| /* |
| * The file intends to implement the functions needed by EEH, which is |
| * built on IODA compliant chip. Actually, lots of functions related |
| * to EEH would be built based on the OPAL APIs. |
| * |
| * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| |
| #include <linux/bootmem.h> |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/irq.h> |
| #include <linux/kernel.h> |
| #include <linux/msi.h> |
| #include <linux/notifier.h> |
| #include <linux/pci.h> |
| #include <linux/string.h> |
| |
| #include <asm/eeh.h> |
| #include <asm/eeh_event.h> |
| #include <asm/io.h> |
| #include <asm/iommu.h> |
| #include <asm/msi_bitmap.h> |
| #include <asm/opal.h> |
| #include <asm/pci-bridge.h> |
| #include <asm/ppc-pci.h> |
| #include <asm/tce.h> |
| |
| #include "powernv.h" |
| #include "pci.h" |
| |
| static int ioda_eeh_nb_init = 0; |
| |
| static int ioda_eeh_event(struct notifier_block *nb, |
| unsigned long events, void *change) |
| { |
| uint64_t changed_evts = (uint64_t)change; |
| |
| /* |
| * We simply send special EEH event if EEH has |
| * been enabled, or clear pending events in |
| * case that we enable EEH soon |
| */ |
| if (!(changed_evts & OPAL_EVENT_PCI_ERROR) || |
| !(events & OPAL_EVENT_PCI_ERROR)) |
| return 0; |
| |
| if (eeh_enabled()) |
| eeh_send_failure_event(NULL); |
| else |
| opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul); |
| |
| return 0; |
| } |
| |
| static struct notifier_block ioda_eeh_nb = { |
| .notifier_call = ioda_eeh_event, |
| .next = NULL, |
| .priority = 0 |
| }; |
| |
| #ifdef CONFIG_DEBUG_FS |
| static int ioda_eeh_dbgfs_set(void *data, int offset, u64 val) |
| { |
| struct pci_controller *hose = data; |
| struct pnv_phb *phb = hose->private_data; |
| |
| out_be64(phb->regs + offset, val); |
| return 0; |
| } |
| |
| static int ioda_eeh_dbgfs_get(void *data, int offset, u64 *val) |
| { |
| struct pci_controller *hose = data; |
| struct pnv_phb *phb = hose->private_data; |
| |
| *val = in_be64(phb->regs + offset); |
| return 0; |
| } |
| |
| static int ioda_eeh_outb_dbgfs_set(void *data, u64 val) |
| { |
| return ioda_eeh_dbgfs_set(data, 0xD10, val); |
| } |
| |
| static int ioda_eeh_outb_dbgfs_get(void *data, u64 *val) |
| { |
| return ioda_eeh_dbgfs_get(data, 0xD10, val); |
| } |
| |
| static int ioda_eeh_inbA_dbgfs_set(void *data, u64 val) |
| { |
| return ioda_eeh_dbgfs_set(data, 0xD90, val); |
| } |
| |
| static int ioda_eeh_inbA_dbgfs_get(void *data, u64 *val) |
| { |
| return ioda_eeh_dbgfs_get(data, 0xD90, val); |
| } |
| |
| static int ioda_eeh_inbB_dbgfs_set(void *data, u64 val) |
| { |
| return ioda_eeh_dbgfs_set(data, 0xE10, val); |
| } |
| |
| static int ioda_eeh_inbB_dbgfs_get(void *data, u64 *val) |
| { |
| return ioda_eeh_dbgfs_get(data, 0xE10, val); |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_outb_dbgfs_ops, ioda_eeh_outb_dbgfs_get, |
| ioda_eeh_outb_dbgfs_set, "0x%llx\n"); |
| DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbA_dbgfs_ops, ioda_eeh_inbA_dbgfs_get, |
| ioda_eeh_inbA_dbgfs_set, "0x%llx\n"); |
| DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbB_dbgfs_ops, ioda_eeh_inbB_dbgfs_get, |
| ioda_eeh_inbB_dbgfs_set, "0x%llx\n"); |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| |
| /** |
| * ioda_eeh_post_init - Chip dependent post initialization |
| * @hose: PCI controller |
| * |
| * The function will be called after eeh PEs and devices |
| * have been built. That means the EEH is ready to supply |
| * service with I/O cache. |
| */ |
| static int ioda_eeh_post_init(struct pci_controller *hose) |
| { |
| struct pnv_phb *phb = hose->private_data; |
| int ret; |
| |
| /* Register OPAL event notifier */ |
| if (!ioda_eeh_nb_init) { |
| ret = opal_notifier_register(&ioda_eeh_nb); |
| if (ret) { |
| pr_err("%s: Can't register OPAL event notifier (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| ioda_eeh_nb_init = 1; |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| if (!phb->has_dbgfs && phb->dbgfs) { |
| phb->has_dbgfs = 1; |
| |
| debugfs_create_file("err_injct_outbound", 0600, |
| phb->dbgfs, hose, |
| &ioda_eeh_outb_dbgfs_ops); |
| debugfs_create_file("err_injct_inboundA", 0600, |
| phb->dbgfs, hose, |
| &ioda_eeh_inbA_dbgfs_ops); |
| debugfs_create_file("err_injct_inboundB", 0600, |
| phb->dbgfs, hose, |
| &ioda_eeh_inbB_dbgfs_ops); |
| } |
| #endif |
| |
| /* If EEH is enabled, we're going to rely on that. |
| * Otherwise, we restore to conventional mechanism |
| * to clear frozen PE during PCI config access. |
| */ |
| if (eeh_enabled()) |
| phb->flags |= PNV_PHB_FLAG_EEH; |
| else |
| phb->flags &= ~PNV_PHB_FLAG_EEH; |
| |
| return 0; |
| } |
| |
| /** |
| * ioda_eeh_set_option - Set EEH operation or I/O setting |
| * @pe: EEH PE |
| * @option: options |
| * |
| * Enable or disable EEH option for the indicated PE. The |
| * function also can be used to enable I/O or DMA for the |
| * PE. |
| */ |
| static int ioda_eeh_set_option(struct eeh_pe *pe, int option) |
| { |
| s64 ret; |
| u32 pe_no; |
| struct pci_controller *hose = pe->phb; |
| struct pnv_phb *phb = hose->private_data; |
| |
| /* Check on PE number */ |
| if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) { |
| pr_err("%s: PE address %x out of range [0, %x] " |
| "on PHB#%x\n", |
| __func__, pe->addr, phb->ioda.total_pe, |
| hose->global_number); |
| return -EINVAL; |
| } |
| |
| pe_no = pe->addr; |
| switch (option) { |
| case EEH_OPT_DISABLE: |
| ret = -EEXIST; |
| break; |
| case EEH_OPT_ENABLE: |
| ret = 0; |
| break; |
| case EEH_OPT_THAW_MMIO: |
| ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, |
| OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO); |
| if (ret) { |
| pr_warning("%s: Failed to enable MMIO for " |
| "PHB#%x-PE#%x, err=%lld\n", |
| __func__, hose->global_number, pe_no, ret); |
| return -EIO; |
| } |
| |
| break; |
| case EEH_OPT_THAW_DMA: |
| ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, |
| OPAL_EEH_ACTION_CLEAR_FREEZE_DMA); |
| if (ret) { |
| pr_warning("%s: Failed to enable DMA for " |
| "PHB#%x-PE#%x, err=%lld\n", |
| __func__, hose->global_number, pe_no, ret); |
| return -EIO; |
| } |
| |
| break; |
| default: |
| pr_warning("%s: Invalid option %d\n", __func__, option); |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static void ioda_eeh_phb_diag(struct pci_controller *hose) |
| { |
| struct pnv_phb *phb = hose->private_data; |
| long rc; |
| |
| rc = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob, |
| PNV_PCI_DIAG_BUF_SIZE); |
| if (rc != OPAL_SUCCESS) { |
| pr_warning("%s: Failed to get diag-data for PHB#%x (%ld)\n", |
| __func__, hose->global_number, rc); |
| return; |
| } |
| |
| pnv_pci_dump_phb_diag_data(hose, phb->diag.blob); |
| } |
| |
| /** |
| * ioda_eeh_get_state - Retrieve the state of PE |
| * @pe: EEH PE |
| * |
| * The PE's state should be retrieved from the PEEV, PEST |
| * IODA tables. Since the OPAL has exported the function |
| * to do it, it'd better to use that. |
| */ |
| static int ioda_eeh_get_state(struct eeh_pe *pe) |
| { |
| s64 ret = 0; |
| u8 fstate; |
| __be16 pcierr; |
| u32 pe_no; |
| int result; |
| struct pci_controller *hose = pe->phb; |
| struct pnv_phb *phb = hose->private_data; |
| |
| /* |
| * Sanity check on PE address. The PHB PE address should |
| * be zero. |
| */ |
| if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) { |
| pr_err("%s: PE address %x out of range [0, %x] " |
| "on PHB#%x\n", |
| __func__, pe->addr, phb->ioda.total_pe, |
| hose->global_number); |
| return EEH_STATE_NOT_SUPPORT; |
| } |
| |
| /* |
| * If we're in middle of PE reset, return normal |
| * state to keep EEH core going. For PHB reset, we |
| * still expect to have fenced PHB cleared with |
| * PHB reset. |
| */ |
| if (!(pe->type & EEH_PE_PHB) && |
| (pe->state & EEH_PE_RESET)) { |
| result = (EEH_STATE_MMIO_ACTIVE | |
| EEH_STATE_DMA_ACTIVE | |
| EEH_STATE_MMIO_ENABLED | |
| EEH_STATE_DMA_ENABLED); |
| return result; |
| } |
| |
| /* Retrieve PE status through OPAL */ |
| pe_no = pe->addr; |
| ret = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, |
| &fstate, &pcierr, NULL); |
| if (ret) { |
| pr_err("%s: Failed to get EEH status on " |
| "PHB#%x-PE#%x\n, err=%lld\n", |
| __func__, hose->global_number, pe_no, ret); |
| return EEH_STATE_NOT_SUPPORT; |
| } |
| |
| /* Check PHB status */ |
| if (pe->type & EEH_PE_PHB) { |
| result = 0; |
| result &= ~EEH_STATE_RESET_ACTIVE; |
| |
| if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) { |
| result |= EEH_STATE_MMIO_ACTIVE; |
| result |= EEH_STATE_DMA_ACTIVE; |
| result |= EEH_STATE_MMIO_ENABLED; |
| result |= EEH_STATE_DMA_ENABLED; |
| } else if (!(pe->state & EEH_PE_ISOLATED)) { |
| eeh_pe_state_mark(pe, EEH_PE_ISOLATED); |
| ioda_eeh_phb_diag(hose); |
| } |
| |
| return result; |
| } |
| |
| /* Parse result out */ |
| result = 0; |
| switch (fstate) { |
| case OPAL_EEH_STOPPED_NOT_FROZEN: |
| result &= ~EEH_STATE_RESET_ACTIVE; |
| result |= EEH_STATE_MMIO_ACTIVE; |
| result |= EEH_STATE_DMA_ACTIVE; |
| result |= EEH_STATE_MMIO_ENABLED; |
| result |= EEH_STATE_DMA_ENABLED; |
| break; |
| case OPAL_EEH_STOPPED_MMIO_FREEZE: |
| result &= ~EEH_STATE_RESET_ACTIVE; |
| result |= EEH_STATE_DMA_ACTIVE; |
| result |= EEH_STATE_DMA_ENABLED; |
| break; |
| case OPAL_EEH_STOPPED_DMA_FREEZE: |
| result &= ~EEH_STATE_RESET_ACTIVE; |
| result |= EEH_STATE_MMIO_ACTIVE; |
| result |= EEH_STATE_MMIO_ENABLED; |
| break; |
| case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE: |
| result &= ~EEH_STATE_RESET_ACTIVE; |
| break; |
| case OPAL_EEH_STOPPED_RESET: |
| result |= EEH_STATE_RESET_ACTIVE; |
| break; |
| case OPAL_EEH_STOPPED_TEMP_UNAVAIL: |
| result |= EEH_STATE_UNAVAILABLE; |
| break; |
| case OPAL_EEH_STOPPED_PERM_UNAVAIL: |
| result |= EEH_STATE_NOT_SUPPORT; |
| break; |
| default: |
| pr_warning("%s: Unexpected EEH status 0x%x " |
| "on PHB#%x-PE#%x\n", |
| __func__, fstate, hose->global_number, pe_no); |
| } |
| |
| /* Dump PHB diag-data for frozen PE */ |
| if (result != EEH_STATE_NOT_SUPPORT && |
| (result & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) != |
| (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE) && |
| !(pe->state & EEH_PE_ISOLATED)) { |
| eeh_pe_state_mark(pe, EEH_PE_ISOLATED); |
| ioda_eeh_phb_diag(hose); |
| } |
| |
| return result; |
| } |
| |
| static s64 ioda_eeh_phb_poll(struct pnv_phb *phb) |
| { |
| s64 rc = OPAL_HARDWARE; |
| |
| while (1) { |
| rc = opal_pci_poll(phb->opal_id); |
| if (rc <= 0) |
| break; |
| |
| if (system_state < SYSTEM_RUNNING) |
| udelay(1000 * rc); |
| else |
| msleep(rc); |
| } |
| |
| return rc; |
| } |
| |
| int ioda_eeh_phb_reset(struct pci_controller *hose, int option) |
| { |
| struct pnv_phb *phb = hose->private_data; |
| s64 rc = OPAL_HARDWARE; |
| |
| pr_debug("%s: Reset PHB#%x, option=%d\n", |
| __func__, hose->global_number, option); |
| |
| /* Issue PHB complete reset request */ |
| if (option == EEH_RESET_FUNDAMENTAL || |
| option == EEH_RESET_HOT) |
| rc = opal_pci_reset(phb->opal_id, |
| OPAL_PHB_COMPLETE, |
| OPAL_ASSERT_RESET); |
| else if (option == EEH_RESET_DEACTIVATE) |
| rc = opal_pci_reset(phb->opal_id, |
| OPAL_PHB_COMPLETE, |
| OPAL_DEASSERT_RESET); |
| if (rc < 0) |
| goto out; |
| |
| /* |
| * Poll state of the PHB until the request is done |
| * successfully. The PHB reset is usually PHB complete |
| * reset followed by hot reset on root bus. So we also |
| * need the PCI bus settlement delay. |
| */ |
| rc = ioda_eeh_phb_poll(phb); |
| if (option == EEH_RESET_DEACTIVATE) { |
| if (system_state < SYSTEM_RUNNING) |
| udelay(1000 * EEH_PE_RST_SETTLE_TIME); |
| else |
| msleep(EEH_PE_RST_SETTLE_TIME); |
| } |
| out: |
| if (rc != OPAL_SUCCESS) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int ioda_eeh_root_reset(struct pci_controller *hose, int option) |
| { |
| struct pnv_phb *phb = hose->private_data; |
| s64 rc = OPAL_SUCCESS; |
| |
| pr_debug("%s: Reset PHB#%x, option=%d\n", |
| __func__, hose->global_number, option); |
| |
| /* |
| * During the reset deassert time, we needn't care |
| * the reset scope because the firmware does nothing |
| * for fundamental or hot reset during deassert phase. |
| */ |
| if (option == EEH_RESET_FUNDAMENTAL) |
| rc = opal_pci_reset(phb->opal_id, |
| OPAL_PCI_FUNDAMENTAL_RESET, |
| OPAL_ASSERT_RESET); |
| else if (option == EEH_RESET_HOT) |
| rc = opal_pci_reset(phb->opal_id, |
| OPAL_PCI_HOT_RESET, |
| OPAL_ASSERT_RESET); |
| else if (option == EEH_RESET_DEACTIVATE) |
| rc = opal_pci_reset(phb->opal_id, |
| OPAL_PCI_HOT_RESET, |
| OPAL_DEASSERT_RESET); |
| if (rc < 0) |
| goto out; |
| |
| /* Poll state of the PHB until the request is done */ |
| rc = ioda_eeh_phb_poll(phb); |
| if (option == EEH_RESET_DEACTIVATE) |
| msleep(EEH_PE_RST_SETTLE_TIME); |
| out: |
| if (rc != OPAL_SUCCESS) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int ioda_eeh_bridge_reset(struct pci_dev *dev, int option) |
| |
| { |
| struct device_node *dn = pci_device_to_OF_node(dev); |
| struct eeh_dev *edev = of_node_to_eeh_dev(dn); |
| int aer = edev ? edev->aer_cap : 0; |
| u32 ctrl; |
| |
| pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n", |
| __func__, pci_domain_nr(dev->bus), |
| dev->bus->number, option); |
| |
| switch (option) { |
| case EEH_RESET_FUNDAMENTAL: |
| case EEH_RESET_HOT: |
| /* Don't report linkDown event */ |
| if (aer) { |
| eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK, |
| 4, &ctrl); |
| ctrl |= PCI_ERR_UNC_SURPDN; |
| eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK, |
| 4, ctrl); |
| } |
| |
| eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl); |
| ctrl |= PCI_BRIDGE_CTL_BUS_RESET; |
| eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl); |
| msleep(EEH_PE_RST_HOLD_TIME); |
| |
| break; |
| case EEH_RESET_DEACTIVATE: |
| eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl); |
| ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; |
| eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl); |
| msleep(EEH_PE_RST_SETTLE_TIME); |
| |
| /* Continue reporting linkDown event */ |
| if (aer) { |
| eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK, |
| 4, &ctrl); |
| ctrl &= ~PCI_ERR_UNC_SURPDN; |
| eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK, |
| 4, ctrl); |
| } |
| |
| break; |
| } |
| |
| return 0; |
| } |
| |
| void pnv_pci_reset_secondary_bus(struct pci_dev *dev) |
| { |
| struct pci_controller *hose; |
| |
| if (pci_is_root_bus(dev->bus)) { |
| hose = pci_bus_to_host(dev->bus); |
| ioda_eeh_root_reset(hose, EEH_RESET_HOT); |
| ioda_eeh_root_reset(hose, EEH_RESET_DEACTIVATE); |
| } else { |
| ioda_eeh_bridge_reset(dev, EEH_RESET_HOT); |
| ioda_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE); |
| } |
| } |
| |
| /** |
| * ioda_eeh_reset - Reset the indicated PE |
| * @pe: EEH PE |
| * @option: reset option |
| * |
| * Do reset on the indicated PE. For PCI bus sensitive PE, |
| * we need to reset the parent p2p bridge. The PHB has to |
| * be reinitialized if the p2p bridge is root bridge. For |
| * PCI device sensitive PE, we will try to reset the device |
| * through FLR. For now, we don't have OPAL APIs to do HARD |
| * reset yet, so all reset would be SOFT (HOT) reset. |
| */ |
| static int ioda_eeh_reset(struct eeh_pe *pe, int option) |
| { |
| struct pci_controller *hose = pe->phb; |
| struct pci_bus *bus; |
| int ret; |
| |
| /* |
| * For PHB reset, we always have complete reset. For those PEs whose |
| * primary bus derived from root complex (root bus) or root port |
| * (usually bus#1), we apply hot or fundamental reset on the root port. |
| * For other PEs, we always have hot reset on the PE primary bus. |
| * |
| * Here, we have different design to pHyp, which always clear the |
| * frozen state during PE reset. However, the good idea here from |
| * benh is to keep frozen state before we get PE reset done completely |
| * (until BAR restore). With the frozen state, HW drops illegal IO |
| * or MMIO access, which can incur recrusive frozen PE during PE |
| * reset. The side effect is that EEH core has to clear the frozen |
| * state explicitly after BAR restore. |
| */ |
| if (pe->type & EEH_PE_PHB) { |
| ret = ioda_eeh_phb_reset(hose, option); |
| } else { |
| bus = eeh_pe_bus_get(pe); |
| if (pci_is_root_bus(bus) || |
| pci_is_root_bus(bus->parent)) |
| ret = ioda_eeh_root_reset(hose, option); |
| else |
| ret = ioda_eeh_bridge_reset(bus->self, option); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * ioda_eeh_configure_bridge - Configure the PCI bridges for the indicated PE |
| * @pe: EEH PE |
| * |
| * For particular PE, it might have included PCI bridges. In order |
| * to make the PE work properly, those PCI bridges should be configured |
| * correctly. However, we need do nothing on P7IOC since the reset |
| * function will do everything that should be covered by the function. |
| */ |
| static int ioda_eeh_configure_bridge(struct eeh_pe *pe) |
| { |
| return 0; |
| } |
| |
| static void ioda_eeh_hub_diag_common(struct OpalIoP7IOCErrorData *data) |
| { |
| /* GEM */ |
| pr_info(" GEM XFIR: %016llx\n", data->gemXfir); |
| pr_info(" GEM RFIR: %016llx\n", data->gemRfir); |
| pr_info(" GEM RIRQFIR: %016llx\n", data->gemRirqfir); |
| pr_info(" GEM Mask: %016llx\n", data->gemMask); |
| pr_info(" GEM RWOF: %016llx\n", data->gemRwof); |
| |
| /* LEM */ |
| pr_info(" LEM FIR: %016llx\n", data->lemFir); |
| pr_info(" LEM Error Mask: %016llx\n", data->lemErrMask); |
| pr_info(" LEM Action 0: %016llx\n", data->lemAction0); |
| pr_info(" LEM Action 1: %016llx\n", data->lemAction1); |
| pr_info(" LEM WOF: %016llx\n", data->lemWof); |
| } |
| |
| static void ioda_eeh_hub_diag(struct pci_controller *hose) |
| { |
| struct pnv_phb *phb = hose->private_data; |
| struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag; |
| long rc; |
| |
| rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data)); |
| if (rc != OPAL_SUCCESS) { |
| pr_warning("%s: Failed to get HUB#%llx diag-data (%ld)\n", |
| __func__, phb->hub_id, rc); |
| return; |
| } |
| |
| switch (data->type) { |
| case OPAL_P7IOC_DIAG_TYPE_RGC: |
| pr_info("P7IOC diag-data for RGC\n\n"); |
| ioda_eeh_hub_diag_common(data); |
| pr_info(" RGC Status: %016llx\n", data->rgc.rgcStatus); |
| pr_info(" RGC LDCP: %016llx\n", data->rgc.rgcLdcp); |
| break; |
| case OPAL_P7IOC_DIAG_TYPE_BI: |
| pr_info("P7IOC diag-data for BI %s\n\n", |
| data->bi.biDownbound ? "Downbound" : "Upbound"); |
| ioda_eeh_hub_diag_common(data); |
| pr_info(" BI LDCP 0: %016llx\n", data->bi.biLdcp0); |
| pr_info(" BI LDCP 1: %016llx\n", data->bi.biLdcp1); |
| pr_info(" BI LDCP 2: %016llx\n", data->bi.biLdcp2); |
| pr_info(" BI Fence Status: %016llx\n", data->bi.biFenceStatus); |
| break; |
| case OPAL_P7IOC_DIAG_TYPE_CI: |
| pr_info("P7IOC diag-data for CI Port %d\\nn", |
| data->ci.ciPort); |
| ioda_eeh_hub_diag_common(data); |
| pr_info(" CI Port Status: %016llx\n", data->ci.ciPortStatus); |
| pr_info(" CI Port LDCP: %016llx\n", data->ci.ciPortLdcp); |
| break; |
| case OPAL_P7IOC_DIAG_TYPE_MISC: |
| pr_info("P7IOC diag-data for MISC\n\n"); |
| ioda_eeh_hub_diag_common(data); |
| break; |
| case OPAL_P7IOC_DIAG_TYPE_I2C: |
| pr_info("P7IOC diag-data for I2C\n\n"); |
| ioda_eeh_hub_diag_common(data); |
| break; |
| default: |
| pr_warning("%s: Invalid type of HUB#%llx diag-data (%d)\n", |
| __func__, phb->hub_id, data->type); |
| } |
| } |
| |
| static int ioda_eeh_get_pe(struct pci_controller *hose, |
| u16 pe_no, struct eeh_pe **pe) |
| { |
| struct eeh_pe *phb_pe, *dev_pe; |
| struct eeh_dev dev; |
| |
| /* Find the PHB PE */ |
| phb_pe = eeh_phb_pe_get(hose); |
| if (!phb_pe) |
| return -EEXIST; |
| |
| /* Find the PE according to PE# */ |
| memset(&dev, 0, sizeof(struct eeh_dev)); |
| dev.phb = hose; |
| dev.pe_config_addr = pe_no; |
| dev_pe = eeh_pe_get(&dev); |
| if (!dev_pe) return -EEXIST; |
| |
| *pe = dev_pe; |
| return 0; |
| } |
| |
| /** |
| * ioda_eeh_next_error - Retrieve next error for EEH core to handle |
| * @pe: The affected PE |
| * |
| * The function is expected to be called by EEH core while it gets |
| * special EEH event (without binding PE). The function calls to |
| * OPAL APIs for next error to handle. The informational error is |
| * handled internally by platform. However, the dead IOC, dead PHB, |
| * fenced PHB and frozen PE should be handled by EEH core eventually. |
| */ |
| static int ioda_eeh_next_error(struct eeh_pe **pe) |
| { |
| struct pci_controller *hose; |
| struct pnv_phb *phb; |
| struct eeh_pe *phb_pe, *parent_pe; |
| __be64 frozen_pe_no; |
| __be16 err_type, severity; |
| int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE); |
| long rc; |
| int state, ret = EEH_NEXT_ERR_NONE; |
| |
| /* |
| * While running here, it's safe to purge the event queue. |
| * And we should keep the cached OPAL notifier event sychronized |
| * between the kernel and firmware. |
| */ |
| eeh_remove_event(NULL, false); |
| opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul); |
| |
| list_for_each_entry(hose, &hose_list, list_node) { |
| /* |
| * If the subordinate PCI buses of the PHB has been |
| * removed or is exactly under error recovery, we |
| * needn't take care of it any more. |
| */ |
| phb = hose->private_data; |
| phb_pe = eeh_phb_pe_get(hose); |
| if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED)) |
| continue; |
| |
| rc = opal_pci_next_error(phb->opal_id, |
| &frozen_pe_no, &err_type, &severity); |
| |
| /* If OPAL API returns error, we needn't proceed */ |
| if (rc != OPAL_SUCCESS) { |
| pr_devel("%s: Invalid return value on " |
| "PHB#%x (0x%lx) from opal_pci_next_error", |
| __func__, hose->global_number, rc); |
| continue; |
| } |
| |
| /* If the PHB doesn't have error, stop processing */ |
| if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR || |
| be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) { |
| pr_devel("%s: No error found on PHB#%x\n", |
| __func__, hose->global_number); |
| continue; |
| } |
| |
| /* |
| * Processing the error. We're expecting the error with |
| * highest priority reported upon multiple errors on the |
| * specific PHB. |
| */ |
| pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n", |
| __func__, be16_to_cpu(err_type), be16_to_cpu(severity), |
| be64_to_cpu(frozen_pe_no), hose->global_number); |
| switch (be16_to_cpu(err_type)) { |
| case OPAL_EEH_IOC_ERROR: |
| if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) { |
| pr_err("EEH: dead IOC detected\n"); |
| ret = EEH_NEXT_ERR_DEAD_IOC; |
| } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { |
| pr_info("EEH: IOC informative error " |
| "detected\n"); |
| ioda_eeh_hub_diag(hose); |
| ret = EEH_NEXT_ERR_NONE; |
| } |
| |
| break; |
| case OPAL_EEH_PHB_ERROR: |
| if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) { |
| *pe = phb_pe; |
| pr_err("EEH: dead PHB#%x detected, " |
| "location: %s\n", |
| hose->global_number, |
| eeh_pe_loc_get(phb_pe)); |
| ret = EEH_NEXT_ERR_DEAD_PHB; |
| } else if (be16_to_cpu(severity) == |
| OPAL_EEH_SEV_PHB_FENCED) { |
| *pe = phb_pe; |
| pr_err("EEH: Fenced PHB#%x detected, " |
| "location: %s\n", |
| hose->global_number, |
| eeh_pe_loc_get(phb_pe)); |
| ret = EEH_NEXT_ERR_FENCED_PHB; |
| } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { |
| pr_info("EEH: PHB#%x informative error " |
| "detected, location: %s\n", |
| hose->global_number, |
| eeh_pe_loc_get(phb_pe)); |
| ioda_eeh_phb_diag(hose); |
| ret = EEH_NEXT_ERR_NONE; |
| } |
| |
| break; |
| case OPAL_EEH_PE_ERROR: |
| /* |
| * If we can't find the corresponding PE, we |
| * just try to unfreeze. |
| */ |
| if (ioda_eeh_get_pe(hose, |
| be64_to_cpu(frozen_pe_no), pe)) { |
| /* Try best to clear it */ |
| pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n", |
| hose->global_number, frozen_pe_no); |
| pr_info("EEH: PHB location: %s\n", |
| eeh_pe_loc_get(phb_pe)); |
| opal_pci_eeh_freeze_clear(phb->opal_id, frozen_pe_no, |
| OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); |
| ret = EEH_NEXT_ERR_NONE; |
| } else if ((*pe)->state & EEH_PE_ISOLATED) { |
| ret = EEH_NEXT_ERR_NONE; |
| } else { |
| pr_err("EEH: Frozen PE#%x on PHB#%x detected\n", |
| (*pe)->addr, (*pe)->phb->global_number); |
| pr_err("EEH: PE location: %s, PHB location: %s\n", |
| eeh_pe_loc_get(*pe), eeh_pe_loc_get(phb_pe)); |
| ret = EEH_NEXT_ERR_FROZEN_PE; |
| } |
| |
| break; |
| default: |
| pr_warn("%s: Unexpected error type %d\n", |
| __func__, be16_to_cpu(err_type)); |
| } |
| |
| /* |
| * EEH core will try recover from fenced PHB or |
| * frozen PE. In the time for frozen PE, EEH core |
| * enable IO path for that before collecting logs, |
| * but it ruins the site. So we have to dump the |
| * log in advance here. |
| */ |
| if ((ret == EEH_NEXT_ERR_FROZEN_PE || |
| ret == EEH_NEXT_ERR_FENCED_PHB) && |
| !((*pe)->state & EEH_PE_ISOLATED)) { |
| eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); |
| ioda_eeh_phb_diag(hose); |
| } |
| |
| /* |
| * We probably have the frozen parent PE out there and |
| * we need have to handle frozen parent PE firstly. |
| */ |
| if (ret == EEH_NEXT_ERR_FROZEN_PE) { |
| parent_pe = (*pe)->parent; |
| while (parent_pe) { |
| /* Hit the ceiling ? */ |
| if (parent_pe->type & EEH_PE_PHB) |
| break; |
| |
| /* Frozen parent PE ? */ |
| state = ioda_eeh_get_state(parent_pe); |
| if (state > 0 && |
| (state & active_flags) != active_flags) |
| *pe = parent_pe; |
| |
| /* Next parent level */ |
| parent_pe = parent_pe->parent; |
| } |
| |
| /* We possibly migrate to another PE */ |
| eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); |
| } |
| |
| /* |
| * If we have no errors on the specific PHB or only |
| * informative error there, we continue poking it. |
| * Otherwise, we need actions to be taken by upper |
| * layer. |
| */ |
| if (ret > EEH_NEXT_ERR_INF) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| struct pnv_eeh_ops ioda_eeh_ops = { |
| .post_init = ioda_eeh_post_init, |
| .set_option = ioda_eeh_set_option, |
| .get_state = ioda_eeh_get_state, |
| .reset = ioda_eeh_reset, |
| .configure_bridge = ioda_eeh_configure_bridge, |
| .next_error = ioda_eeh_next_error |
| }; |