| /****************************************************************************** |
| * |
| * Copyright(c) 2009-2013 Realtek Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA |
| * |
| * The full GNU General Public License is included in this distribution in the |
| * file called LICENSE. |
| * |
| * Contact Information: |
| * wlanfae <wlanfae@realtek.com> |
| * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, |
| * Hsinchu 300, Taiwan. |
| * |
| * Larry Finger <Larry.Finger@lwfinger.net> |
| * |
| *****************************************************************************/ |
| |
| #include "../wifi.h" |
| #include "../efuse.h" |
| #include "../base.h" |
| #include "../regd.h" |
| #include "../cam.h" |
| #include "../ps.h" |
| #include "../pci.h" |
| #include "reg.h" |
| #include "def.h" |
| #include "phy.h" |
| #include "dm.h" |
| #include "fw.h" |
| #include "led.h" |
| #include "hw.h" |
| #include "pwrseq.h" |
| |
| #define LLT_CONFIG 5 |
| |
| static void _rtl88ee_set_bcn_ctrl_reg(struct ieee80211_hw *hw, |
| u8 set_bits, u8 clear_bits) |
| { |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| rtlpci->reg_bcn_ctrl_val |= set_bits; |
| rtlpci->reg_bcn_ctrl_val &= ~clear_bits; |
| |
| rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val); |
| } |
| |
| static void _rtl88ee_stop_tx_beacon(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 tmp1byte; |
| |
| tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6))); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64); |
| tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); |
| tmp1byte &= ~(BIT(0)); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); |
| } |
| |
| static void _rtl88ee_resume_tx_beacon(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 tmp1byte; |
| |
| tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6)); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); |
| tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); |
| tmp1byte |= BIT(0); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); |
| } |
| |
| static void _rtl88ee_enable_bcn_sub_func(struct ieee80211_hw *hw) |
| { |
| _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(1)); |
| } |
| |
| static void _rtl88ee_return_beacon_queue_skb(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE]; |
| |
| while (skb_queue_len(&ring->queue)) { |
| struct rtl_tx_desc *entry = &ring->desc[ring->idx]; |
| struct sk_buff *skb = __skb_dequeue(&ring->queue); |
| |
| pci_unmap_single(rtlpci->pdev, |
| rtlpriv->cfg->ops->get_desc( |
| (u8 *)entry, true, HW_DESC_TXBUFF_ADDR), |
| skb->len, PCI_DMA_TODEVICE); |
| kfree_skb(skb); |
| ring->idx = (ring->idx + 1) % ring->entries; |
| } |
| } |
| |
| static void _rtl88ee_disable_bcn_sub_func(struct ieee80211_hw *hw) |
| { |
| _rtl88ee_set_bcn_ctrl_reg(hw, BIT(1), 0); |
| } |
| |
| static void _rtl88ee_set_fw_clock_on(struct ieee80211_hw *hw, |
| u8 rpwm_val, bool need_turn_off_ckk) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| bool support_remote_wake_up; |
| u32 count = 0, isr_regaddr, content; |
| bool schedule_timer = need_turn_off_ckk; |
| |
| rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN, |
| (u8 *)(&support_remote_wake_up)); |
| if (!rtlhal->fw_ready) |
| return; |
| if (!rtlpriv->psc.fw_current_inpsmode) |
| return; |
| |
| while (1) { |
| spin_lock_bh(&rtlpriv->locks.fw_ps_lock); |
| if (rtlhal->fw_clk_change_in_progress) { |
| while (rtlhal->fw_clk_change_in_progress) { |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| udelay(100); |
| if (++count > 1000) |
| return; |
| spin_lock_bh(&rtlpriv->locks.fw_ps_lock); |
| } |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| } else { |
| rtlhal->fw_clk_change_in_progress = false; |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| break; |
| } |
| } |
| |
| if (IS_IN_LOW_POWER_STATE_88E(rtlhal->fw_ps_state)) { |
| rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val); |
| if (FW_PS_IS_ACK(rpwm_val)) { |
| isr_regaddr = REG_HISR; |
| content = rtl_read_dword(rtlpriv, isr_regaddr); |
| while (!(content & IMR_CPWM) && (count < 500)) { |
| udelay(50); |
| count++; |
| content = rtl_read_dword(rtlpriv, isr_regaddr); |
| } |
| |
| if (content & IMR_CPWM) { |
| rtl_write_word(rtlpriv, isr_regaddr, 0x0100); |
| rtlhal->fw_ps_state = FW_PS_STATE_RF_ON_88E; |
| RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, |
| "Receive CPWM INT!!! Set pHalData->FwPSState = %X\n", |
| rtlhal->fw_ps_state); |
| } |
| } |
| |
| spin_lock_bh(&rtlpriv->locks.fw_ps_lock); |
| rtlhal->fw_clk_change_in_progress = false; |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| if (schedule_timer) { |
| mod_timer(&rtlpriv->works.fw_clockoff_timer, |
| jiffies + MSECS(10)); |
| } |
| } else { |
| spin_lock_bh(&rtlpriv->locks.fw_ps_lock); |
| rtlhal->fw_clk_change_in_progress = false; |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| } |
| } |
| |
| static void _rtl88ee_set_fw_clock_off(struct ieee80211_hw *hw, |
| u8 rpwm_val) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl8192_tx_ring *ring; |
| enum rf_pwrstate rtstate; |
| bool schedule_timer = false; |
| u8 queue; |
| |
| if (!rtlhal->fw_ready) |
| return; |
| if (!rtlpriv->psc.fw_current_inpsmode) |
| return; |
| if (!rtlhal->allow_sw_to_change_hwclc) |
| return; |
| rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate)); |
| if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF) |
| return; |
| |
| for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) { |
| ring = &rtlpci->tx_ring[queue]; |
| if (skb_queue_len(&ring->queue)) { |
| schedule_timer = true; |
| break; |
| } |
| } |
| |
| if (schedule_timer) { |
| mod_timer(&rtlpriv->works.fw_clockoff_timer, |
| jiffies + MSECS(10)); |
| return; |
| } |
| |
| if (FW_PS_STATE(rtlhal->fw_ps_state) != |
| FW_PS_STATE_RF_OFF_LOW_PWR_88E) { |
| spin_lock_bh(&rtlpriv->locks.fw_ps_lock); |
| if (!rtlhal->fw_clk_change_in_progress) { |
| rtlhal->fw_clk_change_in_progress = true; |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val); |
| rtl_write_word(rtlpriv, REG_HISR, 0x0100); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, |
| &rpwm_val); |
| spin_lock_bh(&rtlpriv->locks.fw_ps_lock); |
| rtlhal->fw_clk_change_in_progress = false; |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| } else { |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| mod_timer(&rtlpriv->works.fw_clockoff_timer, |
| jiffies + MSECS(10)); |
| } |
| } |
| } |
| |
| static void _rtl88ee_set_fw_ps_rf_on(struct ieee80211_hw *hw) |
| { |
| u8 rpwm_val = 0; |
| |
| rpwm_val |= (FW_PS_STATE_RF_OFF_88E | FW_PS_ACK); |
| _rtl88ee_set_fw_clock_on(hw, rpwm_val, true); |
| } |
| |
| static void _rtl88ee_set_fw_ps_rf_off_low_power(struct ieee80211_hw *hw) |
| { |
| u8 rpwm_val = 0; |
| |
| rpwm_val |= FW_PS_STATE_RF_OFF_LOW_PWR_88E; |
| _rtl88ee_set_fw_clock_off(hw, rpwm_val); |
| } |
| |
| void rtl88ee_fw_clk_off_timer_callback(unsigned long data) |
| { |
| struct ieee80211_hw *hw = (struct ieee80211_hw *)data; |
| |
| _rtl88ee_set_fw_ps_rf_off_low_power(hw); |
| } |
| |
| static void _rtl88ee_fwlps_leave(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| bool fw_current_inps = false; |
| u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE; |
| |
| if (ppsc->low_power_enable) { |
| rpwm_val = (FW_PS_STATE_ALL_ON_88E|FW_PS_ACK);/* RF on */ |
| _rtl88ee_set_fw_clock_on(hw, rpwm_val, false); |
| rtlhal->allow_sw_to_change_hwclc = false; |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, |
| &fw_pwrmode); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, |
| (u8 *)(&fw_current_inps)); |
| } else { |
| rpwm_val = FW_PS_STATE_ALL_ON_88E; /* RF on */ |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, |
| &fw_pwrmode); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, |
| (u8 *)(&fw_current_inps)); |
| } |
| } |
| |
| static void _rtl88ee_fwlps_enter(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| bool fw_current_inps = true; |
| u8 rpwm_val; |
| |
| if (ppsc->low_power_enable) { |
| rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR_88E; /* RF off */ |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, |
| (u8 *)(&fw_current_inps)); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, |
| &ppsc->fwctrl_psmode); |
| rtlhal->allow_sw_to_change_hwclc = true; |
| _rtl88ee_set_fw_clock_off(hw, rpwm_val); |
| } else { |
| rpwm_val = FW_PS_STATE_RF_OFF_88E; /* RF off */ |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, |
| (u8 *)(&fw_current_inps)); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, |
| &ppsc->fwctrl_psmode); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val); |
| } |
| } |
| |
| void rtl88ee_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| switch (variable) { |
| case HW_VAR_RCR: |
| *((u32 *)(val)) = rtlpci->receive_config; |
| break; |
| case HW_VAR_RF_STATE: |
| *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; |
| break; |
| case HW_VAR_FWLPS_RF_ON:{ |
| enum rf_pwrstate rfstate; |
| u32 val_rcr; |
| |
| rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, |
| (u8 *)(&rfstate)); |
| if (rfstate == ERFOFF) { |
| *((bool *)(val)) = true; |
| } else { |
| val_rcr = rtl_read_dword(rtlpriv, REG_RCR); |
| val_rcr &= 0x00070000; |
| if (val_rcr) |
| *((bool *)(val)) = false; |
| else |
| *((bool *)(val)) = true; |
| } |
| break; |
| } |
| case HW_VAR_FW_PSMODE_STATUS: |
| *((bool *)(val)) = ppsc->fw_current_inpsmode; |
| break; |
| case HW_VAR_CORRECT_TSF:{ |
| u64 tsf; |
| u32 *ptsf_low = (u32 *)&tsf; |
| u32 *ptsf_high = ((u32 *)&tsf) + 1; |
| |
| *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4)); |
| *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR); |
| |
| *((u64 *)(val)) = tsf; |
| break; } |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "switch case not process %x\n", variable); |
| break; |
| } |
| } |
| |
| void rtl88ee_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| u8 idx; |
| |
| switch (variable) { |
| case HW_VAR_ETHER_ADDR: |
| for (idx = 0; idx < ETH_ALEN; idx++) |
| rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]); |
| break; |
| case HW_VAR_BASIC_RATE:{ |
| u16 rate_cfg = ((u16 *)val)[0]; |
| u8 rate_index = 0; |
| rate_cfg = rate_cfg & 0x15f; |
| rate_cfg |= 0x01; |
| rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff); |
| rtl_write_byte(rtlpriv, REG_RRSR + 1, (rate_cfg >> 8) & 0xff); |
| while (rate_cfg > 0x1) { |
| rate_cfg = (rate_cfg >> 1); |
| rate_index++; |
| } |
| rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index); |
| break; } |
| case HW_VAR_BSSID: |
| for (idx = 0; idx < ETH_ALEN; idx++) |
| rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]); |
| break; |
| case HW_VAR_SIFS: |
| rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]); |
| rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]); |
| |
| rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]); |
| rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]); |
| |
| if (!mac->ht_enable) |
| rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e); |
| else |
| rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, |
| *((u16 *)val)); |
| break; |
| case HW_VAR_SLOT_TIME:{ |
| u8 e_aci; |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "HW_VAR_SLOT_TIME %x\n", val[0]); |
| |
| rtl_write_byte(rtlpriv, REG_SLOT, val[0]); |
| |
| for (e_aci = 0; e_aci < AC_MAX; e_aci++) { |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM, |
| &e_aci); |
| } |
| break; } |
| case HW_VAR_ACK_PREAMBLE:{ |
| u8 reg_tmp; |
| u8 short_preamble = (bool)*val; |
| reg_tmp = rtl_read_byte(rtlpriv, REG_TRXPTCL_CTL+2); |
| if (short_preamble) { |
| reg_tmp |= 0x02; |
| rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp); |
| } else { |
| reg_tmp |= 0xFD; |
| rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp); |
| } |
| break; } |
| case HW_VAR_WPA_CONFIG: |
| rtl_write_byte(rtlpriv, REG_SECCFG, *val); |
| break; |
| case HW_VAR_AMPDU_MIN_SPACE:{ |
| u8 min_spacing_to_set; |
| u8 sec_min_space; |
| |
| min_spacing_to_set = *val; |
| if (min_spacing_to_set <= 7) { |
| sec_min_space = 0; |
| |
| if (min_spacing_to_set < sec_min_space) |
| min_spacing_to_set = sec_min_space; |
| |
| mac->min_space_cfg = ((mac->min_space_cfg & |
| 0xf8) | min_spacing_to_set); |
| |
| *val = min_spacing_to_set; |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", |
| mac->min_space_cfg); |
| |
| rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, |
| mac->min_space_cfg); |
| } |
| break; } |
| case HW_VAR_SHORTGI_DENSITY:{ |
| u8 density_to_set; |
| |
| density_to_set = *val; |
| mac->min_space_cfg |= (density_to_set << 3); |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "Set HW_VAR_SHORTGI_DENSITY: %#x\n", |
| mac->min_space_cfg); |
| |
| rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, |
| mac->min_space_cfg); |
| break; } |
| case HW_VAR_AMPDU_FACTOR:{ |
| u8 regtoset_normal[4] = { 0x41, 0xa8, 0x72, 0xb9 }; |
| u8 factor; |
| u8 *reg = NULL; |
| u8 id = 0; |
| |
| reg = regtoset_normal; |
| |
| factor = *val; |
| if (factor <= 3) { |
| factor = (1 << (factor + 2)); |
| if (factor > 0xf) |
| factor = 0xf; |
| |
| for (id = 0; id < 4; id++) { |
| if ((reg[id] & 0xf0) > (factor << 4)) |
| reg[id] = (reg[id] & 0x0f) | |
| (factor << 4); |
| |
| if ((reg[id] & 0x0f) > factor) |
| reg[id] = (reg[id] & 0xf0) | (factor); |
| |
| rtl_write_byte(rtlpriv, (REG_AGGLEN_LMT + id), |
| reg[id]); |
| } |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "Set HW_VAR_AMPDU_FACTOR: %#x\n", factor); |
| } |
| break; } |
| case HW_VAR_AC_PARAM:{ |
| u8 e_aci = *val; |
| rtl88e_dm_init_edca_turbo(hw); |
| |
| if (rtlpci->acm_method != EACMWAY2_SW) |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, |
| &e_aci); |
| break; } |
| case HW_VAR_ACM_CTRL:{ |
| u8 e_aci = *val; |
| union aci_aifsn *p_aci_aifsn = |
| (union aci_aifsn *)(&(mac->ac[0].aifs)); |
| u8 acm = p_aci_aifsn->f.acm; |
| u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL); |
| |
| acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1); |
| |
| if (acm) { |
| switch (e_aci) { |
| case AC0_BE: |
| acm_ctrl |= ACMHW_BEQEN; |
| break; |
| case AC2_VI: |
| acm_ctrl |= ACMHW_VIQEN; |
| break; |
| case AC3_VO: |
| acm_ctrl |= ACMHW_VOQEN; |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", |
| acm); |
| break; |
| } |
| } else { |
| switch (e_aci) { |
| case AC0_BE: |
| acm_ctrl &= (~ACMHW_BEQEN); |
| break; |
| case AC2_VI: |
| acm_ctrl &= (~ACMHW_VIQEN); |
| break; |
| case AC3_VO: |
| acm_ctrl &= (~ACMHW_BEQEN); |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "switch case not process\n"); |
| break; |
| } |
| } |
| |
| RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE, |
| "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", |
| acm_ctrl); |
| rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl); |
| break; } |
| case HW_VAR_RCR: |
| rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]); |
| rtlpci->receive_config = ((u32 *)(val))[0]; |
| break; |
| case HW_VAR_RETRY_LIMIT:{ |
| u8 retry_limit = *val; |
| |
| rtl_write_word(rtlpriv, REG_RL, |
| retry_limit << RETRY_LIMIT_SHORT_SHIFT | |
| retry_limit << RETRY_LIMIT_LONG_SHIFT); |
| break; } |
| case HW_VAR_DUAL_TSF_RST: |
| rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1))); |
| break; |
| case HW_VAR_EFUSE_BYTES: |
| rtlefuse->efuse_usedbytes = *((u16 *)val); |
| break; |
| case HW_VAR_EFUSE_USAGE: |
| rtlefuse->efuse_usedpercentage = *val; |
| break; |
| case HW_VAR_IO_CMD: |
| rtl88e_phy_set_io_cmd(hw, (*(enum io_type *)val)); |
| break; |
| case HW_VAR_SET_RPWM:{ |
| u8 rpwm_val; |
| |
| rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM); |
| udelay(1); |
| |
| if (rpwm_val & BIT(7)) { |
| rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val); |
| } else { |
| rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val | BIT(7)); |
| } |
| break; } |
| case HW_VAR_H2C_FW_PWRMODE: |
| rtl88e_set_fw_pwrmode_cmd(hw, *val); |
| break; |
| case HW_VAR_FW_PSMODE_STATUS: |
| ppsc->fw_current_inpsmode = *((bool *)val); |
| break; |
| case HW_VAR_RESUME_CLK_ON: |
| _rtl88ee_set_fw_ps_rf_on(hw); |
| break; |
| case HW_VAR_FW_LPS_ACTION:{ |
| bool enter_fwlps = *((bool *)val); |
| |
| if (enter_fwlps) |
| _rtl88ee_fwlps_enter(hw); |
| else |
| _rtl88ee_fwlps_leave(hw); |
| break; } |
| case HW_VAR_H2C_FW_JOINBSSRPT:{ |
| u8 mstatus = *val; |
| u8 tmp, tmp_reg422, uval; |
| u8 count = 0, dlbcn_count = 0; |
| bool recover = false; |
| |
| if (mstatus == RT_MEDIA_CONNECT) { |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL); |
| |
| tmp = rtl_read_byte(rtlpriv, REG_CR + 1); |
| rtl_write_byte(rtlpriv, REG_CR + 1, (tmp | BIT(0))); |
| |
| _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(3)); |
| _rtl88ee_set_bcn_ctrl_reg(hw, BIT(4), 0); |
| |
| tmp_reg422 = rtl_read_byte(rtlpriv, |
| REG_FWHW_TXQ_CTRL + 2); |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, |
| tmp_reg422 & (~BIT(6))); |
| if (tmp_reg422 & BIT(6)) |
| recover = true; |
| |
| do { |
| uval = rtl_read_byte(rtlpriv, REG_TDECTRL+2); |
| rtl_write_byte(rtlpriv, REG_TDECTRL+2, |
| (uval | BIT(0))); |
| _rtl88ee_return_beacon_queue_skb(hw); |
| |
| rtl88e_set_fw_rsvdpagepkt(hw, 0); |
| uval = rtl_read_byte(rtlpriv, REG_TDECTRL+2); |
| count = 0; |
| while (!(uval & BIT(0)) && count < 20) { |
| count++; |
| udelay(10); |
| uval = rtl_read_byte(rtlpriv, |
| REG_TDECTRL+2); |
| } |
| dlbcn_count++; |
| } while (!(uval & BIT(0)) && dlbcn_count < 5); |
| |
| if (uval & BIT(0)) |
| rtl_write_byte(rtlpriv, REG_TDECTRL+2, BIT(0)); |
| |
| _rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0); |
| _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(4)); |
| |
| if (recover) { |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, |
| tmp_reg422); |
| } |
| rtl_write_byte(rtlpriv, REG_CR + 1, (tmp & ~(BIT(0)))); |
| } |
| rtl88e_set_fw_joinbss_report_cmd(hw, *val); |
| break; } |
| case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: |
| rtl88e_set_p2p_ps_offload_cmd(hw, *val); |
| break; |
| case HW_VAR_AID:{ |
| u16 u2btmp; |
| u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT); |
| u2btmp &= 0xC000; |
| rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp | |
| mac->assoc_id)); |
| break; } |
| case HW_VAR_CORRECT_TSF:{ |
| u8 btype_ibss = *val; |
| |
| if (btype_ibss == true) |
| _rtl88ee_stop_tx_beacon(hw); |
| |
| _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(3)); |
| |
| rtl_write_dword(rtlpriv, REG_TSFTR, |
| (u32) (mac->tsf & 0xffffffff)); |
| rtl_write_dword(rtlpriv, REG_TSFTR + 4, |
| (u32) ((mac->tsf >> 32) & 0xffffffff)); |
| |
| _rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0); |
| |
| if (btype_ibss == true) |
| _rtl88ee_resume_tx_beacon(hw); |
| break; } |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "switch case not process %x\n", variable); |
| break; |
| } |
| } |
| |
| static bool _rtl88ee_llt_write(struct ieee80211_hw *hw, u32 address, u32 data) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| bool status = true; |
| long count = 0; |
| u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | |
| _LLT_OP(_LLT_WRITE_ACCESS); |
| |
| rtl_write_dword(rtlpriv, REG_LLT_INIT, value); |
| |
| do { |
| value = rtl_read_dword(rtlpriv, REG_LLT_INIT); |
| if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) |
| break; |
| |
| if (count > POLLING_LLT_THRESHOLD) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "Failed to polling write LLT done at address %d!\n", |
| address); |
| status = false; |
| break; |
| } |
| } while (++count); |
| |
| return status; |
| } |
| |
| static bool _rtl88ee_llt_table_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| unsigned short i; |
| u8 txpktbuf_bndy; |
| u8 maxpage; |
| bool status; |
| |
| maxpage = 0xAF; |
| txpktbuf_bndy = 0xAB; |
| |
| rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x01); |
| rtl_write_dword(rtlpriv, REG_RQPN, 0x80730d29); |
| |
| |
| rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x25FF0000 | txpktbuf_bndy)); |
| rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy); |
| |
| rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); |
| rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); |
| |
| rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy); |
| rtl_write_byte(rtlpriv, REG_PBP, 0x11); |
| rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4); |
| |
| for (i = 0; i < (txpktbuf_bndy - 1); i++) { |
| status = _rtl88ee_llt_write(hw, i, i + 1); |
| if (true != status) |
| return status; |
| } |
| |
| status = _rtl88ee_llt_write(hw, (txpktbuf_bndy - 1), 0xFF); |
| if (true != status) |
| return status; |
| |
| for (i = txpktbuf_bndy; i < maxpage; i++) { |
| status = _rtl88ee_llt_write(hw, i, (i + 1)); |
| if (true != status) |
| return status; |
| } |
| |
| status = _rtl88ee_llt_write(hw, maxpage, txpktbuf_bndy); |
| if (true != status) |
| return status; |
| |
| return true; |
| } |
| |
| static void _rtl88ee_gen_refresh_led_state(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0); |
| |
| if (rtlpriv->rtlhal.up_first_time) |
| return; |
| |
| if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) |
| rtl88ee_sw_led_on(hw, pLed0); |
| else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT) |
| rtl88ee_sw_led_on(hw, pLed0); |
| else |
| rtl88ee_sw_led_off(hw, pLed0); |
| } |
| |
| static bool _rtl88ee_init_mac(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u8 bytetmp; |
| u16 wordtmp; |
| |
| /*Disable XTAL OUTPUT for power saving. YJ, add, 111206. */ |
| bytetmp = rtl_read_byte(rtlpriv, REG_XCK_OUT_CTRL) & (~BIT(0)); |
| rtl_write_byte(rtlpriv, REG_XCK_OUT_CTRL, bytetmp); |
| /*Auto Power Down to CHIP-off State*/ |
| bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) & (~BIT(7)); |
| rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp); |
| |
| rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00); |
| /* HW Power on sequence */ |
| if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, |
| PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, |
| Rtl8188E_NIC_ENABLE_FLOW)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "init MAC Fail as rtl_hal_pwrseqcmdparsing\n"); |
| return false; |
| } |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO) | BIT(4); |
| rtl_write_byte(rtlpriv, REG_APS_FSMCO, bytetmp); |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG+2); |
| rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+2, bytetmp|BIT(2)); |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_WATCH_DOG+1); |
| rtl_write_byte(rtlpriv, REG_WATCH_DOG+1, bytetmp|BIT(7)); |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL_EXT+1); |
| rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL_EXT+1, bytetmp|BIT(1)); |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_TX_RPT_CTRL); |
| rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL, bytetmp|BIT(1)|BIT(0)); |
| rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL+1, 2); |
| rtl_write_word(rtlpriv, REG_TX_RPT_TIME, 0xcdf0); |
| |
| /*Add for wake up online*/ |
| bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR); |
| |
| rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp|BIT(3)); |
| bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG+1); |
| rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+1, (bytetmp & (~BIT(4)))); |
| rtl_write_byte(rtlpriv, 0x367, 0x80); |
| |
| rtl_write_word(rtlpriv, REG_CR, 0x2ff); |
| rtl_write_byte(rtlpriv, REG_CR+1, 0x06); |
| rtl_write_byte(rtlpriv, REG_CR+2, 0x00); |
| |
| if (!rtlhal->mac_func_enable) { |
| if (_rtl88ee_llt_table_init(hw) == false) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "LLT table init fail\n"); |
| return false; |
| } |
| } |
| |
| |
| rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff); |
| rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff); |
| |
| wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL); |
| wordtmp &= 0xf; |
| wordtmp |= 0xE771; |
| rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp); |
| |
| rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); |
| rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xffff); |
| rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config); |
| |
| rtl_write_dword(rtlpriv, REG_BCNQ_DESA, |
| ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) & |
| DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_MGQ_DESA, |
| (u64) rtlpci->tx_ring[MGNT_QUEUE].dma & |
| DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_VOQ_DESA, |
| (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_VIQ_DESA, |
| (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_BEQ_DESA, |
| (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_BKQ_DESA, |
| (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_HQ_DESA, |
| (u64) rtlpci->tx_ring[HIGH_QUEUE].dma & |
| DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_RX_DESA, |
| (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma & |
| DMA_BIT_MASK(32)); |
| |
| /* if we want to support 64 bit DMA, we should set it here, |
| * but at the moment we do not support 64 bit DMA |
| */ |
| |
| rtl_write_dword(rtlpriv, REG_INT_MIG, 0); |
| |
| rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0); |
| rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+1, 0);/*Enable RX DMA */ |
| |
| if (rtlhal->earlymode_enable) {/*Early mode enable*/ |
| bytetmp = rtl_read_byte(rtlpriv, REG_EARLY_MODE_CONTROL); |
| bytetmp |= 0x1f; |
| rtl_write_byte(rtlpriv, REG_EARLY_MODE_CONTROL, bytetmp); |
| rtl_write_byte(rtlpriv, REG_EARLY_MODE_CONTROL+3, 0x81); |
| } |
| _rtl88ee_gen_refresh_led_state(hw); |
| return true; |
| } |
| |
| static void _rtl88ee_hw_configure(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u32 reg_prsr; |
| |
| reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; |
| |
| rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr); |
| rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF); |
| } |
| |
| static void _rtl88ee_enable_aspm_back_door(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| u8 tmp1byte = 0; |
| u32 tmp4Byte = 0, count; |
| |
| rtl_write_word(rtlpriv, 0x354, 0x8104); |
| rtl_write_word(rtlpriv, 0x358, 0x24); |
| |
| rtl_write_word(rtlpriv, 0x350, 0x70c); |
| rtl_write_byte(rtlpriv, 0x352, 0x2); |
| tmp1byte = rtl_read_byte(rtlpriv, 0x352); |
| count = 0; |
| while (tmp1byte && count < 20) { |
| udelay(10); |
| tmp1byte = rtl_read_byte(rtlpriv, 0x352); |
| count++; |
| } |
| if (0 == tmp1byte) { |
| tmp4Byte = rtl_read_dword(rtlpriv, 0x34c); |
| rtl_write_dword(rtlpriv, 0x348, tmp4Byte|BIT(31)); |
| rtl_write_word(rtlpriv, 0x350, 0xf70c); |
| rtl_write_byte(rtlpriv, 0x352, 0x1); |
| } |
| |
| tmp1byte = rtl_read_byte(rtlpriv, 0x352); |
| count = 0; |
| while (tmp1byte && count < 20) { |
| udelay(10); |
| tmp1byte = rtl_read_byte(rtlpriv, 0x352); |
| count++; |
| } |
| |
| rtl_write_word(rtlpriv, 0x350, 0x718); |
| rtl_write_byte(rtlpriv, 0x352, 0x2); |
| tmp1byte = rtl_read_byte(rtlpriv, 0x352); |
| count = 0; |
| while (tmp1byte && count < 20) { |
| udelay(10); |
| tmp1byte = rtl_read_byte(rtlpriv, 0x352); |
| count++; |
| } |
| if (ppsc->support_backdoor || (0 == tmp1byte)) { |
| tmp4Byte = rtl_read_dword(rtlpriv, 0x34c); |
| rtl_write_dword(rtlpriv, 0x348, tmp4Byte|BIT(11)|BIT(12)); |
| rtl_write_word(rtlpriv, 0x350, 0xf718); |
| rtl_write_byte(rtlpriv, 0x352, 0x1); |
| } |
| tmp1byte = rtl_read_byte(rtlpriv, 0x352); |
| count = 0; |
| while (tmp1byte && count < 20) { |
| udelay(10); |
| tmp1byte = rtl_read_byte(rtlpriv, 0x352); |
| count++; |
| } |
| } |
| |
| void rtl88ee_enable_hw_security_config(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 sec_reg_value; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, |
| "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", |
| rtlpriv->sec.pairwise_enc_algorithm, |
| rtlpriv->sec.group_enc_algorithm); |
| |
| if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "not open hw encryption\n"); |
| return; |
| } |
| sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE; |
| |
| if (rtlpriv->sec.use_defaultkey) { |
| sec_reg_value |= SCR_TXUSEDK; |
| sec_reg_value |= SCR_RXUSEDK; |
| } |
| |
| sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK); |
| |
| rtl_write_byte(rtlpriv, REG_CR + 1, 0x02); |
| |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "The SECR-value %x\n", sec_reg_value); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); |
| } |
| |
| int rtl88ee_hw_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| bool rtstatus = true; |
| int err = 0; |
| u8 tmp_u1b, u1byte; |
| unsigned long flags; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Rtl8188EE hw init\n"); |
| rtlpriv->rtlhal.being_init_adapter = true; |
| /* As this function can take a very long time (up to 350 ms) |
| * and can be called with irqs disabled, reenable the irqs |
| * to let the other devices continue being serviced. |
| * |
| * It is safe doing so since our own interrupts will only be enabled |
| * in a subsequent step. |
| */ |
| local_save_flags(flags); |
| local_irq_enable(); |
| |
| rtlpriv->intf_ops->disable_aspm(hw); |
| |
| tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CLKR+1); |
| u1byte = rtl_read_byte(rtlpriv, REG_CR); |
| if ((tmp_u1b & BIT(3)) && (u1byte != 0 && u1byte != 0xEA)) { |
| rtlhal->mac_func_enable = true; |
| } else { |
| rtlhal->mac_func_enable = false; |
| rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_88E; |
| } |
| |
| rtstatus = _rtl88ee_init_mac(hw); |
| if (rtstatus != true) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n"); |
| err = 1; |
| goto exit; |
| } |
| |
| err = rtl88e_download_fw(hw, false); |
| if (err) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "Failed to download FW. Init HW without FW now..\n"); |
| err = 1; |
| goto exit; |
| } else { |
| rtlhal->fw_ready = true; |
| } |
| /*fw related variable initialize */ |
| rtlhal->last_hmeboxnum = 0; |
| rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_88E; |
| rtlhal->fw_clk_change_in_progress = false; |
| rtlhal->allow_sw_to_change_hwclc = false; |
| ppsc->fw_current_inpsmode = false; |
| |
| rtl88e_phy_mac_config(hw); |
| /* because last function modifies RCR, we update |
| * rcr var here, or TP will be unstable for receive_config |
| * is wrong, RX RCR_ACRC32 will cause TP unstable & Rx |
| * RCR_APP_ICV will cause mac80211 disassoc for cisco 1252 |
| */ |
| rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); |
| rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); |
| |
| rtl88e_phy_bb_config(hw); |
| rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); |
| rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); |
| |
| rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; |
| rtl88e_phy_rf_config(hw); |
| |
| rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0, |
| RF_CHNLBW, RFREG_OFFSET_MASK); |
| rtlphy->rfreg_chnlval[0] = rtlphy->rfreg_chnlval[0] & 0xfff00fff; |
| |
| _rtl88ee_hw_configure(hw); |
| rtl_cam_reset_all_entry(hw); |
| rtl88ee_enable_hw_security_config(hw); |
| |
| rtlhal->mac_func_enable = true; |
| ppsc->rfpwr_state = ERFON; |
| |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr); |
| _rtl88ee_enable_aspm_back_door(hw); |
| rtlpriv->intf_ops->enable_aspm(hw); |
| |
| if (ppsc->rfpwr_state == ERFON) { |
| if ((rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV) || |
| ((rtlefuse->antenna_div_type == CG_TRX_HW_ANTDIV) && |
| (rtlhal->oem_id == RT_CID_819X_HP))) { |
| rtl88e_phy_set_rfpath_switch(hw, true); |
| rtlpriv->dm.fat_table.rx_idle_ant = MAIN_ANT; |
| } else { |
| rtl88e_phy_set_rfpath_switch(hw, false); |
| rtlpriv->dm.fat_table.rx_idle_ant = AUX_ANT; |
| } |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "rx idle ant %s\n", |
| (rtlpriv->dm.fat_table.rx_idle_ant == MAIN_ANT) ? |
| ("MAIN_ANT") : ("AUX_ANT")); |
| |
| if (rtlphy->iqk_initialized) { |
| rtl88e_phy_iq_calibrate(hw, true); |
| } else { |
| rtl88e_phy_iq_calibrate(hw, false); |
| rtlphy->iqk_initialized = true; |
| } |
| rtl88e_dm_check_txpower_tracking(hw); |
| rtl88e_phy_lc_calibrate(hw); |
| } |
| |
| tmp_u1b = efuse_read_1byte(hw, 0x1FA); |
| if (!(tmp_u1b & BIT(0))) { |
| rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PA BIAS path A\n"); |
| } |
| |
| if (!(tmp_u1b & BIT(4))) { |
| tmp_u1b = rtl_read_byte(rtlpriv, 0x16); |
| tmp_u1b &= 0x0F; |
| rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80); |
| udelay(10); |
| rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "under 1.5V\n"); |
| } |
| rtl_write_byte(rtlpriv, REG_NAV_CTRL+2, ((30000+127)/128)); |
| rtl88e_dm_init(hw); |
| exit: |
| local_irq_restore(flags); |
| rtlpriv->rtlhal.being_init_adapter = false; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "end of Rtl8188EE hw init %x\n", |
| err); |
| return err; |
| } |
| |
| static enum version_8188e _rtl88ee_read_chip_version(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| enum version_8188e version = VERSION_UNKNOWN; |
| u32 value32; |
| |
| value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG); |
| if (value32 & TRP_VAUX_EN) { |
| version = (enum version_8188e) VERSION_TEST_CHIP_88E; |
| } else { |
| version = NORMAL_CHIP; |
| version = version | ((value32 & TYPE_ID) ? RF_TYPE_2T2R : 0); |
| version = version | ((value32 & VENDOR_ID) ? |
| CHIP_VENDOR_UMC : 0); |
| } |
| |
| rtlphy->rf_type = RF_1T1R; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ? |
| "RF_2T2R" : "RF_1T1R"); |
| |
| return version; |
| } |
| |
| static int _rtl88ee_set_media_status(struct ieee80211_hw *hw, |
| enum nl80211_iftype type) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 bt_msr = rtl_read_byte(rtlpriv, MSR); |
| enum led_ctl_mode ledaction = LED_CTL_NO_LINK; |
| bt_msr &= 0xfc; |
| |
| if (type == NL80211_IFTYPE_UNSPECIFIED || |
| type == NL80211_IFTYPE_STATION) { |
| _rtl88ee_stop_tx_beacon(hw); |
| _rtl88ee_enable_bcn_sub_func(hw); |
| } else if (type == NL80211_IFTYPE_ADHOC || |
| type == NL80211_IFTYPE_AP || |
| type == NL80211_IFTYPE_MESH_POINT) { |
| _rtl88ee_resume_tx_beacon(hw); |
| _rtl88ee_disable_bcn_sub_func(hw); |
| } else { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n", |
| type); |
| } |
| |
| switch (type) { |
| case NL80211_IFTYPE_UNSPECIFIED: |
| bt_msr |= MSR_NOLINK; |
| ledaction = LED_CTL_LINK; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to NO LINK!\n"); |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| bt_msr |= MSR_ADHOC; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to Ad Hoc!\n"); |
| break; |
| case NL80211_IFTYPE_STATION: |
| bt_msr |= MSR_INFRA; |
| ledaction = LED_CTL_LINK; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to STA!\n"); |
| break; |
| case NL80211_IFTYPE_AP: |
| bt_msr |= MSR_AP; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to AP!\n"); |
| break; |
| case NL80211_IFTYPE_MESH_POINT: |
| bt_msr |= MSR_ADHOC; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to Mesh Point!\n"); |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "Network type %d not support!\n", type); |
| return 1; |
| } |
| |
| rtl_write_byte(rtlpriv, (MSR), bt_msr); |
| rtlpriv->cfg->ops->led_control(hw, ledaction); |
| if ((bt_msr & 0xfc) == MSR_AP) |
| rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00); |
| else |
| rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66); |
| return 0; |
| } |
| |
| void rtl88ee_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u32 reg_rcr; |
| |
| if (rtlpriv->psc.rfpwr_state != ERFON) |
| return; |
| |
| rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); |
| |
| if (check_bssid == true) { |
| reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, |
| (u8 *)(®_rcr)); |
| _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(4)); |
| } else if (check_bssid == false) { |
| reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)); |
| _rtl88ee_set_bcn_ctrl_reg(hw, BIT(4), 0); |
| rtlpriv->cfg->ops->set_hw_reg(hw, |
| HW_VAR_RCR, (u8 *)(®_rcr)); |
| } |
| } |
| |
| int rtl88ee_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| if (_rtl88ee_set_media_status(hw, type)) |
| return -EOPNOTSUPP; |
| |
| if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { |
| if (type != NL80211_IFTYPE_AP && |
| type != NL80211_IFTYPE_MESH_POINT) |
| rtl88ee_set_check_bssid(hw, true); |
| } else { |
| rtl88ee_set_check_bssid(hw, false); |
| } |
| |
| return 0; |
| } |
| |
| /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */ |
| void rtl88ee_set_qos(struct ieee80211_hw *hw, int aci) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| rtl88e_dm_init_edca_turbo(hw); |
| switch (aci) { |
| case AC1_BK: |
| rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f); |
| break; |
| case AC0_BE: |
| break; |
| case AC2_VI: |
| rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322); |
| break; |
| case AC3_VO: |
| rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222); |
| break; |
| default: |
| RT_ASSERT(false, "invalid aci: %d !\n", aci); |
| break; |
| } |
| } |
| |
| void rtl88ee_enable_interrupt(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF); |
| rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF); |
| rtlpci->irq_enabled = true; |
| /* there are some C2H CMDs have been sent before system interrupt |
| * is enabled, e.g., C2H, CPWM. |
| * So we need to clear all C2H events that FW has notified, otherwise |
| * FW won't schedule any commands anymore. |
| */ |
| rtl_write_byte(rtlpriv, REG_C2HEVT_CLEAR, 0); |
| /*enable system interrupt*/ |
| rtl_write_dword(rtlpriv, REG_HSIMR, rtlpci->sys_irq_mask & 0xFFFFFFFF); |
| } |
| |
| void rtl88ee_disable_interrupt(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED); |
| rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED); |
| rtlpci->irq_enabled = false; |
| synchronize_irq(rtlpci->pdev->irq); |
| } |
| |
| static void _rtl88ee_poweroff_adapter(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u8 u1b_tmp; |
| u32 count = 0; |
| rtlhal->mac_func_enable = false; |
| rtlpriv->intf_ops->enable_aspm(hw); |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "POWER OFF adapter\n"); |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_TX_RPT_CTRL); |
| rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL, u1b_tmp & (~BIT(1))); |
| |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); |
| while (!(u1b_tmp & BIT(1)) && (count++ < 100)) { |
| udelay(10); |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); |
| count++; |
| } |
| rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+1, 0xFF); |
| |
| rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, |
| PWR_INTF_PCI_MSK, |
| Rtl8188E_NIC_LPS_ENTER_FLOW); |
| |
| rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00); |
| |
| if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) && rtlhal->fw_ready) |
| rtl88e_firmware_selfreset(hw); |
| |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN+1); |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2)))); |
| rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00); |
| |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_32K_CTRL); |
| rtl_write_byte(rtlpriv, REG_32K_CTRL, (u1b_tmp & (~BIT(0)))); |
| |
| rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, |
| PWR_INTF_PCI_MSK, Rtl8188E_NIC_DISABLE_FLOW); |
| |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL+1); |
| rtl_write_byte(rtlpriv, REG_RSV_CTRL+1, (u1b_tmp & (~BIT(3)))); |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL+1); |
| rtl_write_byte(rtlpriv, REG_RSV_CTRL+1, (u1b_tmp | BIT(3))); |
| |
| rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E); |
| |
| u1b_tmp = rtl_read_byte(rtlpriv, GPIO_IN); |
| rtl_write_byte(rtlpriv, GPIO_OUT, u1b_tmp); |
| rtl_write_byte(rtlpriv, GPIO_IO_SEL, 0x7F); |
| |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL); |
| rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL, (u1b_tmp << 4) | u1b_tmp); |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL+1); |
| rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL+1, u1b_tmp | 0x0F); |
| |
| rtl_write_dword(rtlpriv, REG_GPIO_IO_SEL_2+2, 0x00080808); |
| } |
| |
| void rtl88ee_card_disable(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| enum nl80211_iftype opmode; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "RTL8188ee card disable\n"); |
| |
| mac->link_state = MAC80211_NOLINK; |
| opmode = NL80211_IFTYPE_UNSPECIFIED; |
| |
| _rtl88ee_set_media_status(hw, opmode); |
| |
| if (rtlpriv->rtlhal.driver_is_goingto_unload || |
| ppsc->rfoff_reason > RF_CHANGE_BY_PS) |
| rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); |
| |
| RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); |
| _rtl88ee_poweroff_adapter(hw); |
| |
| /* after power off we should do iqk again */ |
| rtlpriv->phy.iqk_initialized = false; |
| } |
| |
| void rtl88ee_interrupt_recognized(struct ieee80211_hw *hw, |
| u32 *p_inta, u32 *p_intb) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; |
| rtl_write_dword(rtlpriv, ISR, *p_inta); |
| |
| *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1]; |
| rtl_write_dword(rtlpriv, REG_HISRE, *p_intb); |
| } |
| |
| void rtl88ee_set_beacon_related_registers(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| u16 bcn_interval, atim_window; |
| |
| bcn_interval = mac->beacon_interval; |
| atim_window = 2; /*FIX MERGE */ |
| rtl88ee_disable_interrupt(hw); |
| rtl_write_word(rtlpriv, REG_ATIMWND, atim_window); |
| rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); |
| rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f); |
| rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18); |
| rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18); |
| rtl_write_byte(rtlpriv, 0x606, 0x30); |
| rtlpci->reg_bcn_ctrl_val |= BIT(3); |
| rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val); |
| /*rtl88ee_enable_interrupt(hw);*/ |
| } |
| |
| void rtl88ee_set_beacon_interval(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| u16 bcn_interval = mac->beacon_interval; |
| |
| RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG, |
| "beacon_interval:%d\n", bcn_interval); |
| /*rtl88ee_disable_interrupt(hw);*/ |
| rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); |
| /*rtl88ee_enable_interrupt(hw);*/ |
| } |
| |
| void rtl88ee_update_interrupt_mask(struct ieee80211_hw *hw, |
| u32 add_msr, u32 rm_msr) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, |
| "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr); |
| |
| rtl88ee_disable_interrupt(hw); |
| if (add_msr) |
| rtlpci->irq_mask[0] |= add_msr; |
| if (rm_msr) |
| rtlpci->irq_mask[0] &= (~rm_msr); |
| rtl88ee_enable_interrupt(hw); |
| } |
| |
| static inline u8 get_chnl_group(u8 chnl) |
| { |
| u8 group; |
| |
| group = chnl / 3; |
| if (chnl == 14) |
| group = 5; |
| |
| return group; |
| } |
| |
| static void set_diff0_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path, |
| u32 i, u32 eadr) |
| { |
| pwr2g->bw40_diff[path][i] = 0; |
| if (hwinfo[eadr] == 0xFF) { |
| pwr2g->bw20_diff[path][i] = 0x02; |
| } else { |
| pwr2g->bw20_diff[path][i] = (hwinfo[eadr]&0xf0)>>4; |
| /*bit sign number to 8 bit sign number*/ |
| if (pwr2g->bw20_diff[path][i] & BIT(3)) |
| pwr2g->bw20_diff[path][i] |= 0xF0; |
| } |
| |
| if (hwinfo[eadr] == 0xFF) { |
| pwr2g->ofdm_diff[path][i] = 0x04; |
| } else { |
| pwr2g->ofdm_diff[path][i] = (hwinfo[eadr] & 0x0f); |
| /*bit sign number to 8 bit sign number*/ |
| if (pwr2g->ofdm_diff[path][i] & BIT(3)) |
| pwr2g->ofdm_diff[path][i] |= 0xF0; |
| } |
| pwr2g->cck_diff[path][i] = 0; |
| } |
| |
| static void set_diff0_5g(struct txpower_info_5g *pwr5g, u8 *hwinfo, u32 path, |
| u32 i, u32 eadr) |
| { |
| pwr5g->bw40_diff[path][i] = 0; |
| if (hwinfo[eadr] == 0xFF) { |
| pwr5g->bw20_diff[path][i] = 0; |
| } else { |
| pwr5g->bw20_diff[path][i] = (hwinfo[eadr]&0xf0)>>4; |
| /*bit sign number to 8 bit sign number*/ |
| if (pwr5g->bw20_diff[path][i] & BIT(3)) |
| pwr5g->bw20_diff[path][i] |= 0xF0; |
| } |
| |
| if (hwinfo[eadr] == 0xFF) { |
| pwr5g->ofdm_diff[path][i] = 0x04; |
| } else { |
| pwr5g->ofdm_diff[path][i] = (hwinfo[eadr] & 0x0f); |
| /*bit sign number to 8 bit sign number*/ |
| if (pwr5g->ofdm_diff[path][i] & BIT(3)) |
| pwr5g->ofdm_diff[path][i] |= 0xF0; |
| } |
| } |
| |
| static void set_diff1_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path, |
| u32 i, u32 eadr) |
| { |
| if (hwinfo[eadr] == 0xFF) { |
| pwr2g->bw40_diff[path][i] = 0xFE; |
| } else { |
| pwr2g->bw40_diff[path][i] = (hwinfo[eadr]&0xf0)>>4; |
| if (pwr2g->bw40_diff[path][i] & BIT(3)) |
| pwr2g->bw40_diff[path][i] |= 0xF0; |
| } |
| |
| if (hwinfo[eadr] == 0xFF) { |
| pwr2g->bw20_diff[path][i] = 0xFE; |
| } else { |
| pwr2g->bw20_diff[path][i] = (hwinfo[eadr]&0x0f); |
| if (pwr2g->bw20_diff[path][i] & BIT(3)) |
| pwr2g->bw20_diff[path][i] |= 0xF0; |
| } |
| } |
| |
| static void set_diff1_5g(struct txpower_info_5g *pwr5g, u8 *hwinfo, u32 path, |
| u32 i, u32 eadr) |
| { |
| if (hwinfo[eadr] == 0xFF) { |
| pwr5g->bw40_diff[path][i] = 0xFE; |
| } else { |
| pwr5g->bw40_diff[path][i] = (hwinfo[eadr]&0xf0)>>4; |
| if (pwr5g->bw40_diff[path][i] & BIT(3)) |
| pwr5g->bw40_diff[path][i] |= 0xF0; |
| } |
| |
| if (hwinfo[eadr] == 0xFF) { |
| pwr5g->bw20_diff[path][i] = 0xFE; |
| } else { |
| pwr5g->bw20_diff[path][i] = (hwinfo[eadr] & 0x0f); |
| if (pwr5g->bw20_diff[path][i] & BIT(3)) |
| pwr5g->bw20_diff[path][i] |= 0xF0; |
| } |
| } |
| |
| static void set_diff2_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path, |
| u32 i, u32 eadr) |
| { |
| if (hwinfo[eadr] == 0xFF) { |
| pwr2g->ofdm_diff[path][i] = 0xFE; |
| } else { |
| pwr2g->ofdm_diff[path][i] = (hwinfo[eadr]&0xf0)>>4; |
| if (pwr2g->ofdm_diff[path][i] & BIT(3)) |
| pwr2g->ofdm_diff[path][i] |= 0xF0; |
| } |
| |
| if (hwinfo[eadr] == 0xFF) { |
| pwr2g->cck_diff[path][i] = 0xFE; |
| } else { |
| pwr2g->cck_diff[path][i] = (hwinfo[eadr]&0x0f); |
| if (pwr2g->cck_diff[path][i] & BIT(3)) |
| pwr2g->cck_diff[path][i] |= 0xF0; |
| } |
| } |
| |
| static void _rtl8188e_read_power_value_fromprom(struct ieee80211_hw *hw, |
| struct txpower_info_2g *pwr2g, |
| struct txpower_info_5g *pwr5g, |
| bool autoload_fail, |
| u8 *hwinfo) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u32 path, eadr = EEPROM_TX_PWR_INX, i; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "hal_ReadPowerValueFromPROM88E(): PROMContent[0x%x]= 0x%x\n", |
| (eadr+1), hwinfo[eadr+1]); |
| if (0xFF == hwinfo[eadr+1]) |
| autoload_fail = true; |
| |
| if (autoload_fail) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "auto load fail : Use Default value!\n"); |
| for (path = 0; path < MAX_RF_PATH; path++) { |
| /* 2.4G default value */ |
| for (i = 0; i < MAX_CHNL_GROUP_24G; i++) { |
| pwr2g->index_cck_base[path][i] = 0x2D; |
| pwr2g->index_bw40_base[path][i] = 0x2D; |
| } |
| for (i = 0; i < MAX_TX_COUNT; i++) { |
| if (i == 0) { |
| pwr2g->bw20_diff[path][0] = 0x02; |
| pwr2g->ofdm_diff[path][0] = 0x04; |
| } else { |
| pwr2g->bw20_diff[path][i] = 0xFE; |
| pwr2g->bw40_diff[path][i] = 0xFE; |
| pwr2g->cck_diff[path][i] = 0xFE; |
| pwr2g->ofdm_diff[path][i] = 0xFE; |
| } |
| } |
| } |
| return; |
| } |
| |
| for (path = 0; path < MAX_RF_PATH; path++) { |
| /*2.4G default value*/ |
| for (i = 0; i < MAX_CHNL_GROUP_24G; i++) { |
| pwr2g->index_cck_base[path][i] = hwinfo[eadr++]; |
| if (pwr2g->index_cck_base[path][i] == 0xFF) |
| pwr2g->index_cck_base[path][i] = 0x2D; |
| } |
| for (i = 0; i < MAX_CHNL_GROUP_24G; i++) { |
| pwr2g->index_bw40_base[path][i] = hwinfo[eadr++]; |
| if (pwr2g->index_bw40_base[path][i] == 0xFF) |
| pwr2g->index_bw40_base[path][i] = 0x2D; |
| } |
| for (i = 0; i < MAX_TX_COUNT; i++) { |
| if (i == 0) { |
| set_diff0_2g(pwr2g, hwinfo, path, i, eadr); |
| eadr++; |
| } else { |
| set_diff1_2g(pwr2g, hwinfo, path, i, eadr); |
| eadr++; |
| |
| set_diff2_2g(pwr2g, hwinfo, path, i, eadr); |
| eadr++; |
| } |
| } |
| |
| /*5G default value*/ |
| for (i = 0; i < MAX_CHNL_GROUP_5G; i++) { |
| pwr5g->index_bw40_base[path][i] = hwinfo[eadr++]; |
| if (pwr5g->index_bw40_base[path][i] == 0xFF) |
| pwr5g->index_bw40_base[path][i] = 0xFE; |
| } |
| |
| for (i = 0; i < MAX_TX_COUNT; i++) { |
| if (i == 0) { |
| set_diff0_5g(pwr5g, hwinfo, path, i, eadr); |
| eadr++; |
| } else { |
| set_diff1_5g(pwr5g, hwinfo, path, i, eadr); |
| eadr++; |
| } |
| } |
| |
| if (hwinfo[eadr] == 0xFF) { |
| pwr5g->ofdm_diff[path][1] = 0xFE; |
| pwr5g->ofdm_diff[path][2] = 0xFE; |
| } else { |
| pwr5g->ofdm_diff[path][1] = (hwinfo[eadr] & 0xf0) >> 4; |
| pwr5g->ofdm_diff[path][2] = (hwinfo[eadr] & 0x0f); |
| } |
| eadr++; |
| |
| if (hwinfo[eadr] == 0xFF) |
| pwr5g->ofdm_diff[path][3] = 0xFE; |
| else |
| pwr5g->ofdm_diff[path][3] = (hwinfo[eadr]&0x0f); |
| eadr++; |
| |
| for (i = 1; i < MAX_TX_COUNT; i++) { |
| if (pwr5g->ofdm_diff[path][i] == 0xFF) |
| pwr5g->ofdm_diff[path][i] = 0xFE; |
| else if (pwr5g->ofdm_diff[path][i] & BIT(3)) |
| pwr5g->ofdm_diff[path][i] |= 0xF0; |
| } |
| } |
| } |
| |
| static void _rtl88ee_read_txpower_info_from_hwpg(struct ieee80211_hw *hw, |
| bool autoload_fail, |
| u8 *hwinfo) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct txpower_info_2g pwrinfo24g; |
| struct txpower_info_5g pwrinfo5g; |
| u8 rf_path, index; |
| u8 i; |
| int jj = EEPROM_RF_BOARD_OPTION_88E; |
| int kk = EEPROM_THERMAL_METER_88E; |
| |
| _rtl8188e_read_power_value_fromprom(hw, &pwrinfo24g, &pwrinfo5g, |
| autoload_fail, hwinfo); |
| |
| for (rf_path = 0; rf_path < 2; rf_path++) { |
| for (i = 0; i < 14; i++) { |
| index = get_chnl_group(i+1); |
| |
| rtlefuse->txpwrlevel_cck[rf_path][i] = |
| pwrinfo24g.index_cck_base[rf_path][index]; |
| if (i == 13) |
| rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = |
| pwrinfo24g.index_bw40_base[rf_path][4]; |
| else |
| rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = |
| pwrinfo24g.index_bw40_base[rf_path][index]; |
| rtlefuse->txpwr_ht20diff[rf_path][i] = |
| pwrinfo24g.bw20_diff[rf_path][0]; |
| rtlefuse->txpwr_legacyhtdiff[rf_path][i] = |
| pwrinfo24g.ofdm_diff[rf_path][0]; |
| } |
| |
| for (i = 0; i < 14; i++) { |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "RF(%d)-Ch(%d) [CCK / HT40_1S ] = " |
| "[0x%x / 0x%x ]\n", rf_path, i, |
| rtlefuse->txpwrlevel_cck[rf_path][i], |
| rtlefuse->txpwrlevel_ht40_1s[rf_path][i]); |
| } |
| } |
| |
| if (!autoload_fail) |
| rtlefuse->eeprom_thermalmeter = hwinfo[kk]; |
| else |
| rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; |
| |
| if (rtlefuse->eeprom_thermalmeter == 0xff || autoload_fail) { |
| rtlefuse->apk_thermalmeterignore = true; |
| rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; |
| } |
| |
| rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); |
| |
| if (!autoload_fail) { |
| rtlefuse->eeprom_regulatory = hwinfo[jj] & 0x07;/*bit0~2*/ |
| if (hwinfo[jj] == 0xFF) |
| rtlefuse->eeprom_regulatory = 0; |
| } else { |
| rtlefuse->eeprom_regulatory = 0; |
| } |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory); |
| } |
| |
| static void _rtl88ee_read_adapter_info(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_pci_priv *rppriv = rtl_pcipriv(hw); |
| u16 i, usvalue; |
| u8 hwinfo[HWSET_MAX_SIZE]; |
| u16 eeprom_id; |
| int jj = EEPROM_RF_BOARD_OPTION_88E; |
| int kk = EEPROM_RF_FEATURE_OPTION_88E; |
| |
| if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) { |
| rtl_efuse_shadow_map_update(hw); |
| |
| memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], |
| HWSET_MAX_SIZE); |
| } else if (rtlefuse->epromtype == EEPROM_93C46) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "RTL819X Not boot from eeprom, check it !!"); |
| } |
| |
| RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("MAP\n"), |
| hwinfo, HWSET_MAX_SIZE); |
| |
| eeprom_id = *((u16 *)&hwinfo[0]); |
| if (eeprom_id != RTL8188E_EEPROM_ID) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "EEPROM ID(%#x) is invalid!!\n", eeprom_id); |
| rtlefuse->autoload_failflag = true; |
| } else { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); |
| rtlefuse->autoload_failflag = false; |
| } |
| |
| if (rtlefuse->autoload_failflag == true) |
| return; |
| /*VID DID SVID SDID*/ |
| rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID]; |
| rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID]; |
| rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID]; |
| rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID]; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROMId = 0x%4x\n", eeprom_id); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid); |
| /*customer ID*/ |
| rtlefuse->eeprom_oemid = hwinfo[EEPROM_CUSTOMER_ID]; |
| if (rtlefuse->eeprom_oemid == 0xFF) |
| rtlefuse->eeprom_oemid = 0; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid); |
| /*EEPROM version*/ |
| rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION]; |
| /*mac address*/ |
| for (i = 0; i < 6; i += 2) { |
| usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i]; |
| *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue; |
| } |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, |
| "dev_addr: %pM\n", rtlefuse->dev_addr); |
| /*channel plan */ |
| rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN]; |
| /* set channel paln to world wide 13 */ |
| rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13; |
| /*tx power*/ |
| _rtl88ee_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag, |
| hwinfo); |
| rtlefuse->txpwr_fromeprom = true; |
| |
| rtl8188ee_read_bt_coexist_info_from_hwpg(hw, |
| rtlefuse->autoload_failflag, |
| hwinfo); |
| /*board type*/ |
| rtlefuse->board_type = (hwinfo[jj] & 0xE0) >> 5; |
| /*Wake on wlan*/ |
| rtlefuse->wowlan_enable = ((hwinfo[kk] & 0x40) >> 6); |
| /*parse xtal*/ |
| rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_88E]; |
| if (hwinfo[EEPROM_XTAL_88E]) |
| rtlefuse->crystalcap = 0x20; |
| /*antenna diversity*/ |
| rtlefuse->antenna_div_cfg = (hwinfo[jj] & 0x18) >> 3; |
| if (hwinfo[jj] == 0xFF) |
| rtlefuse->antenna_div_cfg = 0; |
| if (rppriv->bt_coexist.eeprom_bt_coexist != 0 && |
| rppriv->bt_coexist.eeprom_bt_ant_num == ANT_X1) |
| rtlefuse->antenna_div_cfg = 0; |
| |
| rtlefuse->antenna_div_type = hwinfo[EEPROM_RF_ANTENNA_OPT_88E]; |
| if (rtlefuse->antenna_div_type == 0xFF) |
| rtlefuse->antenna_div_type = 0x01; |
| if (rtlefuse->antenna_div_type == CG_TRX_HW_ANTDIV || |
| rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV) |
| rtlefuse->antenna_div_cfg = 1; |
| |
| if (rtlhal->oem_id == RT_CID_DEFAULT) { |
| switch (rtlefuse->eeprom_oemid) { |
| case EEPROM_CID_DEFAULT: |
| if (rtlefuse->eeprom_did == 0x8179) { |
| if (rtlefuse->eeprom_svid == 0x1025) { |
| rtlhal->oem_id = RT_CID_819X_ACER; |
| } else if ((rtlefuse->eeprom_svid == 0x10EC && |
| rtlefuse->eeprom_smid == 0x0179) || |
| (rtlefuse->eeprom_svid == 0x17AA && |
| rtlefuse->eeprom_smid == 0x0179)) { |
| rtlhal->oem_id = RT_CID_819X_LENOVO; |
| } else if (rtlefuse->eeprom_svid == 0x103c && |
| rtlefuse->eeprom_smid == 0x197d) { |
| rtlhal->oem_id = RT_CID_819X_HP; |
| } else { |
| rtlhal->oem_id = RT_CID_DEFAULT; |
| } |
| } else { |
| rtlhal->oem_id = RT_CID_DEFAULT; |
| } |
| break; |
| case EEPROM_CID_TOSHIBA: |
| rtlhal->oem_id = RT_CID_TOSHIBA; |
| break; |
| case EEPROM_CID_QMI: |
| rtlhal->oem_id = RT_CID_819X_QMI; |
| break; |
| case EEPROM_CID_WHQL: |
| default: |
| rtlhal->oem_id = RT_CID_DEFAULT; |
| break; |
| } |
| } |
| } |
| |
| static void _rtl88ee_hal_customized_behavior(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| |
| pcipriv->ledctl.led_opendrain = true; |
| |
| switch (rtlhal->oem_id) { |
| case RT_CID_819X_HP: |
| pcipriv->ledctl.led_opendrain = true; |
| break; |
| case RT_CID_819X_LENOVO: |
| case RT_CID_DEFAULT: |
| case RT_CID_TOSHIBA: |
| case RT_CID_CCX: |
| case RT_CID_819X_ACER: |
| case RT_CID_WHQL: |
| default: |
| break; |
| } |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, |
| "RT Customized ID: 0x%02X\n", rtlhal->oem_id); |
| } |
| |
| void rtl88ee_read_eeprom_info(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u8 tmp_u1b; |
| |
| rtlhal->version = _rtl88ee_read_chip_version(hw); |
| if (get_rf_type(rtlphy) == RF_1T1R) { |
| rtlpriv->dm.rfpath_rxenable[0] = true; |
| } else { |
| rtlpriv->dm.rfpath_rxenable[0] = true; |
| rtlpriv->dm.rfpath_rxenable[1] = true; |
| } |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n", |
| rtlhal->version); |
| tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR); |
| if (tmp_u1b & BIT(4)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); |
| rtlefuse->epromtype = EEPROM_93C46; |
| } else { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); |
| rtlefuse->epromtype = EEPROM_BOOT_EFUSE; |
| } |
| if (tmp_u1b & BIT(5)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); |
| rtlefuse->autoload_failflag = false; |
| _rtl88ee_read_adapter_info(hw); |
| } else { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n"); |
| } |
| _rtl88ee_hal_customized_behavior(hw); |
| } |
| |
| static void rtl88ee_update_hal_rate_table(struct ieee80211_hw *hw, |
| struct ieee80211_sta *sta) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci_priv *rppriv = rtl_pcipriv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u32 ratr_value; |
| u8 ratr_index = 0; |
| u8 nmode = mac->ht_enable; |
| u8 mimo_ps = IEEE80211_SMPS_OFF; |
| u16 shortgi_rate; |
| u32 tmp_ratr_value; |
| u8 ctx40 = mac->bw_40; |
| u16 cap = sta->ht_cap.cap; |
| u8 short40 = (cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; |
| u8 short20 = (cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; |
| enum wireless_mode wirelessmode = mac->mode; |
| |
| if (rtlhal->current_bandtype == BAND_ON_5G) |
| ratr_value = sta->supp_rates[1] << 4; |
| else |
| ratr_value = sta->supp_rates[0]; |
| if (mac->opmode == NL80211_IFTYPE_ADHOC) |
| ratr_value = 0xfff; |
| ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 | |
| sta->ht_cap.mcs.rx_mask[0] << 12); |
| switch (wirelessmode) { |
| case WIRELESS_MODE_B: |
| if (ratr_value & 0x0000000c) |
| ratr_value &= 0x0000000d; |
| else |
| ratr_value &= 0x0000000f; |
| break; |
| case WIRELESS_MODE_G: |
| ratr_value &= 0x00000FF5; |
| break; |
| case WIRELESS_MODE_N_24G: |
| case WIRELESS_MODE_N_5G: |
| nmode = 1; |
| if (mimo_ps == IEEE80211_SMPS_STATIC) { |
| ratr_value &= 0x0007F005; |
| } else { |
| u32 ratr_mask; |
| |
| if (get_rf_type(rtlphy) == RF_1T2R || |
| get_rf_type(rtlphy) == RF_1T1R) |
| ratr_mask = 0x000ff005; |
| else |
| ratr_mask = 0x0f0ff005; |
| |
| ratr_value &= ratr_mask; |
| } |
| break; |
| default: |
| if (rtlphy->rf_type == RF_1T2R) |
| ratr_value &= 0x000ff0ff; |
| else |
| ratr_value &= 0x0f0ff0ff; |
| |
| break; |
| } |
| |
| if ((rppriv->bt_coexist.bt_coexistence) && |
| (rppriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) && |
| (rppriv->bt_coexist.bt_cur_state) && |
| (rppriv->bt_coexist.bt_ant_isolation) && |
| ((rppriv->bt_coexist.bt_service == BT_SCO) || |
| (rppriv->bt_coexist.bt_service == BT_BUSY))) |
| ratr_value &= 0x0fffcfc0; |
| else |
| ratr_value &= 0x0FFFFFFF; |
| |
| if (nmode && ((ctx40 && short40) || |
| (!ctx40 && short20))) { |
| ratr_value |= 0x10000000; |
| tmp_ratr_value = (ratr_value >> 12); |
| |
| for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { |
| if ((1 << shortgi_rate) & tmp_ratr_value) |
| break; |
| } |
| |
| shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | |
| (shortgi_rate << 4) | (shortgi_rate); |
| } |
| |
| rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value); |
| |
| RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, |
| "%x\n", rtl_read_dword(rtlpriv, REG_ARFR0)); |
| } |
| |
| static void rtl88ee_update_hal_rate_mask(struct ieee80211_hw *hw, |
| struct ieee80211_sta *sta, u8 rssi) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_sta_info *sta_entry = NULL; |
| u32 ratr_bitmap; |
| u8 ratr_index; |
| u16 cap = sta->ht_cap.cap; |
| u8 ctx40 = (cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0; |
| u8 short40 = (cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; |
| u8 short20 = (cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; |
| enum wireless_mode wirelessmode = 0; |
| bool shortgi = false; |
| u8 rate_mask[5]; |
| u8 macid = 0; |
| u8 mimo_ps = IEEE80211_SMPS_OFF; |
| |
| sta_entry = (struct rtl_sta_info *)sta->drv_priv; |
| wirelessmode = sta_entry->wireless_mode; |
| if (mac->opmode == NL80211_IFTYPE_STATION || |
| mac->opmode == NL80211_IFTYPE_MESH_POINT) |
| ctx40 = mac->bw_40; |
| else if (mac->opmode == NL80211_IFTYPE_AP || |
| mac->opmode == NL80211_IFTYPE_ADHOC) |
| macid = sta->aid + 1; |
| |
| if (rtlhal->current_bandtype == BAND_ON_5G) |
| ratr_bitmap = sta->supp_rates[1] << 4; |
| else |
| ratr_bitmap = sta->supp_rates[0]; |
| if (mac->opmode == NL80211_IFTYPE_ADHOC) |
| ratr_bitmap = 0xfff; |
| ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | |
| sta->ht_cap.mcs.rx_mask[0] << 12); |
| switch (wirelessmode) { |
| case WIRELESS_MODE_B: |
| ratr_index = RATR_INX_WIRELESS_B; |
| if (ratr_bitmap & 0x0000000c) |
| ratr_bitmap &= 0x0000000d; |
| else |
| ratr_bitmap &= 0x0000000f; |
| break; |
| case WIRELESS_MODE_G: |
| ratr_index = RATR_INX_WIRELESS_GB; |
| |
| if (rssi == 1) |
| ratr_bitmap &= 0x00000f00; |
| else if (rssi == 2) |
| ratr_bitmap &= 0x00000ff0; |
| else |
| ratr_bitmap &= 0x00000ff5; |
| break; |
| case WIRELESS_MODE_A: |
| ratr_index = RATR_INX_WIRELESS_A; |
| ratr_bitmap &= 0x00000ff0; |
| break; |
| case WIRELESS_MODE_N_24G: |
| case WIRELESS_MODE_N_5G: |
| ratr_index = RATR_INX_WIRELESS_NGB; |
| |
| if (mimo_ps == IEEE80211_SMPS_STATIC) { |
| if (rssi == 1) |
| ratr_bitmap &= 0x00070000; |
| else if (rssi == 2) |
| ratr_bitmap &= 0x0007f000; |
| else |
| ratr_bitmap &= 0x0007f005; |
| } else { |
| if (rtlphy->rf_type == RF_1T2R || |
| rtlphy->rf_type == RF_1T1R) { |
| if (ctx40) { |
| if (rssi == 1) |
| ratr_bitmap &= 0x000f0000; |
| else if (rssi == 2) |
| ratr_bitmap &= 0x000ff000; |
| else |
| ratr_bitmap &= 0x000ff015; |
| } else { |
| if (rssi == 1) |
| ratr_bitmap &= 0x000f0000; |
| else if (rssi == 2) |
| ratr_bitmap &= 0x000ff000; |
| else |
| ratr_bitmap &= 0x000ff005; |
| } |
| } else { |
| if (ctx40) { |
| if (rssi == 1) |
| ratr_bitmap &= 0x0f8f0000; |
| else if (rssi == 2) |
| ratr_bitmap &= 0x0f8ff000; |
| else |
| ratr_bitmap &= 0x0f8ff015; |
| } else { |
| if (rssi == 1) |
| ratr_bitmap &= 0x0f8f0000; |
| else if (rssi == 2) |
| ratr_bitmap &= 0x0f8ff000; |
| else |
| ratr_bitmap &= 0x0f8ff005; |
| } |
| } |
| } |
| |
| if ((ctx40 && short40) || (!ctx40 && short20)) { |
| if (macid == 0) |
| shortgi = true; |
| else if (macid == 1) |
| shortgi = false; |
| } |
| break; |
| default: |
| ratr_index = RATR_INX_WIRELESS_NGB; |
| |
| if (rtlphy->rf_type == RF_1T2R) |
| ratr_bitmap &= 0x000ff0ff; |
| else |
| ratr_bitmap &= 0x0f0ff0ff; |
| break; |
| } |
| sta_entry->ratr_index = ratr_index; |
| |
| RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, |
| "ratr_bitmap :%x\n", ratr_bitmap); |
| *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) | |
| (ratr_index << 28); |
| rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80; |
| RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, |
| "Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x\n", |
| ratr_index, ratr_bitmap, rate_mask[0], rate_mask[1], |
| rate_mask[2], rate_mask[3], rate_mask[4]); |
| rtl88e_fill_h2c_cmd(hw, H2C_88E_RA_MASK, 5, rate_mask); |
| _rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0); |
| } |
| |
| void rtl88ee_update_hal_rate_tbl(struct ieee80211_hw *hw, |
| struct ieee80211_sta *sta, u8 rssi) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| if (rtlpriv->dm.useramask) |
| rtl88ee_update_hal_rate_mask(hw, sta, rssi); |
| else |
| rtl88ee_update_hal_rate_table(hw, sta); |
| } |
| |
| void rtl88ee_update_channel_access_setting(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| u16 sifs_timer; |
| |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time); |
| if (!mac->ht_enable) |
| sifs_timer = 0x0a0a; |
| else |
| sifs_timer = 0x0e0e; |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); |
| } |
| |
| bool rtl88ee_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| enum rf_pwrstate state_toset; |
| u32 u4tmp; |
| bool actuallyset = false; |
| |
| if (rtlpriv->rtlhal.being_init_adapter) |
| return false; |
| |
| if (ppsc->swrf_processing) |
| return false; |
| |
| spin_lock(&rtlpriv->locks.rf_ps_lock); |
| if (ppsc->rfchange_inprogress) { |
| spin_unlock(&rtlpriv->locks.rf_ps_lock); |
| return false; |
| } else { |
| ppsc->rfchange_inprogress = true; |
| spin_unlock(&rtlpriv->locks.rf_ps_lock); |
| } |
| |
| u4tmp = rtl_read_dword(rtlpriv, REG_GPIO_OUTPUT); |
| state_toset = (u4tmp & BIT(31)) ? ERFON : ERFOFF; |
| |
| |
| if ((ppsc->hwradiooff == true) && (state_toset == ERFON)) { |
| RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, |
| "GPIOChangeRF - HW Radio ON, RF ON\n"); |
| |
| state_toset = ERFON; |
| ppsc->hwradiooff = false; |
| actuallyset = true; |
| } else if ((ppsc->hwradiooff == false) && (state_toset == ERFOFF)) { |
| RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, |
| "GPIOChangeRF - HW Radio OFF, RF OFF\n"); |
| |
| state_toset = ERFOFF; |
| ppsc->hwradiooff = true; |
| actuallyset = true; |
| } |
| |
| if (actuallyset) { |
| spin_lock(&rtlpriv->locks.rf_ps_lock); |
| ppsc->rfchange_inprogress = false; |
| spin_unlock(&rtlpriv->locks.rf_ps_lock); |
| } else { |
| if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) |
| RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); |
| |
| spin_lock(&rtlpriv->locks.rf_ps_lock); |
| ppsc->rfchange_inprogress = false; |
| spin_unlock(&rtlpriv->locks.rf_ps_lock); |
| } |
| |
| *valid = 1; |
| return !ppsc->hwradiooff; |
| } |
| |
| static void add_one_key(struct ieee80211_hw *hw, u8 *macaddr, |
| struct rtl_mac *mac, u32 key, u32 id, |
| u8 enc_algo, bool is_pairwise) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "add one entry\n"); |
| if (is_pairwise) { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set Pairwise key\n"); |
| |
| rtl_cam_add_one_entry(hw, macaddr, key, id, enc_algo, |
| CAM_CONFIG_NO_USEDK, |
| rtlpriv->sec.key_buf[key]); |
| } else { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set group key\n"); |
| |
| if (mac->opmode == NL80211_IFTYPE_ADHOC) { |
| rtl_cam_add_one_entry(hw, rtlefuse->dev_addr, |
| PAIRWISE_KEYIDX, |
| CAM_PAIRWISE_KEY_POSITION, |
| enc_algo, |
| CAM_CONFIG_NO_USEDK, |
| rtlpriv->sec.key_buf[id]); |
| } |
| |
| rtl_cam_add_one_entry(hw, macaddr, key, id, enc_algo, |
| CAM_CONFIG_NO_USEDK, |
| rtlpriv->sec.key_buf[id]); |
| } |
| } |
| |
| void rtl88ee_set_key(struct ieee80211_hw *hw, u32 key, |
| u8 *mac_ad, bool is_group, u8 enc_algo, |
| bool is_wepkey, bool clear_all) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| u8 *macaddr = mac_ad; |
| u32 id = 0; |
| bool is_pairwise = false; |
| |
| static u8 cam_const_addr[4][6] = { |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} |
| }; |
| static u8 cam_const_broad[] = { |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
| }; |
| |
| if (clear_all) { |
| u8 idx = 0; |
| u8 cam_offset = 0; |
| u8 clear_number = 5; |
| |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); |
| |
| for (idx = 0; idx < clear_number; idx++) { |
| rtl_cam_mark_invalid(hw, cam_offset + idx); |
| rtl_cam_empty_entry(hw, cam_offset + idx); |
| |
| if (idx < 5) { |
| memset(rtlpriv->sec.key_buf[idx], 0, |
| MAX_KEY_LEN); |
| rtlpriv->sec.key_len[idx] = 0; |
| } |
| } |
| |
| } else { |
| switch (enc_algo) { |
| case WEP40_ENCRYPTION: |
| enc_algo = CAM_WEP40; |
| break; |
| case WEP104_ENCRYPTION: |
| enc_algo = CAM_WEP104; |
| break; |
| case TKIP_ENCRYPTION: |
| enc_algo = CAM_TKIP; |
| break; |
| case AESCCMP_ENCRYPTION: |
| enc_algo = CAM_AES; |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "switch case not processed\n"); |
| enc_algo = CAM_TKIP; |
| break; |
| } |
| |
| if (is_wepkey || rtlpriv->sec.use_defaultkey) { |
| macaddr = cam_const_addr[key]; |
| id = key; |
| } else { |
| if (is_group) { |
| macaddr = cam_const_broad; |
| id = key; |
| } else { |
| if (mac->opmode == NL80211_IFTYPE_AP || |
| mac->opmode == NL80211_IFTYPE_MESH_POINT) { |
| id = rtl_cam_get_free_entry(hw, mac_ad); |
| if (id >= TOTAL_CAM_ENTRY) { |
| RT_TRACE(rtlpriv, COMP_SEC, |
| DBG_EMERG, |
| "Can not find free hw security cam entry\n"); |
| return; |
| } |
| } else { |
| id = CAM_PAIRWISE_KEY_POSITION; |
| } |
| |
| key = PAIRWISE_KEYIDX; |
| is_pairwise = true; |
| } |
| } |
| |
| if (rtlpriv->sec.key_len[key] == 0) { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "delete one entry, id is %d\n", id); |
| if (mac->opmode == NL80211_IFTYPE_AP || |
| mac->opmode == NL80211_IFTYPE_MESH_POINT) |
| rtl_cam_del_entry(hw, mac_ad); |
| rtl_cam_delete_one_entry(hw, mac_ad, id); |
| } else { |
| add_one_key(hw, macaddr, mac, key, id, enc_algo, |
| is_pairwise); |
| } |
| } |
| } |
| |
| static void rtl8188ee_bt_var_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_pci_priv *rppriv = rtl_pcipriv(hw); |
| struct bt_coexist_info coexist = rppriv->bt_coexist; |
| |
| coexist.bt_coexistence = rppriv->bt_coexist.eeprom_bt_coexist; |
| coexist.bt_ant_num = coexist.eeprom_bt_ant_num; |
| coexist.bt_coexist_type = coexist.eeprom_bt_type; |
| |
| if (coexist.reg_bt_iso == 2) |
| coexist.bt_ant_isolation = coexist.eeprom_bt_ant_isol; |
| else |
| coexist.bt_ant_isolation = coexist.reg_bt_iso; |
| |
| coexist.bt_radio_shared_type = coexist.eeprom_bt_radio_shared; |
| |
| if (coexist.bt_coexistence) { |
| if (coexist.reg_bt_sco == 1) |
| coexist.bt_service = BT_OTHER_ACTION; |
| else if (coexist.reg_bt_sco == 2) |
| coexist.bt_service = BT_SCO; |
| else if (coexist.reg_bt_sco == 4) |
| coexist.bt_service = BT_BUSY; |
| else if (coexist.reg_bt_sco == 5) |
| coexist.bt_service = BT_OTHERBUSY; |
| else |
| coexist.bt_service = BT_IDLE; |
| |
| coexist.bt_edca_ul = 0; |
| coexist.bt_edca_dl = 0; |
| coexist.bt_rssi_state = 0xff; |
| } |
| } |
| |
| void rtl8188ee_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw, |
| bool auto_load_fail, u8 *hwinfo) |
| { |
| rtl8188ee_bt_var_init(hw); |
| } |
| |
| void rtl8188ee_bt_reg_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_pci_priv *rppriv = rtl_pcipriv(hw); |
| |
| /* 0:Low, 1:High, 2:From Efuse. */ |
| rppriv->bt_coexist.reg_bt_iso = 2; |
| /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */ |
| rppriv->bt_coexist.reg_bt_sco = 3; |
| /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */ |
| rppriv->bt_coexist.reg_bt_sco = 0; |
| } |
| |
| void rtl8188ee_bt_hw_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_pci_priv *rppriv = rtl_pcipriv(hw); |
| struct bt_coexist_info coexist = rppriv->bt_coexist; |
| u8 u1_tmp; |
| |
| if (coexist.bt_coexistence && |
| ((coexist.bt_coexist_type == BT_CSR_BC4) || |
| coexist.bt_coexist_type == BT_CSR_BC8)) { |
| if (coexist.bt_ant_isolation) |
| rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0); |
| |
| u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) & |
| BIT_OFFSET_LEN_MASK_32(0, 1); |
| u1_tmp = u1_tmp | ((coexist.bt_ant_isolation == 1) ? |
| 0 : BIT_OFFSET_LEN_MASK_32(1, 1)) | |
| ((coexist.bt_service == BT_SCO) ? |
| 0 : BIT_OFFSET_LEN_MASK_32(2, 1)); |
| rtl_write_byte(rtlpriv, 0x4fd, u1_tmp); |
| |
| rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa); |
| rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040); |
| rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010); |
| |
| /* Config to 1T1R. */ |
| if (rtlphy->rf_type == RF_1T1R) { |
| u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE); |
| u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1)); |
| rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp); |
| |
| u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE); |
| u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1)); |
| rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp); |
| } |
| } |
| } |
| |
| void rtl88ee_suspend(struct ieee80211_hw *hw) |
| { |
| } |
| |
| void rtl88ee_resume(struct ieee80211_hw *hw) |
| { |
| } |