record not found */ | 
|  | xlog_warn( | 
|  | "XFS: Log inconsistent (didn't find previous header)"); | 
|  | ASSERT(0); | 
|  | error = XFS_ERROR(EIO); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (smallmem) { | 
|  | error = xlog_bread(log, i, 1, bp, &offset); | 
|  | if (error) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | head = (xlog_rec_header_t *)offset; | 
|  |  | 
|  | if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno)) | 
|  | break; | 
|  |  | 
|  | if (!smallmem) | 
|  | offset -= BBSIZE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We hit the beginning of the physical log & still no header.  Return | 
|  | * to caller.  If caller can handle a return of -1, then this routine | 
|  | * will be called again for the end of the physical log. | 
|  | */ | 
|  | if (i == -1) { | 
|  | error = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have the final block of the good log (the first block | 
|  | * of the log record _before_ the head. So we check the uuid. | 
|  | */ | 
|  | if ((error = xlog_header_check_mount(log->l_mp, head))) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We may have found a log record header before we expected one. | 
|  | * last_blk will be the 1st block # with a given cycle #.  We may end | 
|  | * up reading an entire log record.  In this case, we don't want to | 
|  | * reset last_blk.  Only when last_blk points in the middle of a log | 
|  | * record do we update last_blk. | 
|  | */ | 
|  | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { | 
|  | uint	h_size = be32_to_cpu(head->h_size); | 
|  |  | 
|  | xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; | 
|  | if (h_size % XLOG_HEADER_CYCLE_SIZE) | 
|  | xhdrs++; | 
|  | } else { | 
|  | xhdrs = 1; | 
|  | } | 
|  |  | 
|  | if (*last_blk - i + extra_bblks != | 
|  | BTOBB(be32_to_cpu(head->h_len)) + xhdrs) | 
|  | *last_blk = i; | 
|  |  | 
|  | out: | 
|  | xlog_put_bp(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Head is defined to be the point of the log where the next log write | 
|  | * write could go.  This means that incomplete LR writes at the end are | 
|  | * eliminated when calculating the head.  We aren't guaranteed that previous | 
|  | * LR have complete transactions.  We only know that a cycle number of | 
|  | * current cycle number -1 won't be present in the log if we start writing | 
|  | * from our current block number. | 
|  | * | 
|  | * last_blk contains the block number of the first block with a given | 
|  | * cycle number. | 
|  | * | 
|  | * Return: zero if normal, non-zero if error. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_find_head( | 
|  | xlog_t 		*log, | 
|  | xfs_daddr_t	*return_head_blk) | 
|  | { | 
|  | xfs_buf_t	*bp; | 
|  | xfs_caddr_t	offset; | 
|  | xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk; | 
|  | int		num_scan_bblks; | 
|  | uint		first_half_cycle, last_half_cycle; | 
|  | uint		stop_on_cycle; | 
|  | int		error, log_bbnum = log->l_logBBsize; | 
|  |  | 
|  | /* Is the end of the log device zeroed? */ | 
|  | if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { | 
|  | *return_head_blk = first_blk; | 
|  |  | 
|  | /* Is the whole lot zeroed? */ | 
|  | if (!first_blk) { | 
|  | /* Linux XFS shouldn't generate totally zeroed logs - | 
|  | * mkfs etc write a dummy unmount record to a fresh | 
|  | * log so we can store the uuid in there | 
|  | */ | 
|  | xlog_warn("XFS: totally zeroed log"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } else if (error) { | 
|  | xlog_warn("XFS: empty log check failed"); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | first_blk = 0;			/* get cycle # of 1st block */ | 
|  | bp = xlog_get_bp(log, 1); | 
|  | if (!bp) | 
|  | return ENOMEM; | 
|  |  | 
|  | error = xlog_bread(log, 0, 1, bp, &offset); | 
|  | if (error) | 
|  | goto bp_err; | 
|  |  | 
|  | first_half_cycle = xlog_get_cycle(offset); | 
|  |  | 
|  | last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */ | 
|  | error = xlog_bread(log, last_blk, 1, bp, &offset); | 
|  | if (error) | 
|  | goto bp_err; | 
|  |  | 
|  | last_half_cycle = xlog_get_cycle(offset); | 
|  | ASSERT(last_half_cycle != 0); | 
|  |  | 
|  | /* | 
|  | * If the 1st half cycle number is equal to the last half cycle number, | 
|  | * then the entire log is stamped with the same cycle number.  In this | 
|  | * case, head_blk can't be set to zero (which makes sense).  The below | 
|  | * math doesn't work out properly with head_blk equal to zero.  Instead, | 
|  | * we set it to log_bbnum which is an invalid block number, but this | 
|  | * value makes the math correct.  If head_blk doesn't changed through | 
|  | * all the tests below, *head_blk is set to zero at the very end rather | 
|  | * than log_bbnum.  In a sense, log_bbnum and zero are the same block | 
|  | * in a circular file. | 
|  | */ | 
|  | if (first_half_cycle == last_half_cycle) { | 
|  | /* | 
|  | * In this case we believe that the entire log should have | 
|  | * cycle number last_half_cycle.  We need to scan backwards | 
|  | * from the end verifying that there are no holes still | 
|  | * containing last_half_cycle - 1.  If we find such a hole, | 
|  | * then the start of that hole will be the new head.  The | 
|  | * simple case looks like | 
|  | *        x | x ... | x - 1 | x | 
|  | * Another case that fits this picture would be | 
|  | *        x | x + 1 | x ... | x | 
|  | * In this case the head really is somewhere at the end of the | 
|  | * log, as one of the latest writes at the beginning was | 
|  | * incomplete. | 
|  | * One more case is | 
|  | *        x | x + 1 | x ... | x - 1 | x | 
|  | * This is really the combination of the above two cases, and | 
|  | * the head has to end up at the start of the x-1 hole at the | 
|  | * end of the log. | 
|  | * | 
|  | * In the 256k log case, we will read from the beginning to the | 
|  | * end of the log and search for cycle numbers equal to x-1. | 
|  | * We don't worry about the x+1 blocks that we encounter, | 
|  | * because we know that they cannot be the head since the log | 
|  | * started with x. | 
|  | */ | 
|  | head_blk = log_bbnum; | 
|  | stop_on_cycle = last_half_cycle - 1; | 
|  | } else { | 
|  | /* | 
|  | * In this case we want to find the first block with cycle | 
|  | * number matching last_half_cycle.  We expect the log to be | 
|  | * some variation on | 
|  | *        x + 1 ... | x ... | 
|  | * The first block with cycle number x (last_half_cycle) will | 
|  | * be where the new head belongs.  First we do a binary search | 
|  | * for the first occurrence of last_half_cycle.  The binary | 
|  | * search may not be totally accurate, so then we scan back | 
|  | * from there looking for occurrences of last_half_cycle before | 
|  | * us.  If that backwards scan wraps around the beginning of | 
|  | * the log, then we look for occurrences of last_half_cycle - 1 | 
|  | * at the end of the log.  The cases we're looking for look | 
|  | * like | 
|  | *        x + 1 ... | x | x + 1 | x ... | 
|  | *                               ^ binary search stopped here | 
|  | * or | 
|  | *        x + 1 ... | x ... | x - 1 | x | 
|  | *        <---------> less than scan distance | 
|  | */ | 
|  | stop_on_cycle = last_half_cycle; | 
|  | if ((error = xlog_find_cycle_start(log, bp, first_blk, | 
|  | &head_blk, last_half_cycle))) | 
|  | goto bp_err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now validate the answer.  Scan back some number of maximum possible | 
|  | * blocks and make sure each one has the expected cycle number.  The | 
|  | * maximum is determined by the total possible amount of buffering | 
|  | * in the in-core log.  The following number can be made tighter if | 
|  | * we actually look at the block size of the filesystem. | 
|  | */ | 
|  | num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); | 
|  | if (head_blk >= num_scan_bblks) { | 
|  | /* | 
|  | * We are guaranteed that the entire check can be performed | 
|  | * in one buffer. | 
|  | */ | 
|  | start_blk = head_blk - num_scan_bblks; | 
|  | if ((error = xlog_find_verify_cycle(log, | 
|  | start_blk, num_scan_bblks, | 
|  | stop_on_cycle, &new_blk))) | 
|  | goto bp_err; | 
|  | if (new_blk != -1) | 
|  | head_blk = new_blk; | 
|  | } else {		/* need to read 2 parts of log */ | 
|  | /* | 
|  | * We are going to scan backwards in the log in two parts. | 
|  | * First we scan the physical end of the log.  In this part | 
|  | * of the log, we are looking for blocks with cycle number | 
|  | * last_half_cycle - 1. | 
|  | * If we find one, then we know that the log starts there, as | 
|  | * we've found a hole that didn't get written in going around | 
|  | * the end of the physical log.  The simple case for this is | 
|  | *        x + 1 ... | x ... | x - 1 | x | 
|  | *        <---------> less than scan distance | 
|  | * If all of the blocks at the end of the log have cycle number | 
|  | * last_half_cycle, then we check the blocks at the start of | 
|  | * the log looking for occurrences of last_half_cycle.  If we | 
|  | * find one, then our current estimate for the location of the | 
|  | * first occurrence of last_half_cycle is wrong and we move | 
|  | * back to the hole we've found.  This case looks like | 
|  | *        x + 1 ... | x | x + 1 | x ... | 
|  | *                               ^ binary search stopped here | 
|  | * Another case we need to handle that only occurs in 256k | 
|  | * logs is | 
|  | *        x + 1 ... | x ... | x+1 | x ... | 
|  | *                   ^ binary search stops here | 
|  | * In a 256k log, the scan at the end of the log will see the | 
|  | * x + 1 blocks.  We need to skip past those since that is | 
|  | * certainly not the head of the log.  By searching for | 
|  | * last_half_cycle-1 we accomplish that. | 
|  | */ | 
|  | start_blk = log_bbnum - num_scan_bblks + head_blk; | 
|  | ASSERT(head_blk <= INT_MAX && | 
|  | (xfs_daddr_t) num_scan_bblks - head_blk >= 0); | 
|  | if ((error = xlog_find_verify_cycle(log, start_blk, | 
|  | num_scan_bblks - (int)head_blk, | 
|  | (stop_on_cycle - 1), &new_blk))) | 
|  | goto bp_err; | 
|  | if (new_blk != -1) { | 
|  | head_blk = new_blk; | 
|  | goto bad_blk; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan beginning of log now.  The last part of the physical | 
|  | * log is good.  This scan needs to verify that it doesn't find | 
|  | * the last_half_cycle. | 
|  | */ | 
|  | start_blk = 0; | 
|  | ASSERT(head_blk <= INT_MAX); | 
|  | if ((error = xlog_find_verify_cycle(log, | 
|  | start_blk, (int)head_blk, | 
|  | stop_on_cycle, &new_blk))) | 
|  | goto bp_err; | 
|  | if (new_blk != -1) | 
|  | head_blk = new_blk; | 
|  | } | 
|  |  | 
|  | bad_blk: | 
|  | /* | 
|  | * Now we need to make sure head_blk is not pointing to a block in | 
|  | * the middle of a log record. | 
|  | */ | 
|  | num_scan_bblks = XLOG_REC_SHIFT(log); | 
|  | if (head_blk >= num_scan_bblks) { | 
|  | start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ | 
|  |  | 
|  | /* start ptr at last block ptr before head_blk */ | 
|  | if ((error = xlog_find_verify_log_record(log, start_blk, | 
|  | &head_blk, 0)) == -1) { | 
|  | error = XFS_ERROR(EIO); | 
|  | goto bp_err; | 
|  | } else if (error) | 
|  | goto bp_err; | 
|  | } else { | 
|  | start_blk = 0; | 
|  | ASSERT(head_blk <= INT_MAX); | 
|  | if ((error = xlog_find_verify_log_record(log, start_blk, | 
|  | &head_blk, 0)) == -1) { | 
|  | /* We hit the beginning of the log during our search */ | 
|  | start_blk = log_bbnum - num_scan_bblks + head_blk; | 
|  | new_blk = log_bbnum; | 
|  | ASSERT(start_blk <= INT_MAX && | 
|  | (xfs_daddr_t) log_bbnum-start_blk >= 0); | 
|  | ASSERT(head_blk <= INT_MAX); | 
|  | if ((error = xlog_find_verify_log_record(log, | 
|  | start_blk, &new_blk, | 
|  | (int)head_blk)) == -1) { | 
|  | error = XFS_ERROR(EIO); | 
|  | goto bp_err; | 
|  | } else if (error) | 
|  | goto bp_err; | 
|  | if (new_blk != log_bbnum) | 
|  | head_blk = new_blk; | 
|  | } else if (error) | 
|  | goto bp_err; | 
|  | } | 
|  |  | 
|  | xlog_put_bp(bp); | 
|  | if (head_blk == log_bbnum) | 
|  | *return_head_blk = 0; | 
|  | else | 
|  | *return_head_blk = head_blk; | 
|  | /* | 
|  | * When returning here, we have a good block number.  Bad block | 
|  | * means that during a previous crash, we didn't have a clean break | 
|  | * from cycle number N to cycle number N-1.  In this case, we need | 
|  | * to find the first block with cycle number N-1. | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | bp_err: | 
|  | xlog_put_bp(bp); | 
|  |  | 
|  | if (error) | 
|  | xlog_warn("XFS: failed to find log head"); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the sync block number or the tail of the log. | 
|  | * | 
|  | * This will be the block number of the last record to have its | 
|  | * associated buffers synced to disk.  Every log record header has | 
|  | * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy | 
|  | * to get a sync block number.  The only concern is to figure out which | 
|  | * log record header to believe. | 
|  | * | 
|  | * The following algorithm uses the log record header with the largest | 
|  | * lsn.  The entire log record does not need to be valid.  We only care | 
|  | * that the header is valid. | 
|  | * | 
|  | * We could speed up search by using current head_blk buffer, but it is not | 
|  | * available. | 
|  | */ | 
|  | int | 
|  | xlog_find_tail( | 
|  | xlog_t			*log, | 
|  | xfs_daddr_t		*head_blk, | 
|  | xfs_daddr_t		*tail_blk) | 
|  | { | 
|  | xlog_rec_header_t	*rhead; | 
|  | xlog_op_header_t	*op_head; | 
|  | xfs_caddr_t		offset = NULL; | 
|  | xfs_buf_t		*bp; | 
|  | int			error, i, found; | 
|  | xfs_daddr_t		umount_data_blk; | 
|  | xfs_daddr_t		after_umount_blk; | 
|  | xfs_lsn_t		tail_lsn; | 
|  | int			hblks; | 
|  |  | 
|  | found = 0; | 
|  |  | 
|  | /* | 
|  | * Find previous log record | 
|  | */ | 
|  | if ((error = xlog_find_head(log, head_blk))) | 
|  | return error; | 
|  |  | 
|  | bp = xlog_get_bp(log, 1); | 
|  | if (!bp) | 
|  | return ENOMEM; | 
|  | if (*head_blk == 0) {				/* special case */ | 
|  | error = xlog_bread(log, 0, 1, bp, &offset); | 
|  | if (error) | 
|  | goto bread_err; | 
|  |  | 
|  | if (xlog_get_cycle(offset) == 0) { | 
|  | *tail_blk = 0; | 
|  | /* leave all other log inited values alone */ | 
|  | goto exit; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search backwards looking for log record header block | 
|  | */ | 
|  | ASSERT(*head_blk < INT_MAX); | 
|  | for (i = (int)(*head_blk) - 1; i >= 0; i--) { | 
|  | error = xlog_bread(log, i, 1, bp, &offset); | 
|  | if (error) | 
|  | goto bread_err; | 
|  |  | 
|  | if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * If we haven't found the log record header block, start looking | 
|  | * again from the end of the physical log.  XXXmiken: There should be | 
|  | * a check here to make sure we didn't search more than N blocks in | 
|  | * the previous code. | 
|  | */ | 
|  | if (!found) { | 
|  | for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { | 
|  | error = xlog_bread(log, i, 1, bp, &offset); | 
|  | if (error) | 
|  | goto bread_err; | 
|  |  | 
|  | if (XLOG_HEADER_MAGIC_NUM == | 
|  | be32_to_cpu(*(__be32 *)offset)) { | 
|  | found = 2; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!found) { | 
|  | xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EIO); | 
|  | } | 
|  |  | 
|  | /* find blk_no of tail of log */ | 
|  | rhead = (xlog_rec_header_t *)offset; | 
|  | *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); | 
|  |  | 
|  | /* | 
|  | * Reset log values according to the state of the log when we | 
|  | * crashed.  In the case where head_blk == 0, we bump curr_cycle | 
|  | * one because the next write starts a new cycle rather than | 
|  | * continuing the cycle of the last good log record.  At this | 
|  | * point we have guaranteed that all partial log records have been | 
|  | * accounted for.  Therefore, we know that the last good log record | 
|  | * written was complete and ended exactly on the end boundary | 
|  | * of the physical log. | 
|  | */ | 
|  | log->l_prev_block = i; | 
|  | log->l_curr_block = (int)*head_blk; | 
|  | log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); | 
|  | if (found == 2) | 
|  | log->l_curr_cycle++; | 
|  | log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn); | 
|  | log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn); | 
|  | log->l_grant_reserve_cycle = log->l_curr_cycle; | 
|  | log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); | 
|  | log->l_grant_write_cycle = log->l_curr_cycle; | 
|  | log->l_grant_write_bytes = BBTOB(log->l_curr_block); | 
|  |  | 
|  | /* | 
|  | * Look for unmount record.  If we find it, then we know there | 
|  | * was a clean unmount.  Since 'i' could be the last block in | 
|  | * the physical log, we convert to a log block before comparing | 
|  | * to the head_blk. | 
|  | * | 
|  | * Save the current tail lsn to use to pass to | 
|  | * xlog_clear_stale_blocks() below.  We won't want to clear the | 
|  | * unmount record if there is one, so we pass the lsn of the | 
|  | * unmount record rather than the block after it. | 
|  | */ | 
|  | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { | 
|  | int	h_size = be32_to_cpu(rhead->h_size); | 
|  | int	h_version = be32_to_cpu(rhead->h_version); | 
|  |  | 
|  | if ((h_version & XLOG_VERSION_2) && | 
|  | (h_size > XLOG_HEADER_CYCLE_SIZE)) { | 
|  | hblks = h_size / XLOG_HEADER_CYCLE_SIZE; | 
|  | if (h_size % XLOG_HEADER_CYCLE_SIZE) | 
|  | hblks++; | 
|  | } else { | 
|  | hblks = 1; | 
|  | } | 
|  | } else { | 
|  | hblks = 1; | 
|  | } | 
|  | after_umount_blk = (i + hblks + (int) | 
|  | BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; | 
|  | tail_lsn = log->l_tail_lsn; | 
|  | if (*head_blk == after_umount_blk && | 
|  | be32_to_cpu(rhead->h_num_logops) == 1) { | 
|  | umount_data_blk = (i + hblks) % log->l_logBBsize; | 
|  | error = xlog_bread(log, umount_data_blk, 1, bp, &offset); | 
|  | if (error) | 
|  | goto bread_err; | 
|  |  | 
|  | op_head = (xlog_op_header_t *)offset; | 
|  | if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { | 
|  | /* | 
|  | * Set tail and last sync so that newly written | 
|  | * log records will point recovery to after the | 
|  | * current unmount record. | 
|  | */ | 
|  | log->l_tail_lsn = | 
|  | xlog_assign_lsn(log->l_curr_cycle, | 
|  | after_umount_blk); | 
|  | log->l_last_sync_lsn = | 
|  | xlog_assign_lsn(log->l_curr_cycle, | 
|  | after_umount_blk); | 
|  | *tail_blk = after_umount_blk; | 
|  |  | 
|  | /* | 
|  | * Note that the unmount was clean. If the unmount | 
|  | * was not clean, we need to know this to rebuild the | 
|  | * superblock counters from the perag headers if we | 
|  | * have a filesystem using non-persistent counters. | 
|  | */ | 
|  | log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that there are no blocks in front of the head | 
|  | * with the same cycle number as the head.  This can happen | 
|  | * because we allow multiple outstanding log writes concurrently, | 
|  | * and the later writes might make it out before earlier ones. | 
|  | * | 
|  | * We use the lsn from before modifying it so that we'll never | 
|  | * overwrite the unmount record after a clean unmount. | 
|  | * | 
|  | * Do this only if we are going to recover the filesystem | 
|  | * | 
|  | * NOTE: This used to say "if (!readonly)" | 
|  | * However on Linux, we can & do recover a read-only filesystem. | 
|  | * We only skip recovery if NORECOVERY is specified on mount, | 
|  | * in which case we would not be here. | 
|  | * | 
|  | * But... if the -device- itself is readonly, just skip this. | 
|  | * We can't recover this device anyway, so it won't matter. | 
|  | */ | 
|  | if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { | 
|  | error = xlog_clear_stale_blocks(log, tail_lsn); | 
|  | } | 
|  |  | 
|  | bread_err: | 
|  | exit: | 
|  | xlog_put_bp(bp); | 
|  |  | 
|  | if (error) | 
|  | xlog_warn("XFS: failed to locate log tail"); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is the log zeroed at all? | 
|  | * | 
|  | * The last binary search should be changed to perform an X block read | 
|  | * once X becomes small enough.  You can then search linearly through | 
|  | * the X blocks.  This will cut down on the number of reads we need to do. | 
|  | * | 
|  | * If the log is partially zeroed, this routine will pass back the blkno | 
|  | * of the first block with cycle number 0.  It won't have a complete LR | 
|  | * preceding it. | 
|  | * | 
|  | * Return: | 
|  | *	0  => the log is completely written to | 
|  | *	-1 => use *blk_no as the first block of the log | 
|  | *	>0 => error has occurred | 
|  | */ | 
|  | STATIC int | 
|  | xlog_find_zeroed( | 
|  | xlog_t		*log, | 
|  | xfs_daddr_t	*blk_no) | 
|  | { | 
|  | xfs_buf_t	*bp; | 
|  | xfs_caddr_t	offset; | 
|  | uint	        first_cycle, last_cycle; | 
|  | xfs_daddr_t	new_blk, last_blk, start_blk; | 
|  | xfs_daddr_t     num_scan_bblks; | 
|  | int	        error, log_bbnum = log->l_logBBsize; | 
|  |  | 
|  | *blk_no = 0; | 
|  |  | 
|  | /* check totally zeroed log */ | 
|  | bp = xlog_get_bp(log, 1); | 
|  | if (!bp) | 
|  | return ENOMEM; | 
|  | error = xlog_bread(log, 0, 1, bp, &offset); | 
|  | if (error) | 
|  | goto bp_err; | 
|  |  | 
|  | first_cycle = xlog_get_cycle(offset); | 
|  | if (first_cycle == 0) {		/* completely zeroed log */ | 
|  | *blk_no = 0; | 
|  | xlog_put_bp(bp); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* check partially zeroed log */ | 
|  | error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); | 
|  | if (error) | 
|  | goto bp_err; | 
|  |  | 
|  | last_cycle = xlog_get_cycle(offset); | 
|  | if (last_cycle != 0) {		/* log completely written to */ | 
|  | xlog_put_bp(bp); | 
|  | return 0; | 
|  | } else if (first_cycle != 1) { | 
|  | /* | 
|  | * If the cycle of the last block is zero, the cycle of | 
|  | * the first block must be 1. If it's not, maybe we're | 
|  | * not looking at a log... Bail out. | 
|  | */ | 
|  | xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  |  | 
|  | /* we have a partially zeroed log */ | 
|  | last_blk = log_bbnum-1; | 
|  | if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) | 
|  | goto bp_err; | 
|  |  | 
|  | /* | 
|  | * Validate the answer.  Because there is no way to guarantee that | 
|  | * the entire log is made up of log records which are the same size, | 
|  | * we scan over the defined maximum blocks.  At this point, the maximum | 
|  | * is not chosen to mean anything special.   XXXmiken | 
|  | */ | 
|  | num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); | 
|  | ASSERT(num_scan_bblks <= INT_MAX); | 
|  |  | 
|  | if (last_blk < num_scan_bblks) | 
|  | num_scan_bblks = last_blk; | 
|  | start_blk = last_blk - num_scan_bblks; | 
|  |  | 
|  | /* | 
|  | * We search for any instances of cycle number 0 that occur before | 
|  | * our current estimate of the head.  What we're trying to detect is | 
|  | *        1 ... | 0 | 1 | 0... | 
|  | *                       ^ binary search ends here | 
|  | */ | 
|  | if ((error = xlog_find_verify_cycle(log, start_blk, | 
|  | (int)num_scan_bblks, 0, &new_blk))) | 
|  | goto bp_err; | 
|  | if (new_blk != -1) | 
|  | last_blk = new_blk; | 
|  |  | 
|  | /* | 
|  | * Potentially backup over partial log record write.  We don't need | 
|  | * to search the end of the log because we know it is zero. | 
|  | */ | 
|  | if ((error = xlog_find_verify_log_record(log, start_blk, | 
|  | &last_blk, 0)) == -1) { | 
|  | error = XFS_ERROR(EIO); | 
|  | goto bp_err; | 
|  | } else if (error) | 
|  | goto bp_err; | 
|  |  | 
|  | *blk_no = last_blk; | 
|  | bp_err: | 
|  | xlog_put_bp(bp); | 
|  | if (error) | 
|  | return error; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are simple subroutines used by xlog_clear_stale_blocks() below | 
|  | * to initialize a buffer full of empty log record headers and write | 
|  | * them into the log. | 
|  | */ | 
|  | STATIC void | 
|  | xlog_add_record( | 
|  | xlog_t			*log, | 
|  | xfs_caddr_t		buf, | 
|  | int			cycle, | 
|  | int			block, | 
|  | int			tail_cycle, | 
|  | int			tail_block) | 
|  | { | 
|  | xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf; | 
|  |  | 
|  | memset(buf, 0, BBSIZE); | 
|  | recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); | 
|  | recp->h_cycle = cpu_to_be32(cycle); | 
|  | recp->h_version = cpu_to_be32( | 
|  | xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); | 
|  | recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); | 
|  | recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); | 
|  | recp->h_fmt = cpu_to_be32(XLOG_FMT); | 
|  | memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xlog_write_log_records( | 
|  | xlog_t		*log, | 
|  | int		cycle, | 
|  | int		start_block, | 
|  | int		blocks, | 
|  | int		tail_cycle, | 
|  | int		tail_block) | 
|  | { | 
|  | xfs_caddr_t	offset; | 
|  | xfs_buf_t	*bp; | 
|  | int		balign, ealign; | 
|  | int		sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); | 
|  | int		end_block = start_block + blocks; | 
|  | int		bufblks; | 
|  | int		error = 0; | 
|  | int		i, j = 0; | 
|  |  | 
|  | bufblks = 1 << ffs(blocks); | 
|  | while (!(bp = xlog_get_bp(log, bufblks))) { | 
|  | bufblks >>= 1; | 
|  | if (bufblks <= log->l_sectbb_log) | 
|  | return ENOMEM; | 
|  | } | 
|  |  | 
|  | /* We may need to do a read at the start to fill in part of | 
|  | * the buffer in the starting sector not covered by the first | 
|  | * write below. | 
|  | */ | 
|  | balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); | 
|  | if (balign != start_block) { | 
|  | error = xlog_bread_noalign(log, start_block, 1, bp); | 
|  | if (error) | 
|  | goto out_put_bp; | 
|  |  | 
|  | j = start_block - balign; | 
|  | } | 
|  |  | 
|  | for (i = start_block; i < end_block; i += bufblks) { | 
|  | int		bcount, endcount; | 
|  |  | 
|  | bcount = min(bufblks, end_block - start_block); | 
|  | endcount = bcount - j; | 
|  |  | 
|  | /* We may need to do a read at the end to fill in part of | 
|  | * the buffer in the final sector not covered by the write. | 
|  | * If this is the same sector as the above read, skip it. | 
|  | */ | 
|  | ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); | 
|  | if (j == 0 && (start_block + endcount > ealign)) { | 
|  | offset = XFS_BUF_PTR(bp); | 
|  | balign = BBTOB(ealign - start_block); | 
|  | error = XFS_BUF_SET_PTR(bp, offset + balign, | 
|  | BBTOB(sectbb)); | 
|  | if (error) | 
|  | break; | 
|  |  | 
|  | error = xlog_bread_noalign(log, ealign, sectbb, bp); | 
|  | if (error) | 
|  | break; | 
|  |  | 
|  | error = XFS_BUF_SET_PTR(bp, offset, bufblks); | 
|  | if (error) | 
|  | break; | 
|  | } | 
|  |  | 
|  | offset = xlog_align(log, start_block, endcount, bp); | 
|  | for (; j < endcount; j++) { | 
|  | xlog_add_record(log, offset, cycle, i+j, | 
|  | tail_cycle, tail_block); | 
|  | offset += BBSIZE; | 
|  | } | 
|  | error = xlog_bwrite(log, start_block, endcount, bp); | 
|  | if (error) | 
|  | break; | 
|  | start_block += endcount; | 
|  | j = 0; | 
|  | } | 
|  |  | 
|  | out_put_bp: | 
|  | xlog_put_bp(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is called to blow away any incomplete log writes out | 
|  | * in front of the log head.  We do this so that we won't become confused | 
|  | * if we come up, write only a little bit more, and then crash again. | 
|  | * If we leave the partial log records out there, this situation could | 
|  | * cause us to think those partial writes are valid blocks since they | 
|  | * have the current cycle number.  We get rid of them by overwriting them | 
|  | * with empty log records with the old cycle number rather than the | 
|  | * current one. | 
|  | * | 
|  | * The tail lsn is passed in rather than taken from | 
|  | * the log so that we will not write over the unmount record after a | 
|  | * clean unmount in a 512 block log.  Doing so would leave the log without | 
|  | * any valid log records in it until a new one was written.  If we crashed | 
|  | * during that time we would not be able to recover. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_clear_stale_blocks( | 
|  | xlog_t		*log, | 
|  | xfs_lsn_t	tail_lsn) | 
|  | { | 
|  | int		tail_cycle, head_cycle; | 
|  | int		tail_block, head_block; | 
|  | int		tail_distance, max_distance; | 
|  | int		distance; | 
|  | int		error; | 
|  |  | 
|  | tail_cycle = CYCLE_LSN(tail_lsn); | 
|  | tail_block = BLOCK_LSN(tail_lsn); | 
|  | head_cycle = log->l_curr_cycle; | 
|  | head_block = log->l_curr_block; | 
|  |  | 
|  | /* | 
|  | * Figure out the distance between the new head of the log | 
|  | * and the tail.  We want to write over any blocks beyond the | 
|  | * head that we may have written just before the crash, but | 
|  | * we don't want to overwrite the tail of the log. | 
|  | */ | 
|  | if (head_cycle == tail_cycle) { | 
|  | /* | 
|  | * The tail is behind the head in the physical log, | 
|  | * so the distance from the head to the tail is the | 
|  | * distance from the head to the end of the log plus | 
|  | * the distance from the beginning of the log to the | 
|  | * tail. | 
|  | */ | 
|  | if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { | 
|  | XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", | 
|  | XFS_ERRLEVEL_LOW, log->l_mp); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | tail_distance = tail_block + (log->l_logBBsize - head_block); | 
|  | } else { | 
|  | /* | 
|  | * The head is behind the tail in the physical log, | 
|  | * so the distance from the head to the tail is just | 
|  | * the tail block minus the head block. | 
|  | */ | 
|  | if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ | 
|  | XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", | 
|  | XFS_ERRLEVEL_LOW, log->l_mp); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | tail_distance = tail_block - head_block; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the head is right up against the tail, we can't clear | 
|  | * anything. | 
|  | */ | 
|  | if (tail_distance <= 0) { | 
|  | ASSERT(tail_distance == 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | max_distance = XLOG_TOTAL_REC_SHIFT(log); | 
|  | /* | 
|  | * Take the smaller of the maximum amount of outstanding I/O | 
|  | * we could have and the distance to the tail to clear out. | 
|  | * We take the smaller so that we don't overwrite the tail and | 
|  | * we don't waste all day writing from the head to the tail | 
|  | * for no reason. | 
|  | */ | 
|  | max_distance = MIN(max_distance, tail_distance); | 
|  |  | 
|  | if ((head_block + max_distance) <= log->l_logBBsize) { | 
|  | /* | 
|  | * We can stomp all the blocks we need to without | 
|  | * wrapping around the end of the log.  Just do it | 
|  | * in a single write.  Use the cycle number of the | 
|  | * current cycle minus one so that the log will look like: | 
|  | *     n ... | n - 1 ... | 
|  | */ | 
|  | error = xlog_write_log_records(log, (head_cycle - 1), | 
|  | head_block, max_distance, tail_cycle, | 
|  | tail_block); | 
|  | if (error) | 
|  | return error; | 
|  | } else { | 
|  | /* | 
|  | * We need to wrap around the end of the physical log in | 
|  | * order to clear all the blocks.  Do it in two separate | 
|  | * I/Os.  The first write should be from the head to the | 
|  | * end of the physical log, and it should use the current | 
|  | * cycle number minus one just like above. | 
|  | */ | 
|  | distance = log->l_logBBsize - head_block; | 
|  | error = xlog_write_log_records(log, (head_cycle - 1), | 
|  | head_block, distance, tail_cycle, | 
|  | tail_block); | 
|  |  | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * Now write the blocks at the start of the physical log. | 
|  | * This writes the remainder of the blocks we want to clear. | 
|  | * It uses the current cycle number since we're now on the | 
|  | * same cycle as the head so that we get: | 
|  | *    n ... n ... | n - 1 ... | 
|  | *    ^^^^^ blocks we're writing | 
|  | */ | 
|  | distance = max_distance - (log->l_logBBsize - head_block); | 
|  | error = xlog_write_log_records(log, head_cycle, 0, distance, | 
|  | tail_cycle, tail_block); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | *		Log recover routines | 
|  | * | 
|  | ****************************************************************************** | 
|  | */ | 
|  |  | 
|  | STATIC xlog_recover_t * | 
|  | xlog_recover_find_tid( | 
|  | xlog_recover_t		*q, | 
|  | xlog_tid_t		tid) | 
|  | { | 
|  | xlog_recover_t		*p = q; | 
|  |  | 
|  | while (p != NULL) { | 
|  | if (p->r_log_tid == tid) | 
|  | break; | 
|  | p = p->r_next; | 
|  | } | 
|  | return p; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xlog_recover_put_hashq( | 
|  | xlog_recover_t		**q, | 
|  | xlog_recover_t		*trans) | 
|  | { | 
|  | trans->r_next = *q; | 
|  | *q = trans; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xlog_recover_add_item( | 
|  | xlog_recover_item_t	**itemq) | 
|  | { | 
|  | xlog_recover_item_t	*item; | 
|  |  | 
|  | item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); | 
|  | xlog_recover_insert_item_backq(itemq, item); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xlog_recover_add_to_cont_trans( | 
|  | xlog_recover_t		*trans, | 
|  | xfs_caddr_t		dp, | 
|  | int			len) | 
|  | { | 
|  | xlog_recover_item_t	*item; | 
|  | xfs_caddr_t		ptr, old_ptr; | 
|  | int			old_len; | 
|  |  | 
|  | item = trans->r_itemq; | 
|  | if (item == NULL) { | 
|  | /* finish copying rest of trans header */ | 
|  | xlog_recover_add_item(&trans->r_itemq); | 
|  | ptr = (xfs_caddr_t) &trans->r_theader + | 
|  | sizeof(xfs_trans_header_t) - len; | 
|  | memcpy(ptr, dp, len); /* d, s, l */ | 
|  | return 0; | 
|  | } | 
|  | item = item->ri_prev; | 
|  |  | 
|  | old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; | 
|  | old_len = item->ri_buf[item->ri_cnt-1].i_len; | 
|  |  | 
|  | ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); | 
|  | memcpy(&ptr[old_len], dp, len); /* d, s, l */ | 
|  | item->ri_buf[item->ri_cnt-1].i_len += len; | 
|  | item->ri_buf[item->ri_cnt-1].i_addr = ptr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The next region to add is the start of a new region.  It could be | 
|  | * a whole region or it could be the first part of a new region.  Because | 
|  | * of this, the assumption here is that the type and size fields of all | 
|  | * format structures fit into the first 32 bits of the structure. | 
|  | * | 
|  | * This works because all regions must be 32 bit aligned.  Therefore, we | 
|  | * either have both fields or we have neither field.  In the case we have | 
|  | * neither field, the data part of the region is zero length.  We only have | 
|  | * a log_op_header and can throw away the header since a new one will appear | 
|  | * later.  If we have at least 4 bytes, then we can determine how many regions | 
|  | * will appear in the current log item. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_add_to_trans( | 
|  | xlog_recover_t		*trans, | 
|  | xfs_caddr_t		dp, | 
|  | int			len) | 
|  | { | 
|  | xfs_inode_log_format_t	*in_f;			/* any will do */ | 
|  | xlog_recover_item_t	*item; | 
|  | xfs_caddr_t		ptr; | 
|  |  | 
|  | if (!len) | 
|  | return 0; | 
|  | item = trans->r_itemq; | 
|  | if (item == NULL) { | 
|  | /* we need to catch log corruptions here */ | 
|  | if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { | 
|  | xlog_warn("XFS: xlog_recover_add_to_trans: " | 
|  | "bad header magic number"); | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EIO); | 
|  | } | 
|  | if (len == sizeof(xfs_trans_header_t)) | 
|  | xlog_recover_add_item(&trans->r_itemq); | 
|  | memcpy(&trans->r_theader, dp, len); /* d, s, l */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ptr = kmem_alloc(len, KM_SLEEP); | 
|  | memcpy(ptr, dp, len); | 
|  | in_f = (xfs_inode_log_format_t *)ptr; | 
|  |  | 
|  | if (item->ri_prev->ri_total != 0 && | 
|  | item->ri_prev->ri_total == item->ri_prev->ri_cnt) { | 
|  | xlog_recover_add_item(&trans->r_itemq); | 
|  | } | 
|  | item = trans->r_itemq; | 
|  | item = item->ri_prev; | 
|  |  | 
|  | if (item->ri_total == 0) {		/* first region to be added */ | 
|  | if (in_f->ilf_size == 0 || | 
|  | in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { | 
|  | xlog_warn( | 
|  | "XFS: bad number of regions (%d) in inode log format", | 
|  | in_f->ilf_size); | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EIO); | 
|  | } | 
|  |  | 
|  | item->ri_total = in_f->ilf_size; | 
|  | item->ri_buf = | 
|  | kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), | 
|  | KM_SLEEP); | 
|  | } | 
|  | ASSERT(item->ri_total > item->ri_cnt); | 
|  | /* Description region is ri_buf[0] */ | 
|  | item->ri_buf[item->ri_cnt].i_addr = ptr; | 
|  | item->ri_buf[item->ri_cnt].i_len  = len; | 
|  | item->ri_cnt++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xlog_recover_new_tid( | 
|  | xlog_recover_t		**q, | 
|  | xlog_tid_t		tid, | 
|  | xfs_lsn_t		lsn) | 
|  | { | 
|  | xlog_recover_t		*trans; | 
|  |  | 
|  | trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); | 
|  | trans->r_log_tid   = tid; | 
|  | trans->r_lsn	   = lsn; | 
|  | xlog_recover_put_hashq(q, trans); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xlog_recover_unlink_tid( | 
|  | xlog_recover_t		**q, | 
|  | xlog_recover_t		*trans) | 
|  | { | 
|  | xlog_recover_t		*tp; | 
|  | int			found = 0; | 
|  |  | 
|  | ASSERT(trans != NULL); | 
|  | if (trans == *q) { | 
|  | *q = (*q)->r_next; | 
|  | } else { | 
|  | tp = *q; | 
|  | while (tp) { | 
|  | if (tp->r_next == trans) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | tp = tp->r_next; | 
|  | } | 
|  | if (!found) { | 
|  | xlog_warn( | 
|  | "XFS: xlog_recover_unlink_tid: trans not found"); | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EIO); | 
|  | } | 
|  | tp->r_next = tp->r_next->r_next; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xlog_recover_insert_item_backq( | 
|  | xlog_recover_item_t	**q, | 
|  | xlog_recover_item_t	*item) | 
|  | { | 
|  | if (*q == NULL) { | 
|  | item->ri_prev = item->ri_next = item; | 
|  | *q = item; | 
|  | } else { | 
|  | item->ri_next		= *q; | 
|  | item->ri_prev		= (*q)->ri_prev; | 
|  | (*q)->ri_prev		= item; | 
|  | item->ri_prev->ri_next	= item; | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xlog_recover_insert_item_frontq( | 
|  | xlog_recover_item_t	**q, | 
|  | xlog_recover_item_t	*item) | 
|  | { | 
|  | xlog_recover_insert_item_backq(q, item); | 
|  | *q = item; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xlog_recover_reorder_trans( | 
|  | xlog_recover_t		*trans) | 
|  | { | 
|  | xlog_recover_item_t	*first_item, *itemq, *itemq_next; | 
|  | xfs_buf_log_format_t	*buf_f; | 
|  | ushort			flags = 0; | 
|  |  | 
|  | first_item = itemq = trans->r_itemq; | 
|  | trans->r_itemq = NULL; | 
|  | do { | 
|  | itemq_next = itemq->ri_next; | 
|  | buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; | 
|  |  | 
|  | switch (ITEM_TYPE(itemq)) { | 
|  | case XFS_LI_BUF: | 
|  | flags = buf_f->blf_flags; | 
|  | if (!(flags & XFS_BLI_CANCEL)) { | 
|  | xlog_recover_insert_item_frontq(&trans->r_itemq, | 
|  | itemq); | 
|  | break; | 
|  | } | 
|  | case XFS_LI_INODE: | 
|  | case XFS_LI_DQUOT: | 
|  | case XFS_LI_QUOTAOFF: | 
|  | case XFS_LI_EFD: | 
|  | case XFS_LI_EFI: | 
|  | xlog_recover_insert_item_backq(&trans->r_itemq, itemq); | 
|  | break; | 
|  | default: | 
|  | xlog_warn( | 
|  | "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EIO); | 
|  | } | 
|  | itemq = itemq_next; | 
|  | } while (first_item != itemq); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build up the table of buf cancel records so that we don't replay | 
|  | * cancelled data in the second pass.  For buffer records that are | 
|  | * not cancel records, there is nothing to do here so we just return. | 
|  | * | 
|  | * If we get a cancel record which is already in the table, this indicates | 
|  | * that the buffer was cancelled multiple times.  In order to ensure | 
|  | * that during pass 2 we keep the record in the table until we reach its | 
|  | * last occurrence in the log, we keep a reference count in the cancel | 
|  | * record in the table to tell us how many times we expect to see this | 
|  | * record during the second pass. | 
|  | */ | 
|  | STATIC void | 
|  | xlog_recover_do_buffer_pass1( | 
|  | xlog_t			*log, | 
|  | xfs_buf_log_format_t	*buf_f) | 
|  | { | 
|  | xfs_buf_cancel_t	*bcp; | 
|  | xfs_buf_cancel_t	*nextp; | 
|  | xfs_buf_cancel_t	*prevp; | 
|  | xfs_buf_cancel_t	**bucket; | 
|  | xfs_daddr_t		blkno = 0; | 
|  | uint			len = 0; | 
|  | ushort			flags = 0; | 
|  |  | 
|  | switch (buf_f->blf_type) { | 
|  | case XFS_LI_BUF: | 
|  | blkno = buf_f->blf_blkno; | 
|  | len = buf_f->blf_len; | 
|  | flags = buf_f->blf_flags; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this isn't a cancel buffer item, then just return. | 
|  | */ | 
|  | if (!(flags & XFS_BLI_CANCEL)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Insert an xfs_buf_cancel record into the hash table of | 
|  | * them.  If there is already an identical record, bump | 
|  | * its reference count. | 
|  | */ | 
|  | bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % | 
|  | XLOG_BC_TABLE_SIZE]; | 
|  | /* | 
|  | * If the hash bucket is empty then just insert a new record into | 
|  | * the bucket. | 
|  | */ | 
|  | if (*bucket == NULL) { | 
|  | bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), | 
|  | KM_SLEEP); | 
|  | bcp->bc_blkno = blkno; | 
|  | bcp->bc_len = len; | 
|  | bcp->bc_refcount = 1; | 
|  | bcp->bc_next = NULL; | 
|  | *bucket = bcp; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The hash bucket is not empty, so search for duplicates of our | 
|  | * record.  If we find one them just bump its refcount.  If not | 
|  | * then add us at the end of the list. | 
|  | */ | 
|  | prevp = NULL; | 
|  | nextp = *bucket; | 
|  | while (nextp != NULL) { | 
|  | if (nextp->bc_blkno == blkno && nextp->bc_len == len) { | 
|  | nextp->bc_refcount++; | 
|  | return; | 
|  | } | 
|  | prevp = nextp; | 
|  | nextp = nextp->bc_next; | 
|  | } | 
|  | ASSERT(prevp != NULL); | 
|  | bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), | 
|  | KM_SLEEP); | 
|  | bcp->bc_blkno = blkno; | 
|  | bcp->bc_len = len; | 
|  | bcp->bc_refcount = 1; | 
|  | bcp->bc_next = NULL; | 
|  | prevp->bc_next = bcp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see whether the buffer being recovered has a corresponding | 
|  | * entry in the buffer cancel record table.  If it does then return 1 | 
|  | * so that it will be cancelled, otherwise return 0.  If the buffer is | 
|  | * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement | 
|  | * the refcount on the entry in the table and remove it from the table | 
|  | * if this is the last reference. | 
|  | * | 
|  | * We remove the cancel record from the table when we encounter its | 
|  | * last occurrence in the log so that if the same buffer is re-used | 
|  | * again after its last cancellation we actually replay the changes | 
|  | * made at that point. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_check_buffer_cancelled( | 
|  | xlog_t			*log, | 
|  | xfs_daddr_t		blkno, | 
|  | uint			len, | 
|  | ushort			flags) | 
|  | { | 
|  | xfs_buf_cancel_t	*bcp; | 
|  | xfs_buf_cancel_t	*prevp; | 
|  | xfs_buf_cancel_t	**bucket; | 
|  |  | 
|  | if (log->l_buf_cancel_table == NULL) { | 
|  | /* | 
|  | * There is nothing in the table built in pass one, | 
|  | * so this buffer must not be cancelled. | 
|  | */ | 
|  | ASSERT(!(flags & XFS_BLI_CANCEL)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % | 
|  | XLOG_BC_TABLE_SIZE]; | 
|  | bcp = *bucket; | 
|  | if (bcp == NULL) { | 
|  | /* | 
|  | * There is no corresponding entry in the table built | 
|  | * in pass one, so this buffer has not been cancelled. | 
|  | */ | 
|  | ASSERT(!(flags & XFS_BLI_CANCEL)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search for an entry in the buffer cancel table that | 
|  | * matches our buffer. | 
|  | */ | 
|  | prevp = NULL; | 
|  | while (bcp != NULL) { | 
|  | if (bcp->bc_blkno == blkno && bcp->bc_len == len) { | 
|  | /* | 
|  | * We've go a match, so return 1 so that the | 
|  | * recovery of this buffer is cancelled. | 
|  | * If this buffer is actually a buffer cancel | 
|  | * log item, then decrement the refcount on the | 
|  | * one in the table and remove it if this is the | 
|  | * last reference. | 
|  | */ | 
|  | if (flags & XFS_BLI_CANCEL) { | 
|  | bcp->bc_refcount--; | 
|  | if (bcp->bc_refcount == 0) { | 
|  | if (prevp == NULL) { | 
|  | *bucket = bcp->bc_next; | 
|  | } else { | 
|  | prevp->bc_next = bcp->bc_next; | 
|  | } | 
|  | kmem_free(bcp); | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | prevp = bcp; | 
|  | bcp = bcp->bc_next; | 
|  | } | 
|  | /* | 
|  | * We didn't find a corresponding entry in the table, so | 
|  | * return 0 so that the buffer is NOT cancelled. | 
|  | */ | 
|  | ASSERT(!(flags & XFS_BLI_CANCEL)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xlog_recover_do_buffer_pass2( | 
|  | xlog_t			*log, | 
|  | xfs_buf_log_format_t	*buf_f) | 
|  | { | 
|  | xfs_daddr_t		blkno = 0; | 
|  | ushort			flags = 0; | 
|  | uint			len = 0; | 
|  |  | 
|  | switch (buf_f->blf_type) { | 
|  | case XFS_LI_BUF: | 
|  | blkno = buf_f->blf_blkno; | 
|  | flags = buf_f->blf_flags; | 
|  | len = buf_f->blf_len; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return xlog_check_buffer_cancelled(log, blkno, len, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform recovery for a buffer full of inodes.  In these buffers, | 
|  | * the only data which should be recovered is that which corresponds | 
|  | * to the di_next_unlinked pointers in the on disk inode structures. | 
|  | * The rest of the data for the inodes is always logged through the | 
|  | * inodes themselves rather than the inode buffer and is recovered | 
|  | * in xlog_recover_do_inode_trans(). | 
|  | * | 
|  | * The only time when buffers full of inodes are fully recovered is | 
|  | * when the buffer is full of newly allocated inodes.  In this case | 
|  | * the buffer will not be marked as an inode buffer and so will be | 
|  | * sent to xlog_recover_do_reg_buffer() below during recovery. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_do_inode_buffer( | 
|  | xfs_mount_t		*mp, | 
|  | xlog_recover_item_t	*item, | 
|  | xfs_buf_t		*bp, | 
|  | xfs_buf_log_format_t	*buf_f) | 
|  | { | 
|  | int			i; | 
|  | int			item_index; | 
|  | int			bit; | 
|  | int			nbits; | 
|  | int			reg_buf_offset; | 
|  | int			reg_buf_bytes; | 
|  | int			next_unlinked_offset; | 
|  | int			inodes_per_buf; | 
|  | xfs_agino_t		*logged_nextp; | 
|  | xfs_agino_t		*buffer_nextp; | 
|  | unsigned int		*data_map = NULL; | 
|  | unsigned int		map_size = 0; | 
|  |  | 
|  | switch (buf_f->blf_type) { | 
|  | case XFS_LI_BUF: | 
|  | data_map = buf_f->blf_data_map; | 
|  | map_size = buf_f->blf_map_size; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Set the variables corresponding to the current region to | 
|  | * 0 so that we'll initialize them on the first pass through | 
|  | * the loop. | 
|  | */ | 
|  | reg_buf_offset = 0; | 
|  | reg_buf_bytes = 0; | 
|  | bit = 0; | 
|  | nbits = 0; | 
|  | item_index = 0; | 
|  | inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; | 
|  | for (i = 0; i < inodes_per_buf; i++) { | 
|  | next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + | 
|  | offsetof(xfs_dinode_t, di_next_unlinked); | 
|  |  | 
|  | while (next_unlinked_offset >= | 
|  | (reg_buf_offset + reg_buf_bytes)) { | 
|  | /* | 
|  | * The next di_next_unlinked field is beyond | 
|  | * the current logged region.  Find the next | 
|  | * logged region that contains or is beyond | 
|  | * the current di_next_unlinked field. | 
|  | */ | 
|  | bit += nbits; | 
|  | bit = xfs_next_bit(data_map, map_size, bit); | 
|  |  | 
|  | /* | 
|  | * If there are no more logged regions in the | 
|  | * buffer, then we're done. | 
|  | */ | 
|  | if (bit == -1) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nbits = xfs_contig_bits(data_map, map_size, | 
|  | bit); | 
|  | ASSERT(nbits > 0); | 
|  | reg_buf_offset = bit << XFS_BLI_SHIFT; | 
|  | reg_buf_bytes = nbits << XFS_BLI_SHIFT; | 
|  | item_index++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the current logged region starts after the current | 
|  | * di_next_unlinked field, then move on to the next | 
|  | * di_next_unlinked field. | 
|  | */ | 
|  | if (next_unlinked_offset < reg_buf_offset) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ASSERT(item->ri_buf[item_index].i_addr != NULL); | 
|  | ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); | 
|  | ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); | 
|  |  | 
|  | /* | 
|  | * The current logged region contains a copy of the | 
|  | * current di_next_unlinked field.  Extract its value | 
|  | * and copy it to the buffer copy. | 
|  | */ | 
|  | logged_nextp = (xfs_agino_t *) | 
|  | ((char *)(item->ri_buf[item_index].i_addr) + | 
|  | (next_unlinked_offset - reg_buf_offset)); | 
|  | if (unlikely(*logged_nextp == 0)) { | 
|  | xfs_fs_cmn_err(CE_ALERT, mp, | 
|  | "bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field", | 
|  | item, bp); | 
|  | XFS_ERROR_REPORT("xlog_recover_do_inode_buf", | 
|  | XFS_ERRLEVEL_LOW, mp); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, | 
|  | next_unlinked_offset); | 
|  | *buffer_nextp = *logged_nextp; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform a 'normal' buffer recovery.  Each logged region of the | 
|  | * buffer should be copied over the corresponding region in the | 
|  | * given buffer.  The bitmap in the buf log format structure indicates | 
|  | * where to place the logged data. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xlog_recover_do_reg_buffer( | 
|  | xlog_recover_item_t	*item, | 
|  | xfs_buf_t		*bp, | 
|  | xfs_buf_log_format_t	*buf_f) | 
|  | { | 
|  | int			i; | 
|  | int			bit; | 
|  | int			nbits; | 
|  | unsigned int		*data_map = NULL; | 
|  | unsigned int		map_size = 0; | 
|  | int                     error; | 
|  |  | 
|  | switch (buf_f->blf_type) { | 
|  | case XFS_LI_BUF: | 
|  | data_map = buf_f->blf_data_map; | 
|  | map_size = buf_f->blf_map_size; | 
|  | break; | 
|  | } | 
|  | bit = 0; | 
|  | i = 1;  /* 0 is the buf format structure */ | 
|  | while (1) { | 
|  | bit = xfs_next_bit(data_map, map_size, bit); | 
|  | if (bit == -1) | 
|  | break; | 
|  | nbits = xfs_contig_bits(data_map, map_size, bit); | 
|  | ASSERT(nbits > 0); | 
|  | ASSERT(item->ri_buf[i].i_addr != NULL); | 
|  | ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); | 
|  | ASSERT(XFS_BUF_COUNT(bp) >= | 
|  | ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); | 
|  |  | 
|  | /* | 
|  | * Do a sanity check if this is a dquot buffer. Just checking | 
|  | * the first dquot in the buffer should do. XXXThis is | 
|  | * probably a good thing to do for other buf types also. | 
|  | */ | 
|  | error = 0; | 
|  | if (buf_f->blf_flags & | 
|  | (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { | 
|  | error = xfs_qm_dqcheck((xfs_disk_dquot_t *) | 
|  | item->ri_buf[i].i_addr, | 
|  | -1, 0, XFS_QMOPT_DOWARN, | 
|  | "dquot_buf_recover"); | 
|  | } | 
|  | if (!error) | 
|  | memcpy(xfs_buf_offset(bp, | 
|  | (uint)bit << XFS_BLI_SHIFT),	/* dest */ | 
|  | item->ri_buf[i].i_addr,		/* source */ | 
|  | nbits<<XFS_BLI_SHIFT);		/* length */ | 
|  | i++; | 
|  | bit += nbits; | 
|  | } | 
|  |  | 
|  | /* Shouldn't be any more regions */ | 
|  | ASSERT(i == item->ri_total); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do some primitive error checking on ondisk dquot data structures. | 
|  | */ | 
|  | int | 
|  | xfs_qm_dqcheck( | 
|  | xfs_disk_dquot_t *ddq, | 
|  | xfs_dqid_t	 id, | 
|  | uint		 type,	  /* used only when IO_dorepair is true */ | 
|  | uint		 flags, | 
|  | char		 *str) | 
|  | { | 
|  | xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq; | 
|  | int		errs = 0; | 
|  |  | 
|  | /* | 
|  | * We can encounter an uninitialized dquot buffer for 2 reasons: | 
|  | * 1. If we crash while deleting the quotainode(s), and those blks got | 
|  | *    used for user data. This is because we take the path of regular | 
|  | *    file deletion; however, the size field of quotainodes is never | 
|  | *    updated, so all the tricks that we play in itruncate_finish | 
|  | *    don't quite matter. | 
|  | * | 
|  | * 2. We don't play the quota buffers when there's a quotaoff logitem. | 
|  | *    But the allocation will be replayed so we'll end up with an | 
|  | *    uninitialized quota block. | 
|  | * | 
|  | * This is all fine; things are still consistent, and we haven't lost | 
|  | * any quota information. Just don't complain about bad dquot blks. | 
|  | */ | 
|  | if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) { | 
|  | if (flags & XFS_QMOPT_DOWARN) | 
|  | cmn_err(CE_ALERT, | 
|  | "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", | 
|  | str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); | 
|  | errs++; | 
|  | } | 
|  | if (ddq->d_version != XFS_DQUOT_VERSION) { | 
|  | if (flags & XFS_QMOPT_DOWARN) | 
|  | cmn_err(CE_ALERT, | 
|  | "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", | 
|  | str, id, ddq->d_version, XFS_DQUOT_VERSION); | 
|  | errs++; | 
|  | } | 
|  |  | 
|  | if (ddq->d_flags != XFS_DQ_USER && | 
|  | ddq->d_flags != XFS_DQ_PROJ && | 
|  | ddq->d_flags != XFS_DQ_GROUP) { | 
|  | if (flags & XFS_QMOPT_DOWARN) | 
|  | cmn_err(CE_ALERT, | 
|  | "%s : XFS dquot ID 0x%x, unknown flags 0x%x", | 
|  | str, id, ddq->d_flags); | 
|  | errs++; | 
|  | } | 
|  |  | 
|  | if (id != -1 && id != be32_to_cpu(ddq->d_id)) { | 
|  | if (flags & XFS_QMOPT_DOWARN) | 
|  | cmn_err(CE_ALERT, | 
|  | "%s : ondisk-dquot 0x%p, ID mismatch: " | 
|  | "0x%x expected, found id 0x%x", | 
|  | str, ddq, id, be32_to_cpu(ddq->d_id)); | 
|  | errs++; | 
|  | } | 
|  |  | 
|  | if (!errs && ddq->d_id) { | 
|  | if (ddq->d_blk_softlimit && | 
|  | be64_to_cpu(ddq->d_bcount) >= | 
|  | be64_to_cpu(ddq->d_blk_softlimit)) { | 
|  | if (!ddq->d_btimer) { | 
|  | if (flags & XFS_QMOPT_DOWARN) | 
|  | cmn_err(CE_ALERT, | 
|  | "%s : Dquot ID 0x%x (0x%p) " | 
|  | "BLK TIMER NOT STARTED", | 
|  | str, (int)be32_to_cpu(ddq->d_id), ddq); | 
|  | errs++; | 
|  | } | 
|  | } | 
|  | if (ddq->d_ino_softlimit && | 
|  | be64_to_cpu(ddq->d_icount) >= | 
|  | be64_to_cpu(ddq->d_ino_softlimit)) { | 
|  | if (!ddq->d_itimer) { | 
|  | if (flags & XFS_QMOPT_DOWARN) | 
|  | cmn_err(CE_ALERT, | 
|  | "%s : Dquot ID 0x%x (0x%p) " | 
|  | "INODE TIMER NOT STARTED", | 
|  | str, (int)be32_to_cpu(ddq->d_id), ddq); | 
|  | errs++; | 
|  | } | 
|  | } | 
|  | if (ddq->d_rtb_softlimit && | 
|  | be64_to_cpu(ddq->d_rtbcount) >= | 
|  | be64_to_cpu(ddq->d_rtb_softlimit)) { | 
|  | if (!ddq->d_rtbtimer) { | 
|  | if (flags & XFS_QMOPT_DOWARN) | 
|  | cmn_err(CE_ALERT, | 
|  | "%s : Dquot ID 0x%x (0x%p) " | 
|  | "RTBLK TIMER NOT STARTED", | 
|  | str, (int)be32_to_cpu(ddq->d_id), ddq); | 
|  | errs++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) | 
|  | return errs; | 
|  |  | 
|  | if (flags & XFS_QMOPT_DOWARN) | 
|  | cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); | 
|  |  | 
|  | /* | 
|  | * Typically, a repair is only requested by quotacheck. | 
|  | */ | 
|  | ASSERT(id != -1); | 
|  | ASSERT(flags & XFS_QMOPT_DQREPAIR); | 
|  | memset(d, 0, sizeof(xfs_dqblk_t)); | 
|  |  | 
|  | d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); | 
|  | d->dd_diskdq.d_version = XFS_DQUOT_VERSION; | 
|  | d->dd_diskdq.d_flags = type; | 
|  | d->dd_diskdq.d_id = cpu_to_be32(id); | 
|  |  | 
|  | return errs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform a dquot buffer recovery. | 
|  | * Simple algorithm: if we have found a QUOTAOFF logitem of the same type | 
|  | * (ie. USR or GRP), then just toss this buffer away; don't recover it. | 
|  | * Else, treat it as a regular buffer and do recovery. | 
|  | */ | 
|  | STATIC void | 
|  | xlog_recover_do_dquot_buffer( | 
|  | xfs_mount_t		*mp, | 
|  | xlog_t			*log, | 
|  | xlog_recover_item_t	*item, | 
|  | xfs_buf_t		*bp, | 
|  | xfs_buf_log_format_t	*buf_f) | 
|  | { | 
|  | uint			type; | 
|  |  | 
|  | /* | 
|  | * Filesystems are required to send in quota flags at mount time. | 
|  | */ | 
|  | if (mp->m_qflags == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | type = 0; | 
|  | if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) | 
|  | type |= XFS_DQ_USER; | 
|  | if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF) | 
|  | type |= XFS_DQ_PROJ; | 
|  | if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) | 
|  | type |= XFS_DQ_GROUP; | 
|  | /* | 
|  | * This type of quotas was turned off, so ignore this buffer | 
|  | */ | 
|  | if (log->l_quotaoffs_flag & type) | 
|  | return; | 
|  |  | 
|  | xlog_recover_do_reg_buffer(item, bp, buf_f); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine replays a modification made to a buffer at runtime. | 
|  | * There are actually two types of buffer, regular and inode, which | 
|  | * are handled differently.  Inode buffers are handled differently | 
|  | * in that we only recover a specific set of data from them, namely | 
|  | * the inode di_next_unlinked fields.  This is because all other inode | 
|  | * data is actually logged via inode records and any data we replay | 
|  | * here which overlaps that may be stale. | 
|  | * | 
|  | * When meta-data buffers are freed at run time we log a buffer item | 
|  | * with the XFS_BLI_CANCEL bit set to indicate that previous copies | 
|  | * of the buffer in the log should not be replayed at recovery time. | 
|  | * This is so that if the blocks covered by the buffer are reused for | 
|  | * file data before we crash we don't end up replaying old, freed | 
|  | * meta-data into a user's file. | 
|  | * | 
|  | * To handle the cancellation of buffer log items, we make two passes | 
|  | * over the log during recovery.  During the first we build a table of | 
|  | * those buffers which have been cancelled, and during the second we | 
|  | * only replay those buffers which do not have corresponding cancel | 
|  | * records in the table.  See xlog_recover_do_buffer_pass[1,2] above | 
|  | * for more details on the implementation of the table of cancel records. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_do_buffer_trans( | 
|  | xlog_t			*log, | 
|  | xlog_recover_item_t	*item, | 
|  | int			pass) | 
|  | { | 
|  | xfs_buf_log_format_t	*buf_f; | 
|  | xfs_mount_t		*mp; | 
|  | xfs_buf_t		*bp; | 
|  | int			error; | 
|  | int			cancel; | 
|  | xfs_daddr_t		blkno; | 
|  | int			len; | 
|  | ushort			flags; | 
|  |  | 
|  | buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; | 
|  |  | 
|  | if (pass == XLOG_RECOVER_PASS1) { | 
|  | /* | 
|  | * In this pass we're only looking for buf items | 
|  | * with the XFS_BLI_CANCEL bit set. | 
|  | */ | 
|  | xlog_recover_do_buffer_pass1(log, buf_f); | 
|  | return 0; | 
|  | } else { | 
|  | /* | 
|  | * In this pass we want to recover all the buffers | 
|  | * which have not been cancelled and are not | 
|  | * cancellation buffers themselves.  The routine | 
|  | * we call here will tell us whether or not to | 
|  | * continue with the replay of this buffer. | 
|  | */ | 
|  | cancel = xlog_recover_do_buffer_pass2(log, buf_f); | 
|  | if (cancel) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | switch (buf_f->blf_type) { | 
|  | case XFS_LI_BUF: | 
|  | blkno = buf_f->blf_blkno; | 
|  | len = buf_f->blf_len; | 
|  | flags = buf_f->blf_flags; | 
|  | break; | 
|  | default: | 
|  | xfs_fs_cmn_err(CE_ALERT, log->l_mp, | 
|  | "xfs_log_recover: unknown buffer type 0x%x, logdev %s", | 
|  | buf_f->blf_type, log->l_mp->m_logname ? | 
|  | log->l_mp->m_logname : "internal"); | 
|  | XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", | 
|  | XFS_ERRLEVEL_LOW, log->l_mp); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | mp = log->l_mp; | 
|  | if (flags & XFS_BLI_INODE_BUF) { | 
|  | bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, | 
|  | XFS_BUF_LOCK); | 
|  | } else { | 
|  | bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); | 
|  | } | 
|  | if (XFS_BUF_ISERROR(bp)) { | 
|  | xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, | 
|  | bp, blkno); | 
|  | error = XFS_BUF_GETERROR(bp); | 
|  | xfs_buf_relse(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | error = 0; | 
|  | if (flags & XFS_BLI_INODE_BUF) { | 
|  | error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); | 
|  | } else if (flags & | 
|  | (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { | 
|  | xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); | 
|  | } else { | 
|  | xlog_recover_do_reg_buffer(item, bp, buf_f); | 
|  | } | 
|  | if (error) | 
|  | return XFS_ERROR(error); | 
|  |  | 
|  | /* | 
|  | * Perform delayed write on the buffer.  Asynchronous writes will be | 
|  | * slower when taking into account all the buffers to be flushed. | 
|  | * | 
|  | * Also make sure that only inode buffers with good sizes stay in | 
|  | * the buffer cache.  The kernel moves inodes in buffers of 1 block | 
|  | * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode | 
|  | * buffers in the log can be a different size if the log was generated | 
|  | * by an older kernel using unclustered inode buffers or a newer kernel | 
|  | * running with a different inode cluster size.  Regardless, if the | 
|  | * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) | 
|  | * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep | 
|  | * the buffer out of the buffer cache so that the buffer won't | 
|  | * overlap with future reads of those inodes. | 
|  | */ | 
|  | if (XFS_DINODE_MAGIC == | 
|  | be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && | 
|  | (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, | 
|  | (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { | 
|  | XFS_BUF_STALE(bp); | 
|  | error = xfs_bwrite(mp, bp); | 
|  | } else { | 
|  | ASSERT(bp->b_mount == NULL || bp->b_mount == mp); | 
|  | bp->b_mount = mp; | 
|  | XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); | 
|  | xfs_bdwrite(mp, bp); | 
|  | } | 
|  |  | 
|  | return (error); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xlog_recover_do_inode_trans( | 
|  | xlog_t			*log, | 
|  | xlog_recover_item_t	*item, | 
|  | int			pass) | 
|  | { | 
|  | xfs_inode_log_format_t	*in_f; | 
|  | xfs_mount_t		*mp; | 
|  | xfs_buf_t		*bp; | 
|  | xfs_dinode_t		*dip; | 
|  | xfs_ino_t		ino; | 
|  | int			len; | 
|  | xfs_caddr_t		src; | 
|  | xfs_caddr_t		dest; | 
|  | int			error; | 
|  | int			attr_index; | 
|  | uint			fields; | 
|  | xfs_icdinode_t		*dicp; | 
|  | int			need_free = 0; | 
|  |  | 
|  | if (pass == XLOG_RECOVER_PASS1) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { | 
|  | in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; | 
|  | } else { | 
|  | in_f = (xfs_inode_log_format_t *)kmem_alloc( | 
|  | sizeof(xfs_inode_log_format_t), KM_SLEEP); | 
|  | need_free = 1; | 
|  | error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); | 
|  | if (error) | 
|  | goto error; | 
|  | } | 
|  | ino = in_f->ilf_ino; | 
|  | mp = log->l_mp; | 
|  |  | 
|  | /* | 
|  | * Inode buffers can be freed, look out for it, | 
|  | * and do not replay the inode. | 
|  | */ | 
|  | if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, | 
|  | in_f->ilf_len, 0)) { | 
|  | error = 0; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | bp = xfs_buf_read_flags(mp->m_ddev_targp, in_f->ilf_blkno, | 
|  | in_f->ilf_len, XFS_BUF_LOCK); | 
|  | if (XFS_BUF_ISERROR(bp)) { | 
|  | xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, | 
|  | bp, in_f->ilf_blkno); | 
|  | error = XFS_BUF_GETERROR(bp); | 
|  | xfs_buf_relse(bp); | 
|  | goto error; | 
|  | } | 
|  | error = 0; | 
|  | ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); | 
|  | dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); | 
|  |  | 
|  | /* | 
|  | * Make sure the place we're flushing out to really looks | 
|  | * like an inode! | 
|  | */ | 
|  | if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) { | 
|  | xfs_buf_relse(bp); | 
|  | xfs_fs_cmn_err(CE_ALERT, mp, | 
|  | "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", | 
|  | dip, bp, ino); | 
|  | XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", | 
|  | XFS_ERRLEVEL_LOW, mp); | 
|  | error = EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  | dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr); | 
|  | if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { | 
|  | xfs_buf_relse(bp); | 
|  | xfs_fs_cmn_err(CE_ALERT, mp, | 
|  | "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", | 
|  | item, ino); | 
|  | XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", | 
|  | XFS_ERRLEVEL_LOW, mp); | 
|  | error = EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* Skip replay when the on disk inode is newer than the log one */ | 
|  | if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { | 
|  | /* | 
|  | * Deal with the wrap case, DI_MAX_FLUSH is less | 
|  | * than smaller numbers | 
|  | */ | 
|  | if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && | 
|  | dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { | 
|  | /* do nothing */ | 
|  | } else { | 
|  | xfs_buf_relse(bp); | 
|  | error = 0; | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | /* Take the opportunity to reset the flush iteration count */ | 
|  | dicp->di_flushiter = 0; | 
|  |  | 
|  | if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { | 
|  | if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && | 
|  | (dicp->di_format != XFS_DINODE_FMT_BTREE)) { | 
|  | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", | 
|  | XFS_ERRLEVEL_LOW, mp, dicp); | 
|  | xfs_buf_relse(bp); | 
|  | xfs_fs_cmn_err(CE_ALERT, mp, | 
|  | "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", | 
|  | item, dip, bp, ino); | 
|  | error = EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  | } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { | 
|  | if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && | 
|  | (dicp->di_format != XFS_DINODE_FMT_BTREE) && | 
|  | (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { | 
|  | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", | 
|  | XFS_ERRLEVEL_LOW, mp, dicp); | 
|  | xfs_buf_relse(bp); | 
|  | xfs_fs_cmn_err(CE_ALERT, mp, | 
|  | "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", | 
|  | item, dip, bp, ino); | 
|  | error = EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ | 
|  | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", | 
|  | XFS_ERRLEVEL_LOW, mp, dicp); | 
|  | xfs_buf_relse(bp); | 
|  | xfs_fs_cmn_err(CE_ALERT, mp, | 
|  | "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", | 
|  | item, dip, bp, ino, | 
|  | dicp->di_nextents + dicp->di_anextents, | 
|  | dicp->di_nblocks); | 
|  | error = EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  | if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { | 
|  | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", | 
|  | XFS_ERRLEVEL_LOW, mp, dicp); | 
|  | xfs_buf_relse(bp); | 
|  | xfs_fs_cmn_err(CE_ALERT, mp, | 
|  | "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", | 
|  | item, dip, bp, ino, dicp->di_forkoff); | 
|  | error = EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  | if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) { | 
|  | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", | 
|  | XFS_ERRLEVEL_LOW, mp, dicp); | 
|  | xfs_buf_relse(bp); | 
|  | xfs_fs_cmn_err(CE_ALERT, mp, | 
|  | "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", | 
|  | item->ri_buf[1].i_len, item); | 
|  | error = EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* The core is in in-core format */ | 
|  | xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr); | 
|  |  | 
|  | /* the rest is in on-disk format */ | 
|  | if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) { | 
|  | memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode), | 
|  | item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode), | 
|  | item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode)); | 
|  | } | 
|  |  | 
|  | fields = in_f->ilf_fields; | 
|  | switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { | 
|  | case XFS_ILOG_DEV: | 
|  | xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); | 
|  | break; | 
|  | case XFS_ILOG_UUID: | 
|  | memcpy(XFS_DFORK_DPTR(dip), | 
|  | &in_f->ilf_u.ilfu_uuid, | 
|  | sizeof(uuid_t)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (in_f->ilf_size == 2) | 
|  | goto write_inode_buffer; | 
|  | len = item->ri_buf[2].i_len; | 
|  | src = item->ri_buf[2].i_addr; | 
|  | ASSERT(in_f->ilf_size <= 4); | 
|  | ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); | 
|  | ASSERT(!(fields & XFS_ILOG_DFORK) || | 
|  | (len == in_f->ilf_dsize)); | 
|  |  | 
|  | switch (fields & XFS_ILOG_DFORK) { | 
|  | case XFS_ILOG_DDATA: | 
|  | case XFS_ILOG_DEXT: | 
|  | memcpy(XFS_DFORK_DPTR(dip), src, len); | 
|  | break; | 
|  |  | 
|  | case XFS_ILOG_DBROOT: | 
|  | xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, | 
|  | (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), | 
|  | XFS_DFORK_DSIZE(dip, mp)); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* | 
|  | * There are no data fork flags set. | 
|  | */ | 
|  | ASSERT((fields & XFS_ILOG_DFORK) == 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we logged any attribute data, recover it.  There may or | 
|  | * may not have been any other non-core data logged in this | 
|  | * transaction. | 
|  | */ | 
|  | if (in_f->ilf_fields & XFS_ILOG_AFORK) { | 
|  | if (in_f->ilf_fields & XFS_ILOG_DFORK) { | 
|  | attr_index = 3; | 
|  | } else { | 
|  | attr_index = 2; | 
|  | } | 
|  | len = item->ri_buf[attr_index].i_len; | 
|  | src = item->ri_buf[attr_index].i_addr; | 
|  | ASSERT(len == in_f->ilf_asize); | 
|  |  | 
|  | switch (in_f->ilf_fields & XFS_ILOG_AFORK) { | 
|  | case XFS_ILOG_ADATA: | 
|  | case XFS_ILOG_AEXT: | 
|  | dest = XFS_DFORK_APTR(dip); | 
|  | ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); | 
|  | memcpy(dest, src, len); | 
|  | break; | 
|  |  | 
|  | case XFS_ILOG_ABROOT: | 
|  | dest = XFS_DFORK_APTR(dip); | 
|  | xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, | 
|  | len, (xfs_bmdr_block_t*)dest, | 
|  | XFS_DFORK_ASIZE(dip, mp)); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); | 
|  | ASSERT(0); | 
|  | xfs_buf_relse(bp); | 
|  | error = EIO; | 
|  | goto error; | 
|  | } | 
|  | } | 
|  |  | 
|  | write_inode_buffer: | 
|  | ASSERT(bp->b_mount == NULL || bp->b_mount == mp); | 
|  | bp->b_mount = mp; | 
|  | XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); | 
|  | xfs_bdwrite(mp, bp); | 
|  | error: | 
|  | if (need_free) | 
|  | kmem_free(in_f); | 
|  | return XFS_ERROR(error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Recover QUOTAOFF records. We simply make a note of it in the xlog_t | 
|  | * structure, so that we know not to do any dquot item or dquot buffer recovery, | 
|  | * of that type. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_do_quotaoff_trans( | 
|  | xlog_t			*log, | 
|  | xlog_recover_item_t	*item, | 
|  | int			pass) | 
|  | { | 
|  | xfs_qoff_logformat_t	*qoff_f; | 
|  |  | 
|  | if (pass == XLOG_RECOVER_PASS2) { | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; | 
|  | ASSERT(qoff_f); | 
|  |  | 
|  | /* | 
|  | * The logitem format's flag tells us if this was user quotaoff, | 
|  | * group/project quotaoff or both. | 
|  | */ | 
|  | if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) | 
|  | log->l_quotaoffs_flag |= XFS_DQ_USER; | 
|  | if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) | 
|  | log->l_quotaoffs_flag |= XFS_DQ_PROJ; | 
|  | if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) | 
|  | log->l_quotaoffs_flag |= XFS_DQ_GROUP; | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Recover a dquot record | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_do_dquot_trans( | 
|  | xlog_t			*log, | 
|  | xlog_recover_item_t	*item, | 
|  | int			pass) | 
|  | { | 
|  | xfs_mount_t		*mp; | 
|  | xfs_buf_t		*bp; | 
|  | struct xfs_disk_dquot	*ddq, *recddq; | 
|  | int			error; | 
|  | xfs_dq_logformat_t	*dq_f; | 
|  | uint			type; | 
|  |  | 
|  | if (pass == XLOG_RECOVER_PASS1) { | 
|  | return 0; | 
|  | } | 
|  | mp = log->l_mp; | 
|  |  | 
|  | /* | 
|  | * Filesystems are required to send in quota flags at mount time. | 
|  | */ | 
|  | if (mp->m_qflags == 0) | 
|  | return (0); | 
|  |  | 
|  | recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; | 
|  | ASSERT(recddq); | 
|  | /* | 
|  | * This type of quotas was turned off, so ignore this record. | 
|  | */ | 
|  | type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); | 
|  | ASSERT(type); | 
|  | if (log->l_quotaoffs_flag & type) | 
|  | return (0); | 
|  |  | 
|  | /* | 
|  | * At this point we know that quota was _not_ turned off. | 
|  | * Since the mount flags are not indicating to us otherwise, this | 
|  | * must mean that quota is on, and the dquot needs to be replayed. | 
|  | * Remember that we may not have fully recovered the superblock yet, | 
|  | * so we can't do the usual trick of looking at the SB quota bits. | 
|  | * | 
|  | * The other possibility, of course, is that the quota subsystem was | 
|  | * removed since the last mount - ENOSYS. | 
|  | */ | 
|  | dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; | 
|  | ASSERT(dq_f); | 
|  | if ((error = xfs_qm_dqcheck(recddq, | 
|  | dq_f->qlf_id, | 
|  | 0, XFS_QMOPT_DOWARN, | 
|  | "xlog_recover_do_dquot_trans (log copy)"))) { | 
|  | return XFS_ERROR(EIO); | 
|  | } | 
|  | ASSERT(dq_f->qlf_len == 1); | 
|  |  | 
|  | error = xfs_read_buf(mp, mp->m_ddev_targp, | 
|  | dq_f->qlf_blkno, | 
|  | XFS_FSB_TO_BB(mp, dq_f->qlf_len), | 
|  | 0, &bp); | 
|  | if (error) { | 
|  | xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, | 
|  | bp, dq_f->qlf_blkno); | 
|  | return error; | 
|  | } | 
|  | ASSERT(bp); | 
|  | ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); | 
|  |  | 
|  | /* | 
|  | * At least the magic num portion should be on disk because this | 
|  | * was among a chunk of dquots created earlier, and we did some | 
|  | * minimal initialization then. | 
|  | */ | 
|  | if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, | 
|  | "xlog_recover_do_dquot_trans")) { | 
|  | xfs_buf_relse(bp); | 
|  | return XFS_ERROR(EIO); | 
|  | } | 
|  |  | 
|  | memcpy(ddq, recddq, item->ri_buf[1].i_len); | 
|  |  | 
|  | ASSERT(dq_f->qlf_size == 2); | 
|  | ASSERT(bp->b_mount == NULL || bp->b_mount == mp); | 
|  | bp->b_mount = mp; | 
|  | XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); | 
|  | xfs_bdwrite(mp, bp); | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is called to create an in-core extent free intent | 
|  | * item from the efi format structure which was logged on disk. | 
|  | * It allocates an in-core efi, copies the extents from the format | 
|  | * structure into it, and adds the efi to the AIL with the given | 
|  | * LSN. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_do_efi_trans( | 
|  | xlog_t			*log, | 
|  | xlog_recover_item_t	*item, | 
|  | xfs_lsn_t		lsn, | 
|  | int			pass) | 
|  | { | 
|  | int			error; | 
|  | xfs_mount_t		*mp; | 
|  | xfs_efi_log_item_t	*efip; | 
|  | xfs_efi_log_format_t	*efi_formatp; | 
|  |  | 
|  | if (pass == XLOG_RECOVER_PASS1) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; | 
|  |  | 
|  | mp = log->l_mp; | 
|  | efip = xfs_efi_init(mp, efi_formatp->efi_nextents); | 
|  | if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), | 
|  | &(efip->efi_format)))) { | 
|  | xfs_efi_item_free(efip); | 
|  | return error; | 
|  | } | 
|  | efip->efi_next_extent = efi_formatp->efi_nextents; | 
|  | efip->efi_flags |= XFS_EFI_COMMITTED; | 
|  |  | 
|  | spin_lock(&log->l_ailp->xa_lock); | 
|  | /* | 
|  | * xfs_trans_ail_update() drops the AIL lock. | 
|  | */ | 
|  | xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This routine is called when an efd format structure is found in | 
|  | * a committed transaction in the log.  It's purpose is to cancel | 
|  | * the corresponding efi if it was still in the log.  To do this | 
|  | * it searches the AIL for the efi with an id equal to that in the | 
|  | * efd format structure.  If we find it, we remove the efi from the | 
|  | * AIL and free it. | 
|  | */ | 
|  | STATIC void | 
|  | xlog_recover_do_efd_trans( | 
|  | xlog_t			*log, | 
|  | xlog_recover_item_t	*item, | 
|  | int			pass) | 
|  | { | 
|  | xfs_efd_log_format_t	*efd_formatp; | 
|  | xfs_efi_log_item_t	*efip = NULL; | 
|  | xfs_log_item_t		*lip; | 
|  | __uint64_t		efi_id; | 
|  | struct xfs_ail_cursor	cur; | 
|  | struct xfs_ail		*ailp = log->l_ailp; | 
|  |  | 
|  | if (pass == XLOG_RECOVER_PASS1) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; | 
|  | ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + | 
|  | ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || | 
|  | (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + | 
|  | ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); | 
|  | efi_id = efd_formatp->efd_efi_id; | 
|  |  | 
|  | /* | 
|  | * Search for the efi with the id in the efd format structure | 
|  | * in the AIL. | 
|  | */ | 
|  | spin_lock(&ailp->xa_lock); | 
|  | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); | 
|  | while (lip != NULL) { | 
|  | if (lip->li_type == XFS_LI_EFI) { | 
|  | efip = (xfs_efi_log_item_t *)lip; | 
|  | if (efip->efi_format.efi_id == efi_id) { | 
|  | /* | 
|  | * xfs_trans_ail_delete() drops the | 
|  | * AIL lock. | 
|  | */ | 
|  | xfs_trans_ail_delete(ailp, lip); | 
|  | xfs_efi_item_free(efip); | 
|  | spin_lock(&ailp->xa_lock); | 
|  | break; | 
|  | } | 
|  | } | 
|  | lip = xfs_trans_ail_cursor_next(ailp, &cur); | 
|  | } | 
|  | xfs_trans_ail_cursor_done(ailp, &cur); | 
|  | spin_unlock(&ailp->xa_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform the transaction | 
|  | * | 
|  | * If the transaction modifies a buffer or inode, do it now.  Otherwise, | 
|  | * EFIs and EFDs get queued up by adding entries into the AIL for them. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_do_trans( | 
|  | xlog_t			*log, | 
|  | xlog_recover_t		*trans, | 
|  | int			pass) | 
|  | { | 
|  | int			error = 0; | 
|  | xlog_recover_item_t	*item, *first_item; | 
|  |  | 
|  | error = xlog_recover_reorder_trans(trans); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | first_item = item = trans->r_itemq; | 
|  | do { | 
|  | switch (ITEM_TYPE(item)) { | 
|  | case XFS_LI_BUF: | 
|  | error = xlog_recover_do_buffer_trans(log, item, pass); | 
|  | break; | 
|  | case XFS_LI_INODE: | 
|  | error = xlog_recover_do_inode_trans(log, item, pass); | 
|  | break; | 
|  | case XFS_LI_EFI: | 
|  | error = xlog_recover_do_efi_trans(log, item, | 
|  | trans->r_lsn, pass); | 
|  | break; | 
|  | case XFS_LI_EFD: | 
|  | xlog_recover_do_efd_trans(log, item, pass); | 
|  | error = 0; | 
|  | break; | 
|  | case XFS_LI_DQUOT: | 
|  | error = xlog_recover_do_dquot_trans(log, item, pass); | 
|  | break; | 
|  | case XFS_LI_QUOTAOFF: | 
|  | error = xlog_recover_do_quotaoff_trans(log, item, | 
|  | pass); | 
|  | break; | 
|  | default: | 
|  | xlog_warn( | 
|  | "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item)); | 
|  | ASSERT(0); | 
|  | error = XFS_ERROR(EIO); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (error) | 
|  | return error; | 
|  | item = item->ri_next; | 
|  | } while (first_item != item); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free up any resources allocated by the transaction | 
|  | * | 
|  | * Remember that EFIs, EFDs, and IUNLINKs are handled later. | 
|  | */ | 
|  | STATIC void | 
|  | xlog_recover_free_trans( | 
|  | xlog_recover_t		*trans) | 
|  | { | 
|  | xlog_recover_item_t	*first_item, *item, *free_item; | 
|  | int			i; | 
|  |  | 
|  | item = first_item = trans->r_itemq; | 
|  | do { | 
|  | free_item = item; | 
|  | item = item->ri_next; | 
|  | /* Free the regions in the item. */ | 
|  | for (i = 0; i < free_item->ri_cnt; i++) { | 
|  | kmem_free(free_item->ri_buf[i].i_addr); | 
|  | } | 
|  | /* Free the item itself */ | 
|  | kmem_free(free_item->ri_buf); | 
|  | kmem_free(free_item); | 
|  | } while (first_item != item); | 
|  | /* Free the transaction recover structure */ | 
|  | kmem_free(trans); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xlog_recover_commit_trans( | 
|  | xlog_t			*log, | 
|  | xlog_recover_t		**q, | 
|  | xlog_recover_t		*trans, | 
|  | int			pass) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | if ((error = xlog_recover_unlink_tid(q, trans))) | 
|  | return error; | 
|  | if ((error = xlog_recover_do_trans(log, trans, pass))) | 
|  | return error; | 
|  | xlog_recover_free_trans(trans);			/* no error */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xlog_recover_unmount_trans( | 
|  | xlog_recover_t		*trans) | 
|  | { | 
|  | /* Do nothing now */ | 
|  | xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are two valid states of the r_state field.  0 indicates that the | 
|  | * transaction structure is in a normal state.  We have either seen the | 
|  | * start of the transaction or the last operation we added was not a partial | 
|  | * operation.  If the last operation we added to the transaction was a | 
|  | * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. | 
|  | * | 
|  | * NOTE: skip LRs with 0 data length. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_process_data( | 
|  | xlog_t			*log, | 
|  | xlog_recover_t		*rhash[], | 
|  | xlog_rec_header_t	*rhead, | 
|  | xfs_caddr_t		dp, | 
|  | int			pass) | 
|  | { | 
|  | xfs_caddr_t		lp; | 
|  | int			num_logops; | 
|  | xlog_op_header_t	*ohead; | 
|  | xlog_recover_t		*trans; | 
|  | xlog_tid_t		tid; | 
|  | int			error; | 
|  | unsigned long		hash; | 
|  | uint			flags; | 
|  |  | 
|  | lp = dp + be32_to_cpu(rhead->h_len); | 
|  | num_logops = be32_to_cpu(rhead->h_num_logops); | 
|  |  | 
|  | /* check the log format matches our own - else we can't recover */ | 
|  | if (xlog_header_check_recover(log->l_mp, rhead)) | 
|  | return (XFS_ERROR(EIO)); | 
|  |  | 
|  | while ((dp < lp) && num_logops) { | 
|  | ASSERT(dp + sizeof(xlog_op_header_t) <= lp); | 
|  | ohead = (xlog_op_header_t *)dp; | 
|  | dp += sizeof(xlog_op_header_t); | 
|  | if (ohead->oh_clientid != XFS_TRANSACTION && | 
|  | ohead->oh_clientid != XFS_LOG) { | 
|  | xlog_warn( | 
|  | "XFS: xlog_recover_process_data: bad clientid"); | 
|  | ASSERT(0); | 
|  | return (XFS_ERROR(EIO)); | 
|  | } | 
|  | tid = be32_to_cpu(ohead->oh_tid); | 
|  | hash = XLOG_RHASH(tid); | 
|  | trans = xlog_recover_find_tid(rhash[hash], tid); | 
|  | if (trans == NULL) {		   /* not found; add new tid */ | 
|  | if (ohead->oh_flags & XLOG_START_TRANS) | 
|  | xlog_recover_new_tid(&rhash[hash], tid, | 
|  | be64_to_cpu(rhead->h_lsn)); | 
|  | } else { | 
|  | if (dp + be32_to_cpu(ohead->oh_len) > lp) { | 
|  | xlog_warn( | 
|  | "XFS: xlog_recover_process_data: bad length"); | 
|  | WARN_ON(1); | 
|  | return (XFS_ERROR(EIO)); | 
|  | } | 
|  | flags = ohead->oh_flags & ~XLOG_END_TRANS; | 
|  | if (flags & XLOG_WAS_CONT_TRANS) | 
|  | flags &= ~XLOG_CONTINUE_TRANS; | 
|  | switch (flags) { | 
|  | case XLOG_COMMIT_TRANS: | 
|  | error = xlog_recover_commit_trans(log, | 
|  | &rhash[hash], trans, pass); | 
|  | break; | 
|  | case XLOG_UNMOUNT_TRANS: | 
|  | error = xlog_recover_unmount_trans(trans); | 
|  | break; | 
|  | case XLOG_WAS_CONT_TRANS: | 
|  | error = xlog_recover_add_to_cont_trans(trans, | 
|  | dp, be32_to_cpu(ohead->oh_len)); | 
|  | break; | 
|  | case XLOG_START_TRANS: | 
|  | xlog_warn( | 
|  | "XFS: xlog_recover_process_data: bad transaction"); | 
|  | ASSERT(0); | 
|  | error = XFS_ERROR(EIO); | 
|  | break; | 
|  | case 0: | 
|  | case XLOG_CONTINUE_TRANS: | 
|  | error = xlog_recover_add_to_trans(trans, | 
|  | dp, be32_to_cpu(ohead->oh_len)); | 
|  | break; | 
|  | default: | 
|  | xlog_warn( | 
|  | "XFS: xlog_recover_process_data: bad flag"); | 
|  | ASSERT(0); | 
|  | error = XFS_ERROR(EIO); | 
|  | break; | 
|  | } | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | dp += be32_to_cpu(ohead->oh_len); | 
|  | num_logops--; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an extent free intent item that was recovered from | 
|  | * the log.  We need to free the extents that it describes. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_process_efi( | 
|  | xfs_mount_t		*mp, | 
|  | xfs_efi_log_item_t	*efip) | 
|  | { | 
|  | xfs_efd_log_item_t	*efdp; | 
|  | xfs_trans_t		*tp; | 
|  | int			i; | 
|  | int			error = 0; | 
|  | xfs_extent_t		*extp; | 
|  | xfs_fsblock_t		startblock_fsb; | 
|  |  | 
|  | ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); | 
|  |  | 
|  | /* | 
|  | * First check the validity of the extents described by the | 
|  | * EFI.  If any are bad, then assume that all are bad and | 
|  | * just toss the EFI. | 
|  | */ | 
|  | for (i = 0; i < efip->efi_format.efi_nextents; i++) { | 
|  | extp = &(efip->efi_format.efi_extents[i]); | 
|  | startblock_fsb = XFS_BB_TO_FSB(mp, | 
|  | XFS_FSB_TO_DADDR(mp, extp->ext_start)); | 
|  | if ((startblock_fsb == 0) || | 
|  | (extp->ext_len == 0) || | 
|  | (startblock_fsb >= mp->m_sb.sb_dblocks) || | 
|  | (extp->ext_len >= mp->m_sb.sb_agblocks)) { | 
|  | /* | 
|  | * This will pull the EFI from the AIL and | 
|  | * free the memory associated with it. | 
|  | */ | 
|  | xfs_efi_release(efip, efip->efi_format.efi_nextents); | 
|  | return XFS_ERROR(EIO); | 
|  | } | 
|  | } | 
|  |  | 
|  | tp = xfs_trans_alloc(mp, 0); | 
|  | error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); | 
|  | if (error) | 
|  | goto abort_error; | 
|  | efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); | 
|  |  | 
|  | for (i = 0; i < efip->efi_format.efi_nextents; i++) { | 
|  | extp = &(efip->efi_format.efi_extents[i]); | 
|  | error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); | 
|  | if (error) | 
|  | goto abort_error; | 
|  | xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, | 
|  | extp->ext_len); | 
|  | } | 
|  |  | 
|  | efip->efi_flags |= XFS_EFI_RECOVERED; | 
|  | error = xfs_trans_commit(tp, 0); | 
|  | return error; | 
|  |  | 
|  | abort_error: | 
|  | xfs_trans_cancel(tp, XFS_TRANS_ABORT); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When this is called, all of the EFIs which did not have | 
|  | * corresponding EFDs should be in the AIL.  What we do now | 
|  | * is free the extents associated with each one. | 
|  | * | 
|  | * Since we process the EFIs in normal transactions, they | 
|  | * will be removed at some point after the commit.  This prevents | 
|  | * us from just walking down the list processing each one. | 
|  | * We'll use a flag in the EFI to skip those that we've already | 
|  | * processed and use the AIL iteration mechanism's generation | 
|  | * count to try to speed this up at least a bit. | 
|  | * | 
|  | * When we start, we know that the EFIs are the only things in | 
|  | * the AIL.  As we process them, however, other items are added | 
|  | * to the AIL.  Since everything added to the AIL must come after | 
|  | * everything already in the AIL, we stop processing as soon as | 
|  | * we see something other than an EFI in the AIL. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_process_efis( | 
|  | xlog_t			*log) | 
|  | { | 
|  | xfs_log_item_t		*lip; | 
|  | xfs_efi_log_item_t	*efip; | 
|  | int			error = 0; | 
|  | struct xfs_ail_cursor	cur; | 
|  | struct xfs_ail		*ailp; | 
|  |  | 
|  | ailp = log->l_ailp; | 
|  | spin_lock(&ailp->xa_lock); | 
|  | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); | 
|  | while (lip != NULL) { | 
|  | /* | 
|  | * We're done when we see something other than an EFI. | 
|  | * There should be no EFIs left in the AIL now. | 
|  | */ | 
|  | if (lip->li_type != XFS_LI_EFI) { | 
|  | #ifdef DEBUG | 
|  | for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) | 
|  | ASSERT(lip->li_type != XFS_LI_EFI); | 
|  | #endif | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Skip EFIs that we've already processed. | 
|  | */ | 
|  | efip = (xfs_efi_log_item_t *)lip; | 
|  | if (efip->efi_flags & XFS_EFI_RECOVERED) { | 
|  | lip = xfs_trans_ail_cursor_next(ailp, &cur); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | spin_unlock(&ailp->xa_lock); | 
|  | error = xlog_recover_process_efi(log->l_mp, efip); | 
|  | spin_lock(&ailp->xa_lock); | 
|  | if (error) | 
|  | goto out; | 
|  | lip = xfs_trans_ail_cursor_next(ailp, &cur); | 
|  | } | 
|  | out: | 
|  | xfs_trans_ail_cursor_done(ailp, &cur); | 
|  | spin_unlock(&ailp->xa_lock); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine performs a transaction to null out a bad inode pointer | 
|  | * in an agi unlinked inode hash bucket. | 
|  | */ | 
|  | STATIC void | 
|  | xlog_recover_clear_agi_bucket( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_agnumber_t	agno, | 
|  | int		bucket) | 
|  | { | 
|  | xfs_trans_t	*tp; | 
|  | xfs_agi_t	*agi; | 
|  | xfs_buf_t	*agibp; | 
|  | int		offset; | 
|  | int		error; | 
|  |  | 
|  | tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); | 
|  | error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), | 
|  | 0, 0, 0); | 
|  | if (error) | 
|  | goto out_abort; | 
|  |  | 
|  | error = xfs_read_agi(mp, tp, agno, &agibp); | 
|  | if (error) | 
|  | goto out_abort; | 
|  |  | 
|  | agi = XFS_BUF_TO_AGI(agibp); | 
|  | agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); | 
|  | offset = offsetof(xfs_agi_t, agi_unlinked) + | 
|  | (sizeof(xfs_agino_t) * bucket); | 
|  | xfs_trans_log_buf(tp, agibp, offset, | 
|  | (offset + sizeof(xfs_agino_t) - 1)); | 
|  |  | 
|  | error = xfs_trans_commit(tp, 0); | 
|  | if (error) | 
|  | goto out_error; | 
|  | return; | 
|  |  | 
|  | out_abort: | 
|  | xfs_trans_cancel(tp, XFS_TRANS_ABORT); | 
|  | out_error: | 
|  | xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: " | 
|  | "failed to clear agi %d. Continuing.", agno); | 
|  | return; | 
|  | } | 
|  |  | 
|  | STATIC xfs_agino_t | 
|  | xlog_recover_process_one_iunlink( | 
|  | struct xfs_mount		*mp, | 
|  | xfs_agnumber_t			agno, | 
|  | xfs_agino_t			agino, | 
|  | int				bucket) | 
|  | { | 
|  | struct xfs_buf			*ibp; | 
|  | struct xfs_dinode		*dip; | 
|  | struct xfs_inode		*ip; | 
|  | xfs_ino_t			ino; | 
|  | int				error; | 
|  |  | 
|  | ino = XFS_AGINO_TO_INO(mp, agno, agino); | 
|  | error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); | 
|  | if (error) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * Get the on disk inode to find the next inode in the bucket. | 
|  | */ | 
|  | error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK); | 
|  | if (error) | 
|  | goto fail_iput; | 
|  |  | 
|  | ASSERT(ip->i_d.di_nlink == 0); | 
|  | ASSERT(ip->i_d.di_mode != 0); | 
|  |  | 
|  | /* setup for the next pass */ | 
|  | agino = be32_to_cpu(dip->di_next_unlinked); | 
|  | xfs_buf_relse(ibp); | 
|  |  | 
|  | /* | 
|  | * Prevent any DMAPI event from being sent when the reference on | 
|  | * the inode is dropped. | 
|  | */ | 
|  | ip->i_d.di_dmevmask = 0; | 
|  |  | 
|  | IRELE(ip); | 
|  | return agino; | 
|  |  | 
|  | fail_iput: | 
|  | IRELE(ip); | 
|  | fail: | 
|  | /* | 
|  | * We can't read in the inode this bucket points to, or this inode | 
|  | * is messed up.  Just ditch this bucket of inodes.  We will lose | 
|  | * some inodes and space, but at least we won't hang. | 
|  | * | 
|  | * Call xlog_recover_clear_agi_bucket() to perform a transaction to | 
|  | * clear the inode pointer in the bucket. | 
|  | */ | 
|  | xlog_recover_clear_agi_bucket(mp, agno, bucket); | 
|  | return NULLAGINO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xlog_iunlink_recover | 
|  | * | 
|  | * This is called during recovery to process any inodes which | 
|  | * we unlinked but not freed when the system crashed.  These | 
|  | * inodes will be on the lists in the AGI blocks.  What we do | 
|  | * here is scan all the AGIs and fully truncate and free any | 
|  | * inodes found on the lists.  Each inode is removed from the | 
|  | * lists when it has been fully truncated and is freed.  The | 
|  | * freeing of the inode and its removal from the list must be | 
|  | * atomic. | 
|  | */ | 
|  | void | 
|  | xlog_recover_process_iunlinks( | 
|  | xlog_t		*log) | 
|  | { | 
|  | xfs_mount_t	*mp; | 
|  | xfs_agnumber_t	agno; | 
|  | xfs_agi_t	*agi; | 
|  | xfs_buf_t	*agibp; | 
|  | xfs_agino_t	agino; | 
|  | int		bucket; | 
|  | int		error; | 
|  | uint		mp_dmevmask; | 
|  |  | 
|  | mp = log->l_mp; | 
|  |  | 
|  | /* | 
|  | * Prevent any DMAPI event from being sent while in this function. | 
|  | */ | 
|  | mp_dmevmask = mp->m_dmevmask; | 
|  | mp->m_dmevmask = 0; | 
|  |  | 
|  | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { | 
|  | /* | 
|  | * Find the agi for this ag. | 
|  | */ | 
|  | error = xfs_read_agi(mp, NULL, agno, &agibp); | 
|  | if (error) { | 
|  | /* | 
|  | * AGI is b0rked. Don't process it. | 
|  | * | 
|  | * We should probably mark the filesystem as corrupt | 
|  | * after we've recovered all the ag's we can.... | 
|  | */ | 
|  | continue; | 
|  | } | 
|  | agi = XFS_BUF_TO_AGI(agibp); | 
|  |  | 
|  | for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { | 
|  | agino = be32_to_cpu(agi->agi_unlinked[bucket]); | 
|  | while (agino != NULLAGINO) { | 
|  | /* | 
|  | * Release the agi buffer so that it can | 
|  | * be acquired in the normal course of the | 
|  | * transaction to truncate and free the inode. | 
|  | */ | 
|  | xfs_buf_relse(agibp); | 
|  |  | 
|  | agino = xlog_recover_process_one_iunlink(mp, | 
|  | agno, agino, bucket); | 
|  |  | 
|  | /* | 
|  | * Reacquire the agibuffer and continue around | 
|  | * the loop. This should never fail as we know | 
|  | * the buffer was good earlier on. | 
|  | */ | 
|  | error = xfs_read_agi(mp, NULL, agno, &agibp); | 
|  | ASSERT(error == 0); | 
|  | agi = XFS_BUF_TO_AGI(agibp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release the buffer for the current agi so we can | 
|  | * go on to the next one. | 
|  | */ | 
|  | xfs_buf_relse(agibp); | 
|  | } | 
|  |  | 
|  | mp->m_dmevmask = mp_dmevmask; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef DEBUG | 
|  | STATIC void | 
|  | xlog_pack_data_checksum( | 
|  | xlog_t		*log, | 
|  | xlog_in_core_t	*iclog, | 
|  | int		size) | 
|  | { | 
|  | int		i; | 
|  | __be32		*up; | 
|  | uint		chksum = 0; | 
|  |  | 
|  | up = (__be32 *)iclog->ic_datap; | 
|  | /* divide length by 4 to get # words */ | 
|  | for (i = 0; i < (size >> 2); i++) { | 
|  | chksum ^= be32_to_cpu(*up); | 
|  | up++; | 
|  | } | 
|  | iclog->ic_header.h_chksum = cpu_to_be32(chksum); | 
|  | } | 
|  | #else | 
|  | #define xlog_pack_data_checksum(log, iclog, size) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Stamp cycle number in every block | 
|  | */ | 
|  | void | 
|  | xlog_pack_data( | 
|  | xlog_t			*log, | 
|  | xlog_in_core_t		*iclog, | 
|  | int			roundoff) | 
|  | { | 
|  | int			i, j, k; | 
|  | int			size = iclog->ic_offset + roundoff; | 
|  | __be32			cycle_lsn; | 
|  | xfs_caddr_t		dp; | 
|  |  | 
|  | xlog_pack_data_checksum(log, iclog, size); | 
|  |  | 
|  | cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); | 
|  |  | 
|  | dp = iclog->ic_datap; | 
|  | for (i = 0; i < BTOBB(size) && | 
|  | i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { | 
|  | iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; | 
|  | *(__be32 *)dp = cycle_lsn; | 
|  | dp += BBSIZE; | 
|  | } | 
|  |  | 
|  | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { | 
|  | xlog_in_core_2_t *xhdr = iclog->ic_data; | 
|  |  | 
|  | for ( ; i < BTOBB(size); i++) { | 
|  | j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); | 
|  | k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); | 
|  | xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; | 
|  | *(__be32 *)dp = cycle_lsn; | 
|  | dp += BBSIZE; | 
|  | } | 
|  |  | 
|  | for (i = 1; i < log->l_iclog_heads; i++) { | 
|  | xhdr[i].hic_xheader.xh_cycle = cycle_lsn; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) | 
|  | STATIC void | 
|  | xlog_unpack_data_checksum( | 
|  | xlog_rec_header_t	*rhead, | 
|  | xfs_caddr_t		dp, | 
|  | xlog_t			*log) | 
|  | { | 
|  | __be32			*up = (__be32 *)dp; | 
|  | uint			chksum = 0; | 
|  | int			i; | 
|  |  | 
|  | /* divide length by 4 to get # words */ | 
|  | for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) { | 
|  | chksum ^= be32_to_cpu(*up); | 
|  | up++; | 
|  | } | 
|  | if (chksum != be32_to_cpu(rhead->h_chksum)) { | 
|  | if (rhead->h_chksum || | 
|  | ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { | 
|  | cmn_err(CE_DEBUG, | 
|  | "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n", | 
|  | be32_to_cpu(rhead->h_chksum), chksum); | 
|  | cmn_err(CE_DEBUG, | 
|  | "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); | 
|  | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { | 
|  | cmn_err(CE_DEBUG, | 
|  | "XFS: LogR this is a LogV2 filesystem\n"); | 
|  | } | 
|  | log->l_flags |= XLOG_CHKSUM_MISMATCH; | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | #define xlog_unpack_data_checksum(rhead, dp, log) | 
|  | #endif | 
|  |  | 
|  | STATIC void | 
|  | xlog_unpack_data( | 
|  | xlog_rec_header_t	*rhead, | 
|  | xfs_caddr_t		dp, | 
|  | xlog_t			*log) | 
|  | { | 
|  | int			i, j, k; | 
|  |  | 
|  | for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && | 
|  | i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { | 
|  | *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; | 
|  | dp += BBSIZE; | 
|  | } | 
|  |  | 
|  | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { | 
|  | xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; | 
|  | for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { | 
|  | j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); | 
|  | k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); | 
|  | *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; | 
|  | dp += BBSIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | xlog_unpack_data_checksum(rhead, dp, log); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xlog_valid_rec_header( | 
|  | xlog_t			*log, | 
|  | xlog_rec_header_t	*rhead, | 
|  | xfs_daddr_t		blkno) | 
|  | { | 
|  | int			hlen; | 
|  |  | 
|  | if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) { | 
|  | XFS_ERROR_REPORT("xlog_valid_rec_header(1)", | 
|  | XFS_ERRLEVEL_LOW, log->l_mp); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | if (unlikely( | 
|  | (!rhead->h_version || | 
|  | (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { | 
|  | xlog_warn("XFS: %s: unrecognised log version (%d).", | 
|  | __func__, be32_to_cpu(rhead->h_version)); | 
|  | return XFS_ERROR(EIO); | 
|  | } | 
|  |  | 
|  | /* LR body must have data or it wouldn't have been written */ | 
|  | hlen = be32_to_cpu(rhead->h_len); | 
|  | if (unlikely( hlen <= 0 || hlen > INT_MAX )) { | 
|  | XFS_ERROR_REPORT("xlog_valid_rec_header(2)", | 
|  | XFS_ERRLEVEL_LOW, log->l_mp); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { | 
|  | XFS_ERROR_REPORT("xlog_valid_rec_header(3)", | 
|  | XFS_ERRLEVEL_LOW, log->l_mp); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the log from tail to head and process the log records found. | 
|  | * Handle the two cases where the tail and head are in the same cycle | 
|  | * and where the active portion of the log wraps around the end of | 
|  | * the physical log separately.  The pass parameter is passed through | 
|  | * to the routines called to process the data and is not looked at | 
|  | * here. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_do_recovery_pass( | 
|  | xlog_t			*log, | 
|  | xfs_daddr_t		head_blk, | 
|  | xfs_daddr_t		tail_blk, | 
|  | int			pass) | 
|  | { | 
|  | xlog_rec_header_t	*rhead; | 
|  | xfs_daddr_t		blk_no; | 
|  | xfs_caddr_t		bufaddr, offset; | 
|  | xfs_buf_t		*hbp, *dbp; | 
|  | int			error = 0, h_size; | 
|  | int			bblks, split_bblks; | 
|  | int			hblks, split_hblks, wrapped_hblks; | 
|  | xlog_recover_t		*rhash[XLOG_RHASH_SIZE]; | 
|  |  | 
|  | ASSERT(head_blk != tail_blk); | 
|  |  | 
|  | /* | 
|  | * Read the header of the tail block and get the iclog buffer size from | 
|  | * h_size.  Use this to tell how many sectors make up the log header. | 
|  | */ | 
|  | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { | 
|  | /* | 
|  | * When using variable length iclogs, read first sector of | 
|  | * iclog header and extract the header size from it.  Get a | 
|  | * new hbp that is the correct size. | 
|  | */ | 
|  | hbp = xlog_get_bp(log, 1); | 
|  | if (!hbp) | 
|  | return ENOMEM; | 
|  |  | 
|  | error = xlog_bread(log, tail_blk, 1, hbp, &offset); | 
|  | if (error) | 
|  | goto bread_err1; | 
|  |  | 
|  | rhead = (xlog_rec_header_t *)offset; | 
|  | error = xlog_valid_rec_header(log, rhead, tail_blk); | 
|  | if (error) | 
|  | goto bread_err1; | 
|  | h_size = be32_to_cpu(rhead->h_size); | 
|  | if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && | 
|  | (h_size > XLOG_HEADER_CYCLE_SIZE)) { | 
|  | hblks = h_size / XLOG_HEADER_CYCLE_SIZE; | 
|  | if (h_size % XLOG_HEADER_CYCLE_SIZE) | 
|  | hblks++; | 
|  | xlog_put_bp(hbp); | 
|  | hbp = xlog_get_bp(log, hblks); | 
|  | } else { | 
|  | hblks = 1; | 
|  | } | 
|  | } else { | 
|  | ASSERT(log->l_sectbb_log == 0); | 
|  | hblks = 1; | 
|  | hbp = xlog_get_bp(log, 1); | 
|  | h_size = XLOG_BIG_RECORD_BSIZE; | 
|  | } | 
|  |  | 
|  | if (!hbp) | 
|  | return ENOMEM; | 
|  | dbp = xlog_get_bp(log, BTOBB(h_size)); | 
|  | if (!dbp) { | 
|  | xlog_put_bp(hbp); | 
|  | return ENOMEM; | 
|  | } | 
|  |  | 
|  | memset(rhash, 0, sizeof(rhash)); | 
|  | if (tail_blk <= head_blk) { | 
|  | for (blk_no = tail_blk; blk_no < head_blk; ) { | 
|  | error = xlog_bread(log, blk_no, hblks, hbp, &offset); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | rhead = (xlog_rec_header_t *)offset; | 
|  | error = xlog_valid_rec_header(log, rhead, blk_no); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | /* blocks in data section */ | 
|  | bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); | 
|  | error = xlog_bread(log, blk_no + hblks, bblks, dbp, | 
|  | &offset); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | xlog_unpack_data(rhead, offset, log); | 
|  | if ((error = xlog_recover_process_data(log, | 
|  | rhash, rhead, offset, pass))) | 
|  | goto bread_err2; | 
|  | blk_no += bblks + hblks; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Perform recovery around the end of the physical log. | 
|  | * When the head is not on the same cycle number as the tail, | 
|  | * we can't do a sequential recovery as above. | 
|  | */ | 
|  | blk_no = tail_blk; | 
|  | while (blk_no < log->l_logBBsize) { | 
|  | /* | 
|  | * Check for header wrapping around physical end-of-log | 
|  | */ | 
|  | offset = NULL; | 
|  | split_hblks = 0; | 
|  | wrapped_hblks = 0; | 
|  | if (blk_no + hblks <= log->l_logBBsize) { | 
|  | /* Read header in one read */ | 
|  | error = xlog_bread(log, blk_no, hblks, hbp, | 
|  | &offset); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  | } else { | 
|  | /* This LR is split across physical log end */ | 
|  | if (blk_no != log->l_logBBsize) { | 
|  | /* some data before physical log end */ | 
|  | ASSERT(blk_no <= INT_MAX); | 
|  | split_hblks = log->l_logBBsize - (int)blk_no; | 
|  | ASSERT(split_hblks > 0); | 
|  | error = xlog_bread(log, blk_no, | 
|  | split_hblks, hbp, | 
|  | &offset); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: this black magic still works with | 
|  | * large sector sizes (non-512) only because: | 
|  | * - we increased the buffer size originally | 
|  | *   by 1 sector giving us enough extra space | 
|  | *   for the second read; | 
|  | * - the log start is guaranteed to be sector | 
|  | *   aligned; | 
|  | * - we read the log end (LR header start) | 
|  | *   _first_, then the log start (LR header end) | 
|  | *   - order is important. | 
|  | */ | 
|  | wrapped_hblks = hblks - split_hblks; | 
|  | bufaddr = XFS_BUF_PTR(hbp); | 
|  | error = XFS_BUF_SET_PTR(hbp, | 
|  | bufaddr + BBTOB(split_hblks), | 
|  | BBTOB(hblks - split_hblks)); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | error = xlog_bread_noalign(log, 0, | 
|  | wrapped_hblks, hbp); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | error = XFS_BUF_SET_PTR(hbp, bufaddr, | 
|  | BBTOB(hblks)); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | if (!offset) | 
|  | offset = xlog_align(log, 0, | 
|  | wrapped_hblks, hbp); | 
|  | } | 
|  | rhead = (xlog_rec_header_t *)offset; | 
|  | error = xlog_valid_rec_header(log, rhead, | 
|  | split_hblks ? blk_no : 0); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); | 
|  | blk_no += hblks; | 
|  |  | 
|  | /* Read in data for log record */ | 
|  | if (blk_no + bblks <= log->l_logBBsize) { | 
|  | error = xlog_bread(log, blk_no, bblks, dbp, | 
|  | &offset); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  | } else { | 
|  | /* This log record is split across the | 
|  | * physical end of log */ | 
|  | offset = NULL; | 
|  | split_bblks = 0; | 
|  | if (blk_no != log->l_logBBsize) { | 
|  | /* some data is before the physical | 
|  | * end of log */ | 
|  | ASSERT(!wrapped_hblks); | 
|  | ASSERT(blk_no <= INT_MAX); | 
|  | split_bblks = | 
|  | log->l_logBBsize - (int)blk_no; | 
|  | ASSERT(split_bblks > 0); | 
|  | error = xlog_bread(log, blk_no, | 
|  | split_bblks, dbp, | 
|  | &offset); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: this black magic still works with | 
|  | * large sector sizes (non-512) only because: | 
|  | * - we increased the buffer size originally | 
|  | *   by 1 sector giving us enough extra space | 
|  | *   for the second read; | 
|  | * - the log start is guaranteed to be sector | 
|  | *   aligned; | 
|  | * - we read the log end (LR header start) | 
|  | *   _first_, then the log start (LR header end) | 
|  | *   - order is important. | 
|  | */ | 
|  | bufaddr = XFS_BUF_PTR(dbp); | 
|  | error = XFS_BUF_SET_PTR(dbp, | 
|  | bufaddr + BBTOB(split_bblks), | 
|  | BBTOB(bblks - split_bblks)); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | error = xlog_bread_noalign(log, wrapped_hblks, | 
|  | bblks - split_bblks, | 
|  | dbp); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | error = XFS_BUF_SET_PTR(dbp, bufaddr, h_size); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | if (!offset) | 
|  | offset = xlog_align(log, wrapped_hblks, | 
|  | bblks - split_bblks, dbp); | 
|  | } | 
|  | xlog_unpack_data(rhead, offset, log); | 
|  | if ((error = xlog_recover_process_data(log, rhash, | 
|  | rhead, offset, pass))) | 
|  | goto bread_err2; | 
|  | blk_no += bblks; | 
|  | } | 
|  |  | 
|  | ASSERT(blk_no >= log->l_logBBsize); | 
|  | blk_no -= log->l_logBBsize; | 
|  |  | 
|  | /* read first part of physical log */ | 
|  | while (blk_no < head_blk) { | 
|  | error = xlog_bread(log, blk_no, hblks, hbp, &offset); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | rhead = (xlog_rec_header_t *)offset; | 
|  | error = xlog_valid_rec_header(log, rhead, blk_no); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); | 
|  | error = xlog_bread(log, blk_no+hblks, bblks, dbp, | 
|  | &offset); | 
|  | if (error) | 
|  | goto bread_err2; | 
|  |  | 
|  | xlog_unpack_data(rhead, offset, log); | 
|  | if ((error = xlog_recover_process_data(log, rhash, | 
|  | rhead, offset, pass))) | 
|  | goto bread_err2; | 
|  | blk_no += bblks + hblks; | 
|  | } | 
|  | } | 
|  |  | 
|  | bread_err2: | 
|  | xlog_put_bp(dbp); | 
|  | bread_err1: | 
|  | xlog_put_bp(hbp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the recovery of the log.  We actually do this in two phases. | 
|  | * The two passes are necessary in order to implement the function | 
|  | * of cancelling a record written into the log.  The first pass | 
|  | * determines those things which have been cancelled, and the | 
|  | * second pass replays log items normally except for those which | 
|  | * have been cancelled.  The handling of the replay and cancellations | 
|  | * takes place in the log item type specific routines. | 
|  | * | 
|  | * The table of items which have cancel records in the log is allocated | 
|  | * and freed at this level, since only here do we know when all of | 
|  | * the log recovery has been completed. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_do_log_recovery( | 
|  | xlog_t		*log, | 
|  | xfs_daddr_t	head_blk, | 
|  | xfs_daddr_t	tail_blk) | 
|  | { | 
|  | int		error; | 
|  |  | 
|  | ASSERT(head_blk != tail_blk); | 
|  |  | 
|  | /* | 
|  | * First do a pass to find all of the cancelled buf log items. | 
|  | * Store them in the buf_cancel_table for use in the second pass. | 
|  | */ | 
|  | log->l_buf_cancel_table = | 
|  | (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * | 
|  | sizeof(xfs_buf_cancel_t*), | 
|  | KM_SLEEP); | 
|  | error = xlog_do_recovery_pass(log, head_blk, tail_blk, | 
|  | XLOG_RECOVER_PASS1); | 
|  | if (error != 0) { | 
|  | kmem_free(log->l_buf_cancel_table); | 
|  | log->l_buf_cancel_table = NULL; | 
|  | return error; | 
|  | } | 
|  | /* | 
|  | * Then do a second pass to actually recover the items in the log. | 
|  | * When it is complete free the table of buf cancel items. | 
|  | */ | 
|  | error = xlog_do_recovery_pass(log, head_blk, tail_blk, | 
|  | XLOG_RECOVER_PASS2); | 
|  | #ifdef DEBUG | 
|  | if (!error) { | 
|  | int	i; | 
|  |  | 
|  | for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) | 
|  | ASSERT(log->l_buf_cancel_table[i] == NULL); | 
|  | } | 
|  | #endif	/* DEBUG */ | 
|  |  | 
|  | kmem_free(log->l_buf_cancel_table); | 
|  | log->l_buf_cancel_table = NULL; | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the actual recovery | 
|  | */ | 
|  | STATIC int | 
|  | xlog_do_recover( | 
|  | xlog_t		*log, | 
|  | xfs_daddr_t	head_blk, | 
|  | xfs_daddr_t	tail_blk) | 
|  | { | 
|  | int		error; | 
|  | xfs_buf_t	*bp; | 
|  | xfs_sb_t	*sbp; | 
|  |  | 
|  | /* | 
|  | * First replay the images in the log. | 
|  | */ | 
|  | error = xlog_do_log_recovery(log, head_blk, tail_blk); | 
|  | if (error) { | 
|  | return error; | 
|  | } | 
|  |  | 
|  | XFS_bflush(log->l_mp->m_ddev_targp); | 
|  |  | 
|  | /* | 
|  | * If IO errors happened during recovery, bail out. | 
|  | */ | 
|  | if (XFS_FORCED_SHUTDOWN(log->l_mp)) { | 
|  | return (EIO); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We now update the tail_lsn since much of the recovery has completed | 
|  | * and there may be space available to use.  If there were no extent | 
|  | * or iunlinks, we can free up the entire log and set the tail_lsn to | 
|  | * be the last_sync_lsn.  This was set in xlog_find_tail to be the | 
|  | * lsn of the last known good LR on disk.  If there are extent frees | 
|  | * or iunlinks they will have some entries in the AIL; so we look at | 
|  | * the AIL to determine how to set the tail_lsn. | 
|  | */ | 
|  | xlog_assign_tail_lsn(log->l_mp); | 
|  |  | 
|  | /* | 
|  | * Now that we've finished replaying all buffer and inode | 
|  | * updates, re-read in the superblock. | 
|  | */ | 
|  | bp = xfs_getsb(log->l_mp, 0); | 
|  | XFS_BUF_UNDONE(bp); | 
|  | ASSERT(!(XFS_BUF_ISWRITE(bp))); | 
|  | ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); | 
|  | XFS_BUF_READ(bp); | 
|  | XFS_BUF_UNASYNC(bp); | 
|  | xfsbdstrat(log->l_mp, bp); | 
|  | error = xfs_iowait(bp); | 
|  | if (error) { | 
|  | xfs_ioerror_alert("xlog_do_recover", | 
|  | log->l_mp, bp, XFS_BUF_ADDR(bp)); | 
|  | ASSERT(0); | 
|  | xfs_buf_relse(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Convert superblock from on-disk format */ | 
|  | sbp = &log->l_mp->m_sb; | 
|  | xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); | 
|  | ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); | 
|  | ASSERT(xfs_sb_good_version(sbp)); | 
|  | xfs_buf_relse(bp); | 
|  |  | 
|  | /* We've re-read the superblock so re-initialize per-cpu counters */ | 
|  | xfs_icsb_reinit_counters(log->l_mp); | 
|  |  | 
|  | xlog_recover_check_summary(log); | 
|  |  | 
|  | /* Normal transactions can now occur */ | 
|  | log->l_flags &= ~XLOG_ACTIVE_RECOVERY; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform recovery and re-initialize some log variables in xlog_find_tail. | 
|  | * | 
|  | * Return error or zero. | 
|  | */ | 
|  | int | 
|  | xlog_recover( | 
|  | xlog_t		*log) | 
|  | { | 
|  | xfs_daddr_t	head_blk, tail_blk; | 
|  | int		error; | 
|  |  | 
|  | /* find the tail of the log */ | 
|  | if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) | 
|  | return error; | 
|  |  | 
|  | if (tail_blk != head_blk) { | 
|  | /* There used to be a comment here: | 
|  | * | 
|  | * disallow recovery on read-only mounts.  note -- mount | 
|  | * checks for ENOSPC and turns it into an intelligent | 
|  | * error message. | 
|  | * ...but this is no longer true.  Now, unless you specify | 
|  | * NORECOVERY (in which case this function would never be | 
|  | * called), we just go ahead and recover.  We do this all | 
|  | * under the vfs layer, so we can get away with it unless | 
|  | * the device itself is read-only, in which case we fail. | 
|  | */ | 
|  | if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { | 
|  | return error; | 
|  | } | 
|  |  | 
|  | cmn_err(CE_NOTE, | 
|  | "Starting XFS recovery on filesystem: %s (logdev: %s)", | 
|  | log->l_mp->m_fsname, log->l_mp->m_logname ? | 
|  | log->l_mp->m_logname : "internal"); | 
|  |  | 
|  | error = xlog_do_recover(log, head_blk, tail_blk); | 
|  | log->l_flags |= XLOG_RECOVERY_NEEDED; | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In the first part of recovery we replay inodes and buffers and build | 
|  | * up the list of extent free items which need to be processed.  Here | 
|  | * we process the extent free items and clean up the on disk unlinked | 
|  | * inode lists.  This is separated from the first part of recovery so | 
|  | * that the root and real-time bitmap inodes can be read in from disk in | 
|  | * between the two stages.  This is necessary so that we can free space | 
|  | * in the real-time portion of the file system. | 
|  | */ | 
|  | int | 
|  | xlog_recover_finish( | 
|  | xlog_t		*log) | 
|  | { | 
|  | /* | 
|  | * Now we're ready to do the transactions needed for the | 
|  | * rest of recovery.  Start with completing all the extent | 
|  | * free intent records and then process the unlinked inode | 
|  | * lists.  At this point, we essentially run in normal mode | 
|  | * except that we're still performing recovery actions | 
|  | * rather than accepting new requests. | 
|  | */ | 
|  | if (log->l_flags & XLOG_RECOVERY_NEEDED) { | 
|  | int	error; | 
|  | error = xlog_recover_process_efis(log); | 
|  | if (error) { | 
|  | cmn_err(CE_ALERT, | 
|  | "Failed to recover EFIs on filesystem: %s", | 
|  | log->l_mp->m_fsname); | 
|  | return error; | 
|  | } | 
|  | /* | 
|  | * Sync the log to get all the EFIs out of the AIL. | 
|  | * This isn't absolutely necessary, but it helps in | 
|  | * case the unlink transactions would have problems | 
|  | * pushing the EFIs out of the way. | 
|  | */ | 
|  | xfs_log_force(log->l_mp, (xfs_lsn_t)0, | 
|  | (XFS_LOG_FORCE | XFS_LOG_SYNC)); | 
|  |  | 
|  | xlog_recover_process_iunlinks(log); | 
|  |  | 
|  | xlog_recover_check_summary(log); | 
|  |  | 
|  | cmn_err(CE_NOTE, | 
|  | "Ending XFS recovery on filesystem: %s (logdev: %s)", | 
|  | log->l_mp->m_fsname, log->l_mp->m_logname ? | 
|  | log->l_mp->m_logname : "internal"); | 
|  | log->l_flags &= ~XLOG_RECOVERY_NEEDED; | 
|  | } else { | 
|  | cmn_err(CE_DEBUG, | 
|  | "!Ending clean XFS mount for filesystem: %s\n", | 
|  | log->l_mp->m_fsname); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | #if defined(DEBUG) | 
|  | /* | 
|  | * Read all of the agf and agi counters and check that they | 
|  | * are consistent with the superblock counters. | 
|  | */ | 
|  | void | 
|  | xlog_recover_check_summary( | 
|  | xlog_t		*log) | 
|  | { | 
|  | xfs_mount_t	*mp; | 
|  | xfs_agf_t	*agfp; | 
|  | xfs_buf_t	*agfbp; | 
|  | xfs_buf_t	*agibp; | 
|  | xfs_buf_t	*sbbp; | 
|  | #ifdef XFS_LOUD_RECOVERY | 
|  | xfs_sb_t	*sbp; | 
|  | #endif | 
|  | xfs_agnumber_t	agno; | 
|  | __uint64_t	freeblks; | 
|  | __uint64_t	itotal; | 
|  | __uint64_t	ifree; | 
|  | int		error; | 
|  |  | 
|  | mp = log->l_mp; | 
|  |  | 
|  | freeblks = 0LL; | 
|  | itotal = 0LL; | 
|  | ifree = 0LL; | 
|  | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { | 
|  | error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); | 
|  | if (error) { | 
|  | xfs_fs_cmn_err(CE_ALERT, mp, | 
|  | "xlog_recover_check_summary(agf)" | 
|  | "agf read failed agno %d error %d", | 
|  | agno, error); | 
|  | } else { | 
|  | agfp = XFS_BUF_TO_AGF(agfbp); | 
|  | freeblks += be32_to_cpu(agfp->agf_freeblks) + | 
|  | be32_to_cpu(agfp->agf_flcount); | 
|  | xfs_buf_relse(agfbp); | 
|  | } | 
|  |  | 
|  | error = xfs_read_agi(mp, NULL, agno, &agibp); | 
|  | if (!error) { | 
|  | struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp); | 
|  |  | 
|  | itotal += be32_to_cpu(agi->agi_count); | 
|  | ifree += be32_to_cpu(agi->agi_freecount); | 
|  | xfs_buf_relse(agibp); | 
|  | } | 
|  | } | 
|  |  | 
|  | sbbp = xfs_getsb(mp, 0); | 
|  | #ifdef XFS_LOUD_RECOVERY | 
|  | sbp = &mp->m_sb; | 
|  | xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp)); | 
|  | cmn_err(CE_NOTE, | 
|  | "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", | 
|  | sbp->sb_icount, itotal); | 
|  | cmn_err(CE_NOTE, | 
|  | "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", | 
|  | sbp->sb_ifree, ifree); | 
|  | cmn_err(CE_NOTE, | 
|  | "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", | 
|  | sbp->sb_fdblocks, freeblks); | 
|  | #if 0 | 
|  | /* | 
|  | * This is turned off until I account for the allocation | 
|  | * btree blocks which live in free space. | 
|  | */ | 
|  | ASSERT(sbp->sb_icount == itotal); | 
|  | ASSERT(sbp->sb_ifree == ifree); | 
|  | ASSERT(sbp->sb_fdblocks == freeblks); | 
|  | #endif | 
|  | #endif | 
|  | xfs_buf_relse(sbbp); | 
|  | } | 
|  | #endif /* DEBUG */ |