|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * Copyright (C) 2005-2009 Cavium Networks | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/swiotlb.h> | 
|  |  | 
|  | #include <asm/time.h> | 
|  |  | 
|  | #include <asm/octeon/octeon.h> | 
|  | #include <asm/octeon/cvmx-npi-defs.h> | 
|  | #include <asm/octeon/cvmx-pci-defs.h> | 
|  | #include <asm/octeon/pci-octeon.h> | 
|  |  | 
|  | #include <dma-coherence.h> | 
|  |  | 
|  | #define USE_OCTEON_INTERNAL_ARBITER | 
|  |  | 
|  | /* | 
|  | * Octeon's PCI controller uses did=3, subdid=2 for PCI IO | 
|  | * addresses. Use PCI endian swapping 1 so no address swapping is | 
|  | * necessary. The Linux io routines will endian swap the data. | 
|  | */ | 
|  | #define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull | 
|  | #define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32) | 
|  |  | 
|  | /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */ | 
|  | #define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull) | 
|  |  | 
|  | u64 octeon_bar1_pci_phys; | 
|  |  | 
|  | /** | 
|  | * This is the bit decoding used for the Octeon PCI controller addresses | 
|  | */ | 
|  | union octeon_pci_address { | 
|  | uint64_t u64; | 
|  | struct { | 
|  | uint64_t upper:2; | 
|  | uint64_t reserved:13; | 
|  | uint64_t io:1; | 
|  | uint64_t did:5; | 
|  | uint64_t subdid:3; | 
|  | uint64_t reserved2:4; | 
|  | uint64_t endian_swap:2; | 
|  | uint64_t reserved3:10; | 
|  | uint64_t bus:8; | 
|  | uint64_t dev:5; | 
|  | uint64_t func:3; | 
|  | uint64_t reg:8; | 
|  | } s; | 
|  | }; | 
|  |  | 
|  | int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev, | 
|  | u8 slot, u8 pin); | 
|  | enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID; | 
|  |  | 
|  | /** | 
|  | * Map a PCI device to the appropriate interrupt line | 
|  | * | 
|  | * @dev:    The Linux PCI device structure for the device to map | 
|  | * @slot:   The slot number for this device on __BUS 0__. Linux | 
|  | *               enumerates through all the bridges and figures out the | 
|  | *               slot on Bus 0 where this device eventually hooks to. | 
|  | * @pin:    The PCI interrupt pin read from the device, then swizzled | 
|  | *               as it goes through each bridge. | 
|  | * Returns Interrupt number for the device | 
|  | */ | 
|  | int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) | 
|  | { | 
|  | if (octeon_pcibios_map_irq) | 
|  | return octeon_pcibios_map_irq(dev, slot, pin); | 
|  | else | 
|  | panic("octeon_pcibios_map_irq not set."); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Called to perform platform specific PCI setup | 
|  | */ | 
|  | int pcibios_plat_dev_init(struct pci_dev *dev) | 
|  | { | 
|  | uint16_t config; | 
|  | uint32_t dconfig; | 
|  | int pos; | 
|  | /* | 
|  | * Force the Cache line setting to 64 bytes. The standard | 
|  | * Linux bus scan doesn't seem to set it. Octeon really has | 
|  | * 128 byte lines, but Intel bridges get really upset if you | 
|  | * try and set values above 64 bytes. Value is specified in | 
|  | * 32bit words. | 
|  | */ | 
|  | pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4); | 
|  | /* Set latency timers for all devices */ | 
|  | pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); | 
|  |  | 
|  | /* Enable reporting System errors and parity errors on all devices */ | 
|  | /* Enable parity checking and error reporting */ | 
|  | pci_read_config_word(dev, PCI_COMMAND, &config); | 
|  | config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR; | 
|  | pci_write_config_word(dev, PCI_COMMAND, config); | 
|  |  | 
|  | if (dev->subordinate) { | 
|  | /* Set latency timers on sub bridges */ | 
|  | pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64); | 
|  | /* More bridge error detection */ | 
|  | pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config); | 
|  | config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR; | 
|  | pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config); | 
|  | } | 
|  |  | 
|  | /* Enable the PCIe normal error reporting */ | 
|  | pos = pci_find_capability(dev, PCI_CAP_ID_EXP); | 
|  | if (pos) { | 
|  | /* Update Device Control */ | 
|  | pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config); | 
|  | config |= PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */ | 
|  | config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */ | 
|  | config |= PCI_EXP_DEVCTL_FERE;  /* Fatal Error Reporting */ | 
|  | config |= PCI_EXP_DEVCTL_URRE;  /* Unsupported Request */ | 
|  | pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config); | 
|  | } | 
|  |  | 
|  | /* Find the Advanced Error Reporting capability */ | 
|  | pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); | 
|  | if (pos) { | 
|  | /* Clear Uncorrectable Error Status */ | 
|  | pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, | 
|  | &dconfig); | 
|  | pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, | 
|  | dconfig); | 
|  | /* Enable reporting of all uncorrectable errors */ | 
|  | /* Uncorrectable Error Mask - turned on bits disable errors */ | 
|  | pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0); | 
|  | /* | 
|  | * Leave severity at HW default. This only controls if | 
|  | * errors are reported as uncorrectable or | 
|  | * correctable, not if the error is reported. | 
|  | */ | 
|  | /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */ | 
|  | /* Clear Correctable Error Status */ | 
|  | pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig); | 
|  | pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig); | 
|  | /* Enable reporting of all correctable errors */ | 
|  | /* Correctable Error Mask - turned on bits disable errors */ | 
|  | pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0); | 
|  | /* Advanced Error Capabilities */ | 
|  | pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig); | 
|  | /* ECRC Generation Enable */ | 
|  | if (config & PCI_ERR_CAP_ECRC_GENC) | 
|  | config |= PCI_ERR_CAP_ECRC_GENE; | 
|  | /* ECRC Check Enable */ | 
|  | if (config & PCI_ERR_CAP_ECRC_CHKC) | 
|  | config |= PCI_ERR_CAP_ECRC_CHKE; | 
|  | pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig); | 
|  | /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */ | 
|  | /* Report all errors to the root complex */ | 
|  | pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, | 
|  | PCI_ERR_ROOT_CMD_COR_EN | | 
|  | PCI_ERR_ROOT_CMD_NONFATAL_EN | | 
|  | PCI_ERR_ROOT_CMD_FATAL_EN); | 
|  | /* Clear the Root status register */ | 
|  | pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig); | 
|  | pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig); | 
|  | } | 
|  |  | 
|  | dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return the mapping of PCI device number to IRQ line. Each | 
|  | * character in the return string represents the interrupt | 
|  | * line for the device at that position. Device 1 maps to the | 
|  | * first character, etc. The characters A-D are used for PCI | 
|  | * interrupts. | 
|  | * | 
|  | * Returns PCI interrupt mapping | 
|  | */ | 
|  | const char *octeon_get_pci_interrupts(void) | 
|  | { | 
|  | /* | 
|  | * Returning an empty string causes the interrupts to be | 
|  | * routed based on the PCI specification. From the PCI spec: | 
|  | * | 
|  | * INTA# of Device Number 0 is connected to IRQW on the system | 
|  | * board.  (Device Number has no significance regarding being | 
|  | * located on the system board or in a connector.) INTA# of | 
|  | * Device Number 1 is connected to IRQX on the system | 
|  | * board. INTA# of Device Number 2 is connected to IRQY on the | 
|  | * system board. INTA# of Device Number 3 is connected to IRQZ | 
|  | * on the system board. The table below describes how each | 
|  | * agent's INTx# lines are connected to the system board | 
|  | * interrupt lines. The following equation can be used to | 
|  | * determine to which INTx# signal on the system board a given | 
|  | * device's INTx# line(s) is connected. | 
|  | * | 
|  | * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0, | 
|  | * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I = | 
|  | * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and | 
|  | * INTD# = 3) | 
|  | */ | 
|  | switch (octeon_bootinfo->board_type) { | 
|  | case CVMX_BOARD_TYPE_NAO38: | 
|  | /* This is really the NAC38 */ | 
|  | return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA"; | 
|  | case CVMX_BOARD_TYPE_EBH3100: | 
|  | case CVMX_BOARD_TYPE_CN3010_EVB_HS5: | 
|  | case CVMX_BOARD_TYPE_CN3005_EVB_HS5: | 
|  | return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; | 
|  | case CVMX_BOARD_TYPE_BBGW_REF: | 
|  | return "AABCD"; | 
|  | case CVMX_BOARD_TYPE_THUNDER: | 
|  | case CVMX_BOARD_TYPE_EBH3000: | 
|  | default: | 
|  | return ""; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Map a PCI device to the appropriate interrupt line | 
|  | * | 
|  | * @dev:    The Linux PCI device structure for the device to map | 
|  | * @slot:   The slot number for this device on __BUS 0__. Linux | 
|  | *               enumerates through all the bridges and figures out the | 
|  | *               slot on Bus 0 where this device eventually hooks to. | 
|  | * @pin:    The PCI interrupt pin read from the device, then swizzled | 
|  | *               as it goes through each bridge. | 
|  | * Returns Interrupt number for the device | 
|  | */ | 
|  | int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev, | 
|  | u8 slot, u8 pin) | 
|  | { | 
|  | int irq_num; | 
|  | const char *interrupts; | 
|  | int dev_num; | 
|  |  | 
|  | /* Get the board specific interrupt mapping */ | 
|  | interrupts = octeon_get_pci_interrupts(); | 
|  |  | 
|  | dev_num = dev->devfn >> 3; | 
|  | if (dev_num < strlen(interrupts)) | 
|  | irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) + | 
|  | OCTEON_IRQ_PCI_INT0; | 
|  | else | 
|  | irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0; | 
|  | return irq_num; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Read a value from configuration space | 
|  | */ | 
|  | static int octeon_read_config(struct pci_bus *bus, unsigned int devfn, | 
|  | int reg, int size, u32 *val) | 
|  | { | 
|  | union octeon_pci_address pci_addr; | 
|  |  | 
|  | pci_addr.u64 = 0; | 
|  | pci_addr.s.upper = 2; | 
|  | pci_addr.s.io = 1; | 
|  | pci_addr.s.did = 3; | 
|  | pci_addr.s.subdid = 1; | 
|  | pci_addr.s.endian_swap = 1; | 
|  | pci_addr.s.bus = bus->number; | 
|  | pci_addr.s.dev = devfn >> 3; | 
|  | pci_addr.s.func = devfn & 0x7; | 
|  | pci_addr.s.reg = reg; | 
|  |  | 
|  | #if PCI_CONFIG_SPACE_DELAY | 
|  | udelay(PCI_CONFIG_SPACE_DELAY); | 
|  | #endif | 
|  | switch (size) { | 
|  | case 4: | 
|  | *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64)); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | case 2: | 
|  | *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64)); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | case 1: | 
|  | *val = cvmx_read64_uint8(pci_addr.u64); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  | return PCIBIOS_FUNC_NOT_SUPPORTED; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Write a value to PCI configuration space | 
|  | */ | 
|  | static int octeon_write_config(struct pci_bus *bus, unsigned int devfn, | 
|  | int reg, int size, u32 val) | 
|  | { | 
|  | union octeon_pci_address pci_addr; | 
|  |  | 
|  | pci_addr.u64 = 0; | 
|  | pci_addr.s.upper = 2; | 
|  | pci_addr.s.io = 1; | 
|  | pci_addr.s.did = 3; | 
|  | pci_addr.s.subdid = 1; | 
|  | pci_addr.s.endian_swap = 1; | 
|  | pci_addr.s.bus = bus->number; | 
|  | pci_addr.s.dev = devfn >> 3; | 
|  | pci_addr.s.func = devfn & 0x7; | 
|  | pci_addr.s.reg = reg; | 
|  |  | 
|  | #if PCI_CONFIG_SPACE_DELAY | 
|  | udelay(PCI_CONFIG_SPACE_DELAY); | 
|  | #endif | 
|  | switch (size) { | 
|  | case 4: | 
|  | cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val)); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | case 2: | 
|  | cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val)); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | case 1: | 
|  | cvmx_write64_uint8(pci_addr.u64, val); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  | return PCIBIOS_FUNC_NOT_SUPPORTED; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct pci_ops octeon_pci_ops = { | 
|  | octeon_read_config, | 
|  | octeon_write_config, | 
|  | }; | 
|  |  | 
|  | static struct resource octeon_pci_mem_resource = { | 
|  | .start = 0, | 
|  | .end = 0, | 
|  | .name = "Octeon PCI MEM", | 
|  | .flags = IORESOURCE_MEM, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI | 
|  | * bridge | 
|  | */ | 
|  | static struct resource octeon_pci_io_resource = { | 
|  | .start = 0x4000, | 
|  | .end = OCTEON_PCI_IOSPACE_SIZE - 1, | 
|  | .name = "Octeon PCI IO", | 
|  | .flags = IORESOURCE_IO, | 
|  | }; | 
|  |  | 
|  | static struct pci_controller octeon_pci_controller = { | 
|  | .pci_ops = &octeon_pci_ops, | 
|  | .mem_resource = &octeon_pci_mem_resource, | 
|  | .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET, | 
|  | .io_resource = &octeon_pci_io_resource, | 
|  | .io_offset = 0, | 
|  | .io_map_base = OCTEON_PCI_IOSPACE_BASE, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Low level initialize the Octeon PCI controller | 
|  | */ | 
|  | static void octeon_pci_initialize(void) | 
|  | { | 
|  | union cvmx_pci_cfg01 cfg01; | 
|  | union cvmx_npi_ctl_status ctl_status; | 
|  | union cvmx_pci_ctl_status_2 ctl_status_2; | 
|  | union cvmx_pci_cfg19 cfg19; | 
|  | union cvmx_pci_cfg16 cfg16; | 
|  | union cvmx_pci_cfg22 cfg22; | 
|  | union cvmx_pci_cfg56 cfg56; | 
|  |  | 
|  | /* Reset the PCI Bus */ | 
|  | cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1); | 
|  | cvmx_read_csr(CVMX_CIU_SOFT_PRST); | 
|  |  | 
|  | udelay(2000);		/* Hold PCI reset for 2 ms */ | 
|  |  | 
|  | ctl_status.u64 = 0;	/* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */ | 
|  | ctl_status.s.max_word = 1; | 
|  | ctl_status.s.timer = 1; | 
|  | cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64); | 
|  |  | 
|  | /* Deassert PCI reset and advertize PCX Host Mode Device Capability | 
|  | (64b) */ | 
|  | cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4); | 
|  | cvmx_read_csr(CVMX_CIU_SOFT_PRST); | 
|  |  | 
|  | udelay(2000);		/* Wait 2 ms after deasserting PCI reset */ | 
|  |  | 
|  | ctl_status_2.u32 = 0; | 
|  | ctl_status_2.s.tsr_hwm = 1;	/* Initializes to 0.  Must be set | 
|  | before any PCI reads. */ | 
|  | ctl_status_2.s.bar2pres = 1;	/* Enable BAR2 */ | 
|  | ctl_status_2.s.bar2_enb = 1; | 
|  | ctl_status_2.s.bar2_cax = 1;	/* Don't use L2 */ | 
|  | ctl_status_2.s.bar2_esx = 1; | 
|  | ctl_status_2.s.pmo_amod = 1;	/* Round robin priority */ | 
|  | if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { | 
|  | /* BAR1 hole */ | 
|  | ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS; | 
|  | ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */ | 
|  | ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */ | 
|  | ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */ | 
|  | ctl_status_2.s.bb1 = 1;      /* BAR1 is big */ | 
|  | ctl_status_2.s.bb0 = 1;      /* BAR0 is big */ | 
|  | } | 
|  |  | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32); | 
|  | udelay(2000);		/* Wait 2 ms before doing PCI reads */ | 
|  |  | 
|  | ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2); | 
|  | pr_notice("PCI Status: %s %s-bit\n", | 
|  | ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI", | 
|  | ctl_status_2.s.ap_64ad ? "64" : "32"); | 
|  |  | 
|  | if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) { | 
|  | union cvmx_pci_cnt_reg cnt_reg_start; | 
|  | union cvmx_pci_cnt_reg cnt_reg_end; | 
|  | unsigned long cycles, pci_clock; | 
|  |  | 
|  | cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); | 
|  | cycles = read_c0_cvmcount(); | 
|  | udelay(1000); | 
|  | cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); | 
|  | cycles = read_c0_cvmcount() - cycles; | 
|  | pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) / | 
|  | (cycles / (mips_hpt_frequency / 1000000)); | 
|  | pr_notice("PCI Clock: %lu MHz\n", pci_clock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TDOMC must be set to one in PCI mode. TDOMC should be set to 4 | 
|  | * in PCI-X mode to allow four outstanding splits. Otherwise, | 
|  | * should not change from its reset value. Don't write PCI_CFG19 | 
|  | * in PCI mode (0x82000001 reset value), write it to 0x82000004 | 
|  | * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero. | 
|  | * MRBCM -> must be one. | 
|  | */ | 
|  | if (ctl_status_2.s.ap_pcix) { | 
|  | cfg19.u32 = 0; | 
|  | /* | 
|  | * Target Delayed/Split request outstanding maximum | 
|  | * count. [1..31] and 0=32.  NOTE: If the user | 
|  | * programs these bits beyond the Designed Maximum | 
|  | * outstanding count, then the designed maximum table | 
|  | * depth will be used instead.  No additional | 
|  | * Deferred/Split transactions will be accepted if | 
|  | * this outstanding maximum count is | 
|  | * reached. Furthermore, no additional deferred/split | 
|  | * transactions will be accepted if the I/O delay/ I/O | 
|  | * Split Request outstanding maximum is reached. | 
|  | */ | 
|  | cfg19.s.tdomc = 4; | 
|  | /* | 
|  | * Master Deferred Read Request Outstanding Max Count | 
|  | * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC | 
|  | * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101 | 
|  | * 5 2 110 6 3 111 7 3 For example, if these bits are | 
|  | * programmed to 100, the core can support 2 DAC | 
|  | * cycles, 4 SAC cycles or a combination of 1 DAC and | 
|  | * 2 SAC cycles. NOTE: For the PCI-X maximum | 
|  | * outstanding split transactions, refer to | 
|  | * CRE0[22:20]. | 
|  | */ | 
|  | cfg19.s.mdrrmc = 2; | 
|  | /* | 
|  | * Master Request (Memory Read) Byte Count/Byte Enable | 
|  | * select. 0 = Byte Enables valid. In PCI mode, a | 
|  | * burst transaction cannot be performed using Memory | 
|  | * Read command=4?h6. 1 = DWORD Byte Count valid | 
|  | * (default). In PCI Mode, the memory read byte | 
|  | * enables are automatically generated by the | 
|  | * core. Note: N3 Master Request transaction sizes are | 
|  | * always determined through the | 
|  | * am_attr[<35:32>|<7:0>] field. | 
|  | */ | 
|  | cfg19.s.mrbcm = 1; | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32); | 
|  | } | 
|  |  | 
|  |  | 
|  | cfg01.u32 = 0; | 
|  | cfg01.s.msae = 1;	/* Memory Space Access Enable */ | 
|  | cfg01.s.me = 1;		/* Master Enable */ | 
|  | cfg01.s.pee = 1;	/* PERR# Enable */ | 
|  | cfg01.s.see = 1;	/* System Error Enable */ | 
|  | cfg01.s.fbbe = 1;	/* Fast Back to Back Transaction Enable */ | 
|  |  | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32); | 
|  |  | 
|  | #ifdef USE_OCTEON_INTERNAL_ARBITER | 
|  | /* | 
|  | * When OCTEON is a PCI host, most systems will use OCTEON's | 
|  | * internal arbiter, so must enable it before any PCI/PCI-X | 
|  | * traffic can occur. | 
|  | */ | 
|  | { | 
|  | union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg; | 
|  |  | 
|  | pci_int_arb_cfg.u64 = 0; | 
|  | pci_int_arb_cfg.s.en = 1;	/* Internal arbiter enable */ | 
|  | cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64); | 
|  | } | 
|  | #endif	/* USE_OCTEON_INTERNAL_ARBITER */ | 
|  |  | 
|  | /* | 
|  | * Preferably written to 1 to set MLTD. [RDSATI,TRTAE, | 
|  | * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to | 
|  | * 1..7. | 
|  | */ | 
|  | cfg16.u32 = 0; | 
|  | cfg16.s.mltd = 1;	/* Master Latency Timer Disable */ | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32); | 
|  |  | 
|  | /* | 
|  | * Should be written to 0x4ff00. MTTV -> must be zero. | 
|  | * FLUSH -> must be 1. MRV -> should be 0xFF. | 
|  | */ | 
|  | cfg22.u32 = 0; | 
|  | /* Master Retry Value [1..255] and 0=infinite */ | 
|  | cfg22.s.mrv = 0xff; | 
|  | /* | 
|  | * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper | 
|  | * N3K operation. | 
|  | */ | 
|  | cfg22.s.flush = 1; | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32); | 
|  |  | 
|  | /* | 
|  | * MOST Indicates the maximum number of outstanding splits (in -1 | 
|  | * notation) when OCTEON is in PCI-X mode.  PCI-X performance is | 
|  | * affected by the MOST selection.  Should generally be written | 
|  | * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807, | 
|  | * depending on the desired MOST of 3, 2, 1, or 0, respectively. | 
|  | */ | 
|  | cfg56.u32 = 0; | 
|  | cfg56.s.pxcid = 7;	/* RO - PCI-X Capability ID */ | 
|  | cfg56.s.ncp = 0xe8;	/* RO - Next Capability Pointer */ | 
|  | cfg56.s.dpere = 1;	/* Data Parity Error Recovery Enable */ | 
|  | cfg56.s.roe = 1;	/* Relaxed Ordering Enable */ | 
|  | cfg56.s.mmbc = 1;	/* Maximum Memory Byte Count | 
|  | [0=512B,1=1024B,2=2048B,3=4096B] */ | 
|  | cfg56.s.most = 3;	/* Maximum outstanding Split transactions [0=1 | 
|  | .. 7=32] */ | 
|  |  | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32); | 
|  |  | 
|  | /* | 
|  | * Affects PCI performance when OCTEON services reads to its | 
|  | * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are | 
|  | * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and | 
|  | * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700, | 
|  | * these values need to be changed so they won't possibly prefetch off | 
|  | * of the end of memory if PCI is DMAing a buffer at the end of | 
|  | * memory. Note that these values differ from their reset values. | 
|  | */ | 
|  | octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21); | 
|  | octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31); | 
|  | octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize the Octeon PCI controller | 
|  | */ | 
|  | static int __init octeon_pci_setup(void) | 
|  | { | 
|  | union cvmx_npi_mem_access_subidx mem_access; | 
|  | int index; | 
|  |  | 
|  | /* Only these chips have PCI */ | 
|  | if (octeon_has_feature(OCTEON_FEATURE_PCIE)) | 
|  | return 0; | 
|  |  | 
|  | /* Point pcibios_map_irq() to the PCI version of it */ | 
|  | octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq; | 
|  |  | 
|  | /* Only use the big bars on chips that support it */ | 
|  | if (OCTEON_IS_MODEL(OCTEON_CN31XX) || | 
|  | OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || | 
|  | OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1)) | 
|  | octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL; | 
|  | else | 
|  | octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG; | 
|  |  | 
|  | /* PCI I/O and PCI MEM values */ | 
|  | set_io_port_base(OCTEON_PCI_IOSPACE_BASE); | 
|  | ioport_resource.start = 0; | 
|  | ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1; | 
|  | if (!octeon_is_pci_host()) { | 
|  | pr_notice("Not in host mode, PCI Controller not initialized\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pr_notice("%s Octeon big bar support\n", | 
|  | (octeon_dma_bar_type == | 
|  | OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling"); | 
|  |  | 
|  | octeon_pci_initialize(); | 
|  |  | 
|  | mem_access.u64 = 0; | 
|  | mem_access.s.esr = 1;	/* Endian-Swap on read. */ | 
|  | mem_access.s.esw = 1;	/* Endian-Swap on write. */ | 
|  | mem_access.s.nsr = 0;	/* No-Snoop on read. */ | 
|  | mem_access.s.nsw = 0;	/* No-Snoop on write. */ | 
|  | mem_access.s.ror = 0;	/* Relax Read on read. */ | 
|  | mem_access.s.row = 0;	/* Relax Order on write. */ | 
|  | mem_access.s.ba = 0;	/* PCI Address bits [63:36]. */ | 
|  | cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64); | 
|  |  | 
|  | /* | 
|  | * Remap the Octeon BAR 2 above all 32 bit devices | 
|  | * (0x8000000000ul).  This is done here so it is remapped | 
|  | * before the readl()'s below. We don't want BAR2 overlapping | 
|  | * with BAR0/BAR1 during these reads. | 
|  | */ | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG08, | 
|  | (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull)); | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG09, | 
|  | (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32)); | 
|  |  | 
|  | if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { | 
|  | /* Remap the Octeon BAR 0 to 0-2GB */ | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0); | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); | 
|  |  | 
|  | /* | 
|  | * Remap the Octeon BAR 1 to map 2GB-4GB (minus the | 
|  | * BAR 1 hole). | 
|  | */ | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30); | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); | 
|  |  | 
|  | /* BAR1 movable mappings set for identity mapping */ | 
|  | octeon_bar1_pci_phys = 0x80000000ull; | 
|  | for (index = 0; index < 32; index++) { | 
|  | union cvmx_pci_bar1_indexx bar1_index; | 
|  |  | 
|  | bar1_index.u32 = 0; | 
|  | /* Address bits[35:22] sent to L2C */ | 
|  | bar1_index.s.addr_idx = | 
|  | (octeon_bar1_pci_phys >> 22) + index; | 
|  | /* Don't put PCI accesses in L2. */ | 
|  | bar1_index.s.ca = 1; | 
|  | /* Endian Swap Mode */ | 
|  | bar1_index.s.end_swp = 1; | 
|  | /* Set '1' when the selected address range is valid. */ | 
|  | bar1_index.s.addr_v = 1; | 
|  | octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), | 
|  | bar1_index.u32); | 
|  | } | 
|  |  | 
|  | /* Devices go after BAR1 */ | 
|  | octeon_pci_mem_resource.start = | 
|  | OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) - | 
|  | (OCTEON_PCI_BAR1_HOLE_SIZE << 20); | 
|  | octeon_pci_mem_resource.end = | 
|  | octeon_pci_mem_resource.start + (1ul << 30); | 
|  | } else { | 
|  | /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */ | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20); | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); | 
|  |  | 
|  | /* Remap the Octeon BAR 1 to map 0-128MB */ | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0); | 
|  | octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); | 
|  |  | 
|  | /* BAR1 movable regions contiguous to cover the swiotlb */ | 
|  | octeon_bar1_pci_phys = | 
|  | virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1); | 
|  |  | 
|  | for (index = 0; index < 32; index++) { | 
|  | union cvmx_pci_bar1_indexx bar1_index; | 
|  |  | 
|  | bar1_index.u32 = 0; | 
|  | /* Address bits[35:22] sent to L2C */ | 
|  | bar1_index.s.addr_idx = | 
|  | (octeon_bar1_pci_phys >> 22) + index; | 
|  | /* Don't put PCI accesses in L2. */ | 
|  | bar1_index.s.ca = 1; | 
|  | /* Endian Swap Mode */ | 
|  | bar1_index.s.end_swp = 1; | 
|  | /* Set '1' when the selected address range is valid. */ | 
|  | bar1_index.s.addr_v = 1; | 
|  | octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), | 
|  | bar1_index.u32); | 
|  | } | 
|  |  | 
|  | /* Devices go after BAR0 */ | 
|  | octeon_pci_mem_resource.start = | 
|  | OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) + | 
|  | (4ul << 10); | 
|  | octeon_pci_mem_resource.end = | 
|  | octeon_pci_mem_resource.start + (1ul << 30); | 
|  | } | 
|  |  | 
|  | register_pci_controller(&octeon_pci_controller); | 
|  |  | 
|  | /* | 
|  | * Clear any errors that might be pending from before the bus | 
|  | * was setup properly. | 
|  | */ | 
|  | cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1); | 
|  |  | 
|  | octeon_pci_dma_init(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | arch_initcall(octeon_pci_setup); |