|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/acpi_pmtmr.h> | 
|  |  | 
|  | #include <asm/hpet.h> | 
|  | #include <asm/timex.h> | 
|  | #include <asm/timer.h> | 
|  | #include <asm/vgtod.h> | 
|  |  | 
|  | static int notsc __initdata = 0; | 
|  |  | 
|  | unsigned int cpu_khz;		/* TSC clocks / usec, not used here */ | 
|  | EXPORT_SYMBOL(cpu_khz); | 
|  | unsigned int tsc_khz; | 
|  | EXPORT_SYMBOL(tsc_khz); | 
|  |  | 
|  | /* Accelerators for sched_clock() | 
|  | * convert from cycles(64bits) => nanoseconds (64bits) | 
|  | *  basic equation: | 
|  | *		ns = cycles / (freq / ns_per_sec) | 
|  | *		ns = cycles * (ns_per_sec / freq) | 
|  | *		ns = cycles * (10^9 / (cpu_khz * 10^3)) | 
|  | *		ns = cycles * (10^6 / cpu_khz) | 
|  | * | 
|  | *	Then we use scaling math (suggested by george@mvista.com) to get: | 
|  | *		ns = cycles * (10^6 * SC / cpu_khz) / SC | 
|  | *		ns = cycles * cyc2ns_scale / SC | 
|  | * | 
|  | *	And since SC is a constant power of two, we can convert the div | 
|  | *  into a shift. | 
|  | * | 
|  | *  We can use khz divisor instead of mhz to keep a better precision, since | 
|  | *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. | 
|  | *  (mathieu.desnoyers@polymtl.ca) | 
|  | * | 
|  | *			-johnstul@us.ibm.com "math is hard, lets go shopping!" | 
|  | */ | 
|  | DEFINE_PER_CPU(unsigned long, cyc2ns); | 
|  |  | 
|  | static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) | 
|  | { | 
|  | unsigned long long tsc_now, ns_now; | 
|  | unsigned long flags, *scale; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | sched_clock_idle_sleep_event(); | 
|  |  | 
|  | scale = &per_cpu(cyc2ns, cpu); | 
|  |  | 
|  | rdtscll(tsc_now); | 
|  | ns_now = __cycles_2_ns(tsc_now); | 
|  |  | 
|  | if (cpu_khz) | 
|  | *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; | 
|  |  | 
|  | sched_clock_idle_wakeup_event(0); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | unsigned long long native_sched_clock(void) | 
|  | { | 
|  | unsigned long a = 0; | 
|  |  | 
|  | /* Could do CPU core sync here. Opteron can execute rdtsc speculatively, | 
|  | * which means it is not completely exact and may not be monotonous | 
|  | * between CPUs. But the errors should be too small to matter for | 
|  | * scheduling purposes. | 
|  | */ | 
|  |  | 
|  | rdtscll(a); | 
|  | return cycles_2_ns(a); | 
|  | } | 
|  |  | 
|  | /* We need to define a real function for sched_clock, to override the | 
|  | weak default version */ | 
|  | #ifdef CONFIG_PARAVIRT | 
|  | unsigned long long sched_clock(void) | 
|  | { | 
|  | return paravirt_sched_clock(); | 
|  | } | 
|  | #else | 
|  | unsigned long long | 
|  | sched_clock(void) __attribute__((alias("native_sched_clock"))); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static int tsc_unstable; | 
|  |  | 
|  | int check_tsc_unstable(void) | 
|  | { | 
|  | return tsc_unstable; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(check_tsc_unstable); | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  |  | 
|  | /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency | 
|  | * changes. | 
|  | * | 
|  | * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's | 
|  | * not that important because current Opteron setups do not support | 
|  | * scaling on SMP anyroads. | 
|  | * | 
|  | * Should fix up last_tsc too. Currently gettimeofday in the | 
|  | * first tick after the change will be slightly wrong. | 
|  | */ | 
|  |  | 
|  | static unsigned int  ref_freq; | 
|  | static unsigned long loops_per_jiffy_ref; | 
|  | static unsigned long tsc_khz_ref; | 
|  |  | 
|  | static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | 
|  | void *data) | 
|  | { | 
|  | struct cpufreq_freqs *freq = data; | 
|  | unsigned long *lpj, dummy; | 
|  |  | 
|  | if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) | 
|  | return 0; | 
|  |  | 
|  | lpj = &dummy; | 
|  | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) | 
|  | #ifdef CONFIG_SMP | 
|  | lpj = &cpu_data(freq->cpu).loops_per_jiffy; | 
|  | #else | 
|  | lpj = &boot_cpu_data.loops_per_jiffy; | 
|  | #endif | 
|  |  | 
|  | if (!ref_freq) { | 
|  | ref_freq = freq->old; | 
|  | loops_per_jiffy_ref = *lpj; | 
|  | tsc_khz_ref = tsc_khz; | 
|  | } | 
|  | if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) || | 
|  | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || | 
|  | (val == CPUFREQ_RESUMECHANGE)) { | 
|  | *lpj = | 
|  | cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); | 
|  |  | 
|  | tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); | 
|  | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) | 
|  | mark_tsc_unstable("cpufreq changes"); | 
|  | } | 
|  |  | 
|  | set_cyc2ns_scale(tsc_khz_ref, freq->cpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct notifier_block time_cpufreq_notifier_block = { | 
|  | .notifier_call  = time_cpufreq_notifier | 
|  | }; | 
|  |  | 
|  | static int __init cpufreq_tsc(void) | 
|  | { | 
|  | cpufreq_register_notifier(&time_cpufreq_notifier_block, | 
|  | CPUFREQ_TRANSITION_NOTIFIER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | core_initcall(cpufreq_tsc); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #define MAX_RETRIES	5 | 
|  | #define SMI_TRESHOLD	50000 | 
|  |  | 
|  | /* | 
|  | * Read TSC and the reference counters. Take care of SMI disturbance | 
|  | */ | 
|  | static unsigned long __init tsc_read_refs(unsigned long *pm, | 
|  | unsigned long *hpet) | 
|  | { | 
|  | unsigned long t1, t2; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_RETRIES; i++) { | 
|  | t1 = get_cycles(); | 
|  | if (hpet) | 
|  | *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; | 
|  | else | 
|  | *pm = acpi_pm_read_early(); | 
|  | t2 = get_cycles(); | 
|  | if ((t2 - t1) < SMI_TRESHOLD) | 
|  | return t2; | 
|  | } | 
|  | return ULONG_MAX; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tsc_calibrate - calibrate the tsc on boot | 
|  | */ | 
|  | void __init tsc_calibrate(void) | 
|  | { | 
|  | unsigned long flags, tsc1, tsc2, tr1, tr2, pm1, pm2, hpet1, hpet2; | 
|  | int hpet = is_hpet_enabled(), cpu; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL); | 
|  |  | 
|  | outb((inb(0x61) & ~0x02) | 0x01, 0x61); | 
|  |  | 
|  | outb(0xb0, 0x43); | 
|  | outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42); | 
|  | outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42); | 
|  | tr1 = get_cycles(); | 
|  | while ((inb(0x61) & 0x20) == 0); | 
|  | tr2 = get_cycles(); | 
|  |  | 
|  | tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* | 
|  | * Preset the result with the raw and inaccurate PIT | 
|  | * calibration value | 
|  | */ | 
|  | tsc_khz = (tr2 - tr1) / 50; | 
|  |  | 
|  | /* hpet or pmtimer available ? */ | 
|  | if (!hpet && !pm1 && !pm2) { | 
|  | printk(KERN_INFO "TSC calibrated against PIT\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Check, whether the sampling was disturbed by an SMI */ | 
|  | if (tsc1 == ULONG_MAX || tsc2 == ULONG_MAX) { | 
|  | printk(KERN_WARNING "TSC calibration disturbed by SMI, " | 
|  | "using PIT calibration result\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | tsc2 = (tsc2 - tsc1) * 1000000L; | 
|  |  | 
|  | if (hpet) { | 
|  | printk(KERN_INFO "TSC calibrated against HPET\n"); | 
|  | if (hpet2 < hpet1) | 
|  | hpet2 += 0x100000000; | 
|  | hpet2 -= hpet1; | 
|  | tsc1 = (hpet2 * hpet_readl(HPET_PERIOD)) / 1000000; | 
|  | } else { | 
|  | printk(KERN_INFO "TSC calibrated against PM_TIMER\n"); | 
|  | if (pm2 < pm1) | 
|  | pm2 += ACPI_PM_OVRRUN; | 
|  | pm2 -= pm1; | 
|  | tsc1 = (pm2 * 1000000000) / PMTMR_TICKS_PER_SEC; | 
|  | } | 
|  |  | 
|  | tsc_khz = tsc2 / tsc1; | 
|  |  | 
|  | out: | 
|  | for_each_possible_cpu(cpu) | 
|  | set_cyc2ns_scale(tsc_khz, cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make an educated guess if the TSC is trustworthy and synchronized | 
|  | * over all CPUs. | 
|  | */ | 
|  | __cpuinit int unsynchronized_tsc(void) | 
|  | { | 
|  | if (tsc_unstable) | 
|  | return 1; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (apic_is_clustered_box()) | 
|  | return 1; | 
|  | #endif | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 
|  | return 0; | 
|  |  | 
|  | /* Assume multi socket systems are not synchronized */ | 
|  | return num_present_cpus() > 1; | 
|  | } | 
|  |  | 
|  | int __init notsc_setup(char *s) | 
|  | { | 
|  | notsc = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("notsc", notsc_setup); | 
|  |  | 
|  | static struct clocksource clocksource_tsc; | 
|  |  | 
|  | /* | 
|  | * We compare the TSC to the cycle_last value in the clocksource | 
|  | * structure to avoid a nasty time-warp. This can be observed in a | 
|  | * very small window right after one CPU updated cycle_last under | 
|  | * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which | 
|  | * is smaller than the cycle_last reference value due to a TSC which | 
|  | * is slighty behind. This delta is nowhere else observable, but in | 
|  | * that case it results in a forward time jump in the range of hours | 
|  | * due to the unsigned delta calculation of the time keeping core | 
|  | * code, which is necessary to support wrapping clocksources like pm | 
|  | * timer. | 
|  | */ | 
|  | static cycle_t read_tsc(void) | 
|  | { | 
|  | cycle_t ret = (cycle_t)get_cycles(); | 
|  |  | 
|  | return ret >= clocksource_tsc.cycle_last ? | 
|  | ret : clocksource_tsc.cycle_last; | 
|  | } | 
|  |  | 
|  | static cycle_t __vsyscall_fn vread_tsc(void) | 
|  | { | 
|  | cycle_t ret = (cycle_t)vget_cycles(); | 
|  |  | 
|  | return ret >= __vsyscall_gtod_data.clock.cycle_last ? | 
|  | ret : __vsyscall_gtod_data.clock.cycle_last; | 
|  | } | 
|  |  | 
|  | static struct clocksource clocksource_tsc = { | 
|  | .name			= "tsc", | 
|  | .rating			= 300, | 
|  | .read			= read_tsc, | 
|  | .mask			= CLOCKSOURCE_MASK(64), | 
|  | .shift			= 22, | 
|  | .flags			= CLOCK_SOURCE_IS_CONTINUOUS | | 
|  | CLOCK_SOURCE_MUST_VERIFY, | 
|  | .vread			= vread_tsc, | 
|  | }; | 
|  |  | 
|  | void mark_tsc_unstable(char *reason) | 
|  | { | 
|  | if (!tsc_unstable) { | 
|  | tsc_unstable = 1; | 
|  | printk("Marking TSC unstable due to %s\n", reason); | 
|  | /* Change only the rating, when not registered */ | 
|  | if (clocksource_tsc.mult) | 
|  | clocksource_change_rating(&clocksource_tsc, 0); | 
|  | else | 
|  | clocksource_tsc.rating = 0; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mark_tsc_unstable); | 
|  |  | 
|  | void __init init_tsc_clocksource(void) | 
|  | { | 
|  | if (!notsc) { | 
|  | clocksource_tsc.mult = clocksource_khz2mult(tsc_khz, | 
|  | clocksource_tsc.shift); | 
|  | if (check_tsc_unstable()) | 
|  | clocksource_tsc.rating = 0; | 
|  |  | 
|  | clocksource_register(&clocksource_tsc); | 
|  | } | 
|  | } |