| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| * |
| * Further, this software is distributed without any warranty that it is |
| * free of the rightful claim of any third person regarding infringement |
| * or the like. Any license provided herein, whether implied or |
| * otherwise, applies only to this software file. Patent licenses, if |
| * any, provided herein do not apply to combinations of this program with |
| * other software, or any other product whatsoever. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write the Free Software Foundation, Inc., 59 |
| * Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| * |
| * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, |
| * Mountain View, CA 94043, or: |
| * |
| * http://www.sgi.com |
| * |
| * For further information regarding this notice, see: |
| * |
| * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ |
| */ |
| |
| /* |
| * The xfs_buf.c code provides an abstract buffer cache model on top |
| * of the Linux page cache. Cached metadata blocks for a file system |
| * are hashed to the inode for the block device. xfs_buf.c assembles |
| * buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O. |
| * |
| * Written by Steve Lord, Jim Mostek, Russell Cattelan |
| * and Rajagopal Ananthanarayanan ("ananth") at SGI. |
| * |
| */ |
| |
| #include <linux/stddef.h> |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/pagemap.h> |
| #include <linux/init.h> |
| #include <linux/vmalloc.h> |
| #include <linux/bio.h> |
| #include <linux/sysctl.h> |
| #include <linux/proc_fs.h> |
| #include <linux/workqueue.h> |
| #include <linux/percpu.h> |
| #include <linux/blkdev.h> |
| #include <linux/hash.h> |
| #include <linux/kthread.h> |
| |
| #include "xfs_linux.h" |
| |
| /* |
| * File wide globals |
| */ |
| |
| STATIC kmem_cache_t *pagebuf_zone; |
| STATIC kmem_shaker_t pagebuf_shake; |
| STATIC int xfsbufd_wakeup(int, unsigned int); |
| STATIC void pagebuf_delwri_queue(xfs_buf_t *, int); |
| |
| STATIC struct workqueue_struct *xfslogd_workqueue; |
| struct workqueue_struct *xfsdatad_workqueue; |
| |
| /* |
| * Pagebuf debugging |
| */ |
| |
| #ifdef PAGEBUF_TRACE |
| void |
| pagebuf_trace( |
| xfs_buf_t *pb, |
| char *id, |
| void *data, |
| void *ra) |
| { |
| ktrace_enter(pagebuf_trace_buf, |
| pb, id, |
| (void *)(unsigned long)pb->pb_flags, |
| (void *)(unsigned long)pb->pb_hold.counter, |
| (void *)(unsigned long)pb->pb_sema.count.counter, |
| (void *)current, |
| data, ra, |
| (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff), |
| (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff), |
| (void *)(unsigned long)pb->pb_buffer_length, |
| NULL, NULL, NULL, NULL, NULL); |
| } |
| ktrace_t *pagebuf_trace_buf; |
| #define PAGEBUF_TRACE_SIZE 4096 |
| #define PB_TRACE(pb, id, data) \ |
| pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0)) |
| #else |
| #define PB_TRACE(pb, id, data) do { } while (0) |
| #endif |
| |
| #ifdef PAGEBUF_LOCK_TRACKING |
| # define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid) |
| # define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1) |
| # define PB_GET_OWNER(pb) ((pb)->pb_last_holder) |
| #else |
| # define PB_SET_OWNER(pb) do { } while (0) |
| # define PB_CLEAR_OWNER(pb) do { } while (0) |
| # define PB_GET_OWNER(pb) do { } while (0) |
| #endif |
| |
| /* |
| * Pagebuf allocation / freeing. |
| */ |
| |
| #define pb_to_gfp(flags) \ |
| ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \ |
| ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN) |
| |
| #define pb_to_km(flags) \ |
| (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP) |
| |
| |
| #define pagebuf_allocate(flags) \ |
| kmem_zone_alloc(pagebuf_zone, pb_to_km(flags)) |
| #define pagebuf_deallocate(pb) \ |
| kmem_zone_free(pagebuf_zone, (pb)); |
| |
| /* |
| * Page Region interfaces. |
| * |
| * For pages in filesystems where the blocksize is smaller than the |
| * pagesize, we use the page->private field (long) to hold a bitmap |
| * of uptodate regions within the page. |
| * |
| * Each such region is "bytes per page / bits per long" bytes long. |
| * |
| * NBPPR == number-of-bytes-per-page-region |
| * BTOPR == bytes-to-page-region (rounded up) |
| * BTOPRT == bytes-to-page-region-truncated (rounded down) |
| */ |
| #if (BITS_PER_LONG == 32) |
| #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */ |
| #elif (BITS_PER_LONG == 64) |
| #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */ |
| #else |
| #error BITS_PER_LONG must be 32 or 64 |
| #endif |
| #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG) |
| #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT) |
| #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT)) |
| |
| STATIC unsigned long |
| page_region_mask( |
| size_t offset, |
| size_t length) |
| { |
| unsigned long mask; |
| int first, final; |
| |
| first = BTOPR(offset); |
| final = BTOPRT(offset + length - 1); |
| first = min(first, final); |
| |
| mask = ~0UL; |
| mask <<= BITS_PER_LONG - (final - first); |
| mask >>= BITS_PER_LONG - (final); |
| |
| ASSERT(offset + length <= PAGE_CACHE_SIZE); |
| ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0); |
| |
| return mask; |
| } |
| |
| STATIC inline void |
| set_page_region( |
| struct page *page, |
| size_t offset, |
| size_t length) |
| { |
| page->private |= page_region_mask(offset, length); |
| if (page->private == ~0UL) |
| SetPageUptodate(page); |
| } |
| |
| STATIC inline int |
| test_page_region( |
| struct page *page, |
| size_t offset, |
| size_t length) |
| { |
| unsigned long mask = page_region_mask(offset, length); |
| |
| return (mask && (page->private & mask) == mask); |
| } |
| |
| /* |
| * Mapping of multi-page buffers into contiguous virtual space |
| */ |
| |
| typedef struct a_list { |
| void *vm_addr; |
| struct a_list *next; |
| } a_list_t; |
| |
| STATIC a_list_t *as_free_head; |
| STATIC int as_list_len; |
| STATIC DEFINE_SPINLOCK(as_lock); |
| |
| /* |
| * Try to batch vunmaps because they are costly. |
| */ |
| STATIC void |
| free_address( |
| void *addr) |
| { |
| a_list_t *aentry; |
| |
| aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH); |
| if (likely(aentry)) { |
| spin_lock(&as_lock); |
| aentry->next = as_free_head; |
| aentry->vm_addr = addr; |
| as_free_head = aentry; |
| as_list_len++; |
| spin_unlock(&as_lock); |
| } else { |
| vunmap(addr); |
| } |
| } |
| |
| STATIC void |
| purge_addresses(void) |
| { |
| a_list_t *aentry, *old; |
| |
| if (as_free_head == NULL) |
| return; |
| |
| spin_lock(&as_lock); |
| aentry = as_free_head; |
| as_free_head = NULL; |
| as_list_len = 0; |
| spin_unlock(&as_lock); |
| |
| while ((old = aentry) != NULL) { |
| vunmap(aentry->vm_addr); |
| aentry = aentry->next; |
| kfree(old); |
| } |
| } |
| |
| /* |
| * Internal pagebuf object manipulation |
| */ |
| |
| STATIC void |
| _pagebuf_initialize( |
| xfs_buf_t *pb, |
| xfs_buftarg_t *target, |
| loff_t range_base, |
| size_t range_length, |
| page_buf_flags_t flags) |
| { |
| /* |
| * We don't want certain flags to appear in pb->pb_flags. |
| */ |
| flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD); |
| |
| memset(pb, 0, sizeof(xfs_buf_t)); |
| atomic_set(&pb->pb_hold, 1); |
| init_MUTEX_LOCKED(&pb->pb_iodonesema); |
| INIT_LIST_HEAD(&pb->pb_list); |
| INIT_LIST_HEAD(&pb->pb_hash_list); |
| init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */ |
| PB_SET_OWNER(pb); |
| pb->pb_target = target; |
| pb->pb_file_offset = range_base; |
| /* |
| * Set buffer_length and count_desired to the same value initially. |
| * I/O routines should use count_desired, which will be the same in |
| * most cases but may be reset (e.g. XFS recovery). |
| */ |
| pb->pb_buffer_length = pb->pb_count_desired = range_length; |
| pb->pb_flags = flags | PBF_NONE; |
| pb->pb_bn = XFS_BUF_DADDR_NULL; |
| atomic_set(&pb->pb_pin_count, 0); |
| init_waitqueue_head(&pb->pb_waiters); |
| |
| XFS_STATS_INC(pb_create); |
| PB_TRACE(pb, "initialize", target); |
| } |
| |
| /* |
| * Allocate a page array capable of holding a specified number |
| * of pages, and point the page buf at it. |
| */ |
| STATIC int |
| _pagebuf_get_pages( |
| xfs_buf_t *pb, |
| int page_count, |
| page_buf_flags_t flags) |
| { |
| /* Make sure that we have a page list */ |
| if (pb->pb_pages == NULL) { |
| pb->pb_offset = page_buf_poff(pb->pb_file_offset); |
| pb->pb_page_count = page_count; |
| if (page_count <= PB_PAGES) { |
| pb->pb_pages = pb->pb_page_array; |
| } else { |
| pb->pb_pages = kmem_alloc(sizeof(struct page *) * |
| page_count, pb_to_km(flags)); |
| if (pb->pb_pages == NULL) |
| return -ENOMEM; |
| } |
| memset(pb->pb_pages, 0, sizeof(struct page *) * page_count); |
| } |
| return 0; |
| } |
| |
| /* |
| * Frees pb_pages if it was malloced. |
| */ |
| STATIC void |
| _pagebuf_free_pages( |
| xfs_buf_t *bp) |
| { |
| if (bp->pb_pages != bp->pb_page_array) { |
| kmem_free(bp->pb_pages, |
| bp->pb_page_count * sizeof(struct page *)); |
| } |
| } |
| |
| /* |
| * Releases the specified buffer. |
| * |
| * The modification state of any associated pages is left unchanged. |
| * The buffer most not be on any hash - use pagebuf_rele instead for |
| * hashed and refcounted buffers |
| */ |
| void |
| pagebuf_free( |
| xfs_buf_t *bp) |
| { |
| PB_TRACE(bp, "free", 0); |
| |
| ASSERT(list_empty(&bp->pb_hash_list)); |
| |
| if (bp->pb_flags & _PBF_PAGE_CACHE) { |
| uint i; |
| |
| if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1)) |
| free_address(bp->pb_addr - bp->pb_offset); |
| |
| for (i = 0; i < bp->pb_page_count; i++) |
| page_cache_release(bp->pb_pages[i]); |
| _pagebuf_free_pages(bp); |
| } else if (bp->pb_flags & _PBF_KMEM_ALLOC) { |
| /* |
| * XXX(hch): bp->pb_count_desired might be incorrect (see |
| * pagebuf_associate_memory for details), but fortunately |
| * the Linux version of kmem_free ignores the len argument.. |
| */ |
| kmem_free(bp->pb_addr, bp->pb_count_desired); |
| _pagebuf_free_pages(bp); |
| } |
| |
| pagebuf_deallocate(bp); |
| } |
| |
| /* |
| * Finds all pages for buffer in question and builds it's page list. |
| */ |
| STATIC int |
| _pagebuf_lookup_pages( |
| xfs_buf_t *bp, |
| uint flags) |
| { |
| struct address_space *mapping = bp->pb_target->pbr_mapping; |
| size_t blocksize = bp->pb_target->pbr_bsize; |
| size_t size = bp->pb_count_desired; |
| size_t nbytes, offset; |
| int gfp_mask = pb_to_gfp(flags); |
| unsigned short page_count, i; |
| pgoff_t first; |
| loff_t end; |
| int error; |
| |
| end = bp->pb_file_offset + bp->pb_buffer_length; |
| page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset); |
| |
| error = _pagebuf_get_pages(bp, page_count, flags); |
| if (unlikely(error)) |
| return error; |
| bp->pb_flags |= _PBF_PAGE_CACHE; |
| |
| offset = bp->pb_offset; |
| first = bp->pb_file_offset >> PAGE_CACHE_SHIFT; |
| |
| for (i = 0; i < bp->pb_page_count; i++) { |
| struct page *page; |
| uint retries = 0; |
| |
| retry: |
| page = find_or_create_page(mapping, first + i, gfp_mask); |
| if (unlikely(page == NULL)) { |
| if (flags & PBF_READ_AHEAD) { |
| bp->pb_page_count = i; |
| for (i = 0; i < bp->pb_page_count; i++) |
| unlock_page(bp->pb_pages[i]); |
| return -ENOMEM; |
| } |
| |
| /* |
| * This could deadlock. |
| * |
| * But until all the XFS lowlevel code is revamped to |
| * handle buffer allocation failures we can't do much. |
| */ |
| if (!(++retries % 100)) |
| printk(KERN_ERR |
| "XFS: possible memory allocation " |
| "deadlock in %s (mode:0x%x)\n", |
| __FUNCTION__, gfp_mask); |
| |
| XFS_STATS_INC(pb_page_retries); |
| xfsbufd_wakeup(0, gfp_mask); |
| blk_congestion_wait(WRITE, HZ/50); |
| goto retry; |
| } |
| |
| XFS_STATS_INC(pb_page_found); |
| |
| nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset); |
| size -= nbytes; |
| |
| if (!PageUptodate(page)) { |
| page_count--; |
| if (blocksize >= PAGE_CACHE_SIZE) { |
| if (flags & PBF_READ) |
| bp->pb_locked = 1; |
| } else if (!PagePrivate(page)) { |
| if (test_page_region(page, offset, nbytes)) |
| page_count++; |
| } |
| } |
| |
| bp->pb_pages[i] = page; |
| offset = 0; |
| } |
| |
| if (!bp->pb_locked) { |
| for (i = 0; i < bp->pb_page_count; i++) |
| unlock_page(bp->pb_pages[i]); |
| } |
| |
| if (page_count) { |
| /* if we have any uptodate pages, mark that in the buffer */ |
| bp->pb_flags &= ~PBF_NONE; |
| |
| /* if some pages aren't uptodate, mark that in the buffer */ |
| if (page_count != bp->pb_page_count) |
| bp->pb_flags |= PBF_PARTIAL; |
| } |
| |
| PB_TRACE(bp, "lookup_pages", (long)page_count); |
| return error; |
| } |
| |
| /* |
| * Map buffer into kernel address-space if nessecary. |
| */ |
| STATIC int |
| _pagebuf_map_pages( |
| xfs_buf_t *bp, |
| uint flags) |
| { |
| /* A single page buffer is always mappable */ |
| if (bp->pb_page_count == 1) { |
| bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset; |
| bp->pb_flags |= PBF_MAPPED; |
| } else if (flags & PBF_MAPPED) { |
| if (as_list_len > 64) |
| purge_addresses(); |
| bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count, |
| VM_MAP, PAGE_KERNEL); |
| if (unlikely(bp->pb_addr == NULL)) |
| return -ENOMEM; |
| bp->pb_addr += bp->pb_offset; |
| bp->pb_flags |= PBF_MAPPED; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Finding and Reading Buffers |
| */ |
| |
| /* |
| * _pagebuf_find |
| * |
| * Looks up, and creates if absent, a lockable buffer for |
| * a given range of an inode. The buffer is returned |
| * locked. If other overlapping buffers exist, they are |
| * released before the new buffer is created and locked, |
| * which may imply that this call will block until those buffers |
| * are unlocked. No I/O is implied by this call. |
| */ |
| xfs_buf_t * |
| _pagebuf_find( |
| xfs_buftarg_t *btp, /* block device target */ |
| loff_t ioff, /* starting offset of range */ |
| size_t isize, /* length of range */ |
| page_buf_flags_t flags, /* PBF_TRYLOCK */ |
| xfs_buf_t *new_pb)/* newly allocated buffer */ |
| { |
| loff_t range_base; |
| size_t range_length; |
| xfs_bufhash_t *hash; |
| xfs_buf_t *pb, *n; |
| |
| range_base = (ioff << BBSHIFT); |
| range_length = (isize << BBSHIFT); |
| |
| /* Check for IOs smaller than the sector size / not sector aligned */ |
| ASSERT(!(range_length < (1 << btp->pbr_sshift))); |
| ASSERT(!(range_base & (loff_t)btp->pbr_smask)); |
| |
| hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)]; |
| |
| spin_lock(&hash->bh_lock); |
| |
| list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) { |
| ASSERT(btp == pb->pb_target); |
| if (pb->pb_file_offset == range_base && |
| pb->pb_buffer_length == range_length) { |
| /* |
| * If we look at something bring it to the |
| * front of the list for next time. |
| */ |
| atomic_inc(&pb->pb_hold); |
| list_move(&pb->pb_hash_list, &hash->bh_list); |
| goto found; |
| } |
| } |
| |
| /* No match found */ |
| if (new_pb) { |
| _pagebuf_initialize(new_pb, btp, range_base, |
| range_length, flags); |
| new_pb->pb_hash = hash; |
| list_add(&new_pb->pb_hash_list, &hash->bh_list); |
| } else { |
| XFS_STATS_INC(pb_miss_locked); |
| } |
| |
| spin_unlock(&hash->bh_lock); |
| return new_pb; |
| |
| found: |
| spin_unlock(&hash->bh_lock); |
| |
| /* Attempt to get the semaphore without sleeping, |
| * if this does not work then we need to drop the |
| * spinlock and do a hard attempt on the semaphore. |
| */ |
| if (down_trylock(&pb->pb_sema)) { |
| if (!(flags & PBF_TRYLOCK)) { |
| /* wait for buffer ownership */ |
| PB_TRACE(pb, "get_lock", 0); |
| pagebuf_lock(pb); |
| XFS_STATS_INC(pb_get_locked_waited); |
| } else { |
| /* We asked for a trylock and failed, no need |
| * to look at file offset and length here, we |
| * know that this pagebuf at least overlaps our |
| * pagebuf and is locked, therefore our buffer |
| * either does not exist, or is this buffer |
| */ |
| |
| pagebuf_rele(pb); |
| XFS_STATS_INC(pb_busy_locked); |
| return (NULL); |
| } |
| } else { |
| /* trylock worked */ |
| PB_SET_OWNER(pb); |
| } |
| |
| if (pb->pb_flags & PBF_STALE) { |
| ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0); |
| pb->pb_flags &= PBF_MAPPED; |
| } |
| PB_TRACE(pb, "got_lock", 0); |
| XFS_STATS_INC(pb_get_locked); |
| return (pb); |
| } |
| |
| /* |
| * xfs_buf_get_flags assembles a buffer covering the specified range. |
| * |
| * Storage in memory for all portions of the buffer will be allocated, |
| * although backing storage may not be. |
| */ |
| xfs_buf_t * |
| xfs_buf_get_flags( /* allocate a buffer */ |
| xfs_buftarg_t *target,/* target for buffer */ |
| loff_t ioff, /* starting offset of range */ |
| size_t isize, /* length of range */ |
| page_buf_flags_t flags) /* PBF_TRYLOCK */ |
| { |
| xfs_buf_t *pb, *new_pb; |
| int error = 0, i; |
| |
| new_pb = pagebuf_allocate(flags); |
| if (unlikely(!new_pb)) |
| return NULL; |
| |
| pb = _pagebuf_find(target, ioff, isize, flags, new_pb); |
| if (pb == new_pb) { |
| error = _pagebuf_lookup_pages(pb, flags); |
| if (error) |
| goto no_buffer; |
| } else { |
| pagebuf_deallocate(new_pb); |
| if (unlikely(pb == NULL)) |
| return NULL; |
| } |
| |
| for (i = 0; i < pb->pb_page_count; i++) |
| mark_page_accessed(pb->pb_pages[i]); |
| |
| if (!(pb->pb_flags & PBF_MAPPED)) { |
| error = _pagebuf_map_pages(pb, flags); |
| if (unlikely(error)) { |
| printk(KERN_WARNING "%s: failed to map pages\n", |
| __FUNCTION__); |
| goto no_buffer; |
| } |
| } |
| |
| XFS_STATS_INC(pb_get); |
| |
| /* |
| * Always fill in the block number now, the mapped cases can do |
| * their own overlay of this later. |
| */ |
| pb->pb_bn = ioff; |
| pb->pb_count_desired = pb->pb_buffer_length; |
| |
| PB_TRACE(pb, "get", (unsigned long)flags); |
| return pb; |
| |
| no_buffer: |
| if (flags & (PBF_LOCK | PBF_TRYLOCK)) |
| pagebuf_unlock(pb); |
| pagebuf_rele(pb); |
| return NULL; |
| } |
| |
| xfs_buf_t * |
| xfs_buf_read_flags( |
| xfs_buftarg_t *target, |
| loff_t ioff, |
| size_t isize, |
| page_buf_flags_t flags) |
| { |
| xfs_buf_t *pb; |
| |
| flags |= PBF_READ; |
| |
| pb = xfs_buf_get_flags(target, ioff, isize, flags); |
| if (pb) { |
| if (PBF_NOT_DONE(pb)) { |
| PB_TRACE(pb, "read", (unsigned long)flags); |
| XFS_STATS_INC(pb_get_read); |
| pagebuf_iostart(pb, flags); |
| } else if (flags & PBF_ASYNC) { |
| PB_TRACE(pb, "read_async", (unsigned long)flags); |
| /* |
| * Read ahead call which is already satisfied, |
| * drop the buffer |
| */ |
| goto no_buffer; |
| } else { |
| PB_TRACE(pb, "read_done", (unsigned long)flags); |
| /* We do not want read in the flags */ |
| pb->pb_flags &= ~PBF_READ; |
| } |
| } |
| |
| return pb; |
| |
| no_buffer: |
| if (flags & (PBF_LOCK | PBF_TRYLOCK)) |
| pagebuf_unlock(pb); |
| pagebuf_rele(pb); |
| return NULL; |
| } |
| |
| /* |
| * If we are not low on memory then do the readahead in a deadlock |
| * safe manner. |
| */ |
| void |
| pagebuf_readahead( |
| xfs_buftarg_t *target, |
| loff_t ioff, |
| size_t isize, |
| page_buf_flags_t flags) |
| { |
| struct backing_dev_info *bdi; |
| |
| bdi = target->pbr_mapping->backing_dev_info; |
| if (bdi_read_congested(bdi)) |
| return; |
| |
| flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD); |
| xfs_buf_read_flags(target, ioff, isize, flags); |
| } |
| |
| xfs_buf_t * |
| pagebuf_get_empty( |
| size_t len, |
| xfs_buftarg_t *target) |
| { |
| xfs_buf_t *pb; |
| |
| pb = pagebuf_allocate(0); |
| if (pb) |
| _pagebuf_initialize(pb, target, 0, len, 0); |
| return pb; |
| } |
| |
| static inline struct page * |
| mem_to_page( |
| void *addr) |
| { |
| if (((unsigned long)addr < VMALLOC_START) || |
| ((unsigned long)addr >= VMALLOC_END)) { |
| return virt_to_page(addr); |
| } else { |
| return vmalloc_to_page(addr); |
| } |
| } |
| |
| int |
| pagebuf_associate_memory( |
| xfs_buf_t *pb, |
| void *mem, |
| size_t len) |
| { |
| int rval; |
| int i = 0; |
| size_t ptr; |
| size_t end, end_cur; |
| off_t offset; |
| int page_count; |
| |
| page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT; |
| offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK); |
| if (offset && (len > PAGE_CACHE_SIZE)) |
| page_count++; |
| |
| /* Free any previous set of page pointers */ |
| if (pb->pb_pages) |
| _pagebuf_free_pages(pb); |
| |
| pb->pb_pages = NULL; |
| pb->pb_addr = mem; |
| |
| rval = _pagebuf_get_pages(pb, page_count, 0); |
| if (rval) |
| return rval; |
| |
| pb->pb_offset = offset; |
| ptr = (size_t) mem & PAGE_CACHE_MASK; |
| end = PAGE_CACHE_ALIGN((size_t) mem + len); |
| end_cur = end; |
| /* set up first page */ |
| pb->pb_pages[0] = mem_to_page(mem); |
| |
| ptr += PAGE_CACHE_SIZE; |
| pb->pb_page_count = ++i; |
| while (ptr < end) { |
| pb->pb_pages[i] = mem_to_page((void *)ptr); |
| pb->pb_page_count = ++i; |
| ptr += PAGE_CACHE_SIZE; |
| } |
| pb->pb_locked = 0; |
| |
| pb->pb_count_desired = pb->pb_buffer_length = len; |
| pb->pb_flags |= PBF_MAPPED; |
| |
| return 0; |
| } |
| |
| xfs_buf_t * |
| pagebuf_get_no_daddr( |
| size_t len, |
| xfs_buftarg_t *target) |
| { |
| size_t malloc_len = len; |
| xfs_buf_t *bp; |
| void *data; |
| int error; |
| |
| bp = pagebuf_allocate(0); |
| if (unlikely(bp == NULL)) |
| goto fail; |
| _pagebuf_initialize(bp, target, 0, len, PBF_FORCEIO); |
| |
| try_again: |
| data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL); |
| if (unlikely(data == NULL)) |
| goto fail_free_buf; |
| |
| /* check whether alignment matches.. */ |
| if ((__psunsigned_t)data != |
| ((__psunsigned_t)data & ~target->pbr_smask)) { |
| /* .. else double the size and try again */ |
| kmem_free(data, malloc_len); |
| malloc_len <<= 1; |
| goto try_again; |
| } |
| |
| error = pagebuf_associate_memory(bp, data, len); |
| if (error) |
| goto fail_free_mem; |
| bp->pb_flags |= _PBF_KMEM_ALLOC; |
| |
| pagebuf_unlock(bp); |
| |
| PB_TRACE(bp, "no_daddr", data); |
| return bp; |
| fail_free_mem: |
| kmem_free(data, malloc_len); |
| fail_free_buf: |
| pagebuf_free(bp); |
| fail: |
| return NULL; |
| } |
| |
| /* |
| * pagebuf_hold |
| * |
| * Increment reference count on buffer, to hold the buffer concurrently |
| * with another thread which may release (free) the buffer asynchronously. |
| * |
| * Must hold the buffer already to call this function. |
| */ |
| void |
| pagebuf_hold( |
| xfs_buf_t *pb) |
| { |
| atomic_inc(&pb->pb_hold); |
| PB_TRACE(pb, "hold", 0); |
| } |
| |
| /* |
| * pagebuf_rele |
| * |
| * pagebuf_rele releases a hold on the specified buffer. If the |
| * the hold count is 1, pagebuf_rele calls pagebuf_free. |
| */ |
| void |
| pagebuf_rele( |
| xfs_buf_t *pb) |
| { |
| xfs_bufhash_t *hash = pb->pb_hash; |
| |
| PB_TRACE(pb, "rele", pb->pb_relse); |
| |
| /* |
| * pagebuf_lookup buffers are not hashed, not delayed write, |
| * and don't have their own release routines. Special case. |
| */ |
| if (unlikely(!hash)) { |
| ASSERT(!pb->pb_relse); |
| if (atomic_dec_and_test(&pb->pb_hold)) |
| xfs_buf_free(pb); |
| return; |
| } |
| |
| if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) { |
| int do_free = 1; |
| |
| if (pb->pb_relse) { |
| atomic_inc(&pb->pb_hold); |
| spin_unlock(&hash->bh_lock); |
| (*(pb->pb_relse)) (pb); |
| spin_lock(&hash->bh_lock); |
| do_free = 0; |
| } |
| |
| if (pb->pb_flags & PBF_FS_MANAGED) { |
| do_free = 0; |
| } |
| |
| if (do_free) { |
| ASSERT((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == 0); |
| list_del_init(&pb->pb_hash_list); |
| spin_unlock(&hash->bh_lock); |
| pagebuf_free(pb); |
| } else { |
| spin_unlock(&hash->bh_lock); |
| } |
| } else { |
| /* |
| * Catch reference count leaks |
| */ |
| ASSERT(atomic_read(&pb->pb_hold) >= 0); |
| } |
| } |
| |
| |
| /* |
| * Mutual exclusion on buffers. Locking model: |
| * |
| * Buffers associated with inodes for which buffer locking |
| * is not enabled are not protected by semaphores, and are |
| * assumed to be exclusively owned by the caller. There is a |
| * spinlock in the buffer, used by the caller when concurrent |
| * access is possible. |
| */ |
| |
| /* |
| * pagebuf_cond_lock |
| * |
| * pagebuf_cond_lock locks a buffer object, if it is not already locked. |
| * Note that this in no way |
| * locks the underlying pages, so it is only useful for synchronizing |
| * concurrent use of page buffer objects, not for synchronizing independent |
| * access to the underlying pages. |
| */ |
| int |
| pagebuf_cond_lock( /* lock buffer, if not locked */ |
| /* returns -EBUSY if locked) */ |
| xfs_buf_t *pb) |
| { |
| int locked; |
| |
| locked = down_trylock(&pb->pb_sema) == 0; |
| if (locked) { |
| PB_SET_OWNER(pb); |
| } |
| PB_TRACE(pb, "cond_lock", (long)locked); |
| return(locked ? 0 : -EBUSY); |
| } |
| |
| #if defined(DEBUG) || defined(XFS_BLI_TRACE) |
| /* |
| * pagebuf_lock_value |
| * |
| * Return lock value for a pagebuf |
| */ |
| int |
| pagebuf_lock_value( |
| xfs_buf_t *pb) |
| { |
| return(atomic_read(&pb->pb_sema.count)); |
| } |
| #endif |
| |
| /* |
| * pagebuf_lock |
| * |
| * pagebuf_lock locks a buffer object. Note that this in no way |
| * locks the underlying pages, so it is only useful for synchronizing |
| * concurrent use of page buffer objects, not for synchronizing independent |
| * access to the underlying pages. |
| */ |
| int |
| pagebuf_lock( |
| xfs_buf_t *pb) |
| { |
| PB_TRACE(pb, "lock", 0); |
| if (atomic_read(&pb->pb_io_remaining)) |
| blk_run_address_space(pb->pb_target->pbr_mapping); |
| down(&pb->pb_sema); |
| PB_SET_OWNER(pb); |
| PB_TRACE(pb, "locked", 0); |
| return 0; |
| } |
| |
| /* |
| * pagebuf_unlock |
| * |
| * pagebuf_unlock releases the lock on the buffer object created by |
| * pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages |
| * created by pagebuf_pin). |
| * |
| * If the buffer is marked delwri but is not queued, do so before we |
| * unlock the buffer as we need to set flags correctly. We also need to |
| * take a reference for the delwri queue because the unlocker is going to |
| * drop their's and they don't know we just queued it. |
| */ |
| void |
| pagebuf_unlock( /* unlock buffer */ |
| xfs_buf_t *pb) /* buffer to unlock */ |
| { |
| if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) { |
| atomic_inc(&pb->pb_hold); |
| pb->pb_flags |= PBF_ASYNC; |
| pagebuf_delwri_queue(pb, 0); |
| } |
| |
| PB_CLEAR_OWNER(pb); |
| up(&pb->pb_sema); |
| PB_TRACE(pb, "unlock", 0); |
| } |
| |
| |
| /* |
| * Pinning Buffer Storage in Memory |
| */ |
| |
| /* |
| * pagebuf_pin |
| * |
| * pagebuf_pin locks all of the memory represented by a buffer in |
| * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for |
| * the same or different buffers affecting a given page, will |
| * properly count the number of outstanding "pin" requests. The |
| * buffer may be released after the pagebuf_pin and a different |
| * buffer used when calling pagebuf_unpin, if desired. |
| * pagebuf_pin should be used by the file system when it wants be |
| * assured that no attempt will be made to force the affected |
| * memory to disk. It does not assure that a given logical page |
| * will not be moved to a different physical page. |
| */ |
| void |
| pagebuf_pin( |
| xfs_buf_t *pb) |
| { |
| atomic_inc(&pb->pb_pin_count); |
| PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter); |
| } |
| |
| /* |
| * pagebuf_unpin |
| * |
| * pagebuf_unpin reverses the locking of memory performed by |
| * pagebuf_pin. Note that both functions affected the logical |
| * pages associated with the buffer, not the buffer itself. |
| */ |
| void |
| pagebuf_unpin( |
| xfs_buf_t *pb) |
| { |
| if (atomic_dec_and_test(&pb->pb_pin_count)) { |
| wake_up_all(&pb->pb_waiters); |
| } |
| PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter); |
| } |
| |
| int |
| pagebuf_ispin( |
| xfs_buf_t *pb) |
| { |
| return atomic_read(&pb->pb_pin_count); |
| } |
| |
| /* |
| * pagebuf_wait_unpin |
| * |
| * pagebuf_wait_unpin waits until all of the memory associated |
| * with the buffer is not longer locked in memory. It returns |
| * immediately if none of the affected pages are locked. |
| */ |
| static inline void |
| _pagebuf_wait_unpin( |
| xfs_buf_t *pb) |
| { |
| DECLARE_WAITQUEUE (wait, current); |
| |
| if (atomic_read(&pb->pb_pin_count) == 0) |
| return; |
| |
| add_wait_queue(&pb->pb_waiters, &wait); |
| for (;;) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| if (atomic_read(&pb->pb_pin_count) == 0) |
| break; |
| if (atomic_read(&pb->pb_io_remaining)) |
| blk_run_address_space(pb->pb_target->pbr_mapping); |
| schedule(); |
| } |
| remove_wait_queue(&pb->pb_waiters, &wait); |
| set_current_state(TASK_RUNNING); |
| } |
| |
| /* |
| * Buffer Utility Routines |
| */ |
| |
| /* |
| * pagebuf_iodone |
| * |
| * pagebuf_iodone marks a buffer for which I/O is in progress |
| * done with respect to that I/O. The pb_iodone routine, if |
| * present, will be called as a side-effect. |
| */ |
| STATIC void |
| pagebuf_iodone_work( |
| void *v) |
| { |
| xfs_buf_t *bp = (xfs_buf_t *)v; |
| |
| if (bp->pb_iodone) |
| (*(bp->pb_iodone))(bp); |
| else if (bp->pb_flags & PBF_ASYNC) |
| xfs_buf_relse(bp); |
| } |
| |
| void |
| pagebuf_iodone( |
| xfs_buf_t *pb, |
| int dataio, |
| int schedule) |
| { |
| pb->pb_flags &= ~(PBF_READ | PBF_WRITE); |
| if (pb->pb_error == 0) { |
| pb->pb_flags &= ~(PBF_PARTIAL | PBF_NONE); |
| } |
| |
| PB_TRACE(pb, "iodone", pb->pb_iodone); |
| |
| if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) { |
| if (schedule) { |
| INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb); |
| queue_work(dataio ? xfsdatad_workqueue : |
| xfslogd_workqueue, &pb->pb_iodone_work); |
| } else { |
| pagebuf_iodone_work(pb); |
| } |
| } else { |
| up(&pb->pb_iodonesema); |
| } |
| } |
| |
| /* |
| * pagebuf_ioerror |
| * |
| * pagebuf_ioerror sets the error code for a buffer. |
| */ |
| void |
| pagebuf_ioerror( /* mark/clear buffer error flag */ |
| xfs_buf_t *pb, /* buffer to mark */ |
| int error) /* error to store (0 if none) */ |
| { |
| ASSERT(error >= 0 && error <= 0xffff); |
| pb->pb_error = (unsigned short)error; |
| PB_TRACE(pb, "ioerror", (unsigned long)error); |
| } |
| |
| /* |
| * pagebuf_iostart |
| * |
| * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied. |
| * If necessary, it will arrange for any disk space allocation required, |
| * and it will break up the request if the block mappings require it. |
| * The pb_iodone routine in the buffer supplied will only be called |
| * when all of the subsidiary I/O requests, if any, have been completed. |
| * pagebuf_iostart calls the pagebuf_ioinitiate routine or |
| * pagebuf_iorequest, if the former routine is not defined, to start |
| * the I/O on a given low-level request. |
| */ |
| int |
| pagebuf_iostart( /* start I/O on a buffer */ |
| xfs_buf_t *pb, /* buffer to start */ |
| page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */ |
| /* PBF_WRITE, PBF_DELWRI, */ |
| /* PBF_DONT_BLOCK */ |
| { |
| int status = 0; |
| |
| PB_TRACE(pb, "iostart", (unsigned long)flags); |
| |
| if (flags & PBF_DELWRI) { |
| pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC); |
| pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC); |
| pagebuf_delwri_queue(pb, 1); |
| return status; |
| } |
| |
| pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \ |
| PBF_READ_AHEAD | _PBF_RUN_QUEUES); |
| pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \ |
| PBF_READ_AHEAD | _PBF_RUN_QUEUES); |
| |
| BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL); |
| |
| /* For writes allow an alternate strategy routine to precede |
| * the actual I/O request (which may not be issued at all in |
| * a shutdown situation, for example). |
| */ |
| status = (flags & PBF_WRITE) ? |
| pagebuf_iostrategy(pb) : pagebuf_iorequest(pb); |
| |
| /* Wait for I/O if we are not an async request. |
| * Note: async I/O request completion will release the buffer, |
| * and that can already be done by this point. So using the |
| * buffer pointer from here on, after async I/O, is invalid. |
| */ |
| if (!status && !(flags & PBF_ASYNC)) |
| status = pagebuf_iowait(pb); |
| |
| return status; |
| } |
| |
| /* |
| * Helper routine for pagebuf_iorequest |
| */ |
| |
| STATIC __inline__ int |
| _pagebuf_iolocked( |
| xfs_buf_t *pb) |
| { |
| ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE)); |
| if (pb->pb_flags & PBF_READ) |
| return pb->pb_locked; |
| return 0; |
| } |
| |
| STATIC __inline__ void |
| _pagebuf_iodone( |
| xfs_buf_t *pb, |
| int schedule) |
| { |
| if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) { |
| pb->pb_locked = 0; |
| pagebuf_iodone(pb, (pb->pb_flags & PBF_FS_DATAIOD), schedule); |
| } |
| } |
| |
| STATIC int |
| bio_end_io_pagebuf( |
| struct bio *bio, |
| unsigned int bytes_done, |
| int error) |
| { |
| xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private; |
| unsigned int blocksize = pb->pb_target->pbr_bsize; |
| struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| |
| if (bio->bi_size) |
| return 1; |
| |
| if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) |
| pb->pb_error = EIO; |
| |
| do { |
| struct page *page = bvec->bv_page; |
| |
| if (unlikely(pb->pb_error)) { |
| if (pb->pb_flags & PBF_READ) |
| ClearPageUptodate(page); |
| SetPageError(page); |
| } else if (blocksize == PAGE_CACHE_SIZE) { |
| SetPageUptodate(page); |
| } else if (!PagePrivate(page) && |
| (pb->pb_flags & _PBF_PAGE_CACHE)) { |
| set_page_region(page, bvec->bv_offset, bvec->bv_len); |
| } |
| |
| if (--bvec >= bio->bi_io_vec) |
| prefetchw(&bvec->bv_page->flags); |
| |
| if (_pagebuf_iolocked(pb)) { |
| unlock_page(page); |
| } |
| } while (bvec >= bio->bi_io_vec); |
| |
| _pagebuf_iodone(pb, 1); |
| bio_put(bio); |
| return 0; |
| } |
| |
| STATIC void |
| _pagebuf_ioapply( |
| xfs_buf_t *pb) |
| { |
| int i, rw, map_i, total_nr_pages, nr_pages; |
| struct bio *bio; |
| int offset = pb->pb_offset; |
| int size = pb->pb_count_desired; |
| sector_t sector = pb->pb_bn; |
| unsigned int blocksize = pb->pb_target->pbr_bsize; |
| int locking = _pagebuf_iolocked(pb); |
| |
| total_nr_pages = pb->pb_page_count; |
| map_i = 0; |
| |
| if (pb->pb_flags & _PBF_RUN_QUEUES) { |
| pb->pb_flags &= ~_PBF_RUN_QUEUES; |
| rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC; |
| } else { |
| rw = (pb->pb_flags & PBF_READ) ? READ : WRITE; |
| } |
| |
| /* Special code path for reading a sub page size pagebuf in -- |
| * we populate up the whole page, and hence the other metadata |
| * in the same page. This optimization is only valid when the |
| * filesystem block size and the page size are equal. |
| */ |
| if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) && |
| (pb->pb_flags & PBF_READ) && locking && |
| (blocksize == PAGE_CACHE_SIZE)) { |
| bio = bio_alloc(GFP_NOIO, 1); |
| |
| bio->bi_bdev = pb->pb_target->pbr_bdev; |
| bio->bi_sector = sector - (offset >> BBSHIFT); |
| bio->bi_end_io = bio_end_io_pagebuf; |
| bio->bi_private = pb; |
| |
| bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0); |
| size = 0; |
| |
| atomic_inc(&pb->pb_io_remaining); |
| |
| goto submit_io; |
| } |
| |
| /* Lock down the pages which we need to for the request */ |
| if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) { |
| for (i = 0; size; i++) { |
| int nbytes = PAGE_CACHE_SIZE - offset; |
| struct page *page = pb->pb_pages[i]; |
| |
| if (nbytes > size) |
| nbytes = size; |
| |
| lock_page(page); |
| |
| size -= nbytes; |
| offset = 0; |
| } |
| offset = pb->pb_offset; |
| size = pb->pb_count_desired; |
| } |
| |
| next_chunk: |
| atomic_inc(&pb->pb_io_remaining); |
| nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); |
| if (nr_pages > total_nr_pages) |
| nr_pages = total_nr_pages; |
| |
| bio = bio_alloc(GFP_NOIO, nr_pages); |
| bio->bi_bdev = pb->pb_target->pbr_bdev; |
| bio->bi_sector = sector; |
| bio->bi_end_io = bio_end_io_pagebuf; |
| bio->bi_private = pb; |
| |
| for (; size && nr_pages; nr_pages--, map_i++) { |
| int nbytes = PAGE_CACHE_SIZE - offset; |
| |
| if (nbytes > size) |
| nbytes = size; |
| |
| if (bio_add_page(bio, pb->pb_pages[map_i], |
| nbytes, offset) < nbytes) |
| break; |
| |
| offset = 0; |
| sector += nbytes >> BBSHIFT; |
| size -= nbytes; |
| total_nr_pages--; |
| } |
| |
| submit_io: |
| if (likely(bio->bi_size)) { |
| submit_bio(rw, bio); |
| if (size) |
| goto next_chunk; |
| } else { |
| bio_put(bio); |
| pagebuf_ioerror(pb, EIO); |
| } |
| } |
| |
| /* |
| * pagebuf_iorequest -- the core I/O request routine. |
| */ |
| int |
| pagebuf_iorequest( /* start real I/O */ |
| xfs_buf_t *pb) /* buffer to convey to device */ |
| { |
| PB_TRACE(pb, "iorequest", 0); |
| |
| if (pb->pb_flags & PBF_DELWRI) { |
| pagebuf_delwri_queue(pb, 1); |
| return 0; |
| } |
| |
| if (pb->pb_flags & PBF_WRITE) { |
| _pagebuf_wait_unpin(pb); |
| } |
| |
| pagebuf_hold(pb); |
| |
| /* Set the count to 1 initially, this will stop an I/O |
| * completion callout which happens before we have started |
| * all the I/O from calling pagebuf_iodone too early. |
| */ |
| atomic_set(&pb->pb_io_remaining, 1); |
| _pagebuf_ioapply(pb); |
| _pagebuf_iodone(pb, 0); |
| |
| pagebuf_rele(pb); |
| return 0; |
| } |
| |
| /* |
| * pagebuf_iowait |
| * |
| * pagebuf_iowait waits for I/O to complete on the buffer supplied. |
| * It returns immediately if no I/O is pending. In any case, it returns |
| * the error code, if any, or 0 if there is no error. |
| */ |
| int |
| pagebuf_iowait( |
| xfs_buf_t *pb) |
| { |
| PB_TRACE(pb, "iowait", 0); |
| if (atomic_read(&pb->pb_io_remaining)) |
| blk_run_address_space(pb->pb_target->pbr_mapping); |
| down(&pb->pb_iodonesema); |
| PB_TRACE(pb, "iowaited", (long)pb->pb_error); |
| return pb->pb_error; |
| } |
| |
| caddr_t |
| pagebuf_offset( |
| xfs_buf_t *pb, |
| size_t offset) |
| { |
| struct page *page; |
| |
| offset += pb->pb_offset; |
| |
| page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT]; |
| return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1)); |
| } |
| |
| /* |
| * pagebuf_iomove |
| * |
| * Move data into or out of a buffer. |
| */ |
| void |
| pagebuf_iomove( |
| xfs_buf_t *pb, /* buffer to process */ |
| size_t boff, /* starting buffer offset */ |
| size_t bsize, /* length to copy */ |
| caddr_t data, /* data address */ |
| page_buf_rw_t mode) /* read/write flag */ |
| { |
| size_t bend, cpoff, csize; |
| struct page *page; |
| |
| bend = boff + bsize; |
| while (boff < bend) { |
| page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)]; |
| cpoff = page_buf_poff(boff + pb->pb_offset); |
| csize = min_t(size_t, |
| PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff); |
| |
| ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE)); |
| |
| switch (mode) { |
| case PBRW_ZERO: |
| memset(page_address(page) + cpoff, 0, csize); |
| break; |
| case PBRW_READ: |
| memcpy(data, page_address(page) + cpoff, csize); |
| break; |
| case PBRW_WRITE: |
| memcpy(page_address(page) + cpoff, data, csize); |
| } |
| |
| boff += csize; |
| data += csize; |
| } |
| } |
| |
| /* |
| * Handling of buftargs. |
| */ |
| |
| /* |
| * Wait for any bufs with callbacks that have been submitted but |
| * have not yet returned... walk the hash list for the target. |
| */ |
| void |
| xfs_wait_buftarg( |
| xfs_buftarg_t *btp) |
| { |
| xfs_buf_t *bp, *n; |
| xfs_bufhash_t *hash; |
| uint i; |
| |
| for (i = 0; i < (1 << btp->bt_hashshift); i++) { |
| hash = &btp->bt_hash[i]; |
| again: |
| spin_lock(&hash->bh_lock); |
| list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) { |
| ASSERT(btp == bp->pb_target); |
| if (!(bp->pb_flags & PBF_FS_MANAGED)) { |
| spin_unlock(&hash->bh_lock); |
| /* |
| * Catch superblock reference count leaks |
| * immediately |
| */ |
| BUG_ON(bp->pb_bn == 0); |
| delay(100); |
| goto again; |
| } |
| } |
| spin_unlock(&hash->bh_lock); |
| } |
| } |
| |
| /* |
| * Allocate buffer hash table for a given target. |
| * For devices containing metadata (i.e. not the log/realtime devices) |
| * we need to allocate a much larger hash table. |
| */ |
| STATIC void |
| xfs_alloc_bufhash( |
| xfs_buftarg_t *btp, |
| int external) |
| { |
| unsigned int i; |
| |
| btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */ |
| btp->bt_hashmask = (1 << btp->bt_hashshift) - 1; |
| btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) * |
| sizeof(xfs_bufhash_t), KM_SLEEP); |
| for (i = 0; i < (1 << btp->bt_hashshift); i++) { |
| spin_lock_init(&btp->bt_hash[i].bh_lock); |
| INIT_LIST_HEAD(&btp->bt_hash[i].bh_list); |
| } |
| } |
| |
| STATIC void |
| xfs_free_bufhash( |
| xfs_buftarg_t *btp) |
| { |
| kmem_free(btp->bt_hash, |
| (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t)); |
| btp->bt_hash = NULL; |
| } |
| |
| void |
| xfs_free_buftarg( |
| xfs_buftarg_t *btp, |
| int external) |
| { |
| xfs_flush_buftarg(btp, 1); |
| if (external) |
| xfs_blkdev_put(btp->pbr_bdev); |
| xfs_free_bufhash(btp); |
| iput(btp->pbr_mapping->host); |
| kmem_free(btp, sizeof(*btp)); |
| } |
| |
| STATIC int |
| xfs_setsize_buftarg_flags( |
| xfs_buftarg_t *btp, |
| unsigned int blocksize, |
| unsigned int sectorsize, |
| int verbose) |
| { |
| btp->pbr_bsize = blocksize; |
| btp->pbr_sshift = ffs(sectorsize) - 1; |
| btp->pbr_smask = sectorsize - 1; |
| |
| if (set_blocksize(btp->pbr_bdev, sectorsize)) { |
| printk(KERN_WARNING |
| "XFS: Cannot set_blocksize to %u on device %s\n", |
| sectorsize, XFS_BUFTARG_NAME(btp)); |
| return EINVAL; |
| } |
| |
| if (verbose && |
| (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) { |
| printk(KERN_WARNING |
| "XFS: %u byte sectors in use on device %s. " |
| "This is suboptimal; %u or greater is ideal.\n", |
| sectorsize, XFS_BUFTARG_NAME(btp), |
| (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * When allocating the initial buffer target we have not yet |
| * read in the superblock, so don't know what sized sectors |
| * are being used is at this early stage. Play safe. |
| */ |
| STATIC int |
| xfs_setsize_buftarg_early( |
| xfs_buftarg_t *btp, |
| struct block_device *bdev) |
| { |
| return xfs_setsize_buftarg_flags(btp, |
| PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0); |
| } |
| |
| int |
| xfs_setsize_buftarg( |
| xfs_buftarg_t *btp, |
| unsigned int blocksize, |
| unsigned int sectorsize) |
| { |
| return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); |
| } |
| |
| STATIC int |
| xfs_mapping_buftarg( |
| xfs_buftarg_t *btp, |
| struct block_device *bdev) |
| { |
| struct backing_dev_info *bdi; |
| struct inode *inode; |
| struct address_space *mapping; |
| static struct address_space_operations mapping_aops = { |
| .sync_page = block_sync_page, |
| }; |
| |
| inode = new_inode(bdev->bd_inode->i_sb); |
| if (!inode) { |
| printk(KERN_WARNING |
| "XFS: Cannot allocate mapping inode for device %s\n", |
| XFS_BUFTARG_NAME(btp)); |
| return ENOMEM; |
| } |
| inode->i_mode = S_IFBLK; |
| inode->i_bdev = bdev; |
| inode->i_rdev = bdev->bd_dev; |
| bdi = blk_get_backing_dev_info(bdev); |
| if (!bdi) |
| bdi = &default_backing_dev_info; |
| mapping = &inode->i_data; |
| mapping->a_ops = &mapping_aops; |
| mapping->backing_dev_info = bdi; |
| mapping_set_gfp_mask(mapping, GFP_NOFS); |
| btp->pbr_mapping = mapping; |
| return 0; |
| } |
| |
| xfs_buftarg_t * |
| xfs_alloc_buftarg( |
| struct block_device *bdev, |
| int external) |
| { |
| xfs_buftarg_t *btp; |
| |
| btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); |
| |
| btp->pbr_dev = bdev->bd_dev; |
| btp->pbr_bdev = bdev; |
| if (xfs_setsize_buftarg_early(btp, bdev)) |
| goto error; |
| if (xfs_mapping_buftarg(btp, bdev)) |
| goto error; |
| xfs_alloc_bufhash(btp, external); |
| return btp; |
| |
| error: |
| kmem_free(btp, sizeof(*btp)); |
| return NULL; |
| } |
| |
| |
| /* |
| * Pagebuf delayed write buffer handling |
| */ |
| |
| STATIC LIST_HEAD(pbd_delwrite_queue); |
| STATIC DEFINE_SPINLOCK(pbd_delwrite_lock); |
| |
| STATIC void |
| pagebuf_delwri_queue( |
| xfs_buf_t *pb, |
| int unlock) |
| { |
| PB_TRACE(pb, "delwri_q", (long)unlock); |
| ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) == |
| (PBF_DELWRI|PBF_ASYNC)); |
| |
| spin_lock(&pbd_delwrite_lock); |
| /* If already in the queue, dequeue and place at tail */ |
| if (!list_empty(&pb->pb_list)) { |
| ASSERT(pb->pb_flags & _PBF_DELWRI_Q); |
| if (unlock) { |
| atomic_dec(&pb->pb_hold); |
| } |
| list_del(&pb->pb_list); |
| } |
| |
| pb->pb_flags |= _PBF_DELWRI_Q; |
| list_add_tail(&pb->pb_list, &pbd_delwrite_queue); |
| pb->pb_queuetime = jiffies; |
| spin_unlock(&pbd_delwrite_lock); |
| |
| if (unlock) |
| pagebuf_unlock(pb); |
| } |
| |
| void |
| pagebuf_delwri_dequeue( |
| xfs_buf_t *pb) |
| { |
| int dequeued = 0; |
| |
| spin_lock(&pbd_delwrite_lock); |
| if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) { |
| ASSERT(pb->pb_flags & _PBF_DELWRI_Q); |
| list_del_init(&pb->pb_list); |
| dequeued = 1; |
| } |
| pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q); |
| spin_unlock(&pbd_delwrite_lock); |
| |
| if (dequeued) |
| pagebuf_rele(pb); |
| |
| PB_TRACE(pb, "delwri_dq", (long)dequeued); |
| } |
| |
| STATIC void |
| pagebuf_runall_queues( |
| struct workqueue_struct *queue) |
| { |
| flush_workqueue(queue); |
| } |
| |
| /* Defines for pagebuf daemon */ |
| STATIC struct task_struct *xfsbufd_task; |
| STATIC int xfsbufd_force_flush; |
| STATIC int xfsbufd_force_sleep; |
| |
| STATIC int |
| xfsbufd_wakeup( |
| int priority, |
| unsigned int mask) |
| { |
| if (xfsbufd_force_sleep) |
| return 0; |
| xfsbufd_force_flush = 1; |
| barrier(); |
| wake_up_process(xfsbufd_task); |
| return 0; |
| } |
| |
| STATIC int |
| xfsbufd( |
| void *data) |
| { |
| struct list_head tmp; |
| unsigned long age; |
| xfs_buftarg_t *target; |
| xfs_buf_t *pb, *n; |
| |
| current->flags |= PF_MEMALLOC; |
| |
| INIT_LIST_HEAD(&tmp); |
| do { |
| if (unlikely(freezing(current))) { |
| xfsbufd_force_sleep = 1; |
| refrigerator(); |
| } else { |
| xfsbufd_force_sleep = 0; |
| } |
| |
| schedule_timeout_interruptible |
| (xfs_buf_timer_centisecs * msecs_to_jiffies(10)); |
| |
| age = xfs_buf_age_centisecs * msecs_to_jiffies(10); |
| spin_lock(&pbd_delwrite_lock); |
| list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) { |
| PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb)); |
| ASSERT(pb->pb_flags & PBF_DELWRI); |
| |
| if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) { |
| if (!xfsbufd_force_flush && |
| time_before(jiffies, |
| pb->pb_queuetime + age)) { |
| pagebuf_unlock(pb); |
| break; |
| } |
| |
| pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q); |
| pb->pb_flags |= PBF_WRITE; |
| list_move(&pb->pb_list, &tmp); |
| } |
| } |
| spin_unlock(&pbd_delwrite_lock); |
| |
| while (!list_empty(&tmp)) { |
| pb = list_entry(tmp.next, xfs_buf_t, pb_list); |
| target = pb->pb_target; |
| |
| list_del_init(&pb->pb_list); |
| pagebuf_iostrategy(pb); |
| |
| blk_run_address_space(target->pbr_mapping); |
| } |
| |
| if (as_list_len > 0) |
| purge_addresses(); |
| |
| xfsbufd_force_flush = 0; |
| } while (!kthread_should_stop()); |
| |
| return 0; |
| } |
| |
| /* |
| * Go through all incore buffers, and release buffers if they belong to |
| * the given device. This is used in filesystem error handling to |
| * preserve the consistency of its metadata. |
| */ |
| int |
| xfs_flush_buftarg( |
| xfs_buftarg_t *target, |
| int wait) |
| { |
| struct list_head tmp; |
| xfs_buf_t *pb, *n; |
| int pincount = 0; |
| |
| pagebuf_runall_queues(xfsdatad_workqueue); |
| pagebuf_runall_queues(xfslogd_workqueue); |
| |
| INIT_LIST_HEAD(&tmp); |
| spin_lock(&pbd_delwrite_lock); |
| list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) { |
| |
| if (pb->pb_target != target) |
| continue; |
| |
| ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)); |
| PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb)); |
| if (pagebuf_ispin(pb)) { |
| pincount++; |
| continue; |
| } |
| |
| list_move(&pb->pb_list, &tmp); |
| } |
| spin_unlock(&pbd_delwrite_lock); |
| |
| /* |
| * Dropped the delayed write list lock, now walk the temporary list |
| */ |
| list_for_each_entry_safe(pb, n, &tmp, pb_list) { |
| pagebuf_lock(pb); |
| pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q); |
| pb->pb_flags |= PBF_WRITE; |
| if (wait) |
| pb->pb_flags &= ~PBF_ASYNC; |
| else |
| list_del_init(&pb->pb_list); |
| |
| pagebuf_iostrategy(pb); |
| } |
| |
| /* |
| * Remaining list items must be flushed before returning |
| */ |
| while (!list_empty(&tmp)) { |
| pb = list_entry(tmp.next, xfs_buf_t, pb_list); |
| |
| list_del_init(&pb->pb_list); |
| xfs_iowait(pb); |
| xfs_buf_relse(pb); |
| } |
| |
| if (wait) |
| blk_run_address_space(target->pbr_mapping); |
| |
| return pincount; |
| } |
| |
| STATIC int |
| xfs_buf_daemons_start(void) |
| { |
| int error = -ENOMEM; |
| |
| xfslogd_workqueue = create_workqueue("xfslogd"); |
| if (!xfslogd_workqueue) |
| goto out; |
| |
| xfsdatad_workqueue = create_workqueue("xfsdatad"); |
| if (!xfsdatad_workqueue) |
| goto out_destroy_xfslogd_workqueue; |
| |
| xfsbufd_task = kthread_run(xfsbufd, NULL, "xfsbufd"); |
| if (IS_ERR(xfsbufd_task)) { |
| error = PTR_ERR(xfsbufd_task); |
| goto out_destroy_xfsdatad_workqueue; |
| } |
| return 0; |
| |
| out_destroy_xfsdatad_workqueue: |
| destroy_workqueue(xfsdatad_workqueue); |
| out_destroy_xfslogd_workqueue: |
| destroy_workqueue(xfslogd_workqueue); |
| out: |
| return error; |
| } |
| |
| /* |
| * Note: do not mark as __exit, it is called from pagebuf_terminate. |
| */ |
| STATIC void |
| xfs_buf_daemons_stop(void) |
| { |
| kthread_stop(xfsbufd_task); |
| destroy_workqueue(xfslogd_workqueue); |
| destroy_workqueue(xfsdatad_workqueue); |
| } |
| |
| /* |
| * Initialization and Termination |
| */ |
| |
| int __init |
| pagebuf_init(void) |
| { |
| int error = -ENOMEM; |
| |
| pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf"); |
| if (!pagebuf_zone) |
| goto out; |
| |
| #ifdef PAGEBUF_TRACE |
| pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP); |
| #endif |
| |
| error = xfs_buf_daemons_start(); |
| if (error) |
| goto out_free_buf_zone; |
| |
| pagebuf_shake = kmem_shake_register(xfsbufd_wakeup); |
| if (!pagebuf_shake) { |
| error = -ENOMEM; |
| goto out_stop_daemons; |
| } |
| |
| return 0; |
| |
| out_stop_daemons: |
| xfs_buf_daemons_stop(); |
| out_free_buf_zone: |
| #ifdef PAGEBUF_TRACE |
| ktrace_free(pagebuf_trace_buf); |
| #endif |
| kmem_zone_destroy(pagebuf_zone); |
| out: |
| return error; |
| } |
| |
| |
| /* |
| * pagebuf_terminate. |
| * |
| * Note: do not mark as __exit, this is also called from the __init code. |
| */ |
| void |
| pagebuf_terminate(void) |
| { |
| xfs_buf_daemons_stop(); |
| |
| #ifdef PAGEBUF_TRACE |
| ktrace_free(pagebuf_trace_buf); |
| #endif |
| |
| kmem_zone_destroy(pagebuf_zone); |
| kmem_shake_deregister(pagebuf_shake); |
| } |