| /* memcontrol.c - Memory Controller |
| * |
| * Copyright IBM Corporation, 2007 |
| * Author Balbir Singh <balbir@linux.vnet.ibm.com> |
| * |
| * Copyright 2007 OpenVZ SWsoft Inc |
| * Author: Pavel Emelianov <xemul@openvz.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/res_counter.h> |
| #include <linux/memcontrol.h> |
| #include <linux/cgroup.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/page-flags.h> |
| #include <linux/backing-dev.h> |
| #include <linux/bit_spinlock.h> |
| #include <linux/rcupdate.h> |
| #include <linux/slab.h> |
| #include <linux/swap.h> |
| #include <linux/spinlock.h> |
| #include <linux/fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/vmalloc.h> |
| |
| #include <asm/uaccess.h> |
| |
| struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
| static struct kmem_cache *page_cgroup_cache __read_mostly; |
| #define MEM_CGROUP_RECLAIM_RETRIES 5 |
| |
| /* |
| * Statistics for memory cgroup. |
| */ |
| enum mem_cgroup_stat_index { |
| /* |
| * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. |
| */ |
| MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ |
| MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */ |
| MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ |
| MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ |
| |
| MEM_CGROUP_STAT_NSTATS, |
| }; |
| |
| struct mem_cgroup_stat_cpu { |
| s64 count[MEM_CGROUP_STAT_NSTATS]; |
| } ____cacheline_aligned_in_smp; |
| |
| struct mem_cgroup_stat { |
| struct mem_cgroup_stat_cpu cpustat[NR_CPUS]; |
| }; |
| |
| /* |
| * For accounting under irq disable, no need for increment preempt count. |
| */ |
| static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat, |
| enum mem_cgroup_stat_index idx, int val) |
| { |
| int cpu = smp_processor_id(); |
| stat->cpustat[cpu].count[idx] += val; |
| } |
| |
| static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, |
| enum mem_cgroup_stat_index idx) |
| { |
| int cpu; |
| s64 ret = 0; |
| for_each_possible_cpu(cpu) |
| ret += stat->cpustat[cpu].count[idx]; |
| return ret; |
| } |
| |
| /* |
| * per-zone information in memory controller. |
| */ |
| |
| enum mem_cgroup_zstat_index { |
| MEM_CGROUP_ZSTAT_ACTIVE, |
| MEM_CGROUP_ZSTAT_INACTIVE, |
| |
| NR_MEM_CGROUP_ZSTAT, |
| }; |
| |
| struct mem_cgroup_per_zone { |
| /* |
| * spin_lock to protect the per cgroup LRU |
| */ |
| spinlock_t lru_lock; |
| struct list_head active_list; |
| struct list_head inactive_list; |
| unsigned long count[NR_MEM_CGROUP_ZSTAT]; |
| }; |
| /* Macro for accessing counter */ |
| #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) |
| |
| struct mem_cgroup_per_node { |
| struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; |
| }; |
| |
| struct mem_cgroup_lru_info { |
| struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; |
| }; |
| |
| /* |
| * The memory controller data structure. The memory controller controls both |
| * page cache and RSS per cgroup. We would eventually like to provide |
| * statistics based on the statistics developed by Rik Van Riel for clock-pro, |
| * to help the administrator determine what knobs to tune. |
| * |
| * TODO: Add a water mark for the memory controller. Reclaim will begin when |
| * we hit the water mark. May be even add a low water mark, such that |
| * no reclaim occurs from a cgroup at it's low water mark, this is |
| * a feature that will be implemented much later in the future. |
| */ |
| struct mem_cgroup { |
| struct cgroup_subsys_state css; |
| /* |
| * the counter to account for memory usage |
| */ |
| struct res_counter res; |
| /* |
| * Per cgroup active and inactive list, similar to the |
| * per zone LRU lists. |
| */ |
| struct mem_cgroup_lru_info info; |
| |
| int prev_priority; /* for recording reclaim priority */ |
| /* |
| * statistics. |
| */ |
| struct mem_cgroup_stat stat; |
| }; |
| static struct mem_cgroup init_mem_cgroup; |
| |
| /* |
| * We use the lower bit of the page->page_cgroup pointer as a bit spin |
| * lock. We need to ensure that page->page_cgroup is at least two |
| * byte aligned (based on comments from Nick Piggin). But since |
| * bit_spin_lock doesn't actually set that lock bit in a non-debug |
| * uniprocessor kernel, we should avoid setting it here too. |
| */ |
| #define PAGE_CGROUP_LOCK_BIT 0x0 |
| #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) |
| #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT) |
| #else |
| #define PAGE_CGROUP_LOCK 0x0 |
| #endif |
| |
| /* |
| * A page_cgroup page is associated with every page descriptor. The |
| * page_cgroup helps us identify information about the cgroup |
| */ |
| struct page_cgroup { |
| struct list_head lru; /* per cgroup LRU list */ |
| struct page *page; |
| struct mem_cgroup *mem_cgroup; |
| int flags; |
| }; |
| #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */ |
| #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */ |
| |
| static int page_cgroup_nid(struct page_cgroup *pc) |
| { |
| return page_to_nid(pc->page); |
| } |
| |
| static enum zone_type page_cgroup_zid(struct page_cgroup *pc) |
| { |
| return page_zonenum(pc->page); |
| } |
| |
| enum charge_type { |
| MEM_CGROUP_CHARGE_TYPE_CACHE = 0, |
| MEM_CGROUP_CHARGE_TYPE_MAPPED, |
| MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ |
| }; |
| |
| /* |
| * Always modified under lru lock. Then, not necessary to preempt_disable() |
| */ |
| static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags, |
| bool charge) |
| { |
| int val = (charge)? 1 : -1; |
| struct mem_cgroup_stat *stat = &mem->stat; |
| |
| VM_BUG_ON(!irqs_disabled()); |
| if (flags & PAGE_CGROUP_FLAG_CACHE) |
| __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val); |
| else |
| __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val); |
| |
| if (charge) |
| __mem_cgroup_stat_add_safe(stat, |
| MEM_CGROUP_STAT_PGPGIN_COUNT, 1); |
| else |
| __mem_cgroup_stat_add_safe(stat, |
| MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); |
| } |
| |
| static struct mem_cgroup_per_zone * |
| mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) |
| { |
| return &mem->info.nodeinfo[nid]->zoneinfo[zid]; |
| } |
| |
| static struct mem_cgroup_per_zone * |
| page_cgroup_zoneinfo(struct page_cgroup *pc) |
| { |
| struct mem_cgroup *mem = pc->mem_cgroup; |
| int nid = page_cgroup_nid(pc); |
| int zid = page_cgroup_zid(pc); |
| |
| return mem_cgroup_zoneinfo(mem, nid, zid); |
| } |
| |
| static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem, |
| enum mem_cgroup_zstat_index idx) |
| { |
| int nid, zid; |
| struct mem_cgroup_per_zone *mz; |
| u64 total = 0; |
| |
| for_each_online_node(nid) |
| for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
| mz = mem_cgroup_zoneinfo(mem, nid, zid); |
| total += MEM_CGROUP_ZSTAT(mz, idx); |
| } |
| return total; |
| } |
| |
| static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) |
| { |
| return container_of(cgroup_subsys_state(cont, |
| mem_cgroup_subsys_id), struct mem_cgroup, |
| css); |
| } |
| |
| struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
| { |
| return container_of(task_subsys_state(p, mem_cgroup_subsys_id), |
| struct mem_cgroup, css); |
| } |
| |
| static inline int page_cgroup_locked(struct page *page) |
| { |
| return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); |
| } |
| |
| static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc) |
| { |
| VM_BUG_ON(!page_cgroup_locked(page)); |
| page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK); |
| } |
| |
| struct page_cgroup *page_get_page_cgroup(struct page *page) |
| { |
| return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK); |
| } |
| |
| static void lock_page_cgroup(struct page *page) |
| { |
| bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); |
| } |
| |
| static int try_lock_page_cgroup(struct page *page) |
| { |
| return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); |
| } |
| |
| static void unlock_page_cgroup(struct page *page) |
| { |
| bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); |
| } |
| |
| static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz, |
| struct page_cgroup *pc) |
| { |
| int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; |
| |
| if (from) |
| MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1; |
| else |
| MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; |
| |
| mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false); |
| list_del(&pc->lru); |
| } |
| |
| static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, |
| struct page_cgroup *pc) |
| { |
| int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; |
| |
| if (!to) { |
| MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1; |
| list_add(&pc->lru, &mz->inactive_list); |
| } else { |
| MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1; |
| list_add(&pc->lru, &mz->active_list); |
| } |
| mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true); |
| } |
| |
| static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active) |
| { |
| int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; |
| struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); |
| |
| if (from) |
| MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1; |
| else |
| MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; |
| |
| if (active) { |
| MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1; |
| pc->flags |= PAGE_CGROUP_FLAG_ACTIVE; |
| list_move(&pc->lru, &mz->active_list); |
| } else { |
| MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1; |
| pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE; |
| list_move(&pc->lru, &mz->inactive_list); |
| } |
| } |
| |
| int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) |
| { |
| int ret; |
| |
| task_lock(task); |
| ret = task->mm && mm_match_cgroup(task->mm, mem); |
| task_unlock(task); |
| return ret; |
| } |
| |
| /* |
| * This routine assumes that the appropriate zone's lru lock is already held |
| */ |
| void mem_cgroup_move_lists(struct page *page, bool active) |
| { |
| struct page_cgroup *pc; |
| struct mem_cgroup_per_zone *mz; |
| unsigned long flags; |
| |
| if (mem_cgroup_subsys.disabled) |
| return; |
| |
| /* |
| * We cannot lock_page_cgroup while holding zone's lru_lock, |
| * because other holders of lock_page_cgroup can be interrupted |
| * with an attempt to rotate_reclaimable_page. But we cannot |
| * safely get to page_cgroup without it, so just try_lock it: |
| * mem_cgroup_isolate_pages allows for page left on wrong list. |
| */ |
| if (!try_lock_page_cgroup(page)) |
| return; |
| |
| pc = page_get_page_cgroup(page); |
| if (pc) { |
| mz = page_cgroup_zoneinfo(pc); |
| spin_lock_irqsave(&mz->lru_lock, flags); |
| __mem_cgroup_move_lists(pc, active); |
| spin_unlock_irqrestore(&mz->lru_lock, flags); |
| } |
| unlock_page_cgroup(page); |
| } |
| |
| /* |
| * Calculate mapped_ratio under memory controller. This will be used in |
| * vmscan.c for deteremining we have to reclaim mapped pages. |
| */ |
| int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem) |
| { |
| long total, rss; |
| |
| /* |
| * usage is recorded in bytes. But, here, we assume the number of |
| * physical pages can be represented by "long" on any arch. |
| */ |
| total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L; |
| rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); |
| return (int)((rss * 100L) / total); |
| } |
| |
| /* |
| * This function is called from vmscan.c. In page reclaiming loop. balance |
| * between active and inactive list is calculated. For memory controller |
| * page reclaiming, we should use using mem_cgroup's imbalance rather than |
| * zone's global lru imbalance. |
| */ |
| long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem) |
| { |
| unsigned long active, inactive; |
| /* active and inactive are the number of pages. 'long' is ok.*/ |
| active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE); |
| inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE); |
| return (long) (active / (inactive + 1)); |
| } |
| |
| /* |
| * prev_priority control...this will be used in memory reclaim path. |
| */ |
| int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) |
| { |
| return mem->prev_priority; |
| } |
| |
| void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) |
| { |
| if (priority < mem->prev_priority) |
| mem->prev_priority = priority; |
| } |
| |
| void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) |
| { |
| mem->prev_priority = priority; |
| } |
| |
| /* |
| * Calculate # of pages to be scanned in this priority/zone. |
| * See also vmscan.c |
| * |
| * priority starts from "DEF_PRIORITY" and decremented in each loop. |
| * (see include/linux/mmzone.h) |
| */ |
| |
| long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem, |
| struct zone *zone, int priority) |
| { |
| long nr_active; |
| int nid = zone->zone_pgdat->node_id; |
| int zid = zone_idx(zone); |
| struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); |
| |
| nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE); |
| return (nr_active >> priority); |
| } |
| |
| long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem, |
| struct zone *zone, int priority) |
| { |
| long nr_inactive; |
| int nid = zone->zone_pgdat->node_id; |
| int zid = zone_idx(zone); |
| struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); |
| |
| nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE); |
| return (nr_inactive >> priority); |
| } |
| |
| unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, |
| struct list_head *dst, |
| unsigned long *scanned, int order, |
| int mode, struct zone *z, |
| struct mem_cgroup *mem_cont, |
| int active) |
| { |
| unsigned long nr_taken = 0; |
| struct page *page; |
| unsigned long scan; |
| LIST_HEAD(pc_list); |
| struct list_head *src; |
| struct page_cgroup *pc, *tmp; |
| int nid = z->zone_pgdat->node_id; |
| int zid = zone_idx(z); |
| struct mem_cgroup_per_zone *mz; |
| |
| BUG_ON(!mem_cont); |
| mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); |
| if (active) |
| src = &mz->active_list; |
| else |
| src = &mz->inactive_list; |
| |
| |
| spin_lock(&mz->lru_lock); |
| scan = 0; |
| list_for_each_entry_safe_reverse(pc, tmp, src, lru) { |
| if (scan >= nr_to_scan) |
| break; |
| page = pc->page; |
| |
| if (unlikely(!PageLRU(page))) |
| continue; |
| |
| if (PageActive(page) && !active) { |
| __mem_cgroup_move_lists(pc, true); |
| continue; |
| } |
| if (!PageActive(page) && active) { |
| __mem_cgroup_move_lists(pc, false); |
| continue; |
| } |
| |
| scan++; |
| list_move(&pc->lru, &pc_list); |
| |
| if (__isolate_lru_page(page, mode) == 0) { |
| list_move(&page->lru, dst); |
| nr_taken++; |
| } |
| } |
| |
| list_splice(&pc_list, src); |
| spin_unlock(&mz->lru_lock); |
| |
| *scanned = scan; |
| return nr_taken; |
| } |
| |
| /* |
| * Charge the memory controller for page usage. |
| * Return |
| * 0 if the charge was successful |
| * < 0 if the cgroup is over its limit |
| */ |
| static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, |
| gfp_t gfp_mask, enum charge_type ctype, |
| struct mem_cgroup *memcg) |
| { |
| struct mem_cgroup *mem; |
| struct page_cgroup *pc; |
| unsigned long flags; |
| unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; |
| struct mem_cgroup_per_zone *mz; |
| |
| pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask); |
| if (unlikely(pc == NULL)) |
| goto err; |
| |
| /* |
| * We always charge the cgroup the mm_struct belongs to. |
| * The mm_struct's mem_cgroup changes on task migration if the |
| * thread group leader migrates. It's possible that mm is not |
| * set, if so charge the init_mm (happens for pagecache usage). |
| */ |
| if (likely(!memcg)) { |
| rcu_read_lock(); |
| mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
| /* |
| * For every charge from the cgroup, increment reference count |
| */ |
| css_get(&mem->css); |
| rcu_read_unlock(); |
| } else { |
| mem = memcg; |
| css_get(&memcg->css); |
| } |
| |
| while (res_counter_charge(&mem->res, PAGE_SIZE)) { |
| if (!(gfp_mask & __GFP_WAIT)) |
| goto out; |
| |
| if (try_to_free_mem_cgroup_pages(mem, gfp_mask)) |
| continue; |
| |
| /* |
| * try_to_free_mem_cgroup_pages() might not give us a full |
| * picture of reclaim. Some pages are reclaimed and might be |
| * moved to swap cache or just unmapped from the cgroup. |
| * Check the limit again to see if the reclaim reduced the |
| * current usage of the cgroup before giving up |
| */ |
| if (res_counter_check_under_limit(&mem->res)) |
| continue; |
| |
| if (!nr_retries--) { |
| mem_cgroup_out_of_memory(mem, gfp_mask); |
| goto out; |
| } |
| } |
| |
| pc->mem_cgroup = mem; |
| pc->page = page; |
| /* |
| * If a page is accounted as a page cache, insert to inactive list. |
| * If anon, insert to active list. |
| */ |
| if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE) |
| pc->flags = PAGE_CGROUP_FLAG_CACHE; |
| else |
| pc->flags = PAGE_CGROUP_FLAG_ACTIVE; |
| |
| lock_page_cgroup(page); |
| if (unlikely(page_get_page_cgroup(page))) { |
| unlock_page_cgroup(page); |
| res_counter_uncharge(&mem->res, PAGE_SIZE); |
| css_put(&mem->css); |
| kmem_cache_free(page_cgroup_cache, pc); |
| goto done; |
| } |
| page_assign_page_cgroup(page, pc); |
| |
| mz = page_cgroup_zoneinfo(pc); |
| spin_lock_irqsave(&mz->lru_lock, flags); |
| __mem_cgroup_add_list(mz, pc); |
| spin_unlock_irqrestore(&mz->lru_lock, flags); |
| |
| unlock_page_cgroup(page); |
| done: |
| return 0; |
| out: |
| css_put(&mem->css); |
| kmem_cache_free(page_cgroup_cache, pc); |
| err: |
| return -ENOMEM; |
| } |
| |
| int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) |
| { |
| if (mem_cgroup_subsys.disabled) |
| return 0; |
| |
| /* |
| * If already mapped, we don't have to account. |
| * If page cache, page->mapping has address_space. |
| * But page->mapping may have out-of-use anon_vma pointer, |
| * detecit it by PageAnon() check. newly-mapped-anon's page->mapping |
| * is NULL. |
| */ |
| if (page_mapped(page) || (page->mapping && !PageAnon(page))) |
| return 0; |
| if (unlikely(!mm)) |
| mm = &init_mm; |
| return mem_cgroup_charge_common(page, mm, gfp_mask, |
| MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); |
| } |
| |
| int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
| gfp_t gfp_mask) |
| { |
| if (mem_cgroup_subsys.disabled) |
| return 0; |
| |
| /* |
| * Corner case handling. This is called from add_to_page_cache() |
| * in usual. But some FS (shmem) precharges this page before calling it |
| * and call add_to_page_cache() with GFP_NOWAIT. |
| * |
| * For GFP_NOWAIT case, the page may be pre-charged before calling |
| * add_to_page_cache(). (See shmem.c) check it here and avoid to call |
| * charge twice. (It works but has to pay a bit larger cost.) |
| */ |
| if (!(gfp_mask & __GFP_WAIT)) { |
| struct page_cgroup *pc; |
| |
| lock_page_cgroup(page); |
| pc = page_get_page_cgroup(page); |
| if (pc) { |
| VM_BUG_ON(pc->page != page); |
| VM_BUG_ON(!pc->mem_cgroup); |
| unlock_page_cgroup(page); |
| return 0; |
| } |
| unlock_page_cgroup(page); |
| } |
| |
| if (unlikely(!mm)) |
| mm = &init_mm; |
| |
| return mem_cgroup_charge_common(page, mm, gfp_mask, |
| MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); |
| } |
| |
| /* |
| * uncharge if !page_mapped(page) |
| */ |
| static void |
| __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) |
| { |
| struct page_cgroup *pc; |
| struct mem_cgroup *mem; |
| struct mem_cgroup_per_zone *mz; |
| unsigned long flags; |
| |
| if (mem_cgroup_subsys.disabled) |
| return; |
| |
| /* |
| * Check if our page_cgroup is valid |
| */ |
| lock_page_cgroup(page); |
| pc = page_get_page_cgroup(page); |
| if (unlikely(!pc)) |
| goto unlock; |
| |
| VM_BUG_ON(pc->page != page); |
| |
| if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) |
| && ((pc->flags & PAGE_CGROUP_FLAG_CACHE) |
| || page_mapped(page))) |
| goto unlock; |
| |
| mz = page_cgroup_zoneinfo(pc); |
| spin_lock_irqsave(&mz->lru_lock, flags); |
| __mem_cgroup_remove_list(mz, pc); |
| spin_unlock_irqrestore(&mz->lru_lock, flags); |
| |
| page_assign_page_cgroup(page, NULL); |
| unlock_page_cgroup(page); |
| |
| mem = pc->mem_cgroup; |
| res_counter_uncharge(&mem->res, PAGE_SIZE); |
| css_put(&mem->css); |
| |
| kmem_cache_free(page_cgroup_cache, pc); |
| return; |
| unlock: |
| unlock_page_cgroup(page); |
| } |
| |
| void mem_cgroup_uncharge_page(struct page *page) |
| { |
| __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); |
| } |
| |
| void mem_cgroup_uncharge_cache_page(struct page *page) |
| { |
| VM_BUG_ON(page_mapped(page)); |
| __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); |
| } |
| |
| /* |
| * Before starting migration, account against new page. |
| */ |
| int mem_cgroup_prepare_migration(struct page *page, struct page *newpage) |
| { |
| struct page_cgroup *pc; |
| struct mem_cgroup *mem = NULL; |
| enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; |
| int ret = 0; |
| |
| if (mem_cgroup_subsys.disabled) |
| return 0; |
| |
| lock_page_cgroup(page); |
| pc = page_get_page_cgroup(page); |
| if (pc) { |
| mem = pc->mem_cgroup; |
| css_get(&mem->css); |
| if (pc->flags & PAGE_CGROUP_FLAG_CACHE) |
| ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; |
| } |
| unlock_page_cgroup(page); |
| if (mem) { |
| ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL, |
| ctype, mem); |
| css_put(&mem->css); |
| } |
| return ret; |
| } |
| |
| /* remove redundant charge if migration failed*/ |
| void mem_cgroup_end_migration(struct page *newpage) |
| { |
| /* |
| * At success, page->mapping is not NULL. |
| * special rollback care is necessary when |
| * 1. at migration failure. (newpage->mapping is cleared in this case) |
| * 2. the newpage was moved but not remapped again because the task |
| * exits and the newpage is obsolete. In this case, the new page |
| * may be a swapcache. So, we just call mem_cgroup_uncharge_page() |
| * always for avoiding mess. The page_cgroup will be removed if |
| * unnecessary. File cache pages is still on radix-tree. Don't |
| * care it. |
| */ |
| if (!newpage->mapping) |
| __mem_cgroup_uncharge_common(newpage, |
| MEM_CGROUP_CHARGE_TYPE_FORCE); |
| else if (PageAnon(newpage)) |
| mem_cgroup_uncharge_page(newpage); |
| } |
| |
| /* |
| * A call to try to shrink memory usage under specified resource controller. |
| * This is typically used for page reclaiming for shmem for reducing side |
| * effect of page allocation from shmem, which is used by some mem_cgroup. |
| */ |
| int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask) |
| { |
| struct mem_cgroup *mem; |
| int progress = 0; |
| int retry = MEM_CGROUP_RECLAIM_RETRIES; |
| |
| if (mem_cgroup_subsys.disabled) |
| return 0; |
| |
| rcu_read_lock(); |
| mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
| css_get(&mem->css); |
| rcu_read_unlock(); |
| |
| do { |
| progress = try_to_free_mem_cgroup_pages(mem, gfp_mask); |
| } while (!progress && --retry); |
| |
| css_put(&mem->css); |
| if (!retry) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| /* |
| * This routine traverse page_cgroup in given list and drop them all. |
| * *And* this routine doesn't reclaim page itself, just removes page_cgroup. |
| */ |
| #define FORCE_UNCHARGE_BATCH (128) |
| static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, |
| struct mem_cgroup_per_zone *mz, |
| int active) |
| { |
| struct page_cgroup *pc; |
| struct page *page; |
| int count = FORCE_UNCHARGE_BATCH; |
| unsigned long flags; |
| struct list_head *list; |
| |
| if (active) |
| list = &mz->active_list; |
| else |
| list = &mz->inactive_list; |
| |
| spin_lock_irqsave(&mz->lru_lock, flags); |
| while (!list_empty(list)) { |
| pc = list_entry(list->prev, struct page_cgroup, lru); |
| page = pc->page; |
| get_page(page); |
| spin_unlock_irqrestore(&mz->lru_lock, flags); |
| /* |
| * Check if this page is on LRU. !LRU page can be found |
| * if it's under page migration. |
| */ |
| if (PageLRU(page)) { |
| __mem_cgroup_uncharge_common(page, |
| MEM_CGROUP_CHARGE_TYPE_FORCE); |
| put_page(page); |
| if (--count <= 0) { |
| count = FORCE_UNCHARGE_BATCH; |
| cond_resched(); |
| } |
| } else |
| cond_resched(); |
| spin_lock_irqsave(&mz->lru_lock, flags); |
| } |
| spin_unlock_irqrestore(&mz->lru_lock, flags); |
| } |
| |
| /* |
| * make mem_cgroup's charge to be 0 if there is no task. |
| * This enables deleting this mem_cgroup. |
| */ |
| static int mem_cgroup_force_empty(struct mem_cgroup *mem) |
| { |
| int ret = -EBUSY; |
| int node, zid; |
| |
| css_get(&mem->css); |
| /* |
| * page reclaim code (kswapd etc..) will move pages between |
| * active_list <-> inactive_list while we don't take a lock. |
| * So, we have to do loop here until all lists are empty. |
| */ |
| while (mem->res.usage > 0) { |
| if (atomic_read(&mem->css.cgroup->count) > 0) |
| goto out; |
| for_each_node_state(node, N_POSSIBLE) |
| for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
| struct mem_cgroup_per_zone *mz; |
| mz = mem_cgroup_zoneinfo(mem, node, zid); |
| /* drop all page_cgroup in active_list */ |
| mem_cgroup_force_empty_list(mem, mz, 1); |
| /* drop all page_cgroup in inactive_list */ |
| mem_cgroup_force_empty_list(mem, mz, 0); |
| } |
| } |
| ret = 0; |
| out: |
| css_put(&mem->css); |
| return ret; |
| } |
| |
| static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) |
| { |
| return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res, |
| cft->private); |
| } |
| |
| static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, |
| const char *buffer) |
| { |
| return res_counter_write(&mem_cgroup_from_cont(cont)->res, |
| cft->private, buffer, |
| res_counter_memparse_write_strategy); |
| } |
| |
| static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
| { |
| struct mem_cgroup *mem; |
| |
| mem = mem_cgroup_from_cont(cont); |
| switch (event) { |
| case RES_MAX_USAGE: |
| res_counter_reset_max(&mem->res); |
| break; |
| case RES_FAILCNT: |
| res_counter_reset_failcnt(&mem->res); |
| break; |
| } |
| return 0; |
| } |
| |
| static int mem_force_empty_write(struct cgroup *cont, unsigned int event) |
| { |
| return mem_cgroup_force_empty(mem_cgroup_from_cont(cont)); |
| } |
| |
| static const struct mem_cgroup_stat_desc { |
| const char *msg; |
| u64 unit; |
| } mem_cgroup_stat_desc[] = { |
| [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, }, |
| [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, }, |
| [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, }, |
| [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, }, |
| }; |
| |
| static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, |
| struct cgroup_map_cb *cb) |
| { |
| struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); |
| struct mem_cgroup_stat *stat = &mem_cont->stat; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) { |
| s64 val; |
| |
| val = mem_cgroup_read_stat(stat, i); |
| val *= mem_cgroup_stat_desc[i].unit; |
| cb->fill(cb, mem_cgroup_stat_desc[i].msg, val); |
| } |
| /* showing # of active pages */ |
| { |
| unsigned long active, inactive; |
| |
| inactive = mem_cgroup_get_all_zonestat(mem_cont, |
| MEM_CGROUP_ZSTAT_INACTIVE); |
| active = mem_cgroup_get_all_zonestat(mem_cont, |
| MEM_CGROUP_ZSTAT_ACTIVE); |
| cb->fill(cb, "active", (active) * PAGE_SIZE); |
| cb->fill(cb, "inactive", (inactive) * PAGE_SIZE); |
| } |
| return 0; |
| } |
| |
| static struct cftype mem_cgroup_files[] = { |
| { |
| .name = "usage_in_bytes", |
| .private = RES_USAGE, |
| .read_u64 = mem_cgroup_read, |
| }, |
| { |
| .name = "max_usage_in_bytes", |
| .private = RES_MAX_USAGE, |
| .trigger = mem_cgroup_reset, |
| .read_u64 = mem_cgroup_read, |
| }, |
| { |
| .name = "limit_in_bytes", |
| .private = RES_LIMIT, |
| .write_string = mem_cgroup_write, |
| .read_u64 = mem_cgroup_read, |
| }, |
| { |
| .name = "failcnt", |
| .private = RES_FAILCNT, |
| .trigger = mem_cgroup_reset, |
| .read_u64 = mem_cgroup_read, |
| }, |
| { |
| .name = "force_empty", |
| .trigger = mem_force_empty_write, |
| }, |
| { |
| .name = "stat", |
| .read_map = mem_control_stat_show, |
| }, |
| }; |
| |
| static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
| { |
| struct mem_cgroup_per_node *pn; |
| struct mem_cgroup_per_zone *mz; |
| int zone, tmp = node; |
| /* |
| * This routine is called against possible nodes. |
| * But it's BUG to call kmalloc() against offline node. |
| * |
| * TODO: this routine can waste much memory for nodes which will |
| * never be onlined. It's better to use memory hotplug callback |
| * function. |
| */ |
| if (!node_state(node, N_NORMAL_MEMORY)) |
| tmp = -1; |
| pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); |
| if (!pn) |
| return 1; |
| |
| mem->info.nodeinfo[node] = pn; |
| memset(pn, 0, sizeof(*pn)); |
| |
| for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
| mz = &pn->zoneinfo[zone]; |
| INIT_LIST_HEAD(&mz->active_list); |
| INIT_LIST_HEAD(&mz->inactive_list); |
| spin_lock_init(&mz->lru_lock); |
| } |
| return 0; |
| } |
| |
| static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
| { |
| kfree(mem->info.nodeinfo[node]); |
| } |
| |
| static struct mem_cgroup *mem_cgroup_alloc(void) |
| { |
| struct mem_cgroup *mem; |
| |
| if (sizeof(*mem) < PAGE_SIZE) |
| mem = kmalloc(sizeof(*mem), GFP_KERNEL); |
| else |
| mem = vmalloc(sizeof(*mem)); |
| |
| if (mem) |
| memset(mem, 0, sizeof(*mem)); |
| return mem; |
| } |
| |
| static void mem_cgroup_free(struct mem_cgroup *mem) |
| { |
| if (sizeof(*mem) < PAGE_SIZE) |
| kfree(mem); |
| else |
| vfree(mem); |
| } |
| |
| |
| static struct cgroup_subsys_state * |
| mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) |
| { |
| struct mem_cgroup *mem; |
| int node; |
| |
| if (unlikely((cont->parent) == NULL)) { |
| mem = &init_mem_cgroup; |
| page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC); |
| } else { |
| mem = mem_cgroup_alloc(); |
| if (!mem) |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| res_counter_init(&mem->res); |
| |
| for_each_node_state(node, N_POSSIBLE) |
| if (alloc_mem_cgroup_per_zone_info(mem, node)) |
| goto free_out; |
| |
| return &mem->css; |
| free_out: |
| for_each_node_state(node, N_POSSIBLE) |
| free_mem_cgroup_per_zone_info(mem, node); |
| if (cont->parent != NULL) |
| mem_cgroup_free(mem); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss, |
| struct cgroup *cont) |
| { |
| struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
| mem_cgroup_force_empty(mem); |
| } |
| |
| static void mem_cgroup_destroy(struct cgroup_subsys *ss, |
| struct cgroup *cont) |
| { |
| int node; |
| struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
| |
| for_each_node_state(node, N_POSSIBLE) |
| free_mem_cgroup_per_zone_info(mem, node); |
| |
| mem_cgroup_free(mem_cgroup_from_cont(cont)); |
| } |
| |
| static int mem_cgroup_populate(struct cgroup_subsys *ss, |
| struct cgroup *cont) |
| { |
| return cgroup_add_files(cont, ss, mem_cgroup_files, |
| ARRAY_SIZE(mem_cgroup_files)); |
| } |
| |
| static void mem_cgroup_move_task(struct cgroup_subsys *ss, |
| struct cgroup *cont, |
| struct cgroup *old_cont, |
| struct task_struct *p) |
| { |
| struct mm_struct *mm; |
| struct mem_cgroup *mem, *old_mem; |
| |
| mm = get_task_mm(p); |
| if (mm == NULL) |
| return; |
| |
| mem = mem_cgroup_from_cont(cont); |
| old_mem = mem_cgroup_from_cont(old_cont); |
| |
| if (mem == old_mem) |
| goto out; |
| |
| /* |
| * Only thread group leaders are allowed to migrate, the mm_struct is |
| * in effect owned by the leader |
| */ |
| if (!thread_group_leader(p)) |
| goto out; |
| |
| out: |
| mmput(mm); |
| } |
| |
| struct cgroup_subsys mem_cgroup_subsys = { |
| .name = "memory", |
| .subsys_id = mem_cgroup_subsys_id, |
| .create = mem_cgroup_create, |
| .pre_destroy = mem_cgroup_pre_destroy, |
| .destroy = mem_cgroup_destroy, |
| .populate = mem_cgroup_populate, |
| .attach = mem_cgroup_move_task, |
| .early_init = 0, |
| }; |