| /* | 
 |  * Extensible Firmware Interface | 
 |  * | 
 |  * Based on Extensible Firmware Interface Specification version 1.0 | 
 |  * | 
 |  * Copyright (C) 1999 VA Linux Systems | 
 |  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | 
 |  * Copyright (C) 1999-2002 Hewlett-Packard Co. | 
 |  *	David Mosberger-Tang <davidm@hpl.hp.com> | 
 |  *	Stephane Eranian <eranian@hpl.hp.com> | 
 |  * | 
 |  * All EFI Runtime Services are not implemented yet as EFI only | 
 |  * supports physical mode addressing on SoftSDV. This is to be fixed | 
 |  * in a future version.  --drummond 1999-07-20 | 
 |  * | 
 |  * Implemented EFI runtime services and virtual mode calls.  --davidm | 
 |  * | 
 |  * Goutham Rao: <goutham.rao@intel.com> | 
 |  *	Skip non-WB memory and ignore empty memory ranges. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/types.h> | 
 | #include <linux/time.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/module.h> | 
 | #include <linux/efi.h> | 
 | #include <linux/kexec.h> | 
 |  | 
 | #include <asm/setup.h> | 
 | #include <asm/io.h> | 
 | #include <asm/page.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | #define EFI_DEBUG	0 | 
 | #define PFX 		"EFI: " | 
 |  | 
 | extern efi_status_t asmlinkage efi_call_phys(void *, ...); | 
 |  | 
 | struct efi efi; | 
 | EXPORT_SYMBOL(efi); | 
 | static struct efi efi_phys; | 
 | struct efi_memory_map memmap; | 
 |  | 
 | /* | 
 |  * We require an early boot_ioremap mapping mechanism initially | 
 |  */ | 
 | extern void * boot_ioremap(unsigned long, unsigned long); | 
 |  | 
 | /* | 
 |  * To make EFI call EFI runtime service in physical addressing mode we need | 
 |  * prelog/epilog before/after the invocation to disable interrupt, to | 
 |  * claim EFI runtime service handler exclusively and to duplicate a memory in | 
 |  * low memory space say 0 - 3G. | 
 |  */ | 
 |  | 
 | static unsigned long efi_rt_eflags; | 
 | static DEFINE_SPINLOCK(efi_rt_lock); | 
 | static pgd_t efi_bak_pg_dir_pointer[2]; | 
 |  | 
 | static void efi_call_phys_prelog(void) __acquires(efi_rt_lock) | 
 | { | 
 | 	unsigned long cr4; | 
 | 	unsigned long temp; | 
 | 	struct Xgt_desc_struct *cpu_gdt_descr; | 
 |  | 
 | 	spin_lock(&efi_rt_lock); | 
 | 	local_irq_save(efi_rt_eflags); | 
 |  | 
 | 	cpu_gdt_descr = &per_cpu(cpu_gdt_descr, 0); | 
 |  | 
 | 	/* | 
 | 	 * If I don't have PSE, I should just duplicate two entries in page | 
 | 	 * directory. If I have PSE, I just need to duplicate one entry in | 
 | 	 * page directory. | 
 | 	 */ | 
 | 	cr4 = read_cr4(); | 
 |  | 
 | 	if (cr4 & X86_CR4_PSE) { | 
 | 		efi_bak_pg_dir_pointer[0].pgd = | 
 | 		    swapper_pg_dir[pgd_index(0)].pgd; | 
 | 		swapper_pg_dir[0].pgd = | 
 | 		    swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd; | 
 | 	} else { | 
 | 		efi_bak_pg_dir_pointer[0].pgd = | 
 | 		    swapper_pg_dir[pgd_index(0)].pgd; | 
 | 		efi_bak_pg_dir_pointer[1].pgd = | 
 | 		    swapper_pg_dir[pgd_index(0x400000)].pgd; | 
 | 		swapper_pg_dir[pgd_index(0)].pgd = | 
 | 		    swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd; | 
 | 		temp = PAGE_OFFSET + 0x400000; | 
 | 		swapper_pg_dir[pgd_index(0x400000)].pgd = | 
 | 		    swapper_pg_dir[pgd_index(temp)].pgd; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * After the lock is released, the original page table is restored. | 
 | 	 */ | 
 | 	local_flush_tlb(); | 
 |  | 
 | 	cpu_gdt_descr->address = __pa(cpu_gdt_descr->address); | 
 | 	load_gdt(cpu_gdt_descr); | 
 | } | 
 |  | 
 | static void efi_call_phys_epilog(void) __releases(efi_rt_lock) | 
 | { | 
 | 	unsigned long cr4; | 
 | 	struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, 0); | 
 |  | 
 | 	cpu_gdt_descr->address = (unsigned long)__va(cpu_gdt_descr->address); | 
 | 	load_gdt(cpu_gdt_descr); | 
 |  | 
 | 	cr4 = read_cr4(); | 
 |  | 
 | 	if (cr4 & X86_CR4_PSE) { | 
 | 		swapper_pg_dir[pgd_index(0)].pgd = | 
 | 		    efi_bak_pg_dir_pointer[0].pgd; | 
 | 	} else { | 
 | 		swapper_pg_dir[pgd_index(0)].pgd = | 
 | 		    efi_bak_pg_dir_pointer[0].pgd; | 
 | 		swapper_pg_dir[pgd_index(0x400000)].pgd = | 
 | 		    efi_bak_pg_dir_pointer[1].pgd; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * After the lock is released, the original page table is restored. | 
 | 	 */ | 
 | 	local_flush_tlb(); | 
 |  | 
 | 	local_irq_restore(efi_rt_eflags); | 
 | 	spin_unlock(&efi_rt_lock); | 
 | } | 
 |  | 
 | static efi_status_t | 
 | phys_efi_set_virtual_address_map(unsigned long memory_map_size, | 
 | 				 unsigned long descriptor_size, | 
 | 				 u32 descriptor_version, | 
 | 				 efi_memory_desc_t *virtual_map) | 
 | { | 
 | 	efi_status_t status; | 
 |  | 
 | 	efi_call_phys_prelog(); | 
 | 	status = efi_call_phys(efi_phys.set_virtual_address_map, | 
 | 				     memory_map_size, descriptor_size, | 
 | 				     descriptor_version, virtual_map); | 
 | 	efi_call_phys_epilog(); | 
 | 	return status; | 
 | } | 
 |  | 
 | static efi_status_t | 
 | phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) | 
 | { | 
 | 	efi_status_t status; | 
 |  | 
 | 	efi_call_phys_prelog(); | 
 | 	status = efi_call_phys(efi_phys.get_time, tm, tc); | 
 | 	efi_call_phys_epilog(); | 
 | 	return status; | 
 | } | 
 |  | 
 | inline int efi_set_rtc_mmss(unsigned long nowtime) | 
 | { | 
 | 	int real_seconds, real_minutes; | 
 | 	efi_status_t 	status; | 
 | 	efi_time_t 	eft; | 
 | 	efi_time_cap_t 	cap; | 
 |  | 
 | 	spin_lock(&efi_rt_lock); | 
 | 	status = efi.get_time(&eft, &cap); | 
 | 	spin_unlock(&efi_rt_lock); | 
 | 	if (status != EFI_SUCCESS) | 
 | 		panic("Ooops, efitime: can't read time!\n"); | 
 | 	real_seconds = nowtime % 60; | 
 | 	real_minutes = nowtime / 60; | 
 |  | 
 | 	if (((abs(real_minutes - eft.minute) + 15)/30) & 1) | 
 | 		real_minutes += 30; | 
 | 	real_minutes %= 60; | 
 |  | 
 | 	eft.minute = real_minutes; | 
 | 	eft.second = real_seconds; | 
 |  | 
 | 	if (status != EFI_SUCCESS) { | 
 | 		printk("Ooops: efitime: can't read time!\n"); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | /* | 
 |  * This should only be used during kernel init and before runtime | 
 |  * services have been remapped, therefore, we'll need to call in physical | 
 |  * mode.  Note, this call isn't used later, so mark it __init. | 
 |  */ | 
 | inline unsigned long __init efi_get_time(void) | 
 | { | 
 | 	efi_status_t status; | 
 | 	efi_time_t eft; | 
 | 	efi_time_cap_t cap; | 
 |  | 
 | 	status = phys_efi_get_time(&eft, &cap); | 
 | 	if (status != EFI_SUCCESS) | 
 | 		printk("Oops: efitime: can't read time status: 0x%lx\n",status); | 
 |  | 
 | 	return mktime(eft.year, eft.month, eft.day, eft.hour, | 
 | 			eft.minute, eft.second); | 
 | } | 
 |  | 
 | int is_available_memory(efi_memory_desc_t * md) | 
 | { | 
 | 	if (!(md->attribute & EFI_MEMORY_WB)) | 
 | 		return 0; | 
 |  | 
 | 	switch (md->type) { | 
 | 		case EFI_LOADER_CODE: | 
 | 		case EFI_LOADER_DATA: | 
 | 		case EFI_BOOT_SERVICES_CODE: | 
 | 		case EFI_BOOT_SERVICES_DATA: | 
 | 		case EFI_CONVENTIONAL_MEMORY: | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * We need to map the EFI memory map again after paging_init(). | 
 |  */ | 
 | void __init efi_map_memmap(void) | 
 | { | 
 | 	memmap.map = NULL; | 
 |  | 
 | 	memmap.map = bt_ioremap((unsigned long) memmap.phys_map, | 
 | 			(memmap.nr_map * memmap.desc_size)); | 
 | 	if (memmap.map == NULL) | 
 | 		printk(KERN_ERR PFX "Could not remap the EFI memmap!\n"); | 
 |  | 
 | 	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); | 
 | } | 
 |  | 
 | #if EFI_DEBUG | 
 | static void __init print_efi_memmap(void) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 | 	void *p; | 
 | 	int i; | 
 |  | 
 | 	for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) { | 
 | 		md = p; | 
 | 		printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, " | 
 | 			"range=[0x%016llx-0x%016llx) (%lluMB)\n", | 
 | 			i, md->type, md->attribute, md->phys_addr, | 
 | 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), | 
 | 			(md->num_pages >> (20 - EFI_PAGE_SHIFT))); | 
 | 	} | 
 | } | 
 | #endif  /*  EFI_DEBUG  */ | 
 |  | 
 | /* | 
 |  * Walks the EFI memory map and calls CALLBACK once for each EFI | 
 |  * memory descriptor that has memory that is available for kernel use. | 
 |  */ | 
 | void efi_memmap_walk(efi_freemem_callback_t callback, void *arg) | 
 | { | 
 | 	int prev_valid = 0; | 
 | 	struct range { | 
 | 		unsigned long start; | 
 | 		unsigned long end; | 
 | 	} prev, curr; | 
 | 	efi_memory_desc_t *md; | 
 | 	unsigned long start, end; | 
 | 	void *p; | 
 |  | 
 | 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
 | 		md = p; | 
 |  | 
 | 		if ((md->num_pages == 0) || (!is_available_memory(md))) | 
 | 			continue; | 
 |  | 
 | 		curr.start = md->phys_addr; | 
 | 		curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT); | 
 |  | 
 | 		if (!prev_valid) { | 
 | 			prev = curr; | 
 | 			prev_valid = 1; | 
 | 		} else { | 
 | 			if (curr.start < prev.start) | 
 | 				printk(KERN_INFO PFX "Unordered memory map\n"); | 
 | 			if (prev.end == curr.start) | 
 | 				prev.end = curr.end; | 
 | 			else { | 
 | 				start = | 
 | 				    (unsigned long) (PAGE_ALIGN(prev.start)); | 
 | 				end = (unsigned long) (prev.end & PAGE_MASK); | 
 | 				if ((end > start) | 
 | 				    && (*callback) (start, end, arg) < 0) | 
 | 					return; | 
 | 				prev = curr; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (prev_valid) { | 
 | 		start = (unsigned long) PAGE_ALIGN(prev.start); | 
 | 		end = (unsigned long) (prev.end & PAGE_MASK); | 
 | 		if (end > start) | 
 | 			(*callback) (start, end, arg); | 
 | 	} | 
 | } | 
 |  | 
 | void __init efi_init(void) | 
 | { | 
 | 	efi_config_table_t *config_tables; | 
 | 	efi_runtime_services_t *runtime; | 
 | 	efi_char16_t *c16; | 
 | 	char vendor[100] = "unknown"; | 
 | 	unsigned long num_config_tables; | 
 | 	int i = 0; | 
 |  | 
 | 	memset(&efi, 0, sizeof(efi) ); | 
 | 	memset(&efi_phys, 0, sizeof(efi_phys)); | 
 |  | 
 | 	efi_phys.systab = EFI_SYSTAB; | 
 | 	memmap.phys_map = EFI_MEMMAP; | 
 | 	memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE; | 
 | 	memmap.desc_version = EFI_MEMDESC_VERSION; | 
 | 	memmap.desc_size = EFI_MEMDESC_SIZE; | 
 |  | 
 | 	efi.systab = (efi_system_table_t *) | 
 | 		boot_ioremap((unsigned long) efi_phys.systab, | 
 | 			sizeof(efi_system_table_t)); | 
 | 	/* | 
 | 	 * Verify the EFI Table | 
 | 	 */ | 
 | 	if (efi.systab == NULL) | 
 | 		printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n"); | 
 | 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) | 
 | 		printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n"); | 
 | 	if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0) | 
 | 		printk(KERN_ERR PFX | 
 | 		       "Warning: EFI system table major version mismatch: " | 
 | 		       "got %d.%02d, expected %d.%02d\n", | 
 | 		       efi.systab->hdr.revision >> 16, | 
 | 		       efi.systab->hdr.revision & 0xffff, | 
 | 		       EFI_SYSTEM_TABLE_REVISION >> 16, | 
 | 		       EFI_SYSTEM_TABLE_REVISION & 0xffff); | 
 | 	/* | 
 | 	 * Grab some details from the system table | 
 | 	 */ | 
 | 	num_config_tables = efi.systab->nr_tables; | 
 | 	config_tables = (efi_config_table_t *)efi.systab->tables; | 
 | 	runtime = efi.systab->runtime; | 
 |  | 
 | 	/* | 
 | 	 * Show what we know for posterity | 
 | 	 */ | 
 | 	c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2); | 
 | 	if (c16) { | 
 | 		for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i) | 
 | 			vendor[i] = *c16++; | 
 | 		vendor[i] = '\0'; | 
 | 	} else | 
 | 		printk(KERN_ERR PFX "Could not map the firmware vendor!\n"); | 
 |  | 
 | 	printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n", | 
 | 	       efi.systab->hdr.revision >> 16, | 
 | 	       efi.systab->hdr.revision & 0xffff, vendor); | 
 |  | 
 | 	/* | 
 | 	 * Let's see what config tables the firmware passed to us. | 
 | 	 */ | 
 | 	config_tables = (efi_config_table_t *) | 
 | 				boot_ioremap((unsigned long) config_tables, | 
 | 			        num_config_tables * sizeof(efi_config_table_t)); | 
 |  | 
 | 	if (config_tables == NULL) | 
 | 		printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n"); | 
 |  | 
 | 	efi.mps        = EFI_INVALID_TABLE_ADDR; | 
 | 	efi.acpi       = EFI_INVALID_TABLE_ADDR; | 
 | 	efi.acpi20     = EFI_INVALID_TABLE_ADDR; | 
 | 	efi.smbios     = EFI_INVALID_TABLE_ADDR; | 
 | 	efi.sal_systab = EFI_INVALID_TABLE_ADDR; | 
 | 	efi.boot_info  = EFI_INVALID_TABLE_ADDR; | 
 | 	efi.hcdp       = EFI_INVALID_TABLE_ADDR; | 
 | 	efi.uga        = EFI_INVALID_TABLE_ADDR; | 
 |  | 
 | 	for (i = 0; i < num_config_tables; i++) { | 
 | 		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { | 
 | 			efi.mps = config_tables[i].table; | 
 | 			printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table); | 
 | 		} else | 
 | 		    if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { | 
 | 			efi.acpi20 = config_tables[i].table; | 
 | 			printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table); | 
 | 		} else | 
 | 		    if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { | 
 | 			efi.acpi = config_tables[i].table; | 
 | 			printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table); | 
 | 		} else | 
 | 		    if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { | 
 | 			efi.smbios = config_tables[i].table; | 
 | 			printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table); | 
 | 		} else | 
 | 		    if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { | 
 | 			efi.hcdp = config_tables[i].table; | 
 | 			printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table); | 
 | 		} else | 
 | 		    if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) { | 
 | 			efi.uga = config_tables[i].table; | 
 | 			printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table); | 
 | 		} | 
 | 	} | 
 | 	printk("\n"); | 
 |  | 
 | 	/* | 
 | 	 * Check out the runtime services table. We need to map | 
 | 	 * the runtime services table so that we can grab the physical | 
 | 	 * address of several of the EFI runtime functions, needed to | 
 | 	 * set the firmware into virtual mode. | 
 | 	 */ | 
 |  | 
 | 	runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long) | 
 | 						runtime, | 
 | 				      		sizeof(efi_runtime_services_t)); | 
 | 	if (runtime != NULL) { | 
 | 		/* | 
 | 	 	 * We will only need *early* access to the following | 
 | 		 * two EFI runtime services before set_virtual_address_map | 
 | 		 * is invoked. | 
 |  	 	 */ | 
 | 		efi_phys.get_time = (efi_get_time_t *) runtime->get_time; | 
 | 		efi_phys.set_virtual_address_map = | 
 | 			(efi_set_virtual_address_map_t *) | 
 | 				runtime->set_virtual_address_map; | 
 | 	} else | 
 | 		printk(KERN_ERR PFX "Could not map the runtime service table!\n"); | 
 |  | 
 | 	/* Map the EFI memory map for use until paging_init() */ | 
 | 	memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE); | 
 | 	if (memmap.map == NULL) | 
 | 		printk(KERN_ERR PFX "Could not map the EFI memory map!\n"); | 
 |  | 
 | 	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); | 
 |  | 
 | #if EFI_DEBUG | 
 | 	print_efi_memmap(); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void __init check_range_for_systab(efi_memory_desc_t *md) | 
 | { | 
 | 	if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) && | 
 | 		((unsigned long)efi_phys.systab < md->phys_addr + | 
 | 		((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) { | 
 | 		unsigned long addr; | 
 |  | 
 | 		addr = md->virt_addr - md->phys_addr + | 
 | 			(unsigned long)efi_phys.systab; | 
 | 		efi.systab = (efi_system_table_t *)addr; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This function will switch the EFI runtime services to virtual mode. | 
 |  * Essentially, look through the EFI memmap and map every region that | 
 |  * has the runtime attribute bit set in its memory descriptor and update | 
 |  * that memory descriptor with the virtual address obtained from ioremap(). | 
 |  * This enables the runtime services to be called without having to | 
 |  * thunk back into physical mode for every invocation. | 
 |  */ | 
 |  | 
 | void __init efi_enter_virtual_mode(void) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 | 	efi_status_t status; | 
 | 	void *p; | 
 |  | 
 | 	efi.systab = NULL; | 
 |  | 
 | 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
 | 		md = p; | 
 |  | 
 | 		if (!(md->attribute & EFI_MEMORY_RUNTIME)) | 
 | 			continue; | 
 |  | 
 | 		md->virt_addr = (unsigned long)ioremap(md->phys_addr, | 
 | 			md->num_pages << EFI_PAGE_SHIFT); | 
 | 		if (!(unsigned long)md->virt_addr) { | 
 | 			printk(KERN_ERR PFX "ioremap of 0x%lX failed\n", | 
 | 				(unsigned long)md->phys_addr); | 
 | 		} | 
 | 		/* update the virtual address of the EFI system table */ | 
 | 		check_range_for_systab(md); | 
 | 	} | 
 |  | 
 | 	BUG_ON(!efi.systab); | 
 |  | 
 | 	status = phys_efi_set_virtual_address_map( | 
 | 			memmap.desc_size * memmap.nr_map, | 
 | 			memmap.desc_size, | 
 | 			memmap.desc_version, | 
 | 		       	memmap.phys_map); | 
 |  | 
 | 	if (status != EFI_SUCCESS) { | 
 | 		printk (KERN_ALERT "You are screwed! " | 
 | 			"Unable to switch EFI into virtual mode " | 
 | 			"(status=%lx)\n", status); | 
 | 		panic("EFI call to SetVirtualAddressMap() failed!"); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now that EFI is in virtual mode, update the function | 
 | 	 * pointers in the runtime service table to the new virtual addresses. | 
 | 	 */ | 
 |  | 
 | 	efi.get_time = (efi_get_time_t *) efi.systab->runtime->get_time; | 
 | 	efi.set_time = (efi_set_time_t *) efi.systab->runtime->set_time; | 
 | 	efi.get_wakeup_time = (efi_get_wakeup_time_t *) | 
 | 					efi.systab->runtime->get_wakeup_time; | 
 | 	efi.set_wakeup_time = (efi_set_wakeup_time_t *) | 
 | 					efi.systab->runtime->set_wakeup_time; | 
 | 	efi.get_variable = (efi_get_variable_t *) | 
 | 					efi.systab->runtime->get_variable; | 
 | 	efi.get_next_variable = (efi_get_next_variable_t *) | 
 | 					efi.systab->runtime->get_next_variable; | 
 | 	efi.set_variable = (efi_set_variable_t *) | 
 | 					efi.systab->runtime->set_variable; | 
 | 	efi.get_next_high_mono_count = (efi_get_next_high_mono_count_t *) | 
 | 					efi.systab->runtime->get_next_high_mono_count; | 
 | 	efi.reset_system = (efi_reset_system_t *) | 
 | 					efi.systab->runtime->reset_system; | 
 | } | 
 |  | 
 | void __init | 
 | efi_initialize_iomem_resources(struct resource *code_resource, | 
 | 			       struct resource *data_resource) | 
 | { | 
 | 	struct resource *res; | 
 | 	efi_memory_desc_t *md; | 
 | 	void *p; | 
 |  | 
 | 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
 | 		md = p; | 
 |  | 
 | 		if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) > | 
 | 		    0x100000000ULL) | 
 | 			continue; | 
 | 		res = kzalloc(sizeof(struct resource), GFP_ATOMIC); | 
 | 		switch (md->type) { | 
 | 		case EFI_RESERVED_TYPE: | 
 | 			res->name = "Reserved Memory"; | 
 | 			break; | 
 | 		case EFI_LOADER_CODE: | 
 | 			res->name = "Loader Code"; | 
 | 			break; | 
 | 		case EFI_LOADER_DATA: | 
 | 			res->name = "Loader Data"; | 
 | 			break; | 
 | 		case EFI_BOOT_SERVICES_DATA: | 
 | 			res->name = "BootServices Data"; | 
 | 			break; | 
 | 		case EFI_BOOT_SERVICES_CODE: | 
 | 			res->name = "BootServices Code"; | 
 | 			break; | 
 | 		case EFI_RUNTIME_SERVICES_CODE: | 
 | 			res->name = "Runtime Service Code"; | 
 | 			break; | 
 | 		case EFI_RUNTIME_SERVICES_DATA: | 
 | 			res->name = "Runtime Service Data"; | 
 | 			break; | 
 | 		case EFI_CONVENTIONAL_MEMORY: | 
 | 			res->name = "Conventional Memory"; | 
 | 			break; | 
 | 		case EFI_UNUSABLE_MEMORY: | 
 | 			res->name = "Unusable Memory"; | 
 | 			break; | 
 | 		case EFI_ACPI_RECLAIM_MEMORY: | 
 | 			res->name = "ACPI Reclaim"; | 
 | 			break; | 
 | 		case EFI_ACPI_MEMORY_NVS: | 
 | 			res->name = "ACPI NVS"; | 
 | 			break; | 
 | 		case EFI_MEMORY_MAPPED_IO: | 
 | 			res->name = "Memory Mapped IO"; | 
 | 			break; | 
 | 		case EFI_MEMORY_MAPPED_IO_PORT_SPACE: | 
 | 			res->name = "Memory Mapped IO Port Space"; | 
 | 			break; | 
 | 		default: | 
 | 			res->name = "Reserved"; | 
 | 			break; | 
 | 		} | 
 | 		res->start = md->phys_addr; | 
 | 		res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1); | 
 | 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; | 
 | 		if (request_resource(&iomem_resource, res) < 0) | 
 | 			printk(KERN_ERR PFX "Failed to allocate res %s : " | 
 | 				"0x%llx-0x%llx\n", res->name, | 
 | 				(unsigned long long)res->start, | 
 | 				(unsigned long long)res->end); | 
 | 		/* | 
 | 		 * We don't know which region contains kernel data so we try | 
 | 		 * it repeatedly and let the resource manager test it. | 
 | 		 */ | 
 | 		if (md->type == EFI_CONVENTIONAL_MEMORY) { | 
 | 			request_resource(res, code_resource); | 
 | 			request_resource(res, data_resource); | 
 | #ifdef CONFIG_KEXEC | 
 | 			request_resource(res, &crashk_res); | 
 | #endif | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Convenience functions to obtain memory types and attributes | 
 |  */ | 
 |  | 
 | u32 efi_mem_type(unsigned long phys_addr) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 | 	void *p; | 
 |  | 
 | 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
 | 		md = p; | 
 | 		if ((md->phys_addr <= phys_addr) && (phys_addr < | 
 | 			(md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) )) | 
 | 			return md->type; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | u64 efi_mem_attributes(unsigned long phys_addr) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 | 	void *p; | 
 |  | 
 | 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
 | 		md = p; | 
 | 		if ((md->phys_addr <= phys_addr) && (phys_addr < | 
 | 			(md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) )) | 
 | 			return md->attribute; | 
 | 	} | 
 | 	return 0; | 
 | } |