|  | /* | 
|  | * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details | 
|  | */ | 
|  |  | 
|  | /* this file has an amazingly stupid | 
|  | name, yura please fix it to be | 
|  | reiserfs.h, and merge all the rest | 
|  | of our .h files that are in this | 
|  | directory into it.  */ | 
|  |  | 
|  | #ifndef _LINUX_REISER_FS_H | 
|  | #define _LINUX_REISER_FS_H | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/magic.h> | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/reiserfs_fs_i.h> | 
|  | #include <linux/reiserfs_fs_sb.h> | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | *  include/linux/reiser_fs.h | 
|  | * | 
|  | *  Reiser File System constants and structures | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* ioctl's command */ | 
|  | #define REISERFS_IOC_UNPACK		_IOW(0xCD,1,long) | 
|  | /* define following flags to be the same as in ext2, so that chattr(1), | 
|  | lsattr(1) will work with us. */ | 
|  | #define REISERFS_IOC_GETFLAGS		FS_IOC_GETFLAGS | 
|  | #define REISERFS_IOC_SETFLAGS		FS_IOC_SETFLAGS | 
|  | #define REISERFS_IOC_GETVERSION		FS_IOC_GETVERSION | 
|  | #define REISERFS_IOC_SETVERSION		FS_IOC_SETVERSION | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  | /* the 32 bit compat definitions with int argument */ | 
|  | #define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int) | 
|  | #define REISERFS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS | 
|  | #define REISERFS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS | 
|  | #define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION | 
|  | #define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION | 
|  |  | 
|  | /* | 
|  | * Locking primitives. The write lock is a per superblock | 
|  | * special mutex that has properties close to the Big Kernel Lock | 
|  | * which was used in the previous locking scheme. | 
|  | */ | 
|  | void reiserfs_write_lock(struct super_block *s); | 
|  | void reiserfs_write_unlock(struct super_block *s); | 
|  | int reiserfs_write_lock_once(struct super_block *s); | 
|  | void reiserfs_write_unlock_once(struct super_block *s, int lock_depth); | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | void reiserfs_lock_check_recursive(struct super_block *s); | 
|  | #else | 
|  | static inline void reiserfs_lock_check_recursive(struct super_block *s) { } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Several mutexes depend on the write lock. | 
|  | * However sometimes we want to relax the write lock while we hold | 
|  | * these mutexes, according to the release/reacquire on schedule() | 
|  | * properties of the Bkl that were used. | 
|  | * Reiserfs performances and locking were based on this scheme. | 
|  | * Now that the write lock is a mutex and not the bkl anymore, doing so | 
|  | * may result in a deadlock: | 
|  | * | 
|  | * A acquire write_lock | 
|  | * A acquire j_commit_mutex | 
|  | * A release write_lock and wait for something | 
|  | * B acquire write_lock | 
|  | * B can't acquire j_commit_mutex and sleep | 
|  | * A can't acquire write lock anymore | 
|  | * deadlock | 
|  | * | 
|  | * What we do here is avoiding such deadlock by playing the same game | 
|  | * than the Bkl: if we can't acquire a mutex that depends on the write lock, | 
|  | * we release the write lock, wait a bit and then retry. | 
|  | * | 
|  | * The mutexes concerned by this hack are: | 
|  | * - The commit mutex of a journal list | 
|  | * - The flush mutex | 
|  | * - The journal lock | 
|  | * - The inode mutex | 
|  | */ | 
|  | static inline void reiserfs_mutex_lock_safe(struct mutex *m, | 
|  | struct super_block *s) | 
|  | { | 
|  | reiserfs_lock_check_recursive(s); | 
|  | reiserfs_write_unlock(s); | 
|  | mutex_lock(m); | 
|  | reiserfs_write_lock(s); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, | 
|  | struct super_block *s) | 
|  | { | 
|  | reiserfs_lock_check_recursive(s); | 
|  | reiserfs_write_unlock(s); | 
|  | mutex_lock_nested(m, subclass); | 
|  | reiserfs_write_lock(s); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) | 
|  | { | 
|  | reiserfs_lock_check_recursive(s); | 
|  | reiserfs_write_unlock(s); | 
|  | down_read(sem); | 
|  | reiserfs_write_lock(s); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we schedule, we usually want to also release the write lock, | 
|  | * according to the previous bkl based locking scheme of reiserfs. | 
|  | */ | 
|  | static inline void reiserfs_cond_resched(struct super_block *s) | 
|  | { | 
|  | if (need_resched()) { | 
|  | reiserfs_write_unlock(s); | 
|  | schedule(); | 
|  | reiserfs_write_lock(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct fid; | 
|  |  | 
|  | /* in reading the #defines, it may help to understand that they employ | 
|  | the following abbreviations: | 
|  |  | 
|  | B = Buffer | 
|  | I = Item header | 
|  | H = Height within the tree (should be changed to LEV) | 
|  | N = Number of the item in the node | 
|  | STAT = stat data | 
|  | DEH = Directory Entry Header | 
|  | EC = Entry Count | 
|  | E = Entry number | 
|  | UL = Unsigned Long | 
|  | BLKH = BLocK Header | 
|  | UNFM = UNForMatted node | 
|  | DC = Disk Child | 
|  | P = Path | 
|  |  | 
|  | These #defines are named by concatenating these abbreviations, | 
|  | where first comes the arguments, and last comes the return value, | 
|  | of the macro. | 
|  |  | 
|  | */ | 
|  |  | 
|  | #define USE_INODE_GENERATION_COUNTER | 
|  |  | 
|  | #define REISERFS_PREALLOCATE | 
|  | #define DISPLACE_NEW_PACKING_LOCALITIES | 
|  | #define PREALLOCATION_SIZE 9 | 
|  |  | 
|  | /* n must be power of 2 */ | 
|  | #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) | 
|  |  | 
|  | // to be ok for alpha and others we have to align structures to 8 byte | 
|  | // boundary. | 
|  | // FIXME: do not change 4 by anything else: there is code which relies on that | 
|  | #define ROUND_UP(x) _ROUND_UP(x,8LL) | 
|  |  | 
|  | /* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug | 
|  | ** messages. | 
|  | */ | 
|  | #define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */ | 
|  |  | 
|  | void __reiserfs_warning(struct super_block *s, const char *id, | 
|  | const char *func, const char *fmt, ...); | 
|  | #define reiserfs_warning(s, id, fmt, args...) \ | 
|  | __reiserfs_warning(s, id, __func__, fmt, ##args) | 
|  | /* assertions handling */ | 
|  |  | 
|  | /** always check a condition and panic if it's false. */ | 
|  | #define __RASSERT(cond, scond, format, args...)			\ | 
|  | do {									\ | 
|  | if (!(cond))							\ | 
|  | reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ | 
|  | __FILE__ ":%i:%s: " format "\n",		\ | 
|  | in_interrupt() ? -1 : task_pid_nr(current), \ | 
|  | __LINE__, __func__ , ##args);		\ | 
|  | } while (0) | 
|  |  | 
|  | #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) | 
|  |  | 
|  | #if defined( CONFIG_REISERFS_CHECK ) | 
|  | #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) | 
|  | #else | 
|  | #define RFALSE( cond, format, args... ) do {;} while( 0 ) | 
|  | #endif | 
|  |  | 
|  | #define CONSTF __attribute_const__ | 
|  | /* | 
|  | * Disk Data Structures | 
|  | */ | 
|  |  | 
|  | /***************************************************************************/ | 
|  | /*                             SUPER BLOCK                                 */ | 
|  | /***************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs | 
|  | * the version in RAM is part of a larger structure containing fields never written to disk. | 
|  | */ | 
|  | #define UNSET_HASH 0		// read_super will guess about, what hash names | 
|  | // in directories were sorted with | 
|  | #define TEA_HASH  1 | 
|  | #define YURA_HASH 2 | 
|  | #define R5_HASH   3 | 
|  | #define DEFAULT_HASH R5_HASH | 
|  |  | 
|  | struct journal_params { | 
|  | __le32 jp_journal_1st_block;	/* where does journal start from on its | 
|  | * device */ | 
|  | __le32 jp_journal_dev;	/* journal device st_rdev */ | 
|  | __le32 jp_journal_size;	/* size of the journal */ | 
|  | __le32 jp_journal_trans_max;	/* max number of blocks in a transaction. */ | 
|  | __le32 jp_journal_magic;	/* random value made on fs creation (this | 
|  | * was sb_journal_block_count) */ | 
|  | __le32 jp_journal_max_batch;	/* max number of blocks to batch into a | 
|  | * trans */ | 
|  | __le32 jp_journal_max_commit_age;	/* in seconds, how old can an async | 
|  | * commit be */ | 
|  | __le32 jp_journal_max_trans_age;	/* in seconds, how old can a transaction | 
|  | * be */ | 
|  | }; | 
|  |  | 
|  | /* this is the super from 3.5.X, where X >= 10 */ | 
|  | struct reiserfs_super_block_v1 { | 
|  | __le32 s_block_count;	/* blocks count         */ | 
|  | __le32 s_free_blocks;	/* free blocks count    */ | 
|  | __le32 s_root_block;	/* root block number    */ | 
|  | struct journal_params s_journal; | 
|  | __le16 s_blocksize;	/* block size */ | 
|  | __le16 s_oid_maxsize;	/* max size of object id array, see | 
|  | * get_objectid() commentary  */ | 
|  | __le16 s_oid_cursize;	/* current size of object id array */ | 
|  | __le16 s_umount_state;	/* this is set to 1 when filesystem was | 
|  | * umounted, to 2 - when not */ | 
|  | char s_magic[10];	/* reiserfs magic string indicates that | 
|  | * file system is reiserfs: | 
|  | * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */ | 
|  | __le16 s_fs_state;	/* it is set to used by fsck to mark which | 
|  | * phase of rebuilding is done */ | 
|  | __le32 s_hash_function_code;	/* indicate, what hash function is being use | 
|  | * to sort names in a directory*/ | 
|  | __le16 s_tree_height;	/* height of disk tree */ | 
|  | __le16 s_bmap_nr;	/* amount of bitmap blocks needed to address | 
|  | * each block of file system */ | 
|  | __le16 s_version;	/* this field is only reliable on filesystem | 
|  | * with non-standard journal */ | 
|  | __le16 s_reserved_for_journal;	/* size in blocks of journal area on main | 
|  | * device, we need to keep after | 
|  | * making fs with non-standard journal */ | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) | 
|  |  | 
|  | /* this is the on disk super block */ | 
|  | struct reiserfs_super_block { | 
|  | struct reiserfs_super_block_v1 s_v1; | 
|  | __le32 s_inode_generation; | 
|  | __le32 s_flags;		/* Right now used only by inode-attributes, if enabled */ | 
|  | unsigned char s_uuid[16];	/* filesystem unique identifier */ | 
|  | unsigned char s_label[16];	/* filesystem volume label */ | 
|  | __le16 s_mnt_count;		/* Count of mounts since last fsck */ | 
|  | __le16 s_max_mnt_count;		/* Maximum mounts before check */ | 
|  | __le32 s_lastcheck;		/* Timestamp of last fsck */ | 
|  | __le32 s_check_interval;	/* Interval between checks */ | 
|  | char s_unused[76];	/* zero filled by mkreiserfs and | 
|  | * reiserfs_convert_objectid_map_v1() | 
|  | * so any additions must be updated | 
|  | * there as well. */ | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | #define SB_SIZE (sizeof(struct reiserfs_super_block)) | 
|  |  | 
|  | #define REISERFS_VERSION_1 0 | 
|  | #define REISERFS_VERSION_2 2 | 
|  |  | 
|  | // on-disk super block fields converted to cpu form | 
|  | #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) | 
|  | #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) | 
|  | #define SB_BLOCKSIZE(s) \ | 
|  | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) | 
|  | #define SB_BLOCK_COUNT(s) \ | 
|  | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) | 
|  | #define SB_FREE_BLOCKS(s) \ | 
|  | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) | 
|  | #define SB_REISERFS_MAGIC(s) \ | 
|  | (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) | 
|  | #define SB_ROOT_BLOCK(s) \ | 
|  | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) | 
|  | #define SB_TREE_HEIGHT(s) \ | 
|  | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) | 
|  | #define SB_REISERFS_STATE(s) \ | 
|  | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) | 
|  | #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) | 
|  | #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) | 
|  |  | 
|  | #define PUT_SB_BLOCK_COUNT(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) | 
|  | #define PUT_SB_FREE_BLOCKS(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) | 
|  | #define PUT_SB_ROOT_BLOCK(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) | 
|  | #define PUT_SB_TREE_HEIGHT(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) | 
|  | #define PUT_SB_REISERFS_STATE(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) | 
|  | #define PUT_SB_VERSION(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) | 
|  | #define PUT_SB_BMAP_NR(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) | 
|  |  | 
|  | #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) | 
|  | #define SB_ONDISK_JOURNAL_SIZE(s) \ | 
|  | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) | 
|  | #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ | 
|  | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) | 
|  | #define SB_ONDISK_JOURNAL_DEVICE(s) \ | 
|  | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) | 
|  | #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ | 
|  | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) | 
|  |  | 
|  | #define is_block_in_log_or_reserved_area(s, block) \ | 
|  | block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ | 
|  | && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \ | 
|  | ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ | 
|  | SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) | 
|  |  | 
|  | int is_reiserfs_3_5(struct reiserfs_super_block *rs); | 
|  | int is_reiserfs_3_6(struct reiserfs_super_block *rs); | 
|  | int is_reiserfs_jr(struct reiserfs_super_block *rs); | 
|  |  | 
|  | /* ReiserFS leaves the first 64k unused, so that partition labels have | 
|  | enough space.  If someone wants to write a fancy bootloader that | 
|  | needs more than 64k, let us know, and this will be increased in size. | 
|  | This number must be larger than than the largest block size on any | 
|  | platform, or code will break.  -Hans */ | 
|  | #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) | 
|  | #define REISERFS_FIRST_BLOCK unused_define | 
|  | #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES | 
|  |  | 
|  | /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ | 
|  | #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) | 
|  |  | 
|  | /* reiserfs internal error code (used by search_by_key and fix_nodes)) */ | 
|  | #define CARRY_ON      0 | 
|  | #define REPEAT_SEARCH -1 | 
|  | #define IO_ERROR      -2 | 
|  | #define NO_DISK_SPACE -3 | 
|  | #define NO_BALANCING_NEEDED  (-4) | 
|  | #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) | 
|  | #define QUOTA_EXCEEDED -6 | 
|  |  | 
|  | typedef __u32 b_blocknr_t; | 
|  | typedef __le32 unp_t; | 
|  |  | 
|  | struct unfm_nodeinfo { | 
|  | unp_t unfm_nodenum; | 
|  | unsigned short unfm_freespace; | 
|  | }; | 
|  |  | 
|  | /* there are two formats of keys: 3.5 and 3.6 | 
|  | */ | 
|  | #define KEY_FORMAT_3_5 0 | 
|  | #define KEY_FORMAT_3_6 1 | 
|  |  | 
|  | /* there are two stat datas */ | 
|  | #define STAT_DATA_V1 0 | 
|  | #define STAT_DATA_V2 1 | 
|  |  | 
|  | static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) | 
|  | { | 
|  | return container_of(inode, struct reiserfs_inode_info, vfs_inode); | 
|  | } | 
|  |  | 
|  | static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) | 
|  | { | 
|  | return sb->s_fs_info; | 
|  | } | 
|  |  | 
|  | /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 | 
|  | * which overflows on large file systems. */ | 
|  | static inline __u32 reiserfs_bmap_count(struct super_block *sb) | 
|  | { | 
|  | return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; | 
|  | } | 
|  |  | 
|  | static inline int bmap_would_wrap(unsigned bmap_nr) | 
|  | { | 
|  | return bmap_nr > ((1LL << 16) - 1); | 
|  | } | 
|  |  | 
|  | /** this says about version of key of all items (but stat data) the | 
|  | object consists of */ | 
|  | #define get_inode_item_key_version( inode )                                    \ | 
|  | ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) | 
|  |  | 
|  | #define set_inode_item_key_version( inode, version )                           \ | 
|  | ({ if((version)==KEY_FORMAT_3_6)                                      \ | 
|  | REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \ | 
|  | else                                                               \ | 
|  | REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) | 
|  |  | 
|  | #define get_inode_sd_version(inode)                                            \ | 
|  | ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) | 
|  |  | 
|  | #define set_inode_sd_version(inode, version)                                   \ | 
|  | ({ if((version)==STAT_DATA_V2)                                        \ | 
|  | REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \ | 
|  | else                                                               \ | 
|  | REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) | 
|  |  | 
|  | /* This is an aggressive tail suppression policy, I am hoping it | 
|  | improves our benchmarks. The principle behind it is that percentage | 
|  | space saving is what matters, not absolute space saving.  This is | 
|  | non-intuitive, but it helps to understand it if you consider that the | 
|  | cost to access 4 blocks is not much more than the cost to access 1 | 
|  | block, if you have to do a seek and rotate.  A tail risks a | 
|  | non-linear disk access that is significant as a percentage of total | 
|  | time cost for a 4 block file and saves an amount of space that is | 
|  | less significant as a percentage of space, or so goes the hypothesis. | 
|  | -Hans */ | 
|  | #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ | 
|  | (\ | 
|  | (!(n_tail_size)) || \ | 
|  | (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ | 
|  | ( (n_file_size) >= (n_block_size) * 4 ) || \ | 
|  | ( ( (n_file_size) >= (n_block_size) * 3 ) && \ | 
|  | ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ | 
|  | ( ( (n_file_size) >= (n_block_size) * 2 ) && \ | 
|  | ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ | 
|  | ( ( (n_file_size) >= (n_block_size) ) && \ | 
|  | ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ | 
|  | ) | 
|  |  | 
|  | /* Another strategy for tails, this one means only create a tail if all the | 
|  | file would fit into one DIRECT item. | 
|  | Primary intention for this one is to increase performance by decreasing | 
|  | seeking. | 
|  | */ | 
|  | #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ | 
|  | (\ | 
|  | (!(n_tail_size)) || \ | 
|  | (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ | 
|  | ) | 
|  |  | 
|  | /* | 
|  | * values for s_umount_state field | 
|  | */ | 
|  | #define REISERFS_VALID_FS    1 | 
|  | #define REISERFS_ERROR_FS    2 | 
|  |  | 
|  | // | 
|  | // there are 5 item types currently | 
|  | // | 
|  | #define TYPE_STAT_DATA 0 | 
|  | #define TYPE_INDIRECT 1 | 
|  | #define TYPE_DIRECT 2 | 
|  | #define TYPE_DIRENTRY 3 | 
|  | #define TYPE_MAXTYPE 3 | 
|  | #define TYPE_ANY 15		// FIXME: comment is required | 
|  |  | 
|  | /***************************************************************************/ | 
|  | /*                       KEY & ITEM HEAD                                   */ | 
|  | /***************************************************************************/ | 
|  |  | 
|  | // | 
|  | // directories use this key as well as old files | 
|  | // | 
|  | struct offset_v1 { | 
|  | __le32 k_offset; | 
|  | __le32 k_uniqueness; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct offset_v2 { | 
|  | __le64 v; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) | 
|  | { | 
|  | __u8 type = le64_to_cpu(v2->v) >> 60; | 
|  | return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; | 
|  | } | 
|  |  | 
|  | static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) | 
|  | { | 
|  | v2->v = | 
|  | (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); | 
|  | } | 
|  |  | 
|  | static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) | 
|  | { | 
|  | return le64_to_cpu(v2->v) & (~0ULL >> 4); | 
|  | } | 
|  |  | 
|  | static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) | 
|  | { | 
|  | offset &= (~0ULL >> 4); | 
|  | v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); | 
|  | } | 
|  |  | 
|  | /* Key of an item determines its location in the S+tree, and | 
|  | is composed of 4 components */ | 
|  | struct reiserfs_key { | 
|  | __le32 k_dir_id;	/* packing locality: by default parent | 
|  | directory object id */ | 
|  | __le32 k_objectid;	/* object identifier */ | 
|  | union { | 
|  | struct offset_v1 k_offset_v1; | 
|  | struct offset_v2 k_offset_v2; | 
|  | } __attribute__ ((__packed__)) u; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct in_core_key { | 
|  | __u32 k_dir_id;		/* packing locality: by default parent | 
|  | directory object id */ | 
|  | __u32 k_objectid;	/* object identifier */ | 
|  | __u64 k_offset; | 
|  | __u8 k_type; | 
|  | }; | 
|  |  | 
|  | struct cpu_key { | 
|  | struct in_core_key on_disk_key; | 
|  | int version; | 
|  | int key_length;		/* 3 in all cases but direct2indirect and | 
|  | indirect2direct conversion */ | 
|  | }; | 
|  |  | 
|  | /* Our function for comparing keys can compare keys of different | 
|  | lengths.  It takes as a parameter the length of the keys it is to | 
|  | compare.  These defines are used in determining what is to be passed | 
|  | to it as that parameter. */ | 
|  | #define REISERFS_FULL_KEY_LEN     4 | 
|  | #define REISERFS_SHORT_KEY_LEN    2 | 
|  |  | 
|  | /* The result of the key compare */ | 
|  | #define FIRST_GREATER 1 | 
|  | #define SECOND_GREATER -1 | 
|  | #define KEYS_IDENTICAL 0 | 
|  | #define KEY_FOUND 1 | 
|  | #define KEY_NOT_FOUND 0 | 
|  |  | 
|  | #define KEY_SIZE (sizeof(struct reiserfs_key)) | 
|  | #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) | 
|  |  | 
|  | /* return values for search_by_key and clones */ | 
|  | #define ITEM_FOUND 1 | 
|  | #define ITEM_NOT_FOUND 0 | 
|  | #define ENTRY_FOUND 1 | 
|  | #define ENTRY_NOT_FOUND 0 | 
|  | #define DIRECTORY_NOT_FOUND -1 | 
|  | #define REGULAR_FILE_FOUND -2 | 
|  | #define DIRECTORY_FOUND -3 | 
|  | #define BYTE_FOUND 1 | 
|  | #define BYTE_NOT_FOUND 0 | 
|  | #define FILE_NOT_FOUND -1 | 
|  |  | 
|  | #define POSITION_FOUND 1 | 
|  | #define POSITION_NOT_FOUND 0 | 
|  |  | 
|  | // return values for reiserfs_find_entry and search_by_entry_key | 
|  | #define NAME_FOUND 1 | 
|  | #define NAME_NOT_FOUND 0 | 
|  | #define GOTO_PREVIOUS_ITEM 2 | 
|  | #define NAME_FOUND_INVISIBLE 3 | 
|  |  | 
|  | /*  Everything in the filesystem is stored as a set of items.  The | 
|  | item head contains the key of the item, its free space (for | 
|  | indirect items) and specifies the location of the item itself | 
|  | within the block.  */ | 
|  |  | 
|  | struct item_head { | 
|  | /* Everything in the tree is found by searching for it based on | 
|  | * its key.*/ | 
|  | struct reiserfs_key ih_key; | 
|  | union { | 
|  | /* The free space in the last unformatted node of an | 
|  | indirect item if this is an indirect item.  This | 
|  | equals 0xFFFF iff this is a direct item or stat data | 
|  | item. Note that the key, not this field, is used to | 
|  | determine the item type, and thus which field this | 
|  | union contains. */ | 
|  | __le16 ih_free_space_reserved; | 
|  | /* Iff this is a directory item, this field equals the | 
|  | number of directory entries in the directory item. */ | 
|  | __le16 ih_entry_count; | 
|  | } __attribute__ ((__packed__)) u; | 
|  | __le16 ih_item_len;	/* total size of the item body */ | 
|  | __le16 ih_item_location;	/* an offset to the item body | 
|  | * within the block */ | 
|  | __le16 ih_version;	/* 0 for all old items, 2 for new | 
|  | ones. Highest bit is set by fsck | 
|  | temporary, cleaned after all | 
|  | done */ | 
|  | } __attribute__ ((__packed__)); | 
|  | /* size of item header     */ | 
|  | #define IH_SIZE (sizeof(struct item_head)) | 
|  |  | 
|  | #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved) | 
|  | #define ih_version(ih)               le16_to_cpu((ih)->ih_version) | 
|  | #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count) | 
|  | #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location) | 
|  | #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len) | 
|  |  | 
|  | #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) | 
|  | #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0) | 
|  | #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) | 
|  | #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) | 
|  | #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) | 
|  |  | 
|  | #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) | 
|  |  | 
|  | #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) | 
|  | #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) | 
|  |  | 
|  | /* these operate on indirect items, where you've got an array of ints | 
|  | ** at a possibly unaligned location.  These are a noop on ia32 | 
|  | ** | 
|  | ** p is the array of __u32, i is the index into the array, v is the value | 
|  | ** to store there. | 
|  | */ | 
|  | #define get_block_num(p, i) get_unaligned_le32((p) + (i)) | 
|  | #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) | 
|  |  | 
|  | // | 
|  | // in old version uniqueness field shows key type | 
|  | // | 
|  | #define V1_SD_UNIQUENESS 0 | 
|  | #define V1_INDIRECT_UNIQUENESS 0xfffffffe | 
|  | #define V1_DIRECT_UNIQUENESS 0xffffffff | 
|  | #define V1_DIRENTRY_UNIQUENESS 500 | 
|  | #define V1_ANY_UNIQUENESS 555	// FIXME: comment is required | 
|  |  | 
|  | // | 
|  | // here are conversion routines | 
|  | // | 
|  | static inline int uniqueness2type(__u32 uniqueness) CONSTF; | 
|  | static inline int uniqueness2type(__u32 uniqueness) | 
|  | { | 
|  | switch ((int)uniqueness) { | 
|  | case V1_SD_UNIQUENESS: | 
|  | return TYPE_STAT_DATA; | 
|  | case V1_INDIRECT_UNIQUENESS: | 
|  | return TYPE_INDIRECT; | 
|  | case V1_DIRECT_UNIQUENESS: | 
|  | return TYPE_DIRECT; | 
|  | case V1_DIRENTRY_UNIQUENESS: | 
|  | return TYPE_DIRENTRY; | 
|  | case V1_ANY_UNIQUENESS: | 
|  | default: | 
|  | return TYPE_ANY; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline __u32 type2uniqueness(int type) CONSTF; | 
|  | static inline __u32 type2uniqueness(int type) | 
|  | { | 
|  | switch (type) { | 
|  | case TYPE_STAT_DATA: | 
|  | return V1_SD_UNIQUENESS; | 
|  | case TYPE_INDIRECT: | 
|  | return V1_INDIRECT_UNIQUENESS; | 
|  | case TYPE_DIRECT: | 
|  | return V1_DIRECT_UNIQUENESS; | 
|  | case TYPE_DIRENTRY: | 
|  | return V1_DIRENTRY_UNIQUENESS; | 
|  | case TYPE_ANY: | 
|  | default: | 
|  | return V1_ANY_UNIQUENESS; | 
|  | } | 
|  | } | 
|  |  | 
|  | // | 
|  | // key is pointer to on disk key which is stored in le, result is cpu, | 
|  | // there is no way to get version of object from key, so, provide | 
|  | // version to these defines | 
|  | // | 
|  | static inline loff_t le_key_k_offset(int version, | 
|  | const struct reiserfs_key *key) | 
|  | { | 
|  | return (version == KEY_FORMAT_3_5) ? | 
|  | le32_to_cpu(key->u.k_offset_v1.k_offset) : | 
|  | offset_v2_k_offset(&(key->u.k_offset_v2)); | 
|  | } | 
|  |  | 
|  | static inline loff_t le_ih_k_offset(const struct item_head *ih) | 
|  | { | 
|  | return le_key_k_offset(ih_version(ih), &(ih->ih_key)); | 
|  | } | 
|  |  | 
|  | static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) | 
|  | { | 
|  | return (version == KEY_FORMAT_3_5) ? | 
|  | uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) : | 
|  | offset_v2_k_type(&(key->u.k_offset_v2)); | 
|  | } | 
|  |  | 
|  | static inline loff_t le_ih_k_type(const struct item_head *ih) | 
|  | { | 
|  | return le_key_k_type(ih_version(ih), &(ih->ih_key)); | 
|  | } | 
|  |  | 
|  | static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, | 
|  | loff_t offset) | 
|  | { | 
|  | (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) :	/* jdm check */ | 
|  | (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset)); | 
|  | } | 
|  |  | 
|  | static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) | 
|  | { | 
|  | set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); | 
|  | } | 
|  |  | 
|  | static inline void set_le_key_k_type(int version, struct reiserfs_key *key, | 
|  | int type) | 
|  | { | 
|  | (version == KEY_FORMAT_3_5) ? | 
|  | (void)(key->u.k_offset_v1.k_uniqueness = | 
|  | cpu_to_le32(type2uniqueness(type))) | 
|  | : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type)); | 
|  | } | 
|  |  | 
|  | static inline void set_le_ih_k_type(struct item_head *ih, int type) | 
|  | { | 
|  | set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); | 
|  | } | 
|  |  | 
|  | static inline int is_direntry_le_key(int version, struct reiserfs_key *key) | 
|  | { | 
|  | return le_key_k_type(version, key) == TYPE_DIRENTRY; | 
|  | } | 
|  |  | 
|  | static inline int is_direct_le_key(int version, struct reiserfs_key *key) | 
|  | { | 
|  | return le_key_k_type(version, key) == TYPE_DIRECT; | 
|  | } | 
|  |  | 
|  | static inline int is_indirect_le_key(int version, struct reiserfs_key *key) | 
|  | { | 
|  | return le_key_k_type(version, key) == TYPE_INDIRECT; | 
|  | } | 
|  |  | 
|  | static inline int is_statdata_le_key(int version, struct reiserfs_key *key) | 
|  | { | 
|  | return le_key_k_type(version, key) == TYPE_STAT_DATA; | 
|  | } | 
|  |  | 
|  | // | 
|  | // item header has version. | 
|  | // | 
|  | static inline int is_direntry_le_ih(struct item_head *ih) | 
|  | { | 
|  | return is_direntry_le_key(ih_version(ih), &ih->ih_key); | 
|  | } | 
|  |  | 
|  | static inline int is_direct_le_ih(struct item_head *ih) | 
|  | { | 
|  | return is_direct_le_key(ih_version(ih), &ih->ih_key); | 
|  | } | 
|  |  | 
|  | static inline int is_indirect_le_ih(struct item_head *ih) | 
|  | { | 
|  | return is_indirect_le_key(ih_version(ih), &ih->ih_key); | 
|  | } | 
|  |  | 
|  | static inline int is_statdata_le_ih(struct item_head *ih) | 
|  | { | 
|  | return is_statdata_le_key(ih_version(ih), &ih->ih_key); | 
|  | } | 
|  |  | 
|  | // | 
|  | // key is pointer to cpu key, result is cpu | 
|  | // | 
|  | static inline loff_t cpu_key_k_offset(const struct cpu_key *key) | 
|  | { | 
|  | return key->on_disk_key.k_offset; | 
|  | } | 
|  |  | 
|  | static inline loff_t cpu_key_k_type(const struct cpu_key *key) | 
|  | { | 
|  | return key->on_disk_key.k_type; | 
|  | } | 
|  |  | 
|  | static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) | 
|  | { | 
|  | key->on_disk_key.k_offset = offset; | 
|  | } | 
|  |  | 
|  | static inline void set_cpu_key_k_type(struct cpu_key *key, int type) | 
|  | { | 
|  | key->on_disk_key.k_type = type; | 
|  | } | 
|  |  | 
|  | static inline void cpu_key_k_offset_dec(struct cpu_key *key) | 
|  | { | 
|  | key->on_disk_key.k_offset--; | 
|  | } | 
|  |  | 
|  | #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) | 
|  | #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) | 
|  | #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) | 
|  | #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) | 
|  |  | 
|  | /* are these used ? */ | 
|  | #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) | 
|  | #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) | 
|  | #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) | 
|  | #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) | 
|  |  | 
|  | #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ | 
|  | (!COMP_SHORT_KEYS(ih, key) && \ | 
|  | I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) | 
|  |  | 
|  | /* maximal length of item */ | 
|  | #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) | 
|  | #define MIN_ITEM_LEN 1 | 
|  |  | 
|  | /* object identifier for root dir */ | 
|  | #define REISERFS_ROOT_OBJECTID 2 | 
|  | #define REISERFS_ROOT_PARENT_OBJECTID 1 | 
|  |  | 
|  | extern struct reiserfs_key root_key; | 
|  |  | 
|  | /* | 
|  | * Picture represents a leaf of the S+tree | 
|  | *  ______________________________________________________ | 
|  | * |      |  Array of     |                   |           | | 
|  | * |Block |  Object-Item  |      F r e e      |  Objects- | | 
|  | * | head |  Headers      |     S p a c e     |   Items   | | 
|  | * |______|_______________|___________________|___________| | 
|  | */ | 
|  |  | 
|  | /* Header of a disk block.  More precisely, header of a formatted leaf | 
|  | or internal node, and not the header of an unformatted node. */ | 
|  | struct block_head { | 
|  | __le16 blk_level;	/* Level of a block in the tree. */ | 
|  | __le16 blk_nr_item;	/* Number of keys/items in a block. */ | 
|  | __le16 blk_free_space;	/* Block free space in bytes. */ | 
|  | __le16 blk_reserved; | 
|  | /* dump this in v4/planA */ | 
|  | struct reiserfs_key blk_right_delim_key;	/* kept only for compatibility */ | 
|  | }; | 
|  |  | 
|  | #define BLKH_SIZE                     (sizeof(struct block_head)) | 
|  | #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level)) | 
|  | #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item)) | 
|  | #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space)) | 
|  | #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved)) | 
|  | #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val)) | 
|  | #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val)) | 
|  | #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) | 
|  | #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) | 
|  | #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key) | 
|  | #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val) | 
|  |  | 
|  | /* | 
|  | * values for blk_level field of the struct block_head | 
|  | */ | 
|  |  | 
|  | #define FREE_LEVEL 0		/* when node gets removed from the tree its | 
|  | blk_level is set to FREE_LEVEL. It is then | 
|  | used to see whether the node is still in the | 
|  | tree */ | 
|  |  | 
|  | #define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */ | 
|  |  | 
|  | /* Given the buffer head of a formatted node, resolve to the block head of that node. */ | 
|  | #define B_BLK_HEAD(bh)			((struct block_head *)((bh)->b_data)) | 
|  | /* Number of items that are in buffer. */ | 
|  | #define B_NR_ITEMS(bh)			(blkh_nr_item(B_BLK_HEAD(bh))) | 
|  | #define B_LEVEL(bh)			(blkh_level(B_BLK_HEAD(bh))) | 
|  | #define B_FREE_SPACE(bh)		(blkh_free_space(B_BLK_HEAD(bh))) | 
|  |  | 
|  | #define PUT_B_NR_ITEMS(bh, val)		do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) | 
|  | #define PUT_B_LEVEL(bh, val)		do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) | 
|  | #define PUT_B_FREE_SPACE(bh, val)	do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) | 
|  |  | 
|  | /* Get right delimiting key. -- little endian */ | 
|  | #define B_PRIGHT_DELIM_KEY(bh)		(&(blk_right_delim_key(B_BLK_HEAD(bh)))) | 
|  |  | 
|  | /* Does the buffer contain a disk leaf. */ | 
|  | #define B_IS_ITEMS_LEVEL(bh)		(B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) | 
|  |  | 
|  | /* Does the buffer contain a disk internal node */ | 
|  | #define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ | 
|  | && B_LEVEL(bh) <= MAX_HEIGHT) | 
|  |  | 
|  | /***************************************************************************/ | 
|  | /*                             STAT DATA                                   */ | 
|  | /***************************************************************************/ | 
|  |  | 
|  | // | 
|  | // old stat data is 32 bytes long. We are going to distinguish new one by | 
|  | // different size | 
|  | // | 
|  | struct stat_data_v1 { | 
|  | __le16 sd_mode;		/* file type, permissions */ | 
|  | __le16 sd_nlink;	/* number of hard links */ | 
|  | __le16 sd_uid;		/* owner */ | 
|  | __le16 sd_gid;		/* group */ | 
|  | __le32 sd_size;		/* file size */ | 
|  | __le32 sd_atime;	/* time of last access */ | 
|  | __le32 sd_mtime;	/* time file was last modified  */ | 
|  | __le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ | 
|  | union { | 
|  | __le32 sd_rdev; | 
|  | __le32 sd_blocks;	/* number of blocks file uses */ | 
|  | } __attribute__ ((__packed__)) u; | 
|  | __le32 sd_first_direct_byte;	/* first byte of file which is stored | 
|  | in a direct item: except that if it | 
|  | equals 1 it is a symlink and if it | 
|  | equals ~(__u32)0 there is no | 
|  | direct item.  The existence of this | 
|  | field really grates on me. Let's | 
|  | replace it with a macro based on | 
|  | sd_size and our tail suppression | 
|  | policy.  Someday.  -Hans */ | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | #define SD_V1_SIZE              (sizeof(struct stat_data_v1)) | 
|  | #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5) | 
|  | #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode)) | 
|  | #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v)) | 
|  | #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink)) | 
|  | #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v)) | 
|  | #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid)) | 
|  | #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v)) | 
|  | #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid)) | 
|  | #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v)) | 
|  | #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size)) | 
|  | #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v)) | 
|  | #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime)) | 
|  | #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v)) | 
|  | #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime)) | 
|  | #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v)) | 
|  | #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime)) | 
|  | #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v)) | 
|  | #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev)) | 
|  | #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v)) | 
|  | #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks)) | 
|  | #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) | 
|  | #define sd_v1_first_direct_byte(sdp) \ | 
|  | (le32_to_cpu((sdp)->sd_first_direct_byte)) | 
|  | #define set_sd_v1_first_direct_byte(sdp,v) \ | 
|  | ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) | 
|  |  | 
|  | /* inode flags stored in sd_attrs (nee sd_reserved) */ | 
|  |  | 
|  | /* we want common flags to have the same values as in ext2, | 
|  | so chattr(1) will work without problems */ | 
|  | #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL | 
|  | #define REISERFS_APPEND_FL    FS_APPEND_FL | 
|  | #define REISERFS_SYNC_FL      FS_SYNC_FL | 
|  | #define REISERFS_NOATIME_FL   FS_NOATIME_FL | 
|  | #define REISERFS_NODUMP_FL    FS_NODUMP_FL | 
|  | #define REISERFS_SECRM_FL     FS_SECRM_FL | 
|  | #define REISERFS_UNRM_FL      FS_UNRM_FL | 
|  | #define REISERFS_COMPR_FL     FS_COMPR_FL | 
|  | #define REISERFS_NOTAIL_FL    FS_NOTAIL_FL | 
|  |  | 
|  | /* persistent flags that file inherits from the parent directory */ | 
|  | #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\ | 
|  | REISERFS_SYNC_FL |	\ | 
|  | REISERFS_NOATIME_FL |	\ | 
|  | REISERFS_NODUMP_FL |	\ | 
|  | REISERFS_SECRM_FL |	\ | 
|  | REISERFS_COMPR_FL |	\ | 
|  | REISERFS_NOTAIL_FL ) | 
|  |  | 
|  | /* Stat Data on disk (reiserfs version of UFS disk inode minus the | 
|  | address blocks) */ | 
|  | struct stat_data { | 
|  | __le16 sd_mode;		/* file type, permissions */ | 
|  | __le16 sd_attrs;	/* persistent inode flags */ | 
|  | __le32 sd_nlink;	/* number of hard links */ | 
|  | __le64 sd_size;		/* file size */ | 
|  | __le32 sd_uid;		/* owner */ | 
|  | __le32 sd_gid;		/* group */ | 
|  | __le32 sd_atime;	/* time of last access */ | 
|  | __le32 sd_mtime;	/* time file was last modified  */ | 
|  | __le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ | 
|  | __le32 sd_blocks; | 
|  | union { | 
|  | __le32 sd_rdev; | 
|  | __le32 sd_generation; | 
|  | //__le32 sd_first_direct_byte; | 
|  | /* first byte of file which is stored in a | 
|  | direct item: except that if it equals 1 | 
|  | it is a symlink and if it equals | 
|  | ~(__u32)0 there is no direct item.  The | 
|  | existence of this field really grates | 
|  | on me. Let's replace it with a macro | 
|  | based on sd_size and our tail | 
|  | suppression policy? */ | 
|  | } __attribute__ ((__packed__)) u; | 
|  | } __attribute__ ((__packed__)); | 
|  | // | 
|  | // this is 44 bytes long | 
|  | // | 
|  | #define SD_SIZE (sizeof(struct stat_data)) | 
|  | #define SD_V2_SIZE              SD_SIZE | 
|  | #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6) | 
|  | #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode)) | 
|  | #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v)) | 
|  | /* sd_reserved */ | 
|  | /* set_sd_reserved */ | 
|  | #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink)) | 
|  | #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v)) | 
|  | #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size)) | 
|  | #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v)) | 
|  | #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid)) | 
|  | #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v)) | 
|  | #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid)) | 
|  | #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v)) | 
|  | #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime)) | 
|  | #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v)) | 
|  | #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime)) | 
|  | #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v)) | 
|  | #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime)) | 
|  | #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v)) | 
|  | #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks)) | 
|  | #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) | 
|  | #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev)) | 
|  | #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v)) | 
|  | #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation)) | 
|  | #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) | 
|  | #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs)) | 
|  | #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v)) | 
|  |  | 
|  | /***************************************************************************/ | 
|  | /*                      DIRECTORY STRUCTURE                                */ | 
|  | /***************************************************************************/ | 
|  | /* | 
|  | Picture represents the structure of directory items | 
|  | ________________________________________________ | 
|  | |  Array of     |   |     |        |       |   | | 
|  | | directory     |N-1| N-2 | ....   |   1st |0th| | 
|  | | entry headers |   |     |        |       |   | | 
|  | |_______________|___|_____|________|_______|___| | 
|  | <----   directory entries         ------> | 
|  |  | 
|  | First directory item has k_offset component 1. We store "." and ".." | 
|  | in one item, always, we never split "." and ".." into differing | 
|  | items.  This makes, among other things, the code for removing | 
|  | directories simpler. */ | 
|  | #define SD_OFFSET  0 | 
|  | #define SD_UNIQUENESS 0 | 
|  | #define DOT_OFFSET 1 | 
|  | #define DOT_DOT_OFFSET 2 | 
|  | #define DIRENTRY_UNIQUENESS 500 | 
|  |  | 
|  | /* */ | 
|  | #define FIRST_ITEM_OFFSET 1 | 
|  |  | 
|  | /* | 
|  | Q: How to get key of object pointed to by entry from entry? | 
|  |  | 
|  | A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key | 
|  | of object, entry points to */ | 
|  |  | 
|  | /* NOT IMPLEMENTED: | 
|  | Directory will someday contain stat data of object */ | 
|  |  | 
|  | struct reiserfs_de_head { | 
|  | __le32 deh_offset;	/* third component of the directory entry key */ | 
|  | __le32 deh_dir_id;	/* objectid of the parent directory of the object, that is referenced | 
|  | by directory entry */ | 
|  | __le32 deh_objectid;	/* objectid of the object, that is referenced by directory entry */ | 
|  | __le16 deh_location;	/* offset of name in the whole item */ | 
|  | __le16 deh_state;	/* whether 1) entry contains stat data (for future), and 2) whether | 
|  | entry is hidden (unlinked) */ | 
|  | } __attribute__ ((__packed__)); | 
|  | #define DEH_SIZE                  sizeof(struct reiserfs_de_head) | 
|  | #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset)) | 
|  | #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id)) | 
|  | #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid)) | 
|  | #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location)) | 
|  | #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state)) | 
|  |  | 
|  | #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v))) | 
|  | #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v))) | 
|  | #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) | 
|  | #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) | 
|  | #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v))) | 
|  |  | 
|  | /* empty directory contains two entries "." and ".." and their headers */ | 
|  | #define EMPTY_DIR_SIZE \ | 
|  | (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) | 
|  |  | 
|  | /* old format directories have this size when empty */ | 
|  | #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) | 
|  |  | 
|  | #define DEH_Statdata 0		/* not used now */ | 
|  | #define DEH_Visible 2 | 
|  |  | 
|  | /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ | 
|  | #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) | 
|  | #   define ADDR_UNALIGNED_BITS  (3) | 
|  | #endif | 
|  |  | 
|  | /* These are only used to manipulate deh_state. | 
|  | * Because of this, we'll use the ext2_ bit routines, | 
|  | * since they are little endian */ | 
|  | #ifdef ADDR_UNALIGNED_BITS | 
|  |  | 
|  | #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) | 
|  | #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) | 
|  |  | 
|  | #   define set_bit_unaligned(nr, addr)	\ | 
|  | __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) | 
|  | #   define clear_bit_unaligned(nr, addr)	\ | 
|  | __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) | 
|  | #   define test_bit_unaligned(nr, addr)	\ | 
|  | test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) | 
|  |  | 
|  | #else | 
|  |  | 
|  | #   define set_bit_unaligned(nr, addr)	__test_and_set_bit_le(nr, addr) | 
|  | #   define clear_bit_unaligned(nr, addr)	__test_and_clear_bit_le(nr, addr) | 
|  | #   define test_bit_unaligned(nr, addr)	test_bit_le(nr, addr) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) | 
|  | #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) | 
|  | #define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) | 
|  | #define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) | 
|  |  | 
|  | #define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) | 
|  | #define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) | 
|  | #define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) | 
|  |  | 
|  | extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, | 
|  | __le32 par_dirid, __le32 par_objid); | 
|  | extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, | 
|  | __le32 par_dirid, __le32 par_objid); | 
|  |  | 
|  | /* array of the entry headers */ | 
|  | /* get item body */ | 
|  | #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) ) | 
|  | #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih))) | 
|  |  | 
|  | /* length of the directory entry in directory item. This define | 
|  | calculates length of i-th directory entry using directory entry | 
|  | locations from dir entry head. When it calculates length of 0-th | 
|  | directory entry, it uses length of whole item in place of entry | 
|  | location of the non-existent following entry in the calculation. | 
|  | See picture above.*/ | 
|  | /* | 
|  | #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \ | 
|  | ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh)))) | 
|  | */ | 
|  | static inline int entry_length(const struct buffer_head *bh, | 
|  | const struct item_head *ih, int pos_in_item) | 
|  | { | 
|  | struct reiserfs_de_head *deh; | 
|  |  | 
|  | deh = B_I_DEH(bh, ih) + pos_in_item; | 
|  | if (pos_in_item) | 
|  | return deh_location(deh - 1) - deh_location(deh); | 
|  |  | 
|  | return ih_item_len(ih) - deh_location(deh); | 
|  | } | 
|  |  | 
|  | /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */ | 
|  | #define I_ENTRY_COUNT(ih) (ih_entry_count((ih))) | 
|  |  | 
|  | /* name by bh, ih and entry_num */ | 
|  | #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num)))) | 
|  |  | 
|  | // two entries per block (at least) | 
|  | #define REISERFS_MAX_NAME(block_size) 255 | 
|  |  | 
|  | /* this structure is used for operations on directory entries. It is | 
|  | not a disk structure. */ | 
|  | /* When reiserfs_find_entry or search_by_entry_key find directory | 
|  | entry, they return filled reiserfs_dir_entry structure */ | 
|  | struct reiserfs_dir_entry { | 
|  | struct buffer_head *de_bh; | 
|  | int de_item_num; | 
|  | struct item_head *de_ih; | 
|  | int de_entry_num; | 
|  | struct reiserfs_de_head *de_deh; | 
|  | int de_entrylen; | 
|  | int de_namelen; | 
|  | char *de_name; | 
|  | unsigned long *de_gen_number_bit_string; | 
|  |  | 
|  | __u32 de_dir_id; | 
|  | __u32 de_objectid; | 
|  |  | 
|  | struct cpu_key de_entry_key; | 
|  | }; | 
|  |  | 
|  | /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */ | 
|  |  | 
|  | /* pointer to file name, stored in entry */ | 
|  | #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh)) | 
|  |  | 
|  | /* length of name */ | 
|  | #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ | 
|  | (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) | 
|  |  | 
|  | /* hash value occupies bits from 7 up to 30 */ | 
|  | #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) | 
|  | /* generation number occupies 7 bits starting from 0 up to 6 */ | 
|  | #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) | 
|  | #define MAX_GENERATION_NUMBER  127 | 
|  |  | 
|  | #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) | 
|  |  | 
|  | /* | 
|  | * Picture represents an internal node of the reiserfs tree | 
|  | *  ______________________________________________________ | 
|  | * |      |  Array of     |  Array of         |  Free     | | 
|  | * |block |    keys       |  pointers         | space     | | 
|  | * | head |      N        |      N+1          |           | | 
|  | * |______|_______________|___________________|___________| | 
|  | */ | 
|  |  | 
|  | /***************************************************************************/ | 
|  | /*                      DISK CHILD                                         */ | 
|  | /***************************************************************************/ | 
|  | /* Disk child pointer: The pointer from an internal node of the tree | 
|  | to a node that is on disk. */ | 
|  | struct disk_child { | 
|  | __le32 dc_block_number;	/* Disk child's block number. */ | 
|  | __le16 dc_size;		/* Disk child's used space.   */ | 
|  | __le16 dc_reserved; | 
|  | }; | 
|  |  | 
|  | #define DC_SIZE (sizeof(struct disk_child)) | 
|  | #define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number)) | 
|  | #define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size)) | 
|  | #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) | 
|  | #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) | 
|  |  | 
|  | /* Get disk child by buffer header and position in the tree node. */ | 
|  | #define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\ | 
|  | ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) | 
|  |  | 
|  | /* Get disk child number by buffer header and position in the tree node. */ | 
|  | #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) | 
|  | #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ | 
|  | (put_dc_block_number(B_N_CHILD(bh, n_pos), val)) | 
|  |  | 
|  | /* maximal value of field child_size in structure disk_child */ | 
|  | /* child size is the combined size of all items and their headers */ | 
|  | #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) | 
|  |  | 
|  | /* amount of used space in buffer (not including block head) */ | 
|  | #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) | 
|  |  | 
|  | /* max and min number of keys in internal node */ | 
|  | #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) | 
|  | #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2) | 
|  |  | 
|  | /***************************************************************************/ | 
|  | /*                      PATH STRUCTURES AND DEFINES                        */ | 
|  | /***************************************************************************/ | 
|  |  | 
|  | /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the | 
|  | key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it | 
|  | does not find them in the cache it reads them from disk.  For each node search_by_key finds using | 
|  | reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the | 
|  | position of the block_number of the next node if it is looking through an internal node.  If it | 
|  | is looking through a leaf node bin_search will find the position of the item which has key either | 
|  | equal to given key, or which is the maximal key less than the given key. */ | 
|  |  | 
|  | struct path_element { | 
|  | struct buffer_head *pe_buffer;	/* Pointer to the buffer at the path in the tree. */ | 
|  | int pe_position;	/* Position in the tree node which is placed in the */ | 
|  | /* buffer above.                                  */ | 
|  | }; | 
|  |  | 
|  | #define MAX_HEIGHT 5		/* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */ | 
|  | #define EXTENDED_MAX_HEIGHT         7	/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ | 
|  | #define FIRST_PATH_ELEMENT_OFFSET   2	/* Must be equal to at least 2. */ | 
|  |  | 
|  | #define ILLEGAL_PATH_ELEMENT_OFFSET 1	/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ | 
|  | #define MAX_FEB_SIZE 6		/* this MUST be MAX_HEIGHT + 1. See about FEB below */ | 
|  |  | 
|  | /* We need to keep track of who the ancestors of nodes are.  When we | 
|  | perform a search we record which nodes were visited while | 
|  | descending the tree looking for the node we searched for. This list | 
|  | of nodes is called the path.  This information is used while | 
|  | performing balancing.  Note that this path information may become | 
|  | invalid, and this means we must check it when using it to see if it | 
|  | is still valid. You'll need to read search_by_key and the comments | 
|  | in it, especially about decrement_counters_in_path(), to understand | 
|  | this structure. | 
|  |  | 
|  | Paths make the code so much harder to work with and debug.... An | 
|  | enormous number of bugs are due to them, and trying to write or modify | 
|  | code that uses them just makes my head hurt.  They are based on an | 
|  | excessive effort to avoid disturbing the precious VFS code.:-( The | 
|  | gods only know how we are going to SMP the code that uses them. | 
|  | znodes are the way! */ | 
|  |  | 
|  | #define PATH_READA	0x1	/* do read ahead */ | 
|  | #define PATH_READA_BACK 0x2	/* read backwards */ | 
|  |  | 
|  | struct treepath { | 
|  | int path_length;	/* Length of the array above.   */ | 
|  | int reada; | 
|  | struct path_element path_elements[EXTENDED_MAX_HEIGHT];	/* Array of the path elements.  */ | 
|  | int pos_in_item; | 
|  | }; | 
|  |  | 
|  | #define pos_in_item(path) ((path)->pos_in_item) | 
|  |  | 
|  | #define INITIALIZE_PATH(var) \ | 
|  | struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} | 
|  |  | 
|  | /* Get path element by path and path position. */ | 
|  | #define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset)) | 
|  |  | 
|  | /* Get buffer header at the path by path and path position. */ | 
|  | #define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) | 
|  |  | 
|  | /* Get position in the element at the path by path and path position. */ | 
|  | #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) | 
|  |  | 
|  | #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) | 
|  | /* you know, to the person who didn't | 
|  | write this the macro name does not | 
|  | at first suggest what it does. | 
|  | Maybe POSITION_FROM_PATH_END? Or | 
|  | maybe we should just focus on | 
|  | dumping paths... -Hans */ | 
|  | #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) | 
|  |  | 
|  | #define PATH_PITEM_HEAD(path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)) | 
|  |  | 
|  | /* in do_balance leaf has h == 0 in contrast with path structure, | 
|  | where root has level == 0. That is why we need these defines */ | 
|  | #define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h))	/* tb->S[h] */ | 
|  | #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)	/* tb->F[h] or tb->S[0]->b_parent */ | 
|  | #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h)) | 
|  | #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)	/* tb->S[h]->b_item_order */ | 
|  |  | 
|  | #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) | 
|  |  | 
|  | #define get_last_bh(path) PATH_PLAST_BUFFER(path) | 
|  | #define get_ih(path) PATH_PITEM_HEAD(path) | 
|  | #define get_item_pos(path) PATH_LAST_POSITION(path) | 
|  | #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path))) | 
|  | #define item_moved(ih,path) comp_items(ih, path) | 
|  | #define path_changed(ih,path) comp_items (ih, path) | 
|  |  | 
|  | /***************************************************************************/ | 
|  | /*                       MISC                                              */ | 
|  | /***************************************************************************/ | 
|  |  | 
|  | /* Size of pointer to the unformatted node. */ | 
|  | #define UNFM_P_SIZE (sizeof(unp_t)) | 
|  | #define UNFM_P_SHIFT 2 | 
|  |  | 
|  | // in in-core inode key is stored on le form | 
|  | #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) | 
|  |  | 
|  | #define MAX_UL_INT 0xffffffff | 
|  | #define MAX_INT    0x7ffffff | 
|  | #define MAX_US_INT 0xffff | 
|  |  | 
|  | // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset | 
|  | #define U32_MAX (~(__u32)0) | 
|  |  | 
|  | static inline loff_t max_reiserfs_offset(struct inode *inode) | 
|  | { | 
|  | if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) | 
|  | return (loff_t) U32_MAX; | 
|  |  | 
|  | return (loff_t) ((~(__u64) 0) >> 4); | 
|  | } | 
|  |  | 
|  | /*#define MAX_KEY_UNIQUENESS	MAX_UL_INT*/ | 
|  | #define MAX_KEY_OBJECTID	MAX_UL_INT | 
|  |  | 
|  | #define MAX_B_NUM  MAX_UL_INT | 
|  | #define MAX_FC_NUM MAX_US_INT | 
|  |  | 
|  | /* the purpose is to detect overflow of an unsigned short */ | 
|  | #define REISERFS_LINK_MAX (MAX_US_INT - 1000) | 
|  |  | 
|  | /* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */ | 
|  | #define REISERFS_KERNEL_MEM		0	/* reiserfs kernel memory mode  */ | 
|  | #define REISERFS_USER_MEM		1	/* reiserfs user memory mode            */ | 
|  |  | 
|  | #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) | 
|  | #define get_generation(s) atomic_read (&fs_generation(s)) | 
|  | #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen) | 
|  | #define __fs_changed(gen,s) (gen != get_generation (s)) | 
|  | #define fs_changed(gen,s)		\ | 
|  | ({					\ | 
|  | reiserfs_cond_resched(s);	\ | 
|  | __fs_changed(gen, s);		\ | 
|  | }) | 
|  |  | 
|  | /***************************************************************************/ | 
|  | /*                  FIXATE NODES                                           */ | 
|  | /***************************************************************************/ | 
|  |  | 
|  | #define VI_TYPE_LEFT_MERGEABLE 1 | 
|  | #define VI_TYPE_RIGHT_MERGEABLE 2 | 
|  |  | 
|  | /* To make any changes in the tree we always first find node, that | 
|  | contains item to be changed/deleted or place to insert a new | 
|  | item. We call this node S. To do balancing we need to decide what | 
|  | we will shift to left/right neighbor, or to a new node, where new | 
|  | item will be etc. To make this analysis simpler we build virtual | 
|  | node. Virtual node is an array of items, that will replace items of | 
|  | node S. (For instance if we are going to delete an item, virtual | 
|  | node does not contain it). Virtual node keeps information about | 
|  | item sizes and types, mergeability of first and last items, sizes | 
|  | of all entries in directory item. We use this array of items when | 
|  | calculating what we can shift to neighbors and how many nodes we | 
|  | have to have if we do not any shiftings, if we shift to left/right | 
|  | neighbor or to both. */ | 
|  | struct virtual_item { | 
|  | int vi_index;		// index in the array of item operations | 
|  | unsigned short vi_type;	// left/right mergeability | 
|  | unsigned short vi_item_len;	/* length of item that it will have after balancing */ | 
|  | struct item_head *vi_ih; | 
|  | const char *vi_item;	// body of item (old or new) | 
|  | const void *vi_new_data;	// 0 always but paste mode | 
|  | void *vi_uarea;		// item specific area | 
|  | }; | 
|  |  | 
|  | struct virtual_node { | 
|  | char *vn_free_ptr;	/* this is a pointer to the free space in the buffer */ | 
|  | unsigned short vn_nr_item;	/* number of items in virtual node */ | 
|  | short vn_size;		/* size of node , that node would have if it has unlimited size and no balancing is performed */ | 
|  | short vn_mode;		/* mode of balancing (paste, insert, delete, cut) */ | 
|  | short vn_affected_item_num; | 
|  | short vn_pos_in_item; | 
|  | struct item_head *vn_ins_ih;	/* item header of inserted item, 0 for other modes */ | 
|  | const void *vn_data; | 
|  | struct virtual_item *vn_vi;	/* array of items (including a new one, excluding item to be deleted) */ | 
|  | }; | 
|  |  | 
|  | /* used by directory items when creating virtual nodes */ | 
|  | struct direntry_uarea { | 
|  | int flags; | 
|  | __u16 entry_count; | 
|  | __u16 entry_sizes[1]; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | /***************************************************************************/ | 
|  | /*                  TREE BALANCE                                           */ | 
|  | /***************************************************************************/ | 
|  |  | 
|  | /* This temporary structure is used in tree balance algorithms, and | 
|  | constructed as we go to the extent that its various parts are | 
|  | needed.  It contains arrays of nodes that can potentially be | 
|  | involved in the balancing of node S, and parameters that define how | 
|  | each of the nodes must be balanced.  Note that in these algorithms | 
|  | for balancing the worst case is to need to balance the current node | 
|  | S and the left and right neighbors and all of their parents plus | 
|  | create a new node.  We implement S1 balancing for the leaf nodes | 
|  | and S0 balancing for the internal nodes (S1 and S0 are defined in | 
|  | our papers.)*/ | 
|  |  | 
|  | #define MAX_FREE_BLOCK 7	/* size of the array of buffers to free at end of do_balance */ | 
|  |  | 
|  | /* maximum number of FEB blocknrs on a single level */ | 
|  | #define MAX_AMOUNT_NEEDED 2 | 
|  |  | 
|  | /* someday somebody will prefix every field in this struct with tb_ */ | 
|  | struct tree_balance { | 
|  | int tb_mode; | 
|  | int need_balance_dirty; | 
|  | struct super_block *tb_sb; | 
|  | struct reiserfs_transaction_handle *transaction_handle; | 
|  | struct treepath *tb_path; | 
|  | struct buffer_head *L[MAX_HEIGHT];	/* array of left neighbors of nodes in the path */ | 
|  | struct buffer_head *R[MAX_HEIGHT];	/* array of right neighbors of nodes in the path */ | 
|  | struct buffer_head *FL[MAX_HEIGHT];	/* array of fathers of the left  neighbors      */ | 
|  | struct buffer_head *FR[MAX_HEIGHT];	/* array of fathers of the right neighbors      */ | 
|  | struct buffer_head *CFL[MAX_HEIGHT];	/* array of common parents of center node and its left neighbor  */ | 
|  | struct buffer_head *CFR[MAX_HEIGHT];	/* array of common parents of center node and its right neighbor */ | 
|  |  | 
|  | struct buffer_head *FEB[MAX_FEB_SIZE];	/* array of empty buffers. Number of buffers in array equals | 
|  | cur_blknum. */ | 
|  | struct buffer_head *used[MAX_FEB_SIZE]; | 
|  | struct buffer_head *thrown[MAX_FEB_SIZE]; | 
|  | int lnum[MAX_HEIGHT];	/* array of number of items which must be | 
|  | shifted to the left in order to balance the | 
|  | current node; for leaves includes item that | 
|  | will be partially shifted; for internal | 
|  | nodes, it is the number of child pointers | 
|  | rather than items. It includes the new item | 
|  | being created. The code sometimes subtracts | 
|  | one to get the number of wholly shifted | 
|  | items for other purposes. */ | 
|  | int rnum[MAX_HEIGHT];	/* substitute right for left in comment above */ | 
|  | int lkey[MAX_HEIGHT];	/* array indexed by height h mapping the key delimiting L[h] and | 
|  | S[h] to its item number within the node CFL[h] */ | 
|  | int rkey[MAX_HEIGHT];	/* substitute r for l in comment above */ | 
|  | int insert_size[MAX_HEIGHT];	/* the number of bytes by we are trying to add or remove from | 
|  | S[h]. A negative value means removing.  */ | 
|  | int blknum[MAX_HEIGHT];	/* number of nodes that will replace node S[h] after | 
|  | balancing on the level h of the tree.  If 0 then S is | 
|  | being deleted, if 1 then S is remaining and no new nodes | 
|  | are being created, if 2 or 3 then 1 or 2 new nodes is | 
|  | being created */ | 
|  |  | 
|  | /* fields that are used only for balancing leaves of the tree */ | 
|  | int cur_blknum;		/* number of empty blocks having been already allocated                 */ | 
|  | int s0num;		/* number of items that fall into left most  node when S[0] splits     */ | 
|  | int s1num;		/* number of items that fall into first  new node when S[0] splits     */ | 
|  | int s2num;		/* number of items that fall into second new node when S[0] splits     */ | 
|  | int lbytes;		/* number of bytes which can flow to the left neighbor from the        left    */ | 
|  | /* most liquid item that cannot be shifted from S[0] entirely         */ | 
|  | /* if -1 then nothing will be partially shifted */ | 
|  | int rbytes;		/* number of bytes which will flow to the right neighbor from the right        */ | 
|  | /* most liquid item that cannot be shifted from S[0] entirely         */ | 
|  | /* if -1 then nothing will be partially shifted                           */ | 
|  | int s1bytes;		/* number of bytes which flow to the first  new node when S[0] splits   */ | 
|  | /* note: if S[0] splits into 3 nodes, then items do not need to be cut  */ | 
|  | int s2bytes; | 
|  | struct buffer_head *buf_to_free[MAX_FREE_BLOCK];	/* buffers which are to be freed after do_balance finishes by unfix_nodes */ | 
|  | char *vn_buf;		/* kmalloced memory. Used to create | 
|  | virtual node and keep map of | 
|  | dirtied bitmap blocks */ | 
|  | int vn_buf_size;	/* size of the vn_buf */ | 
|  | struct virtual_node *tb_vn;	/* VN starts after bitmap of bitmap blocks */ | 
|  |  | 
|  | int fs_gen;		/* saved value of `reiserfs_generation' counter | 
|  | see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */ | 
|  | #ifdef DISPLACE_NEW_PACKING_LOCALITIES | 
|  | struct in_core_key key;	/* key pointer, to pass to block allocator or | 
|  | another low-level subsystem */ | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* These are modes of balancing */ | 
|  |  | 
|  | /* When inserting an item. */ | 
|  | #define M_INSERT	'i' | 
|  | /* When inserting into (directories only) or appending onto an already | 
|  | existant item. */ | 
|  | #define M_PASTE		'p' | 
|  | /* When deleting an item. */ | 
|  | #define M_DELETE	'd' | 
|  | /* When truncating an item or removing an entry from a (directory) item. */ | 
|  | #define M_CUT 		'c' | 
|  |  | 
|  | /* used when balancing on leaf level skipped (in reiserfsck) */ | 
|  | #define M_INTERNAL	'n' | 
|  |  | 
|  | /* When further balancing is not needed, then do_balance does not need | 
|  | to be called. */ | 
|  | #define M_SKIP_BALANCING 		's' | 
|  | #define M_CONVERT	'v' | 
|  |  | 
|  | /* modes of leaf_move_items */ | 
|  | #define LEAF_FROM_S_TO_L 0 | 
|  | #define LEAF_FROM_S_TO_R 1 | 
|  | #define LEAF_FROM_R_TO_L 2 | 
|  | #define LEAF_FROM_L_TO_R 3 | 
|  | #define LEAF_FROM_S_TO_SNEW 4 | 
|  |  | 
|  | #define FIRST_TO_LAST 0 | 
|  | #define LAST_TO_FIRST 1 | 
|  |  | 
|  | /* used in do_balance for passing parent of node information that has | 
|  | been gotten from tb struct */ | 
|  | struct buffer_info { | 
|  | struct tree_balance *tb; | 
|  | struct buffer_head *bi_bh; | 
|  | struct buffer_head *bi_parent; | 
|  | int bi_position; | 
|  | }; | 
|  |  | 
|  | static inline struct super_block *sb_from_tb(struct tree_balance *tb) | 
|  | { | 
|  | return tb ? tb->tb_sb : NULL; | 
|  | } | 
|  |  | 
|  | static inline struct super_block *sb_from_bi(struct buffer_info *bi) | 
|  | { | 
|  | return bi ? sb_from_tb(bi->tb) : NULL; | 
|  | } | 
|  |  | 
|  | /* there are 4 types of items: stat data, directory item, indirect, direct. | 
|  | +-------------------+------------+--------------+------------+ | 
|  | |	            |  k_offset  | k_uniqueness | mergeable? | | 
|  | +-------------------+------------+--------------+------------+ | 
|  | |     stat data     |	0        |      0       |   no       | | 
|  | +-------------------+------------+--------------+------------+ | 
|  | | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       | | 
|  | | non 1st directory | hash value |              |   yes      | | 
|  | |     item          |            |              |            | | 
|  | +-------------------+------------+--------------+------------+ | 
|  | | indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object | 
|  | +-------------------+------------+--------------+------------+ | 
|  | | direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object | 
|  | +-------------------+------------+--------------+------------+ | 
|  | */ | 
|  |  | 
|  | struct item_operations { | 
|  | int (*bytes_number) (struct item_head * ih, int block_size); | 
|  | void (*decrement_key) (struct cpu_key *); | 
|  | int (*is_left_mergeable) (struct reiserfs_key * ih, | 
|  | unsigned long bsize); | 
|  | void (*print_item) (struct item_head *, char *item); | 
|  | void (*check_item) (struct item_head *, char *item); | 
|  |  | 
|  | int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, | 
|  | int is_affected, int insert_size); | 
|  | int (*check_left) (struct virtual_item * vi, int free, | 
|  | int start_skip, int end_skip); | 
|  | int (*check_right) (struct virtual_item * vi, int free); | 
|  | int (*part_size) (struct virtual_item * vi, int from, int to); | 
|  | int (*unit_num) (struct virtual_item * vi); | 
|  | void (*print_vi) (struct virtual_item * vi); | 
|  | }; | 
|  |  | 
|  | extern struct item_operations *item_ops[TYPE_ANY + 1]; | 
|  |  | 
|  | #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) | 
|  | #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) | 
|  | #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item) | 
|  | #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item) | 
|  | #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) | 
|  | #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) | 
|  | #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free) | 
|  | #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to) | 
|  | #define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi) | 
|  | #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi) | 
|  |  | 
|  | #define COMP_SHORT_KEYS comp_short_keys | 
|  |  | 
|  | /* number of blocks pointed to by the indirect item */ | 
|  | #define I_UNFM_NUM(ih)	(ih_item_len(ih) / UNFM_P_SIZE) | 
|  |  | 
|  | /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */ | 
|  | #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) | 
|  |  | 
|  | /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */ | 
|  |  | 
|  | /* get the item header */ | 
|  | #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) ) | 
|  |  | 
|  | /* get key */ | 
|  | #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) ) | 
|  |  | 
|  | /* get the key */ | 
|  | #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) ) | 
|  |  | 
|  | /* get item body */ | 
|  | #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num)))) | 
|  |  | 
|  | /* get the stat data by the buffer header and the item order */ | 
|  | #define B_N_STAT_DATA(bh,nr) \ | 
|  | ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) ) | 
|  |  | 
|  | /* following defines use reiserfs buffer header and item header */ | 
|  |  | 
|  | /* get stat-data */ | 
|  | #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) | 
|  |  | 
|  | // this is 3976 for size==4096 | 
|  | #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) | 
|  |  | 
|  | /* indirect items consist of entries which contain blocknrs, pos | 
|  | indicates which entry, and B_I_POS_UNFM_POINTER resolves to the | 
|  | blocknr contained by the entry pos points to */ | 
|  | #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos))) | 
|  | #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0) | 
|  |  | 
|  | struct reiserfs_iget_args { | 
|  | __u32 objectid; | 
|  | __u32 dirid; | 
|  | }; | 
|  |  | 
|  | /***************************************************************************/ | 
|  | /*                    FUNCTION DECLARATIONS                                */ | 
|  | /***************************************************************************/ | 
|  |  | 
|  | #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) | 
|  |  | 
|  | #define journal_trans_half(blocksize) \ | 
|  | ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) | 
|  |  | 
|  | /* journal.c see journal.c for all the comments here */ | 
|  |  | 
|  | /* first block written in a commit.  */ | 
|  | struct reiserfs_journal_desc { | 
|  | __le32 j_trans_id;	/* id of commit */ | 
|  | __le32 j_len;		/* length of commit. len +1 is the commit block */ | 
|  | __le32 j_mount_id;	/* mount id of this trans */ | 
|  | __le32 j_realblock[1];	/* real locations for each block */ | 
|  | }; | 
|  |  | 
|  | #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id) | 
|  | #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len) | 
|  | #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id) | 
|  |  | 
|  | #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) | 
|  | #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0) | 
|  | #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) | 
|  |  | 
|  | /* last block written in a commit */ | 
|  | struct reiserfs_journal_commit { | 
|  | __le32 j_trans_id;	/* must match j_trans_id from the desc block */ | 
|  | __le32 j_len;		/* ditto */ | 
|  | __le32 j_realblock[1];	/* real locations for each block */ | 
|  | }; | 
|  |  | 
|  | #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) | 
|  | #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len) | 
|  | #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) | 
|  |  | 
|  | #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) | 
|  | #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0) | 
|  |  | 
|  | /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the | 
|  | ** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk, | 
|  | ** and this transaction does not need to be replayed. | 
|  | */ | 
|  | struct reiserfs_journal_header { | 
|  | __le32 j_last_flush_trans_id;	/* id of last fully flushed transaction */ | 
|  | __le32 j_first_unflushed_offset;	/* offset in the log of where to start replay after a crash */ | 
|  | __le32 j_mount_id; | 
|  | /* 12 */ struct journal_params jh_journal; | 
|  | }; | 
|  |  | 
|  | /* biggest tunable defines are right here */ | 
|  | #define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */ | 
|  | #define JOURNAL_TRANS_MAX_DEFAULT 1024	/* biggest possible single transaction, don't change for now (8/3/99) */ | 
|  | #define JOURNAL_TRANS_MIN_DEFAULT 256 | 
|  | #define JOURNAL_MAX_BATCH_DEFAULT   900	/* max blocks to batch into one transaction, don't make this any bigger than 900 */ | 
|  | #define JOURNAL_MIN_RATIO 2 | 
|  | #define JOURNAL_MAX_COMMIT_AGE 30 | 
|  | #define JOURNAL_MAX_TRANS_AGE 30 | 
|  | #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) | 
|  | #define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \ | 
|  | 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ | 
|  | REISERFS_QUOTA_TRANS_BLOCKS(sb))) | 
|  |  | 
|  | #ifdef CONFIG_QUOTA | 
|  | /* We need to update data and inode (atime) */ | 
|  | #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0) | 
|  | /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ | 
|  | #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \ | 
|  | (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) | 
|  | /* same as with INIT */ | 
|  | #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \ | 
|  | (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) | 
|  | #else | 
|  | #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 | 
|  | #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 | 
|  | #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 | 
|  | #endif | 
|  |  | 
|  | /* both of these can be as low as 1, or as high as you want.  The min is the | 
|  | ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated | 
|  | ** as needed, and released when transactions are committed.  On release, if | 
|  | ** the current number of nodes is > max, the node is freed, otherwise, | 
|  | ** it is put on a free list for faster use later. | 
|  | */ | 
|  | #define REISERFS_MIN_BITMAP_NODES 10 | 
|  | #define REISERFS_MAX_BITMAP_NODES 100 | 
|  |  | 
|  | #define JBH_HASH_SHIFT 13	/* these are based on journal hash size of 8192 */ | 
|  | #define JBH_HASH_MASK 8191 | 
|  |  | 
|  | #define _jhashfn(sb,block)	\ | 
|  | (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ | 
|  | (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) | 
|  | #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) | 
|  |  | 
|  | // We need these to make journal.c code more readable | 
|  | #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) | 
|  | #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) | 
|  | #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) | 
|  |  | 
|  | enum reiserfs_bh_state_bits { | 
|  | BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */ | 
|  | BH_JDirty_wait, | 
|  | BH_JNew,		/* disk block was taken off free list before | 
|  | * being in a finished transaction, or | 
|  | * written to disk. Can be reused immed. */ | 
|  | BH_JPrepared, | 
|  | BH_JRestore_dirty, | 
|  | BH_JTest,		// debugging only will go away | 
|  | }; | 
|  |  | 
|  | BUFFER_FNS(JDirty, journaled); | 
|  | TAS_BUFFER_FNS(JDirty, journaled); | 
|  | BUFFER_FNS(JDirty_wait, journal_dirty); | 
|  | TAS_BUFFER_FNS(JDirty_wait, journal_dirty); | 
|  | BUFFER_FNS(JNew, journal_new); | 
|  | TAS_BUFFER_FNS(JNew, journal_new); | 
|  | BUFFER_FNS(JPrepared, journal_prepared); | 
|  | TAS_BUFFER_FNS(JPrepared, journal_prepared); | 
|  | BUFFER_FNS(JRestore_dirty, journal_restore_dirty); | 
|  | TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); | 
|  | BUFFER_FNS(JTest, journal_test); | 
|  | TAS_BUFFER_FNS(JTest, journal_test); | 
|  |  | 
|  | /* | 
|  | ** transaction handle which is passed around for all journal calls | 
|  | */ | 
|  | struct reiserfs_transaction_handle { | 
|  | struct super_block *t_super;	/* super for this FS when journal_begin was | 
|  | called. saves calls to reiserfs_get_super | 
|  | also used by nested transactions to make | 
|  | sure they are nesting on the right FS | 
|  | _must_ be first in the handle | 
|  | */ | 
|  | int t_refcount; | 
|  | int t_blocks_logged;	/* number of blocks this writer has logged */ | 
|  | int t_blocks_allocated;	/* number of blocks this writer allocated */ | 
|  | unsigned int t_trans_id;	/* sanity check, equals the current trans id */ | 
|  | void *t_handle_save;	/* save existing current->journal_info */ | 
|  | unsigned displace_new_blocks:1;	/* if new block allocation occurres, that block | 
|  | should be displaced from others */ | 
|  | struct list_head t_list; | 
|  | }; | 
|  |  | 
|  | /* used to keep track of ordered and tail writes, attached to the buffer | 
|  | * head through b_journal_head. | 
|  | */ | 
|  | struct reiserfs_jh { | 
|  | struct reiserfs_journal_list *jl; | 
|  | struct buffer_head *bh; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | void reiserfs_free_jh(struct buffer_head *bh); | 
|  | int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); | 
|  | int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); | 
|  | int journal_mark_dirty(struct reiserfs_transaction_handle *, | 
|  | struct super_block *, struct buffer_head *bh); | 
|  |  | 
|  | static inline int reiserfs_file_data_log(struct inode *inode) | 
|  | { | 
|  | if (reiserfs_data_log(inode->i_sb) || | 
|  | (REISERFS_I(inode)->i_flags & i_data_log)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int reiserfs_transaction_running(struct super_block *s) | 
|  | { | 
|  | struct reiserfs_transaction_handle *th = current->journal_info; | 
|  | if (th && th->t_super == s) | 
|  | return 1; | 
|  | if (th && th->t_super == NULL) | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) | 
|  | { | 
|  | return th->t_blocks_allocated - th->t_blocks_logged; | 
|  | } | 
|  |  | 
|  | struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct | 
|  | super_block | 
|  | *, | 
|  | int count); | 
|  | int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); | 
|  | int reiserfs_commit_page(struct inode *inode, struct page *page, | 
|  | unsigned from, unsigned to); | 
|  | int reiserfs_flush_old_commits(struct super_block *); | 
|  | int reiserfs_commit_for_inode(struct inode *); | 
|  | int reiserfs_inode_needs_commit(struct inode *); | 
|  | void reiserfs_update_inode_transaction(struct inode *); | 
|  | void reiserfs_wait_on_write_block(struct super_block *s); | 
|  | void reiserfs_block_writes(struct reiserfs_transaction_handle *th); | 
|  | void reiserfs_allow_writes(struct super_block *s); | 
|  | void reiserfs_check_lock_depth(struct super_block *s, char *caller); | 
|  | int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, | 
|  | int wait); | 
|  | void reiserfs_restore_prepared_buffer(struct super_block *, | 
|  | struct buffer_head *bh); | 
|  | int journal_init(struct super_block *, const char *j_dev_name, int old_format, | 
|  | unsigned int); | 
|  | int journal_release(struct reiserfs_transaction_handle *, struct super_block *); | 
|  | int journal_release_error(struct reiserfs_transaction_handle *, | 
|  | struct super_block *); | 
|  | int journal_end(struct reiserfs_transaction_handle *, struct super_block *, | 
|  | unsigned long); | 
|  | int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, | 
|  | unsigned long); | 
|  | int journal_mark_freed(struct reiserfs_transaction_handle *, | 
|  | struct super_block *, b_blocknr_t blocknr); | 
|  | int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); | 
|  | int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, | 
|  | int bit_nr, int searchall, b_blocknr_t *next); | 
|  | int journal_begin(struct reiserfs_transaction_handle *, | 
|  | struct super_block *sb, unsigned long); | 
|  | int journal_join_abort(struct reiserfs_transaction_handle *, | 
|  | struct super_block *sb, unsigned long); | 
|  | void reiserfs_abort_journal(struct super_block *sb, int errno); | 
|  | void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); | 
|  | int reiserfs_allocate_list_bitmaps(struct super_block *s, | 
|  | struct reiserfs_list_bitmap *, unsigned int); | 
|  |  | 
|  | void add_save_link(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, int truncate); | 
|  | int remove_save_link(struct inode *inode, int truncate); | 
|  |  | 
|  | /* objectid.c */ | 
|  | __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); | 
|  | void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, | 
|  | __u32 objectid_to_release); | 
|  | int reiserfs_convert_objectid_map_v1(struct super_block *); | 
|  |  | 
|  | /* stree.c */ | 
|  | int B_IS_IN_TREE(const struct buffer_head *); | 
|  | extern void copy_item_head(struct item_head *to, | 
|  | const struct item_head *from); | 
|  |  | 
|  | // first key is in cpu form, second - le | 
|  | extern int comp_short_keys(const struct reiserfs_key *le_key, | 
|  | const struct cpu_key *cpu_key); | 
|  | extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); | 
|  |  | 
|  | // both are in le form | 
|  | extern int comp_le_keys(const struct reiserfs_key *, | 
|  | const struct reiserfs_key *); | 
|  | extern int comp_short_le_keys(const struct reiserfs_key *, | 
|  | const struct reiserfs_key *); | 
|  |  | 
|  | // | 
|  | // get key version from on disk key - kludge | 
|  | // | 
|  | static inline int le_key_version(const struct reiserfs_key *key) | 
|  | { | 
|  | int type; | 
|  |  | 
|  | type = offset_v2_k_type(&(key->u.k_offset_v2)); | 
|  | if (type != TYPE_DIRECT && type != TYPE_INDIRECT | 
|  | && type != TYPE_DIRENTRY) | 
|  | return KEY_FORMAT_3_5; | 
|  |  | 
|  | return KEY_FORMAT_3_6; | 
|  |  | 
|  | } | 
|  |  | 
|  | static inline void copy_key(struct reiserfs_key *to, | 
|  | const struct reiserfs_key *from) | 
|  | { | 
|  | memcpy(to, from, KEY_SIZE); | 
|  | } | 
|  |  | 
|  | int comp_items(const struct item_head *stored_ih, const struct treepath *path); | 
|  | const struct reiserfs_key *get_rkey(const struct treepath *chk_path, | 
|  | const struct super_block *sb); | 
|  | int search_by_key(struct super_block *, const struct cpu_key *, | 
|  | struct treepath *, int); | 
|  | #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) | 
|  | int search_for_position_by_key(struct super_block *sb, | 
|  | const struct cpu_key *cpu_key, | 
|  | struct treepath *search_path); | 
|  | extern void decrement_bcount(struct buffer_head *bh); | 
|  | void decrement_counters_in_path(struct treepath *search_path); | 
|  | void pathrelse(struct treepath *search_path); | 
|  | int reiserfs_check_path(struct treepath *p); | 
|  | void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); | 
|  |  | 
|  | int reiserfs_insert_item(struct reiserfs_transaction_handle *th, | 
|  | struct treepath *path, | 
|  | const struct cpu_key *key, | 
|  | struct item_head *ih, | 
|  | struct inode *inode, const char *body); | 
|  |  | 
|  | int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, | 
|  | struct treepath *path, | 
|  | const struct cpu_key *key, | 
|  | struct inode *inode, | 
|  | const char *body, int paste_size); | 
|  |  | 
|  | int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, | 
|  | struct treepath *path, | 
|  | struct cpu_key *key, | 
|  | struct inode *inode, | 
|  | struct page *page, loff_t new_file_size); | 
|  |  | 
|  | int reiserfs_delete_item(struct reiserfs_transaction_handle *th, | 
|  | struct treepath *path, | 
|  | const struct cpu_key *key, | 
|  | struct inode *inode, struct buffer_head *un_bh); | 
|  |  | 
|  | void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, struct reiserfs_key *key); | 
|  | int reiserfs_delete_object(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode); | 
|  | int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, struct page *, | 
|  | int update_timestamps); | 
|  |  | 
|  | #define i_block_size(inode) ((inode)->i_sb->s_blocksize) | 
|  | #define file_size(inode) ((inode)->i_size) | 
|  | #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) | 
|  |  | 
|  | #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ | 
|  | !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) | 
|  |  | 
|  | void padd_item(char *item, int total_length, int length); | 
|  |  | 
|  | /* inode.c */ | 
|  | /* args for the create parameter of reiserfs_get_block */ | 
|  | #define GET_BLOCK_NO_CREATE 0	/* don't create new blocks or convert tails */ | 
|  | #define GET_BLOCK_CREATE 1	/* add anything you need to find block */ | 
|  | #define GET_BLOCK_NO_HOLE 2	/* return -ENOENT for file holes */ | 
|  | #define GET_BLOCK_READ_DIRECT 4	/* read the tail if indirect item not found */ | 
|  | #define GET_BLOCK_NO_IMUX     8	/* i_mutex is not held, don't preallocate */ | 
|  | #define GET_BLOCK_NO_DANGLE   16	/* don't leave any transactions running */ | 
|  |  | 
|  | void reiserfs_read_locked_inode(struct inode *inode, | 
|  | struct reiserfs_iget_args *args); | 
|  | int reiserfs_find_actor(struct inode *inode, void *p); | 
|  | int reiserfs_init_locked_inode(struct inode *inode, void *p); | 
|  | void reiserfs_evict_inode(struct inode *inode); | 
|  | int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); | 
|  | int reiserfs_get_block(struct inode *inode, sector_t block, | 
|  | struct buffer_head *bh_result, int create); | 
|  | struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, | 
|  | int fh_len, int fh_type); | 
|  | struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, | 
|  | int fh_len, int fh_type); | 
|  | int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, | 
|  | int connectable); | 
|  |  | 
|  | int reiserfs_truncate_file(struct inode *, int update_timestamps); | 
|  | void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, | 
|  | int type, int key_length); | 
|  | void make_le_item_head(struct item_head *ih, const struct cpu_key *key, | 
|  | int version, | 
|  | loff_t offset, int type, int length, int entry_count); | 
|  | struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); | 
|  |  | 
|  | struct reiserfs_security_handle; | 
|  | int reiserfs_new_inode(struct reiserfs_transaction_handle *th, | 
|  | struct inode *dir, int mode, | 
|  | const char *symname, loff_t i_size, | 
|  | struct dentry *dentry, struct inode *inode, | 
|  | struct reiserfs_security_handle *security); | 
|  |  | 
|  | void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, loff_t size); | 
|  |  | 
|  | static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode) | 
|  | { | 
|  | reiserfs_update_sd_size(th, inode, inode->i_size); | 
|  | } | 
|  |  | 
|  | void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); | 
|  | void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs); | 
|  | int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); | 
|  |  | 
|  | int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); | 
|  |  | 
|  | /* namei.c */ | 
|  | void set_de_name_and_namelen(struct reiserfs_dir_entry *de); | 
|  | int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, | 
|  | struct treepath *path, struct reiserfs_dir_entry *de); | 
|  | struct dentry *reiserfs_get_parent(struct dentry *); | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_PROC_INFO | 
|  | int reiserfs_proc_info_init(struct super_block *sb); | 
|  | int reiserfs_proc_info_done(struct super_block *sb); | 
|  | int reiserfs_proc_info_global_init(void); | 
|  | int reiserfs_proc_info_global_done(void); | 
|  |  | 
|  | #define PROC_EXP( e )   e | 
|  |  | 
|  | #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data | 
|  | #define PROC_INFO_MAX( sb, field, value )								\ | 
|  | __PINFO( sb ).field =												\ | 
|  | max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) | 
|  | #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) | 
|  | #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) | 
|  | #define PROC_INFO_BH_STAT( sb, bh, level )							\ | 
|  | PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\ | 
|  | PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\ | 
|  | PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) | 
|  | #else | 
|  | static inline int reiserfs_proc_info_init(struct super_block *sb) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int reiserfs_proc_info_done(struct super_block *sb) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int reiserfs_proc_info_global_init(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int reiserfs_proc_info_global_done(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define PROC_EXP( e ) | 
|  | #define VOID_V ( ( void ) 0 ) | 
|  | #define PROC_INFO_MAX( sb, field, value ) VOID_V | 
|  | #define PROC_INFO_INC( sb, field ) VOID_V | 
|  | #define PROC_INFO_ADD( sb, field, val ) VOID_V | 
|  | #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V | 
|  | #endif | 
|  |  | 
|  | /* dir.c */ | 
|  | extern const struct inode_operations reiserfs_dir_inode_operations; | 
|  | extern const struct inode_operations reiserfs_symlink_inode_operations; | 
|  | extern const struct inode_operations reiserfs_special_inode_operations; | 
|  | extern const struct file_operations reiserfs_dir_operations; | 
|  | int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *); | 
|  |  | 
|  | /* tail_conversion.c */ | 
|  | int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, | 
|  | struct treepath *, struct buffer_head *, loff_t); | 
|  | int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, | 
|  | struct page *, struct treepath *, const struct cpu_key *, | 
|  | loff_t, char *); | 
|  | void reiserfs_unmap_buffer(struct buffer_head *); | 
|  |  | 
|  | /* file.c */ | 
|  | extern const struct inode_operations reiserfs_file_inode_operations; | 
|  | extern const struct file_operations reiserfs_file_operations; | 
|  | extern const struct address_space_operations reiserfs_address_space_operations; | 
|  |  | 
|  | /* fix_nodes.c */ | 
|  |  | 
|  | int fix_nodes(int n_op_mode, struct tree_balance *tb, | 
|  | struct item_head *ins_ih, const void *); | 
|  | void unfix_nodes(struct tree_balance *); | 
|  |  | 
|  | /* prints.c */ | 
|  | void __reiserfs_panic(struct super_block *s, const char *id, | 
|  | const char *function, const char *fmt, ...) | 
|  | __attribute__ ((noreturn)); | 
|  | #define reiserfs_panic(s, id, fmt, args...) \ | 
|  | __reiserfs_panic(s, id, __func__, fmt, ##args) | 
|  | void __reiserfs_error(struct super_block *s, const char *id, | 
|  | const char *function, const char *fmt, ...); | 
|  | #define reiserfs_error(s, id, fmt, args...) \ | 
|  | __reiserfs_error(s, id, __func__, fmt, ##args) | 
|  | void reiserfs_info(struct super_block *s, const char *fmt, ...); | 
|  | void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); | 
|  | void print_indirect_item(struct buffer_head *bh, int item_num); | 
|  | void store_print_tb(struct tree_balance *tb); | 
|  | void print_cur_tb(char *mes); | 
|  | void print_de(struct reiserfs_dir_entry *de); | 
|  | void print_bi(struct buffer_info *bi, char *mes); | 
|  | #define PRINT_LEAF_ITEMS 1	/* print all items */ | 
|  | #define PRINT_DIRECTORY_ITEMS 2	/* print directory items */ | 
|  | #define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */ | 
|  | void print_block(struct buffer_head *bh, ...); | 
|  | void print_bmap(struct super_block *s, int silent); | 
|  | void print_bmap_block(int i, char *data, int size, int silent); | 
|  | /*void print_super_block (struct super_block * s, char * mes);*/ | 
|  | void print_objectid_map(struct super_block *s); | 
|  | void print_block_head(struct buffer_head *bh, char *mes); | 
|  | void check_leaf(struct buffer_head *bh); | 
|  | void check_internal(struct buffer_head *bh); | 
|  | void print_statistics(struct super_block *s); | 
|  | char *reiserfs_hashname(int code); | 
|  |  | 
|  | /* lbalance.c */ | 
|  | int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, | 
|  | int mov_bytes, struct buffer_head *Snew); | 
|  | int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); | 
|  | int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); | 
|  | void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, | 
|  | int del_num, int del_bytes); | 
|  | void leaf_insert_into_buf(struct buffer_info *bi, int before, | 
|  | struct item_head *inserted_item_ih, | 
|  | const char *inserted_item_body, int zeros_number); | 
|  | void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, | 
|  | int pos_in_item, int paste_size, const char *body, | 
|  | int zeros_number); | 
|  | void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, | 
|  | int pos_in_item, int cut_size); | 
|  | void leaf_paste_entries(struct buffer_info *bi, int item_num, int before, | 
|  | int new_entry_count, struct reiserfs_de_head *new_dehs, | 
|  | const char *records, int paste_size); | 
|  | /* ibalance.c */ | 
|  | int balance_internal(struct tree_balance *, int, int, struct item_head *, | 
|  | struct buffer_head **); | 
|  |  | 
|  | /* do_balance.c */ | 
|  | void do_balance_mark_leaf_dirty(struct tree_balance *tb, | 
|  | struct buffer_head *bh, int flag); | 
|  | #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty | 
|  | #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty | 
|  |  | 
|  | void do_balance(struct tree_balance *tb, struct item_head *ih, | 
|  | const char *body, int flag); | 
|  | void reiserfs_invalidate_buffer(struct tree_balance *tb, | 
|  | struct buffer_head *bh); | 
|  |  | 
|  | int get_left_neighbor_position(struct tree_balance *tb, int h); | 
|  | int get_right_neighbor_position(struct tree_balance *tb, int h); | 
|  | void replace_key(struct tree_balance *tb, struct buffer_head *, int, | 
|  | struct buffer_head *, int); | 
|  | void make_empty_node(struct buffer_info *); | 
|  | struct buffer_head *get_FEB(struct tree_balance *); | 
|  |  | 
|  | /* bitmap.c */ | 
|  |  | 
|  | /* structure contains hints for block allocator, and it is a container for | 
|  | * arguments, such as node, search path, transaction_handle, etc. */ | 
|  | struct __reiserfs_blocknr_hint { | 
|  | struct inode *inode;	/* inode passed to allocator, if we allocate unf. nodes */ | 
|  | sector_t block;		/* file offset, in blocks */ | 
|  | struct in_core_key key; | 
|  | struct treepath *path;	/* search path, used by allocator to deternine search_start by | 
|  | * various ways */ | 
|  | struct reiserfs_transaction_handle *th;	/* transaction handle is needed to log super blocks and | 
|  | * bitmap blocks changes  */ | 
|  | b_blocknr_t beg, end; | 
|  | b_blocknr_t search_start;	/* a field used to transfer search start value (block number) | 
|  | * between different block allocator procedures | 
|  | * (determine_search_start() and others) */ | 
|  | int prealloc_size;	/* is set in determine_prealloc_size() function, used by underlayed | 
|  | * function that do actual allocation */ | 
|  |  | 
|  | unsigned formatted_node:1;	/* the allocator uses different polices for getting disk space for | 
|  | * formatted/unformatted blocks with/without preallocation */ | 
|  | unsigned preallocate:1; | 
|  | }; | 
|  |  | 
|  | typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; | 
|  |  | 
|  | int reiserfs_parse_alloc_options(struct super_block *, char *); | 
|  | void reiserfs_init_alloc_options(struct super_block *s); | 
|  |  | 
|  | /* | 
|  | * given a directory, this will tell you what packing locality | 
|  | * to use for a new object underneat it.  The locality is returned | 
|  | * in disk byte order (le). | 
|  | */ | 
|  | __le32 reiserfs_choose_packing(struct inode *dir); | 
|  |  | 
|  | int reiserfs_init_bitmap_cache(struct super_block *sb); | 
|  | void reiserfs_free_bitmap_cache(struct super_block *sb); | 
|  | void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); | 
|  | struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); | 
|  | int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); | 
|  | void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, | 
|  | b_blocknr_t, int for_unformatted); | 
|  | int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, | 
|  | int); | 
|  | static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, | 
|  | b_blocknr_t * new_blocknrs, | 
|  | int amount_needed) | 
|  | { | 
|  | reiserfs_blocknr_hint_t hint = { | 
|  | .th = tb->transaction_handle, | 
|  | .path = tb->tb_path, | 
|  | .inode = NULL, | 
|  | .key = tb->key, | 
|  | .block = 0, | 
|  | .formatted_node = 1 | 
|  | }; | 
|  | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle | 
|  | *th, struct inode *inode, | 
|  | b_blocknr_t * new_blocknrs, | 
|  | struct treepath *path, | 
|  | sector_t block) | 
|  | { | 
|  | reiserfs_blocknr_hint_t hint = { | 
|  | .th = th, | 
|  | .path = path, | 
|  | .inode = inode, | 
|  | .block = block, | 
|  | .formatted_node = 0, | 
|  | .preallocate = 0 | 
|  | }; | 
|  | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); | 
|  | } | 
|  |  | 
|  | #ifdef REISERFS_PREALLOCATE | 
|  | static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle | 
|  | *th, struct inode *inode, | 
|  | b_blocknr_t * new_blocknrs, | 
|  | struct treepath *path, | 
|  | sector_t block) | 
|  | { | 
|  | reiserfs_blocknr_hint_t hint = { | 
|  | .th = th, | 
|  | .path = path, | 
|  | .inode = inode, | 
|  | .block = block, | 
|  | .formatted_node = 0, | 
|  | .preallocate = 1 | 
|  | }; | 
|  | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); | 
|  | } | 
|  |  | 
|  | void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode); | 
|  | void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); | 
|  | #endif | 
|  |  | 
|  | /* hashes.c */ | 
|  | __u32 keyed_hash(const signed char *msg, int len); | 
|  | __u32 yura_hash(const signed char *msg, int len); | 
|  | __u32 r5_hash(const signed char *msg, int len); | 
|  |  | 
|  | #define reiserfs_test_and_set_le_bit	__test_and_set_bit_le | 
|  | #define reiserfs_test_and_clear_le_bit	__test_and_clear_bit_le | 
|  | #define reiserfs_test_le_bit		test_bit_le | 
|  | #define reiserfs_find_next_zero_le_bit	find_next_zero_bit_le | 
|  |  | 
|  | /* sometimes reiserfs_truncate may require to allocate few new blocks | 
|  | to perform indirect2direct conversion. People probably used to | 
|  | think, that truncate should work without problems on a filesystem | 
|  | without free disk space. They may complain that they can not | 
|  | truncate due to lack of free disk space. This spare space allows us | 
|  | to not worry about it. 500 is probably too much, but it should be | 
|  | absolutely safe */ | 
|  | #define SPARE_SPACE 500 | 
|  |  | 
|  | /* prototypes from ioctl.c */ | 
|  | long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); | 
|  | long reiserfs_compat_ioctl(struct file *filp, | 
|  | unsigned int cmd, unsigned long arg); | 
|  | int reiserfs_unpack(struct inode *inode, struct file *filp); | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | #endif				/* _LINUX_REISER_FS_H */ |