| /* | 
 |  *  kernel/sched.c | 
 |  * | 
 |  *  Kernel scheduler and related syscalls | 
 |  * | 
 |  *  Copyright (C) 1991-2002  Linus Torvalds | 
 |  * | 
 |  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and | 
 |  *		make semaphores SMP safe | 
 |  *  1998-11-19	Implemented schedule_timeout() and related stuff | 
 |  *		by Andrea Arcangeli | 
 |  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar: | 
 |  *		hybrid priority-list and round-robin design with | 
 |  *		an array-switch method of distributing timeslices | 
 |  *		and per-CPU runqueues.  Cleanups and useful suggestions | 
 |  *		by Davide Libenzi, preemptible kernel bits by Robert Love. | 
 |  *  2003-09-03	Interactivity tuning by Con Kolivas. | 
 |  *  2004-04-02	Scheduler domains code by Nick Piggin | 
 |  *  2007-04-15  Work begun on replacing all interactivity tuning with a | 
 |  *              fair scheduling design by Con Kolivas. | 
 |  *  2007-05-05  Load balancing (smp-nice) and other improvements | 
 |  *              by Peter Williams | 
 |  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith | 
 |  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri | 
 |  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins, | 
 |  *              Thomas Gleixner, Mike Kravetz | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/init.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/debug_locks.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/security.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/pid_namespace.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/threads.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/stop_machine.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/times.h> | 
 | #include <linux/tsacct_kern.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/delayacct.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/hrtimer.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <asm/tlb.h> | 
 | #include <asm/irq_regs.h> | 
 |  | 
 | #include "sched_cpupri.h" | 
 | #include "workqueue_sched.h" | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/sched.h> | 
 |  | 
 | /* | 
 |  * Convert user-nice values [ -20 ... 0 ... 19 ] | 
 |  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | 
 |  * and back. | 
 |  */ | 
 | #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20) | 
 | #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20) | 
 | #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio) | 
 |  | 
 | /* | 
 |  * 'User priority' is the nice value converted to something we | 
 |  * can work with better when scaling various scheduler parameters, | 
 |  * it's a [ 0 ... 39 ] range. | 
 |  */ | 
 | #define USER_PRIO(p)		((p)-MAX_RT_PRIO) | 
 | #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio) | 
 | #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO)) | 
 |  | 
 | /* | 
 |  * Helpers for converting nanosecond timing to jiffy resolution | 
 |  */ | 
 | #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | 
 |  | 
 | #define NICE_0_LOAD		SCHED_LOAD_SCALE | 
 | #define NICE_0_SHIFT		SCHED_LOAD_SHIFT | 
 |  | 
 | /* | 
 |  * These are the 'tuning knobs' of the scheduler: | 
 |  * | 
 |  * default timeslice is 100 msecs (used only for SCHED_RR tasks). | 
 |  * Timeslices get refilled after they expire. | 
 |  */ | 
 | #define DEF_TIMESLICE		(100 * HZ / 1000) | 
 |  | 
 | /* | 
 |  * single value that denotes runtime == period, ie unlimited time. | 
 |  */ | 
 | #define RUNTIME_INF	((u64)~0ULL) | 
 |  | 
 | static inline int rt_policy(int policy) | 
 | { | 
 | 	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int task_has_rt_policy(struct task_struct *p) | 
 | { | 
 | 	return rt_policy(p->policy); | 
 | } | 
 |  | 
 | /* | 
 |  * This is the priority-queue data structure of the RT scheduling class: | 
 |  */ | 
 | struct rt_prio_array { | 
 | 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | 
 | 	struct list_head queue[MAX_RT_PRIO]; | 
 | }; | 
 |  | 
 | struct rt_bandwidth { | 
 | 	/* nests inside the rq lock: */ | 
 | 	raw_spinlock_t		rt_runtime_lock; | 
 | 	ktime_t			rt_period; | 
 | 	u64			rt_runtime; | 
 | 	struct hrtimer		rt_period_timer; | 
 | }; | 
 |  | 
 | static struct rt_bandwidth def_rt_bandwidth; | 
 |  | 
 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | 
 |  | 
 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | 
 | { | 
 | 	struct rt_bandwidth *rt_b = | 
 | 		container_of(timer, struct rt_bandwidth, rt_period_timer); | 
 | 	ktime_t now; | 
 | 	int overrun; | 
 | 	int idle = 0; | 
 |  | 
 | 	for (;;) { | 
 | 		now = hrtimer_cb_get_time(timer); | 
 | 		overrun = hrtimer_forward(timer, now, rt_b->rt_period); | 
 |  | 
 | 		if (!overrun) | 
 | 			break; | 
 |  | 
 | 		idle = do_sched_rt_period_timer(rt_b, overrun); | 
 | 	} | 
 |  | 
 | 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | 
 | } | 
 |  | 
 | static | 
 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | 
 | { | 
 | 	rt_b->rt_period = ns_to_ktime(period); | 
 | 	rt_b->rt_runtime = runtime; | 
 |  | 
 | 	raw_spin_lock_init(&rt_b->rt_runtime_lock); | 
 |  | 
 | 	hrtimer_init(&rt_b->rt_period_timer, | 
 | 			CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	rt_b->rt_period_timer.function = sched_rt_period_timer; | 
 | } | 
 |  | 
 | static inline int rt_bandwidth_enabled(void) | 
 | { | 
 | 	return sysctl_sched_rt_runtime >= 0; | 
 | } | 
 |  | 
 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | 
 | { | 
 | 	ktime_t now; | 
 |  | 
 | 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | 
 | 		return; | 
 |  | 
 | 	if (hrtimer_active(&rt_b->rt_period_timer)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock(&rt_b->rt_runtime_lock); | 
 | 	for (;;) { | 
 | 		unsigned long delta; | 
 | 		ktime_t soft, hard; | 
 |  | 
 | 		if (hrtimer_active(&rt_b->rt_period_timer)) | 
 | 			break; | 
 |  | 
 | 		now = hrtimer_cb_get_time(&rt_b->rt_period_timer); | 
 | 		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); | 
 |  | 
 | 		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer); | 
 | 		hard = hrtimer_get_expires(&rt_b->rt_period_timer); | 
 | 		delta = ktime_to_ns(ktime_sub(hard, soft)); | 
 | 		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, | 
 | 				HRTIMER_MODE_ABS_PINNED, 0); | 
 | 	} | 
 | 	raw_spin_unlock(&rt_b->rt_runtime_lock); | 
 | } | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | 
 | { | 
 | 	hrtimer_cancel(&rt_b->rt_period_timer); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * sched_domains_mutex serializes calls to arch_init_sched_domains, | 
 |  * detach_destroy_domains and partition_sched_domains. | 
 |  */ | 
 | static DEFINE_MUTEX(sched_domains_mutex); | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 |  | 
 | #include <linux/cgroup.h> | 
 |  | 
 | struct cfs_rq; | 
 |  | 
 | static LIST_HEAD(task_groups); | 
 |  | 
 | /* task group related information */ | 
 | struct task_group { | 
 | 	struct cgroup_subsys_state css; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	/* schedulable entities of this group on each cpu */ | 
 | 	struct sched_entity **se; | 
 | 	/* runqueue "owned" by this group on each cpu */ | 
 | 	struct cfs_rq **cfs_rq; | 
 | 	unsigned long shares; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	struct sched_rt_entity **rt_se; | 
 | 	struct rt_rq **rt_rq; | 
 |  | 
 | 	struct rt_bandwidth rt_bandwidth; | 
 | #endif | 
 |  | 
 | 	struct rcu_head rcu; | 
 | 	struct list_head list; | 
 |  | 
 | 	struct task_group *parent; | 
 | 	struct list_head siblings; | 
 | 	struct list_head children; | 
 | }; | 
 |  | 
 | #define root_task_group init_task_group | 
 |  | 
 | /* task_group_lock serializes add/remove of task groups and also changes to | 
 |  * a task group's cpu shares. | 
 |  */ | 
 | static DEFINE_SPINLOCK(task_group_lock); | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static int root_task_group_empty(void) | 
 | { | 
 | 	return list_empty(&root_task_group.children); | 
 | } | 
 | #endif | 
 |  | 
 | # define INIT_TASK_GROUP_LOAD	NICE_0_LOAD | 
 |  | 
 | /* | 
 |  * A weight of 0 or 1 can cause arithmetics problems. | 
 |  * A weight of a cfs_rq is the sum of weights of which entities | 
 |  * are queued on this cfs_rq, so a weight of a entity should not be | 
 |  * too large, so as the shares value of a task group. | 
 |  * (The default weight is 1024 - so there's no practical | 
 |  *  limitation from this.) | 
 |  */ | 
 | #define MIN_SHARES	2 | 
 | #define MAX_SHARES	(1UL << 18) | 
 |  | 
 | static int init_task_group_load = INIT_TASK_GROUP_LOAD; | 
 | #endif | 
 |  | 
 | /* Default task group. | 
 |  *	Every task in system belong to this group at bootup. | 
 |  */ | 
 | struct task_group init_task_group; | 
 |  | 
 | #endif	/* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | /* CFS-related fields in a runqueue */ | 
 | struct cfs_rq { | 
 | 	struct load_weight load; | 
 | 	unsigned long nr_running; | 
 |  | 
 | 	u64 exec_clock; | 
 | 	u64 min_vruntime; | 
 |  | 
 | 	struct rb_root tasks_timeline; | 
 | 	struct rb_node *rb_leftmost; | 
 |  | 
 | 	struct list_head tasks; | 
 | 	struct list_head *balance_iterator; | 
 |  | 
 | 	/* | 
 | 	 * 'curr' points to currently running entity on this cfs_rq. | 
 | 	 * It is set to NULL otherwise (i.e when none are currently running). | 
 | 	 */ | 
 | 	struct sched_entity *curr, *next, *last; | 
 |  | 
 | 	unsigned int nr_spread_over; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */ | 
 |  | 
 | 	/* | 
 | 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | 
 | 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | 
 | 	 * (like users, containers etc.) | 
 | 	 * | 
 | 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | 
 | 	 * list is used during load balance. | 
 | 	 */ | 
 | 	struct list_head leaf_cfs_rq_list; | 
 | 	struct task_group *tg;	/* group that "owns" this runqueue */ | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * the part of load.weight contributed by tasks | 
 | 	 */ | 
 | 	unsigned long task_weight; | 
 |  | 
 | 	/* | 
 | 	 *   h_load = weight * f(tg) | 
 | 	 * | 
 | 	 * Where f(tg) is the recursive weight fraction assigned to | 
 | 	 * this group. | 
 | 	 */ | 
 | 	unsigned long h_load; | 
 |  | 
 | 	/* | 
 | 	 * this cpu's part of tg->shares | 
 | 	 */ | 
 | 	unsigned long shares; | 
 |  | 
 | 	/* | 
 | 	 * load.weight at the time we set shares | 
 | 	 */ | 
 | 	unsigned long rq_weight; | 
 | #endif | 
 | #endif | 
 | }; | 
 |  | 
 | /* Real-Time classes' related field in a runqueue: */ | 
 | struct rt_rq { | 
 | 	struct rt_prio_array active; | 
 | 	unsigned long rt_nr_running; | 
 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
 | 	struct { | 
 | 		int curr; /* highest queued rt task prio */ | 
 | #ifdef CONFIG_SMP | 
 | 		int next; /* next highest */ | 
 | #endif | 
 | 	} highest_prio; | 
 | #endif | 
 | #ifdef CONFIG_SMP | 
 | 	unsigned long rt_nr_migratory; | 
 | 	unsigned long rt_nr_total; | 
 | 	int overloaded; | 
 | 	struct plist_head pushable_tasks; | 
 | #endif | 
 | 	int rt_throttled; | 
 | 	u64 rt_time; | 
 | 	u64 rt_runtime; | 
 | 	/* Nests inside the rq lock: */ | 
 | 	raw_spinlock_t rt_runtime_lock; | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	unsigned long rt_nr_boosted; | 
 |  | 
 | 	struct rq *rq; | 
 | 	struct list_head leaf_rt_rq_list; | 
 | 	struct task_group *tg; | 
 | #endif | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | /* | 
 |  * We add the notion of a root-domain which will be used to define per-domain | 
 |  * variables. Each exclusive cpuset essentially defines an island domain by | 
 |  * fully partitioning the member cpus from any other cpuset. Whenever a new | 
 |  * exclusive cpuset is created, we also create and attach a new root-domain | 
 |  * object. | 
 |  * | 
 |  */ | 
 | struct root_domain { | 
 | 	atomic_t refcount; | 
 | 	cpumask_var_t span; | 
 | 	cpumask_var_t online; | 
 |  | 
 | 	/* | 
 | 	 * The "RT overload" flag: it gets set if a CPU has more than | 
 | 	 * one runnable RT task. | 
 | 	 */ | 
 | 	cpumask_var_t rto_mask; | 
 | 	atomic_t rto_count; | 
 | #ifdef CONFIG_SMP | 
 | 	struct cpupri cpupri; | 
 | #endif | 
 | }; | 
 |  | 
 | /* | 
 |  * By default the system creates a single root-domain with all cpus as | 
 |  * members (mimicking the global state we have today). | 
 |  */ | 
 | static struct root_domain def_root_domain; | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * This is the main, per-CPU runqueue data structure. | 
 |  * | 
 |  * Locking rule: those places that want to lock multiple runqueues | 
 |  * (such as the load balancing or the thread migration code), lock | 
 |  * acquire operations must be ordered by ascending &runqueue. | 
 |  */ | 
 | struct rq { | 
 | 	/* runqueue lock: */ | 
 | 	raw_spinlock_t lock; | 
 |  | 
 | 	/* | 
 | 	 * nr_running and cpu_load should be in the same cacheline because | 
 | 	 * remote CPUs use both these fields when doing load calculation. | 
 | 	 */ | 
 | 	unsigned long nr_running; | 
 | 	#define CPU_LOAD_IDX_MAX 5 | 
 | 	unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 
 | 	unsigned long last_load_update_tick; | 
 | #ifdef CONFIG_NO_HZ | 
 | 	u64 nohz_stamp; | 
 | 	unsigned char nohz_balance_kick; | 
 | #endif | 
 | 	unsigned int skip_clock_update; | 
 |  | 
 | 	/* capture load from *all* tasks on this cpu: */ | 
 | 	struct load_weight load; | 
 | 	unsigned long nr_load_updates; | 
 | 	u64 nr_switches; | 
 |  | 
 | 	struct cfs_rq cfs; | 
 | 	struct rt_rq rt; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	/* list of leaf cfs_rq on this cpu: */ | 
 | 	struct list_head leaf_cfs_rq_list; | 
 | #endif | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	struct list_head leaf_rt_rq_list; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * This is part of a global counter where only the total sum | 
 | 	 * over all CPUs matters. A task can increase this counter on | 
 | 	 * one CPU and if it got migrated afterwards it may decrease | 
 | 	 * it on another CPU. Always updated under the runqueue lock: | 
 | 	 */ | 
 | 	unsigned long nr_uninterruptible; | 
 |  | 
 | 	struct task_struct *curr, *idle; | 
 | 	unsigned long next_balance; | 
 | 	struct mm_struct *prev_mm; | 
 |  | 
 | 	u64 clock; | 
 |  | 
 | 	atomic_t nr_iowait; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	struct root_domain *rd; | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	unsigned long cpu_power; | 
 |  | 
 | 	unsigned char idle_at_tick; | 
 | 	/* For active balancing */ | 
 | 	int post_schedule; | 
 | 	int active_balance; | 
 | 	int push_cpu; | 
 | 	struct cpu_stop_work active_balance_work; | 
 | 	/* cpu of this runqueue: */ | 
 | 	int cpu; | 
 | 	int online; | 
 |  | 
 | 	unsigned long avg_load_per_task; | 
 |  | 
 | 	u64 rt_avg; | 
 | 	u64 age_stamp; | 
 | 	u64 idle_stamp; | 
 | 	u64 avg_idle; | 
 | #endif | 
 |  | 
 | 	/* calc_load related fields */ | 
 | 	unsigned long calc_load_update; | 
 | 	long calc_load_active; | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | #ifdef CONFIG_SMP | 
 | 	int hrtick_csd_pending; | 
 | 	struct call_single_data hrtick_csd; | 
 | #endif | 
 | 	struct hrtimer hrtick_timer; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	/* latency stats */ | 
 | 	struct sched_info rq_sched_info; | 
 | 	unsigned long long rq_cpu_time; | 
 | 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | 
 |  | 
 | 	/* sys_sched_yield() stats */ | 
 | 	unsigned int yld_count; | 
 |  | 
 | 	/* schedule() stats */ | 
 | 	unsigned int sched_switch; | 
 | 	unsigned int sched_count; | 
 | 	unsigned int sched_goidle; | 
 |  | 
 | 	/* try_to_wake_up() stats */ | 
 | 	unsigned int ttwu_count; | 
 | 	unsigned int ttwu_local; | 
 |  | 
 | 	/* BKL stats */ | 
 | 	unsigned int bkl_count; | 
 | #endif | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 
 |  | 
 | static inline | 
 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	rq->curr->sched_class->check_preempt_curr(rq, p, flags); | 
 |  | 
 | 	/* | 
 | 	 * A queue event has occurred, and we're going to schedule.  In | 
 | 	 * this case, we can save a useless back to back clock update. | 
 | 	 */ | 
 | 	if (test_tsk_need_resched(p)) | 
 | 		rq->skip_clock_update = 1; | 
 | } | 
 |  | 
 | static inline int cpu_of(struct rq *rq) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	return rq->cpu; | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | #define rcu_dereference_check_sched_domain(p) \ | 
 | 	rcu_dereference_check((p), \ | 
 | 			      rcu_read_lock_sched_held() || \ | 
 | 			      lockdep_is_held(&sched_domains_mutex)) | 
 |  | 
 | /* | 
 |  * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 
 |  * See detach_destroy_domains: synchronize_sched for details. | 
 |  * | 
 |  * The domain tree of any CPU may only be accessed from within | 
 |  * preempt-disabled sections. | 
 |  */ | 
 | #define for_each_domain(cpu, __sd) \ | 
 | 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | 
 |  | 
 | #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) | 
 | #define this_rq()		(&__get_cpu_var(runqueues)) | 
 | #define task_rq(p)		cpu_rq(task_cpu(p)) | 
 | #define cpu_curr(cpu)		(cpu_rq(cpu)->curr) | 
 | #define raw_rq()		(&__raw_get_cpu_var(runqueues)) | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 |  | 
 | /* | 
 |  * Return the group to which this tasks belongs. | 
 |  * | 
 |  * We use task_subsys_state_check() and extend the RCU verification | 
 |  * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach() | 
 |  * holds that lock for each task it moves into the cgroup. Therefore | 
 |  * by holding that lock, we pin the task to the current cgroup. | 
 |  */ | 
 | static inline struct task_group *task_group(struct task_struct *p) | 
 | { | 
 | 	struct cgroup_subsys_state *css; | 
 |  | 
 | 	css = task_subsys_state_check(p, cpu_cgroup_subsys_id, | 
 | 			lockdep_is_held(&task_rq(p)->lock)); | 
 | 	return container_of(css, struct task_group, css); | 
 | } | 
 |  | 
 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | 
 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | 
 | { | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; | 
 | 	p->se.parent = task_group(p)->se[cpu]; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	p->rt.rt_rq  = task_group(p)->rt_rq[cpu]; | 
 | 	p->rt.parent = task_group(p)->rt_se[cpu]; | 
 | #endif | 
 | } | 
 |  | 
 | #else /* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 
 | static inline struct task_group *task_group(struct task_struct *p) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #endif /* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | inline void update_rq_clock(struct rq *rq) | 
 | { | 
 | 	if (!rq->skip_clock_update) | 
 | 		rq->clock = sched_clock_cpu(cpu_of(rq)); | 
 | } | 
 |  | 
 | /* | 
 |  * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | 
 |  */ | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | # define const_debug __read_mostly | 
 | #else | 
 | # define const_debug static const | 
 | #endif | 
 |  | 
 | /** | 
 |  * runqueue_is_locked | 
 |  * @cpu: the processor in question. | 
 |  * | 
 |  * Returns true if the current cpu runqueue is locked. | 
 |  * This interface allows printk to be called with the runqueue lock | 
 |  * held and know whether or not it is OK to wake up the klogd. | 
 |  */ | 
 | int runqueue_is_locked(int cpu) | 
 | { | 
 | 	return raw_spin_is_locked(&cpu_rq(cpu)->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Debugging: various feature bits | 
 |  */ | 
 |  | 
 | #define SCHED_FEAT(name, enabled)	\ | 
 | 	__SCHED_FEAT_##name , | 
 |  | 
 | enum { | 
 | #include "sched_features.h" | 
 | }; | 
 |  | 
 | #undef SCHED_FEAT | 
 |  | 
 | #define SCHED_FEAT(name, enabled)	\ | 
 | 	(1UL << __SCHED_FEAT_##name) * enabled | | 
 |  | 
 | const_debug unsigned int sysctl_sched_features = | 
 | #include "sched_features.h" | 
 | 	0; | 
 |  | 
 | #undef SCHED_FEAT | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | #define SCHED_FEAT(name, enabled)	\ | 
 | 	#name , | 
 |  | 
 | static __read_mostly char *sched_feat_names[] = { | 
 | #include "sched_features.h" | 
 | 	NULL | 
 | }; | 
 |  | 
 | #undef SCHED_FEAT | 
 |  | 
 | static int sched_feat_show(struct seq_file *m, void *v) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; sched_feat_names[i]; i++) { | 
 | 		if (!(sysctl_sched_features & (1UL << i))) | 
 | 			seq_puts(m, "NO_"); | 
 | 		seq_printf(m, "%s ", sched_feat_names[i]); | 
 | 	} | 
 | 	seq_puts(m, "\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t | 
 | sched_feat_write(struct file *filp, const char __user *ubuf, | 
 | 		size_t cnt, loff_t *ppos) | 
 | { | 
 | 	char buf[64]; | 
 | 	char *cmp = buf; | 
 | 	int neg = 0; | 
 | 	int i; | 
 |  | 
 | 	if (cnt > 63) | 
 | 		cnt = 63; | 
 |  | 
 | 	if (copy_from_user(&buf, ubuf, cnt)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	buf[cnt] = 0; | 
 |  | 
 | 	if (strncmp(buf, "NO_", 3) == 0) { | 
 | 		neg = 1; | 
 | 		cmp += 3; | 
 | 	} | 
 |  | 
 | 	for (i = 0; sched_feat_names[i]; i++) { | 
 | 		int len = strlen(sched_feat_names[i]); | 
 |  | 
 | 		if (strncmp(cmp, sched_feat_names[i], len) == 0) { | 
 | 			if (neg) | 
 | 				sysctl_sched_features &= ~(1UL << i); | 
 | 			else | 
 | 				sysctl_sched_features |= (1UL << i); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!sched_feat_names[i]) | 
 | 		return -EINVAL; | 
 |  | 
 | 	*ppos += cnt; | 
 |  | 
 | 	return cnt; | 
 | } | 
 |  | 
 | static int sched_feat_open(struct inode *inode, struct file *filp) | 
 | { | 
 | 	return single_open(filp, sched_feat_show, NULL); | 
 | } | 
 |  | 
 | static const struct file_operations sched_feat_fops = { | 
 | 	.open		= sched_feat_open, | 
 | 	.write		= sched_feat_write, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= single_release, | 
 | }; | 
 |  | 
 | static __init int sched_init_debug(void) | 
 | { | 
 | 	debugfs_create_file("sched_features", 0644, NULL, NULL, | 
 | 			&sched_feat_fops); | 
 |  | 
 | 	return 0; | 
 | } | 
 | late_initcall(sched_init_debug); | 
 |  | 
 | #endif | 
 |  | 
 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | 
 |  | 
 | /* | 
 |  * Number of tasks to iterate in a single balance run. | 
 |  * Limited because this is done with IRQs disabled. | 
 |  */ | 
 | const_debug unsigned int sysctl_sched_nr_migrate = 32; | 
 |  | 
 | /* | 
 |  * ratelimit for updating the group shares. | 
 |  * default: 0.25ms | 
 |  */ | 
 | unsigned int sysctl_sched_shares_ratelimit = 250000; | 
 | unsigned int normalized_sysctl_sched_shares_ratelimit = 250000; | 
 |  | 
 | /* | 
 |  * Inject some fuzzyness into changing the per-cpu group shares | 
 |  * this avoids remote rq-locks at the expense of fairness. | 
 |  * default: 4 | 
 |  */ | 
 | unsigned int sysctl_sched_shares_thresh = 4; | 
 |  | 
 | /* | 
 |  * period over which we average the RT time consumption, measured | 
 |  * in ms. | 
 |  * | 
 |  * default: 1s | 
 |  */ | 
 | const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; | 
 |  | 
 | /* | 
 |  * period over which we measure -rt task cpu usage in us. | 
 |  * default: 1s | 
 |  */ | 
 | unsigned int sysctl_sched_rt_period = 1000000; | 
 |  | 
 | static __read_mostly int scheduler_running; | 
 |  | 
 | /* | 
 |  * part of the period that we allow rt tasks to run in us. | 
 |  * default: 0.95s | 
 |  */ | 
 | int sysctl_sched_rt_runtime = 950000; | 
 |  | 
 | static inline u64 global_rt_period(void) | 
 | { | 
 | 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | 
 | } | 
 |  | 
 | static inline u64 global_rt_runtime(void) | 
 | { | 
 | 	if (sysctl_sched_rt_runtime < 0) | 
 | 		return RUNTIME_INF; | 
 |  | 
 | 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | 
 | } | 
 |  | 
 | #ifndef prepare_arch_switch | 
 | # define prepare_arch_switch(next)	do { } while (0) | 
 | #endif | 
 | #ifndef finish_arch_switch | 
 | # define finish_arch_switch(prev)	do { } while (0) | 
 | #endif | 
 |  | 
 | static inline int task_current(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	return rq->curr == p; | 
 | } | 
 |  | 
 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 
 | static inline int task_running(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	return task_current(rq, p); | 
 | } | 
 |  | 
 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 
 | { | 
 | } | 
 |  | 
 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | #ifdef CONFIG_DEBUG_SPINLOCK | 
 | 	/* this is a valid case when another task releases the spinlock */ | 
 | 	rq->lock.owner = current; | 
 | #endif | 
 | 	/* | 
 | 	 * If we are tracking spinlock dependencies then we have to | 
 | 	 * fix up the runqueue lock - which gets 'carried over' from | 
 | 	 * prev into current: | 
 | 	 */ | 
 | 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | 
 |  | 
 | 	raw_spin_unlock_irq(&rq->lock); | 
 | } | 
 |  | 
 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
 | static inline int task_running(struct rq *rq, struct task_struct *p) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	return p->oncpu; | 
 | #else | 
 | 	return task_current(rq, p); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * We can optimise this out completely for !SMP, because the | 
 | 	 * SMP rebalancing from interrupt is the only thing that cares | 
 | 	 * here. | 
 | 	 */ | 
 | 	next->oncpu = 1; | 
 | #endif | 
 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
 | 	raw_spin_unlock_irq(&rq->lock); | 
 | #else | 
 | 	raw_spin_unlock(&rq->lock); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * After ->oncpu is cleared, the task can be moved to a different CPU. | 
 | 	 * We must ensure this doesn't happen until the switch is completely | 
 | 	 * finished. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	prev->oncpu = 0; | 
 | #endif | 
 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
 | 	local_irq_enable(); | 
 | #endif | 
 | } | 
 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
 |  | 
 | /* | 
 |  * Check whether the task is waking, we use this to synchronize ->cpus_allowed | 
 |  * against ttwu(). | 
 |  */ | 
 | static inline int task_is_waking(struct task_struct *p) | 
 | { | 
 | 	return unlikely(p->state == TASK_WAKING); | 
 | } | 
 |  | 
 | /* | 
 |  * __task_rq_lock - lock the runqueue a given task resides on. | 
 |  * Must be called interrupts disabled. | 
 |  */ | 
 | static inline struct rq *__task_rq_lock(struct task_struct *p) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | 	for (;;) { | 
 | 		rq = task_rq(p); | 
 | 		raw_spin_lock(&rq->lock); | 
 | 		if (likely(rq == task_rq(p))) | 
 | 			return rq; | 
 | 		raw_spin_unlock(&rq->lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * task_rq_lock - lock the runqueue a given task resides on and disable | 
 |  * interrupts. Note the ordering: we can safely lookup the task_rq without | 
 |  * explicitly disabling preemption. | 
 |  */ | 
 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | 	for (;;) { | 
 | 		local_irq_save(*flags); | 
 | 		rq = task_rq(p); | 
 | 		raw_spin_lock(&rq->lock); | 
 | 		if (likely(rq == task_rq(p))) | 
 | 			return rq; | 
 | 		raw_spin_unlock_irqrestore(&rq->lock, *flags); | 
 | 	} | 
 | } | 
 |  | 
 | static void __task_rq_unlock(struct rq *rq) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	raw_spin_unlock(&rq->lock); | 
 | } | 
 |  | 
 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, *flags); | 
 | } | 
 |  | 
 | /* | 
 |  * this_rq_lock - lock this runqueue and disable interrupts. | 
 |  */ | 
 | static struct rq *this_rq_lock(void) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | 	local_irq_disable(); | 
 | 	rq = this_rq(); | 
 | 	raw_spin_lock(&rq->lock); | 
 |  | 
 | 	return rq; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | /* | 
 |  * Use HR-timers to deliver accurate preemption points. | 
 |  * | 
 |  * Its all a bit involved since we cannot program an hrt while holding the | 
 |  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a | 
 |  * reschedule event. | 
 |  * | 
 |  * When we get rescheduled we reprogram the hrtick_timer outside of the | 
 |  * rq->lock. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Use hrtick when: | 
 |  *  - enabled by features | 
 |  *  - hrtimer is actually high res | 
 |  */ | 
 | static inline int hrtick_enabled(struct rq *rq) | 
 | { | 
 | 	if (!sched_feat(HRTICK)) | 
 | 		return 0; | 
 | 	if (!cpu_active(cpu_of(rq))) | 
 | 		return 0; | 
 | 	return hrtimer_is_hres_active(&rq->hrtick_timer); | 
 | } | 
 |  | 
 | static void hrtick_clear(struct rq *rq) | 
 | { | 
 | 	if (hrtimer_active(&rq->hrtick_timer)) | 
 | 		hrtimer_cancel(&rq->hrtick_timer); | 
 | } | 
 |  | 
 | /* | 
 |  * High-resolution timer tick. | 
 |  * Runs from hardirq context with interrupts disabled. | 
 |  */ | 
 | static enum hrtimer_restart hrtick(struct hrtimer *timer) | 
 | { | 
 | 	struct rq *rq = container_of(timer, struct rq, hrtick_timer); | 
 |  | 
 | 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | 
 |  | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	update_rq_clock(rq); | 
 | 	rq->curr->sched_class->task_tick(rq, rq->curr, 1); | 
 | 	raw_spin_unlock(&rq->lock); | 
 |  | 
 | 	return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * called from hardirq (IPI) context | 
 |  */ | 
 | static void __hrtick_start(void *arg) | 
 | { | 
 | 	struct rq *rq = arg; | 
 |  | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	hrtimer_restart(&rq->hrtick_timer); | 
 | 	rq->hrtick_csd_pending = 0; | 
 | 	raw_spin_unlock(&rq->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Called to set the hrtick timer state. | 
 |  * | 
 |  * called with rq->lock held and irqs disabled | 
 |  */ | 
 | static void hrtick_start(struct rq *rq, u64 delay) | 
 | { | 
 | 	struct hrtimer *timer = &rq->hrtick_timer; | 
 | 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay); | 
 |  | 
 | 	hrtimer_set_expires(timer, time); | 
 |  | 
 | 	if (rq == this_rq()) { | 
 | 		hrtimer_restart(timer); | 
 | 	} else if (!rq->hrtick_csd_pending) { | 
 | 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); | 
 | 		rq->hrtick_csd_pending = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | 
 | { | 
 | 	int cpu = (int)(long)hcpu; | 
 |  | 
 | 	switch (action) { | 
 | 	case CPU_UP_CANCELED: | 
 | 	case CPU_UP_CANCELED_FROZEN: | 
 | 	case CPU_DOWN_PREPARE: | 
 | 	case CPU_DOWN_PREPARE_FROZEN: | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 		hrtick_clear(cpu_rq(cpu)); | 
 | 		return NOTIFY_OK; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | static __init void init_hrtick(void) | 
 | { | 
 | 	hotcpu_notifier(hotplug_hrtick, 0); | 
 | } | 
 | #else | 
 | /* | 
 |  * Called to set the hrtick timer state. | 
 |  * | 
 |  * called with rq->lock held and irqs disabled | 
 |  */ | 
 | static void hrtick_start(struct rq *rq, u64 delay) | 
 | { | 
 | 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, | 
 | 			HRTIMER_MODE_REL_PINNED, 0); | 
 | } | 
 |  | 
 | static inline void init_hrtick(void) | 
 | { | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static void init_rq_hrtick(struct rq *rq) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	rq->hrtick_csd_pending = 0; | 
 |  | 
 | 	rq->hrtick_csd.flags = 0; | 
 | 	rq->hrtick_csd.func = __hrtick_start; | 
 | 	rq->hrtick_csd.info = rq; | 
 | #endif | 
 |  | 
 | 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	rq->hrtick_timer.function = hrtick; | 
 | } | 
 | #else	/* CONFIG_SCHED_HRTICK */ | 
 | static inline void hrtick_clear(struct rq *rq) | 
 | { | 
 | } | 
 |  | 
 | static inline void init_rq_hrtick(struct rq *rq) | 
 | { | 
 | } | 
 |  | 
 | static inline void init_hrtick(void) | 
 | { | 
 | } | 
 | #endif	/* CONFIG_SCHED_HRTICK */ | 
 |  | 
 | /* | 
 |  * resched_task - mark a task 'to be rescheduled now'. | 
 |  * | 
 |  * On UP this means the setting of the need_resched flag, on SMP it | 
 |  * might also involve a cross-CPU call to trigger the scheduler on | 
 |  * the target CPU. | 
 |  */ | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | #ifndef tsk_is_polling | 
 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | 
 | #endif | 
 |  | 
 | static void resched_task(struct task_struct *p) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	assert_raw_spin_locked(&task_rq(p)->lock); | 
 |  | 
 | 	if (test_tsk_need_resched(p)) | 
 | 		return; | 
 |  | 
 | 	set_tsk_need_resched(p); | 
 |  | 
 | 	cpu = task_cpu(p); | 
 | 	if (cpu == smp_processor_id()) | 
 | 		return; | 
 |  | 
 | 	/* NEED_RESCHED must be visible before we test polling */ | 
 | 	smp_mb(); | 
 | 	if (!tsk_is_polling(p)) | 
 | 		smp_send_reschedule(cpu); | 
 | } | 
 |  | 
 | static void resched_cpu(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!raw_spin_trylock_irqsave(&rq->lock, flags)) | 
 | 		return; | 
 | 	resched_task(cpu_curr(cpu)); | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ | 
 | /* | 
 |  * In the semi idle case, use the nearest busy cpu for migrating timers | 
 |  * from an idle cpu.  This is good for power-savings. | 
 |  * | 
 |  * We don't do similar optimization for completely idle system, as | 
 |  * selecting an idle cpu will add more delays to the timers than intended | 
 |  * (as that cpu's timer base may not be uptodate wrt jiffies etc). | 
 |  */ | 
 | int get_nohz_timer_target(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	int i; | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	for_each_domain(cpu, sd) { | 
 | 		for_each_cpu(i, sched_domain_span(sd)) | 
 | 			if (!idle_cpu(i)) | 
 | 				return i; | 
 | 	} | 
 | 	return cpu; | 
 | } | 
 | /* | 
 |  * When add_timer_on() enqueues a timer into the timer wheel of an | 
 |  * idle CPU then this timer might expire before the next timer event | 
 |  * which is scheduled to wake up that CPU. In case of a completely | 
 |  * idle system the next event might even be infinite time into the | 
 |  * future. wake_up_idle_cpu() ensures that the CPU is woken up and | 
 |  * leaves the inner idle loop so the newly added timer is taken into | 
 |  * account when the CPU goes back to idle and evaluates the timer | 
 |  * wheel for the next timer event. | 
 |  */ | 
 | void wake_up_idle_cpu(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	if (cpu == smp_processor_id()) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * This is safe, as this function is called with the timer | 
 | 	 * wheel base lock of (cpu) held. When the CPU is on the way | 
 | 	 * to idle and has not yet set rq->curr to idle then it will | 
 | 	 * be serialized on the timer wheel base lock and take the new | 
 | 	 * timer into account automatically. | 
 | 	 */ | 
 | 	if (rq->curr != rq->idle) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We can set TIF_RESCHED on the idle task of the other CPU | 
 | 	 * lockless. The worst case is that the other CPU runs the | 
 | 	 * idle task through an additional NOOP schedule() | 
 | 	 */ | 
 | 	set_tsk_need_resched(rq->idle); | 
 |  | 
 | 	/* NEED_RESCHED must be visible before we test polling */ | 
 | 	smp_mb(); | 
 | 	if (!tsk_is_polling(rq->idle)) | 
 | 		smp_send_reschedule(cpu); | 
 | } | 
 |  | 
 | #endif /* CONFIG_NO_HZ */ | 
 |  | 
 | static u64 sched_avg_period(void) | 
 | { | 
 | 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | 
 | } | 
 |  | 
 | static void sched_avg_update(struct rq *rq) | 
 | { | 
 | 	s64 period = sched_avg_period(); | 
 |  | 
 | 	while ((s64)(rq->clock - rq->age_stamp) > period) { | 
 | 		/* | 
 | 		 * Inline assembly required to prevent the compiler | 
 | 		 * optimising this loop into a divmod call. | 
 | 		 * See __iter_div_u64_rem() for another example of this. | 
 | 		 */ | 
 | 		asm("" : "+rm" (rq->age_stamp)); | 
 | 		rq->age_stamp += period; | 
 | 		rq->rt_avg /= 2; | 
 | 	} | 
 | } | 
 |  | 
 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | 
 | { | 
 | 	rq->rt_avg += rt_delta; | 
 | 	sched_avg_update(rq); | 
 | } | 
 |  | 
 | #else /* !CONFIG_SMP */ | 
 | static void resched_task(struct task_struct *p) | 
 | { | 
 | 	assert_raw_spin_locked(&task_rq(p)->lock); | 
 | 	set_tsk_need_resched(p); | 
 | } | 
 |  | 
 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | 
 | { | 
 | } | 
 |  | 
 | static void sched_avg_update(struct rq *rq) | 
 | { | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | #if BITS_PER_LONG == 32 | 
 | # define WMULT_CONST	(~0UL) | 
 | #else | 
 | # define WMULT_CONST	(1UL << 32) | 
 | #endif | 
 |  | 
 | #define WMULT_SHIFT	32 | 
 |  | 
 | /* | 
 |  * Shift right and round: | 
 |  */ | 
 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) | 
 |  | 
 | /* | 
 |  * delta *= weight / lw | 
 |  */ | 
 | static unsigned long | 
 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, | 
 | 		struct load_weight *lw) | 
 | { | 
 | 	u64 tmp; | 
 |  | 
 | 	if (!lw->inv_weight) { | 
 | 		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) | 
 | 			lw->inv_weight = 1; | 
 | 		else | 
 | 			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) | 
 | 				/ (lw->weight+1); | 
 | 	} | 
 |  | 
 | 	tmp = (u64)delta_exec * weight; | 
 | 	/* | 
 | 	 * Check whether we'd overflow the 64-bit multiplication: | 
 | 	 */ | 
 | 	if (unlikely(tmp > WMULT_CONST)) | 
 | 		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, | 
 | 			WMULT_SHIFT/2); | 
 | 	else | 
 | 		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); | 
 |  | 
 | 	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); | 
 | } | 
 |  | 
 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | 
 | { | 
 | 	lw->weight += inc; | 
 | 	lw->inv_weight = 0; | 
 | } | 
 |  | 
 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | 
 | { | 
 | 	lw->weight -= dec; | 
 | 	lw->inv_weight = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * To aid in avoiding the subversion of "niceness" due to uneven distribution | 
 |  * of tasks with abnormal "nice" values across CPUs the contribution that | 
 |  * each task makes to its run queue's load is weighted according to its | 
 |  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | 
 |  * scaled version of the new time slice allocation that they receive on time | 
 |  * slice expiry etc. | 
 |  */ | 
 |  | 
 | #define WEIGHT_IDLEPRIO                3 | 
 | #define WMULT_IDLEPRIO         1431655765 | 
 |  | 
 | /* | 
 |  * Nice levels are multiplicative, with a gentle 10% change for every | 
 |  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | 
 |  * nice 1, it will get ~10% less CPU time than another CPU-bound task | 
 |  * that remained on nice 0. | 
 |  * | 
 |  * The "10% effect" is relative and cumulative: from _any_ nice level, | 
 |  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | 
 |  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | 
 |  * If a task goes up by ~10% and another task goes down by ~10% then | 
 |  * the relative distance between them is ~25%.) | 
 |  */ | 
 | static const int prio_to_weight[40] = { | 
 |  /* -20 */     88761,     71755,     56483,     46273,     36291, | 
 |  /* -15 */     29154,     23254,     18705,     14949,     11916, | 
 |  /* -10 */      9548,      7620,      6100,      4904,      3906, | 
 |  /*  -5 */      3121,      2501,      1991,      1586,      1277, | 
 |  /*   0 */      1024,       820,       655,       526,       423, | 
 |  /*   5 */       335,       272,       215,       172,       137, | 
 |  /*  10 */       110,        87,        70,        56,        45, | 
 |  /*  15 */        36,        29,        23,        18,        15, | 
 | }; | 
 |  | 
 | /* | 
 |  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | 
 |  * | 
 |  * In cases where the weight does not change often, we can use the | 
 |  * precalculated inverse to speed up arithmetics by turning divisions | 
 |  * into multiplications: | 
 |  */ | 
 | static const u32 prio_to_wmult[40] = { | 
 |  /* -20 */     48388,     59856,     76040,     92818,    118348, | 
 |  /* -15 */    147320,    184698,    229616,    287308,    360437, | 
 |  /* -10 */    449829,    563644,    704093,    875809,   1099582, | 
 |  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326, | 
 |  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587, | 
 |  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126, | 
 |  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717, | 
 |  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 
 | }; | 
 |  | 
 | /* Time spent by the tasks of the cpu accounting group executing in ... */ | 
 | enum cpuacct_stat_index { | 
 | 	CPUACCT_STAT_USER,	/* ... user mode */ | 
 | 	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */ | 
 |  | 
 | 	CPUACCT_STAT_NSTATS, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_CGROUP_CPUACCT | 
 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime); | 
 | static void cpuacct_update_stats(struct task_struct *tsk, | 
 | 		enum cpuacct_stat_index idx, cputime_t val); | 
 | #else | 
 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | 
 | static inline void cpuacct_update_stats(struct task_struct *tsk, | 
 | 		enum cpuacct_stat_index idx, cputime_t val) {} | 
 | #endif | 
 |  | 
 | static inline void inc_cpu_load(struct rq *rq, unsigned long load) | 
 | { | 
 | 	update_load_add(&rq->load, load); | 
 | } | 
 |  | 
 | static inline void dec_cpu_load(struct rq *rq, unsigned long load) | 
 | { | 
 | 	update_load_sub(&rq->load, load); | 
 | } | 
 |  | 
 | #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) | 
 | typedef int (*tg_visitor)(struct task_group *, void *); | 
 |  | 
 | /* | 
 |  * Iterate the full tree, calling @down when first entering a node and @up when | 
 |  * leaving it for the final time. | 
 |  */ | 
 | static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | 
 | { | 
 | 	struct task_group *parent, *child; | 
 | 	int ret; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	parent = &root_task_group; | 
 | down: | 
 | 	ret = (*down)(parent, data); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 | 	list_for_each_entry_rcu(child, &parent->children, siblings) { | 
 | 		parent = child; | 
 | 		goto down; | 
 |  | 
 | up: | 
 | 		continue; | 
 | 	} | 
 | 	ret = (*up)(parent, data); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	child = parent; | 
 | 	parent = parent->parent; | 
 | 	if (parent) | 
 | 		goto up; | 
 | out_unlock: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int tg_nop(struct task_group *tg, void *data) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* Used instead of source_load when we know the type == 0 */ | 
 | static unsigned long weighted_cpuload(const int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->load.weight; | 
 | } | 
 |  | 
 | /* | 
 |  * Return a low guess at the load of a migration-source cpu weighted | 
 |  * according to the scheduling class and "nice" value. | 
 |  * | 
 |  * We want to under-estimate the load of migration sources, to | 
 |  * balance conservatively. | 
 |  */ | 
 | static unsigned long source_load(int cpu, int type) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long total = weighted_cpuload(cpu); | 
 |  | 
 | 	if (type == 0 || !sched_feat(LB_BIAS)) | 
 | 		return total; | 
 |  | 
 | 	return min(rq->cpu_load[type-1], total); | 
 | } | 
 |  | 
 | /* | 
 |  * Return a high guess at the load of a migration-target cpu weighted | 
 |  * according to the scheduling class and "nice" value. | 
 |  */ | 
 | static unsigned long target_load(int cpu, int type) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long total = weighted_cpuload(cpu); | 
 |  | 
 | 	if (type == 0 || !sched_feat(LB_BIAS)) | 
 | 		return total; | 
 |  | 
 | 	return max(rq->cpu_load[type-1], total); | 
 | } | 
 |  | 
 | static unsigned long power_of(int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->cpu_power; | 
 | } | 
 |  | 
 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | 
 |  | 
 | static unsigned long cpu_avg_load_per_task(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running); | 
 |  | 
 | 	if (nr_running) | 
 | 		rq->avg_load_per_task = rq->load.weight / nr_running; | 
 | 	else | 
 | 		rq->avg_load_per_task = 0; | 
 |  | 
 | 	return rq->avg_load_per_task; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 |  | 
 | static __read_mostly unsigned long __percpu *update_shares_data; | 
 |  | 
 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); | 
 |  | 
 | /* | 
 |  * Calculate and set the cpu's group shares. | 
 |  */ | 
 | static void update_group_shares_cpu(struct task_group *tg, int cpu, | 
 | 				    unsigned long sd_shares, | 
 | 				    unsigned long sd_rq_weight, | 
 | 				    unsigned long *usd_rq_weight) | 
 | { | 
 | 	unsigned long shares, rq_weight; | 
 | 	int boost = 0; | 
 |  | 
 | 	rq_weight = usd_rq_weight[cpu]; | 
 | 	if (!rq_weight) { | 
 | 		boost = 1; | 
 | 		rq_weight = NICE_0_LOAD; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *             \Sum_j shares_j * rq_weight_i | 
 | 	 * shares_i =  ----------------------------- | 
 | 	 *                  \Sum_j rq_weight_j | 
 | 	 */ | 
 | 	shares = (sd_shares * rq_weight) / sd_rq_weight; | 
 | 	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); | 
 |  | 
 | 	if (abs(shares - tg->se[cpu]->load.weight) > | 
 | 			sysctl_sched_shares_thresh) { | 
 | 		struct rq *rq = cpu_rq(cpu); | 
 | 		unsigned long flags; | 
 |  | 
 | 		raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; | 
 | 		tg->cfs_rq[cpu]->shares = boost ? 0 : shares; | 
 | 		__set_se_shares(tg->se[cpu], shares); | 
 | 		raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Re-compute the task group their per cpu shares over the given domain. | 
 |  * This needs to be done in a bottom-up fashion because the rq weight of a | 
 |  * parent group depends on the shares of its child groups. | 
 |  */ | 
 | static int tg_shares_up(struct task_group *tg, void *data) | 
 | { | 
 | 	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0; | 
 | 	unsigned long *usd_rq_weight; | 
 | 	struct sched_domain *sd = data; | 
 | 	unsigned long flags; | 
 | 	int i; | 
 |  | 
 | 	if (!tg->se[0]) | 
 | 		return 0; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id()); | 
 |  | 
 | 	for_each_cpu(i, sched_domain_span(sd)) { | 
 | 		weight = tg->cfs_rq[i]->load.weight; | 
 | 		usd_rq_weight[i] = weight; | 
 |  | 
 | 		rq_weight += weight; | 
 | 		/* | 
 | 		 * If there are currently no tasks on the cpu pretend there | 
 | 		 * is one of average load so that when a new task gets to | 
 | 		 * run here it will not get delayed by group starvation. | 
 | 		 */ | 
 | 		if (!weight) | 
 | 			weight = NICE_0_LOAD; | 
 |  | 
 | 		sum_weight += weight; | 
 | 		shares += tg->cfs_rq[i]->shares; | 
 | 	} | 
 |  | 
 | 	if (!rq_weight) | 
 | 		rq_weight = sum_weight; | 
 |  | 
 | 	if ((!shares && rq_weight) || shares > tg->shares) | 
 | 		shares = tg->shares; | 
 |  | 
 | 	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) | 
 | 		shares = tg->shares; | 
 |  | 
 | 	for_each_cpu(i, sched_domain_span(sd)) | 
 | 		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight); | 
 |  | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Compute the cpu's hierarchical load factor for each task group. | 
 |  * This needs to be done in a top-down fashion because the load of a child | 
 |  * group is a fraction of its parents load. | 
 |  */ | 
 | static int tg_load_down(struct task_group *tg, void *data) | 
 | { | 
 | 	unsigned long load; | 
 | 	long cpu = (long)data; | 
 |  | 
 | 	if (!tg->parent) { | 
 | 		load = cpu_rq(cpu)->load.weight; | 
 | 	} else { | 
 | 		load = tg->parent->cfs_rq[cpu]->h_load; | 
 | 		load *= tg->cfs_rq[cpu]->shares; | 
 | 		load /= tg->parent->cfs_rq[cpu]->load.weight + 1; | 
 | 	} | 
 |  | 
 | 	tg->cfs_rq[cpu]->h_load = load; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void update_shares(struct sched_domain *sd) | 
 | { | 
 | 	s64 elapsed; | 
 | 	u64 now; | 
 |  | 
 | 	if (root_task_group_empty()) | 
 | 		return; | 
 |  | 
 | 	now = local_clock(); | 
 | 	elapsed = now - sd->last_update; | 
 |  | 
 | 	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { | 
 | 		sd->last_update = now; | 
 | 		walk_tg_tree(tg_nop, tg_shares_up, sd); | 
 | 	} | 
 | } | 
 |  | 
 | static void update_h_load(long cpu) | 
 | { | 
 | 	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline void update_shares(struct sched_domain *sd) | 
 | { | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 |  | 
 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | 
 |  | 
 | /* | 
 |  * fair double_lock_balance: Safely acquires both rq->locks in a fair | 
 |  * way at the expense of forcing extra atomic operations in all | 
 |  * invocations.  This assures that the double_lock is acquired using the | 
 |  * same underlying policy as the spinlock_t on this architecture, which | 
 |  * reduces latency compared to the unfair variant below.  However, it | 
 |  * also adds more overhead and therefore may reduce throughput. | 
 |  */ | 
 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
 | 	__releases(this_rq->lock) | 
 | 	__acquires(busiest->lock) | 
 | 	__acquires(this_rq->lock) | 
 | { | 
 | 	raw_spin_unlock(&this_rq->lock); | 
 | 	double_rq_lock(this_rq, busiest); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | #else | 
 | /* | 
 |  * Unfair double_lock_balance: Optimizes throughput at the expense of | 
 |  * latency by eliminating extra atomic operations when the locks are | 
 |  * already in proper order on entry.  This favors lower cpu-ids and will | 
 |  * grant the double lock to lower cpus over higher ids under contention, | 
 |  * regardless of entry order into the function. | 
 |  */ | 
 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
 | 	__releases(this_rq->lock) | 
 | 	__acquires(busiest->lock) | 
 | 	__acquires(this_rq->lock) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (unlikely(!raw_spin_trylock(&busiest->lock))) { | 
 | 		if (busiest < this_rq) { | 
 | 			raw_spin_unlock(&this_rq->lock); | 
 | 			raw_spin_lock(&busiest->lock); | 
 | 			raw_spin_lock_nested(&this_rq->lock, | 
 | 					      SINGLE_DEPTH_NESTING); | 
 | 			ret = 1; | 
 | 		} else | 
 | 			raw_spin_lock_nested(&busiest->lock, | 
 | 					      SINGLE_DEPTH_NESTING); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #endif /* CONFIG_PREEMPT */ | 
 |  | 
 | /* | 
 |  * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 
 |  */ | 
 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
 | { | 
 | 	if (unlikely(!irqs_disabled())) { | 
 | 		/* printk() doesn't work good under rq->lock */ | 
 | 		raw_spin_unlock(&this_rq->lock); | 
 | 		BUG_ON(1); | 
 | 	} | 
 |  | 
 | 	return _double_lock_balance(this_rq, busiest); | 
 | } | 
 |  | 
 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 
 | 	__releases(busiest->lock) | 
 | { | 
 | 	raw_spin_unlock(&busiest->lock); | 
 | 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | 
 | } | 
 |  | 
 | /* | 
 |  * double_rq_lock - safely lock two runqueues | 
 |  * | 
 |  * Note this does not disable interrupts like task_rq_lock, | 
 |  * you need to do so manually before calling. | 
 |  */ | 
 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | 
 | 	__acquires(rq1->lock) | 
 | 	__acquires(rq2->lock) | 
 | { | 
 | 	BUG_ON(!irqs_disabled()); | 
 | 	if (rq1 == rq2) { | 
 | 		raw_spin_lock(&rq1->lock); | 
 | 		__acquire(rq2->lock);	/* Fake it out ;) */ | 
 | 	} else { | 
 | 		if (rq1 < rq2) { | 
 | 			raw_spin_lock(&rq1->lock); | 
 | 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | 
 | 		} else { | 
 | 			raw_spin_lock(&rq2->lock); | 
 | 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * double_rq_unlock - safely unlock two runqueues | 
 |  * | 
 |  * Note this does not restore interrupts like task_rq_unlock, | 
 |  * you need to do so manually after calling. | 
 |  */ | 
 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | 
 | 	__releases(rq1->lock) | 
 | 	__releases(rq2->lock) | 
 | { | 
 | 	raw_spin_unlock(&rq1->lock); | 
 | 	if (rq1 != rq2) | 
 | 		raw_spin_unlock(&rq2->lock); | 
 | 	else | 
 | 		__release(rq2->lock); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	cfs_rq->shares = shares; | 
 | #endif | 
 | } | 
 | #endif | 
 |  | 
 | static void calc_load_account_idle(struct rq *this_rq); | 
 | static void update_sysctl(void); | 
 | static int get_update_sysctl_factor(void); | 
 | static void update_cpu_load(struct rq *this_rq); | 
 |  | 
 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | 
 | { | 
 | 	set_task_rq(p, cpu); | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | 
 | 	 * successfuly executed on another CPU. We must ensure that updates of | 
 | 	 * per-task data have been completed by this moment. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	task_thread_info(p)->cpu = cpu; | 
 | #endif | 
 | } | 
 |  | 
 | static const struct sched_class rt_sched_class; | 
 |  | 
 | #define sched_class_highest (&rt_sched_class) | 
 | #define for_each_class(class) \ | 
 |    for (class = sched_class_highest; class; class = class->next) | 
 |  | 
 | #include "sched_stats.h" | 
 |  | 
 | static void inc_nr_running(struct rq *rq) | 
 | { | 
 | 	rq->nr_running++; | 
 | } | 
 |  | 
 | static void dec_nr_running(struct rq *rq) | 
 | { | 
 | 	rq->nr_running--; | 
 | } | 
 |  | 
 | static void set_load_weight(struct task_struct *p) | 
 | { | 
 | 	if (task_has_rt_policy(p)) { | 
 | 		p->se.load.weight = 0; | 
 | 		p->se.load.inv_weight = WMULT_CONST; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * SCHED_IDLE tasks get minimal weight: | 
 | 	 */ | 
 | 	if (p->policy == SCHED_IDLE) { | 
 | 		p->se.load.weight = WEIGHT_IDLEPRIO; | 
 | 		p->se.load.inv_weight = WMULT_IDLEPRIO; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; | 
 | 	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | 
 | } | 
 |  | 
 | static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	update_rq_clock(rq); | 
 | 	sched_info_queued(p); | 
 | 	p->sched_class->enqueue_task(rq, p, flags); | 
 | 	p->se.on_rq = 1; | 
 | } | 
 |  | 
 | static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	update_rq_clock(rq); | 
 | 	sched_info_dequeued(p); | 
 | 	p->sched_class->dequeue_task(rq, p, flags); | 
 | 	p->se.on_rq = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * activate_task - move a task to the runqueue. | 
 |  */ | 
 | static void activate_task(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	if (task_contributes_to_load(p)) | 
 | 		rq->nr_uninterruptible--; | 
 |  | 
 | 	enqueue_task(rq, p, flags); | 
 | 	inc_nr_running(rq); | 
 | } | 
 |  | 
 | /* | 
 |  * deactivate_task - remove a task from the runqueue. | 
 |  */ | 
 | static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	if (task_contributes_to_load(p)) | 
 | 		rq->nr_uninterruptible++; | 
 |  | 
 | 	dequeue_task(rq, p, flags); | 
 | 	dec_nr_running(rq); | 
 | } | 
 |  | 
 | #include "sched_idletask.c" | 
 | #include "sched_fair.c" | 
 | #include "sched_rt.c" | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | # include "sched_debug.c" | 
 | #endif | 
 |  | 
 | /* | 
 |  * __normal_prio - return the priority that is based on the static prio | 
 |  */ | 
 | static inline int __normal_prio(struct task_struct *p) | 
 | { | 
 | 	return p->static_prio; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the expected normal priority: i.e. priority | 
 |  * without taking RT-inheritance into account. Might be | 
 |  * boosted by interactivity modifiers. Changes upon fork, | 
 |  * setprio syscalls, and whenever the interactivity | 
 |  * estimator recalculates. | 
 |  */ | 
 | static inline int normal_prio(struct task_struct *p) | 
 | { | 
 | 	int prio; | 
 |  | 
 | 	if (task_has_rt_policy(p)) | 
 | 		prio = MAX_RT_PRIO-1 - p->rt_priority; | 
 | 	else | 
 | 		prio = __normal_prio(p); | 
 | 	return prio; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the current priority, i.e. the priority | 
 |  * taken into account by the scheduler. This value might | 
 |  * be boosted by RT tasks, or might be boosted by | 
 |  * interactivity modifiers. Will be RT if the task got | 
 |  * RT-boosted. If not then it returns p->normal_prio. | 
 |  */ | 
 | static int effective_prio(struct task_struct *p) | 
 | { | 
 | 	p->normal_prio = normal_prio(p); | 
 | 	/* | 
 | 	 * If we are RT tasks or we were boosted to RT priority, | 
 | 	 * keep the priority unchanged. Otherwise, update priority | 
 | 	 * to the normal priority: | 
 | 	 */ | 
 | 	if (!rt_prio(p->prio)) | 
 | 		return p->normal_prio; | 
 | 	return p->prio; | 
 | } | 
 |  | 
 | /** | 
 |  * task_curr - is this task currently executing on a CPU? | 
 |  * @p: the task in question. | 
 |  */ | 
 | inline int task_curr(const struct task_struct *p) | 
 | { | 
 | 	return cpu_curr(task_cpu(p)) == p; | 
 | } | 
 |  | 
 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, | 
 | 				       const struct sched_class *prev_class, | 
 | 				       int oldprio, int running) | 
 | { | 
 | 	if (prev_class != p->sched_class) { | 
 | 		if (prev_class->switched_from) | 
 | 			prev_class->switched_from(rq, p, running); | 
 | 		p->sched_class->switched_to(rq, p, running); | 
 | 	} else | 
 | 		p->sched_class->prio_changed(rq, p, oldprio, running); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * Is this task likely cache-hot: | 
 |  */ | 
 | static int | 
 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | 
 | { | 
 | 	s64 delta; | 
 |  | 
 | 	if (p->sched_class != &fair_sched_class) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Buddy candidates are cache hot: | 
 | 	 */ | 
 | 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && | 
 | 			(&p->se == cfs_rq_of(&p->se)->next || | 
 | 			 &p->se == cfs_rq_of(&p->se)->last)) | 
 | 		return 1; | 
 |  | 
 | 	if (sysctl_sched_migration_cost == -1) | 
 | 		return 1; | 
 | 	if (sysctl_sched_migration_cost == 0) | 
 | 		return 0; | 
 |  | 
 | 	delta = now - p->se.exec_start; | 
 |  | 
 | 	return delta < (s64)sysctl_sched_migration_cost; | 
 | } | 
 |  | 
 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 
 | { | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	/* | 
 | 	 * We should never call set_task_cpu() on a blocked task, | 
 | 	 * ttwu() will sort out the placement. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && | 
 | 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); | 
 | #endif | 
 |  | 
 | 	trace_sched_migrate_task(p, new_cpu); | 
 |  | 
 | 	if (task_cpu(p) != new_cpu) { | 
 | 		p->se.nr_migrations++; | 
 | 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); | 
 | 	} | 
 |  | 
 | 	__set_task_cpu(p, new_cpu); | 
 | } | 
 |  | 
 | struct migration_arg { | 
 | 	struct task_struct *task; | 
 | 	int dest_cpu; | 
 | }; | 
 |  | 
 | static int migration_cpu_stop(void *data); | 
 |  | 
 | /* | 
 |  * The task's runqueue lock must be held. | 
 |  * Returns true if you have to wait for migration thread. | 
 |  */ | 
 | static bool migrate_task(struct task_struct *p, int dest_cpu) | 
 | { | 
 | 	struct rq *rq = task_rq(p); | 
 |  | 
 | 	/* | 
 | 	 * If the task is not on a runqueue (and not running), then | 
 | 	 * the next wake-up will properly place the task. | 
 | 	 */ | 
 | 	return p->se.on_rq || task_running(rq, p); | 
 | } | 
 |  | 
 | /* | 
 |  * wait_task_inactive - wait for a thread to unschedule. | 
 |  * | 
 |  * If @match_state is nonzero, it's the @p->state value just checked and | 
 |  * not expected to change.  If it changes, i.e. @p might have woken up, | 
 |  * then return zero.  When we succeed in waiting for @p to be off its CPU, | 
 |  * we return a positive number (its total switch count).  If a second call | 
 |  * a short while later returns the same number, the caller can be sure that | 
 |  * @p has remained unscheduled the whole time. | 
 |  * | 
 |  * The caller must ensure that the task *will* unschedule sometime soon, | 
 |  * else this function might spin for a *long* time. This function can't | 
 |  * be called with interrupts off, or it may introduce deadlock with | 
 |  * smp_call_function() if an IPI is sent by the same process we are | 
 |  * waiting to become inactive. | 
 |  */ | 
 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int running, on_rq; | 
 | 	unsigned long ncsw; | 
 | 	struct rq *rq; | 
 |  | 
 | 	for (;;) { | 
 | 		/* | 
 | 		 * We do the initial early heuristics without holding | 
 | 		 * any task-queue locks at all. We'll only try to get | 
 | 		 * the runqueue lock when things look like they will | 
 | 		 * work out! | 
 | 		 */ | 
 | 		rq = task_rq(p); | 
 |  | 
 | 		/* | 
 | 		 * If the task is actively running on another CPU | 
 | 		 * still, just relax and busy-wait without holding | 
 | 		 * any locks. | 
 | 		 * | 
 | 		 * NOTE! Since we don't hold any locks, it's not | 
 | 		 * even sure that "rq" stays as the right runqueue! | 
 | 		 * But we don't care, since "task_running()" will | 
 | 		 * return false if the runqueue has changed and p | 
 | 		 * is actually now running somewhere else! | 
 | 		 */ | 
 | 		while (task_running(rq, p)) { | 
 | 			if (match_state && unlikely(p->state != match_state)) | 
 | 				return 0; | 
 | 			cpu_relax(); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Ok, time to look more closely! We need the rq | 
 | 		 * lock now, to be *sure*. If we're wrong, we'll | 
 | 		 * just go back and repeat. | 
 | 		 */ | 
 | 		rq = task_rq_lock(p, &flags); | 
 | 		trace_sched_wait_task(p); | 
 | 		running = task_running(rq, p); | 
 | 		on_rq = p->se.on_rq; | 
 | 		ncsw = 0; | 
 | 		if (!match_state || p->state == match_state) | 
 | 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ | 
 | 		task_rq_unlock(rq, &flags); | 
 |  | 
 | 		/* | 
 | 		 * If it changed from the expected state, bail out now. | 
 | 		 */ | 
 | 		if (unlikely(!ncsw)) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Was it really running after all now that we | 
 | 		 * checked with the proper locks actually held? | 
 | 		 * | 
 | 		 * Oops. Go back and try again.. | 
 | 		 */ | 
 | 		if (unlikely(running)) { | 
 | 			cpu_relax(); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * It's not enough that it's not actively running, | 
 | 		 * it must be off the runqueue _entirely_, and not | 
 | 		 * preempted! | 
 | 		 * | 
 | 		 * So if it was still runnable (but just not actively | 
 | 		 * running right now), it's preempted, and we should | 
 | 		 * yield - it could be a while. | 
 | 		 */ | 
 | 		if (unlikely(on_rq)) { | 
 | 			schedule_timeout_uninterruptible(1); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Ahh, all good. It wasn't running, and it wasn't | 
 | 		 * runnable, which means that it will never become | 
 | 		 * running in the future either. We're all done! | 
 | 		 */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ncsw; | 
 | } | 
 |  | 
 | /*** | 
 |  * kick_process - kick a running thread to enter/exit the kernel | 
 |  * @p: the to-be-kicked thread | 
 |  * | 
 |  * Cause a process which is running on another CPU to enter | 
 |  * kernel-mode, without any delay. (to get signals handled.) | 
 |  * | 
 |  * NOTE: this function doesnt have to take the runqueue lock, | 
 |  * because all it wants to ensure is that the remote task enters | 
 |  * the kernel. If the IPI races and the task has been migrated | 
 |  * to another CPU then no harm is done and the purpose has been | 
 |  * achieved as well. | 
 |  */ | 
 | void kick_process(struct task_struct *p) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	preempt_disable(); | 
 | 	cpu = task_cpu(p); | 
 | 	if ((cpu != smp_processor_id()) && task_curr(p)) | 
 | 		smp_send_reschedule(cpu); | 
 | 	preempt_enable(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kick_process); | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /** | 
 |  * task_oncpu_function_call - call a function on the cpu on which a task runs | 
 |  * @p:		the task to evaluate | 
 |  * @func:	the function to be called | 
 |  * @info:	the function call argument | 
 |  * | 
 |  * Calls the function @func when the task is currently running. This might | 
 |  * be on the current CPU, which just calls the function directly | 
 |  */ | 
 | void task_oncpu_function_call(struct task_struct *p, | 
 | 			      void (*func) (void *info), void *info) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	preempt_disable(); | 
 | 	cpu = task_cpu(p); | 
 | 	if (task_curr(p)) | 
 | 		smp_call_function_single(cpu, func, info, 1); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held. | 
 |  */ | 
 | static int select_fallback_rq(int cpu, struct task_struct *p) | 
 | { | 
 | 	int dest_cpu; | 
 | 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); | 
 |  | 
 | 	/* Look for allowed, online CPU in same node. */ | 
 | 	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) | 
 | 		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | 
 | 			return dest_cpu; | 
 |  | 
 | 	/* Any allowed, online CPU? */ | 
 | 	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask); | 
 | 	if (dest_cpu < nr_cpu_ids) | 
 | 		return dest_cpu; | 
 |  | 
 | 	/* No more Mr. Nice Guy. */ | 
 | 	if (unlikely(dest_cpu >= nr_cpu_ids)) { | 
 | 		dest_cpu = cpuset_cpus_allowed_fallback(p); | 
 | 		/* | 
 | 		 * Don't tell them about moving exiting tasks or | 
 | 		 * kernel threads (both mm NULL), since they never | 
 | 		 * leave kernel. | 
 | 		 */ | 
 | 		if (p->mm && printk_ratelimit()) { | 
 | 			printk(KERN_INFO "process %d (%s) no " | 
 | 			       "longer affine to cpu%d\n", | 
 | 			       task_pid_nr(p), p->comm, cpu); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return dest_cpu; | 
 | } | 
 |  | 
 | /* | 
 |  * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable. | 
 |  */ | 
 | static inline | 
 | int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags) | 
 | { | 
 | 	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags); | 
 |  | 
 | 	/* | 
 | 	 * In order not to call set_task_cpu() on a blocking task we need | 
 | 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed | 
 | 	 * cpu. | 
 | 	 * | 
 | 	 * Since this is common to all placement strategies, this lives here. | 
 | 	 * | 
 | 	 * [ this allows ->select_task() to simply return task_cpu(p) and | 
 | 	 *   not worry about this generic constraint ] | 
 | 	 */ | 
 | 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || | 
 | 		     !cpu_online(cpu))) | 
 | 		cpu = select_fallback_rq(task_cpu(p), p); | 
 |  | 
 | 	return cpu; | 
 | } | 
 |  | 
 | static void update_avg(u64 *avg, u64 sample) | 
 | { | 
 | 	s64 diff = sample - *avg; | 
 | 	*avg += diff >> 3; | 
 | } | 
 | #endif | 
 |  | 
 | static inline void ttwu_activate(struct task_struct *p, struct rq *rq, | 
 | 				 bool is_sync, bool is_migrate, bool is_local, | 
 | 				 unsigned long en_flags) | 
 | { | 
 | 	schedstat_inc(p, se.statistics.nr_wakeups); | 
 | 	if (is_sync) | 
 | 		schedstat_inc(p, se.statistics.nr_wakeups_sync); | 
 | 	if (is_migrate) | 
 | 		schedstat_inc(p, se.statistics.nr_wakeups_migrate); | 
 | 	if (is_local) | 
 | 		schedstat_inc(p, se.statistics.nr_wakeups_local); | 
 | 	else | 
 | 		schedstat_inc(p, se.statistics.nr_wakeups_remote); | 
 |  | 
 | 	activate_task(rq, p, en_flags); | 
 | } | 
 |  | 
 | static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq, | 
 | 					int wake_flags, bool success) | 
 | { | 
 | 	trace_sched_wakeup(p, success); | 
 | 	check_preempt_curr(rq, p, wake_flags); | 
 |  | 
 | 	p->state = TASK_RUNNING; | 
 | #ifdef CONFIG_SMP | 
 | 	if (p->sched_class->task_woken) | 
 | 		p->sched_class->task_woken(rq, p); | 
 |  | 
 | 	if (unlikely(rq->idle_stamp)) { | 
 | 		u64 delta = rq->clock - rq->idle_stamp; | 
 | 		u64 max = 2*sysctl_sched_migration_cost; | 
 |  | 
 | 		if (delta > max) | 
 | 			rq->avg_idle = max; | 
 | 		else | 
 | 			update_avg(&rq->avg_idle, delta); | 
 | 		rq->idle_stamp = 0; | 
 | 	} | 
 | #endif | 
 | 	/* if a worker is waking up, notify workqueue */ | 
 | 	if ((p->flags & PF_WQ_WORKER) && success) | 
 | 		wq_worker_waking_up(p, cpu_of(rq)); | 
 | } | 
 |  | 
 | /** | 
 |  * try_to_wake_up - wake up a thread | 
 |  * @p: the thread to be awakened | 
 |  * @state: the mask of task states that can be woken | 
 |  * @wake_flags: wake modifier flags (WF_*) | 
 |  * | 
 |  * Put it on the run-queue if it's not already there. The "current" | 
 |  * thread is always on the run-queue (except when the actual | 
 |  * re-schedule is in progress), and as such you're allowed to do | 
 |  * the simpler "current->state = TASK_RUNNING" to mark yourself | 
 |  * runnable without the overhead of this. | 
 |  * | 
 |  * Returns %true if @p was woken up, %false if it was already running | 
 |  * or @state didn't match @p's state. | 
 |  */ | 
 | static int try_to_wake_up(struct task_struct *p, unsigned int state, | 
 | 			  int wake_flags) | 
 | { | 
 | 	int cpu, orig_cpu, this_cpu, success = 0; | 
 | 	unsigned long flags; | 
 | 	unsigned long en_flags = ENQUEUE_WAKEUP; | 
 | 	struct rq *rq; | 
 |  | 
 | 	this_cpu = get_cpu(); | 
 |  | 
 | 	smp_wmb(); | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	if (!(p->state & state)) | 
 | 		goto out; | 
 |  | 
 | 	if (p->se.on_rq) | 
 | 		goto out_running; | 
 |  | 
 | 	cpu = task_cpu(p); | 
 | 	orig_cpu = cpu; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (unlikely(task_running(rq, p))) | 
 | 		goto out_activate; | 
 |  | 
 | 	/* | 
 | 	 * In order to handle concurrent wakeups and release the rq->lock | 
 | 	 * we put the task in TASK_WAKING state. | 
 | 	 * | 
 | 	 * First fix up the nr_uninterruptible count: | 
 | 	 */ | 
 | 	if (task_contributes_to_load(p)) { | 
 | 		if (likely(cpu_online(orig_cpu))) | 
 | 			rq->nr_uninterruptible--; | 
 | 		else | 
 | 			this_rq()->nr_uninterruptible--; | 
 | 	} | 
 | 	p->state = TASK_WAKING; | 
 |  | 
 | 	if (p->sched_class->task_waking) { | 
 | 		p->sched_class->task_waking(rq, p); | 
 | 		en_flags |= ENQUEUE_WAKING; | 
 | 	} | 
 |  | 
 | 	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags); | 
 | 	if (cpu != orig_cpu) | 
 | 		set_task_cpu(p, cpu); | 
 | 	__task_rq_unlock(rq); | 
 |  | 
 | 	rq = cpu_rq(cpu); | 
 | 	raw_spin_lock(&rq->lock); | 
 |  | 
 | 	/* | 
 | 	 * We migrated the task without holding either rq->lock, however | 
 | 	 * since the task is not on the task list itself, nobody else | 
 | 	 * will try and migrate the task, hence the rq should match the | 
 | 	 * cpu we just moved it to. | 
 | 	 */ | 
 | 	WARN_ON(task_cpu(p) != cpu); | 
 | 	WARN_ON(p->state != TASK_WAKING); | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	schedstat_inc(rq, ttwu_count); | 
 | 	if (cpu == this_cpu) | 
 | 		schedstat_inc(rq, ttwu_local); | 
 | 	else { | 
 | 		struct sched_domain *sd; | 
 | 		for_each_domain(this_cpu, sd) { | 
 | 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { | 
 | 				schedstat_inc(sd, ttwu_wake_remote); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | #endif /* CONFIG_SCHEDSTATS */ | 
 |  | 
 | out_activate: | 
 | #endif /* CONFIG_SMP */ | 
 | 	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu, | 
 | 		      cpu == this_cpu, en_flags); | 
 | 	success = 1; | 
 | out_running: | 
 | 	ttwu_post_activation(p, rq, wake_flags, success); | 
 | out: | 
 | 	task_rq_unlock(rq, &flags); | 
 | 	put_cpu(); | 
 |  | 
 | 	return success; | 
 | } | 
 |  | 
 | /** | 
 |  * try_to_wake_up_local - try to wake up a local task with rq lock held | 
 |  * @p: the thread to be awakened | 
 |  * | 
 |  * Put @p on the run-queue if it's not alredy there.  The caller must | 
 |  * ensure that this_rq() is locked, @p is bound to this_rq() and not | 
 |  * the current task.  this_rq() stays locked over invocation. | 
 |  */ | 
 | static void try_to_wake_up_local(struct task_struct *p) | 
 | { | 
 | 	struct rq *rq = task_rq(p); | 
 | 	bool success = false; | 
 |  | 
 | 	BUG_ON(rq != this_rq()); | 
 | 	BUG_ON(p == current); | 
 | 	lockdep_assert_held(&rq->lock); | 
 |  | 
 | 	if (!(p->state & TASK_NORMAL)) | 
 | 		return; | 
 |  | 
 | 	if (!p->se.on_rq) { | 
 | 		if (likely(!task_running(rq, p))) { | 
 | 			schedstat_inc(rq, ttwu_count); | 
 | 			schedstat_inc(rq, ttwu_local); | 
 | 		} | 
 | 		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP); | 
 | 		success = true; | 
 | 	} | 
 | 	ttwu_post_activation(p, rq, 0, success); | 
 | } | 
 |  | 
 | /** | 
 |  * wake_up_process - Wake up a specific process | 
 |  * @p: The process to be woken up. | 
 |  * | 
 |  * Attempt to wake up the nominated process and move it to the set of runnable | 
 |  * processes.  Returns 1 if the process was woken up, 0 if it was already | 
 |  * running. | 
 |  * | 
 |  * It may be assumed that this function implies a write memory barrier before | 
 |  * changing the task state if and only if any tasks are woken up. | 
 |  */ | 
 | int wake_up_process(struct task_struct *p) | 
 | { | 
 | 	return try_to_wake_up(p, TASK_ALL, 0); | 
 | } | 
 | EXPORT_SYMBOL(wake_up_process); | 
 |  | 
 | int wake_up_state(struct task_struct *p, unsigned int state) | 
 | { | 
 | 	return try_to_wake_up(p, state, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Perform scheduler related setup for a newly forked process p. | 
 |  * p is forked by current. | 
 |  * | 
 |  * __sched_fork() is basic setup used by init_idle() too: | 
 |  */ | 
 | static void __sched_fork(struct task_struct *p) | 
 | { | 
 | 	p->se.exec_start		= 0; | 
 | 	p->se.sum_exec_runtime		= 0; | 
 | 	p->se.prev_sum_exec_runtime	= 0; | 
 | 	p->se.nr_migrations		= 0; | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	memset(&p->se.statistics, 0, sizeof(p->se.statistics)); | 
 | #endif | 
 |  | 
 | 	INIT_LIST_HEAD(&p->rt.run_list); | 
 | 	p->se.on_rq = 0; | 
 | 	INIT_LIST_HEAD(&p->se.group_node); | 
 |  | 
 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
 | 	INIT_HLIST_HEAD(&p->preempt_notifiers); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * fork()/clone()-time setup: | 
 |  */ | 
 | void sched_fork(struct task_struct *p, int clone_flags) | 
 | { | 
 | 	int cpu = get_cpu(); | 
 |  | 
 | 	__sched_fork(p); | 
 | 	/* | 
 | 	 * We mark the process as running here. This guarantees that | 
 | 	 * nobody will actually run it, and a signal or other external | 
 | 	 * event cannot wake it up and insert it on the runqueue either. | 
 | 	 */ | 
 | 	p->state = TASK_RUNNING; | 
 |  | 
 | 	/* | 
 | 	 * Revert to default priority/policy on fork if requested. | 
 | 	 */ | 
 | 	if (unlikely(p->sched_reset_on_fork)) { | 
 | 		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { | 
 | 			p->policy = SCHED_NORMAL; | 
 | 			p->normal_prio = p->static_prio; | 
 | 		} | 
 |  | 
 | 		if (PRIO_TO_NICE(p->static_prio) < 0) { | 
 | 			p->static_prio = NICE_TO_PRIO(0); | 
 | 			p->normal_prio = p->static_prio; | 
 | 			set_load_weight(p); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We don't need the reset flag anymore after the fork. It has | 
 | 		 * fulfilled its duty: | 
 | 		 */ | 
 | 		p->sched_reset_on_fork = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure we do not leak PI boosting priority to the child. | 
 | 	 */ | 
 | 	p->prio = current->normal_prio; | 
 |  | 
 | 	if (!rt_prio(p->prio)) | 
 | 		p->sched_class = &fair_sched_class; | 
 |  | 
 | 	if (p->sched_class->task_fork) | 
 | 		p->sched_class->task_fork(p); | 
 |  | 
 | 	/* | 
 | 	 * The child is not yet in the pid-hash so no cgroup attach races, | 
 | 	 * and the cgroup is pinned to this child due to cgroup_fork() | 
 | 	 * is ran before sched_fork(). | 
 | 	 * | 
 | 	 * Silence PROVE_RCU. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	set_task_cpu(p, cpu); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 
 | 	if (likely(sched_info_on())) | 
 | 		memset(&p->sched_info, 0, sizeof(p->sched_info)); | 
 | #endif | 
 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 
 | 	p->oncpu = 0; | 
 | #endif | 
 | #ifdef CONFIG_PREEMPT | 
 | 	/* Want to start with kernel preemption disabled. */ | 
 | 	task_thread_info(p)->preempt_count = 1; | 
 | #endif | 
 | 	plist_node_init(&p->pushable_tasks, MAX_PRIO); | 
 |  | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | /* | 
 |  * wake_up_new_task - wake up a newly created task for the first time. | 
 |  * | 
 |  * This function will do some initial scheduler statistics housekeeping | 
 |  * that must be done for every newly created context, then puts the task | 
 |  * on the runqueue and wakes it. | 
 |  */ | 
 | void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	int cpu __maybe_unused = get_cpu(); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	p->state = TASK_WAKING; | 
 |  | 
 | 	/* | 
 | 	 * Fork balancing, do it here and not earlier because: | 
 | 	 *  - cpus_allowed can change in the fork path | 
 | 	 *  - any previously selected cpu might disappear through hotplug | 
 | 	 * | 
 | 	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock | 
 | 	 * without people poking at ->cpus_allowed. | 
 | 	 */ | 
 | 	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0); | 
 | 	set_task_cpu(p, cpu); | 
 |  | 
 | 	p->state = TASK_RUNNING; | 
 | 	task_rq_unlock(rq, &flags); | 
 | #endif | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	activate_task(rq, p, 0); | 
 | 	trace_sched_wakeup_new(p, 1); | 
 | 	check_preempt_curr(rq, p, WF_FORK); | 
 | #ifdef CONFIG_SMP | 
 | 	if (p->sched_class->task_woken) | 
 | 		p->sched_class->task_woken(rq, p); | 
 | #endif | 
 | 	task_rq_unlock(rq, &flags); | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
 |  | 
 | /** | 
 |  * preempt_notifier_register - tell me when current is being preempted & rescheduled | 
 |  * @notifier: notifier struct to register | 
 |  */ | 
 | void preempt_notifier_register(struct preempt_notifier *notifier) | 
 | { | 
 | 	hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | 
 | } | 
 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | 
 |  | 
 | /** | 
 |  * preempt_notifier_unregister - no longer interested in preemption notifications | 
 |  * @notifier: notifier struct to unregister | 
 |  * | 
 |  * This is safe to call from within a preemption notifier. | 
 |  */ | 
 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | 
 | { | 
 | 	hlist_del(¬ifier->link); | 
 | } | 
 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | 
 |  | 
 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
 | { | 
 | 	struct preempt_notifier *notifier; | 
 | 	struct hlist_node *node; | 
 |  | 
 | 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | 
 | 		notifier->ops->sched_in(notifier, raw_smp_processor_id()); | 
 | } | 
 |  | 
 | static void | 
 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
 | 				 struct task_struct *next) | 
 | { | 
 | 	struct preempt_notifier *notifier; | 
 | 	struct hlist_node *node; | 
 |  | 
 | 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | 
 | 		notifier->ops->sched_out(notifier, next); | 
 | } | 
 |  | 
 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ | 
 |  | 
 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
 | { | 
 | } | 
 |  | 
 | static void | 
 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
 | 				 struct task_struct *next) | 
 | { | 
 | } | 
 |  | 
 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ | 
 |  | 
 | /** | 
 |  * prepare_task_switch - prepare to switch tasks | 
 |  * @rq: the runqueue preparing to switch | 
 |  * @prev: the current task that is being switched out | 
 |  * @next: the task we are going to switch to. | 
 |  * | 
 |  * This is called with the rq lock held and interrupts off. It must | 
 |  * be paired with a subsequent finish_task_switch after the context | 
 |  * switch. | 
 |  * | 
 |  * prepare_task_switch sets up locking and calls architecture specific | 
 |  * hooks. | 
 |  */ | 
 | static inline void | 
 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | 
 | 		    struct task_struct *next) | 
 | { | 
 | 	fire_sched_out_preempt_notifiers(prev, next); | 
 | 	prepare_lock_switch(rq, next); | 
 | 	prepare_arch_switch(next); | 
 | } | 
 |  | 
 | /** | 
 |  * finish_task_switch - clean up after a task-switch | 
 |  * @rq: runqueue associated with task-switch | 
 |  * @prev: the thread we just switched away from. | 
 |  * | 
 |  * finish_task_switch must be called after the context switch, paired | 
 |  * with a prepare_task_switch call before the context switch. | 
 |  * finish_task_switch will reconcile locking set up by prepare_task_switch, | 
 |  * and do any other architecture-specific cleanup actions. | 
 |  * | 
 |  * Note that we may have delayed dropping an mm in context_switch(). If | 
 |  * so, we finish that here outside of the runqueue lock. (Doing it | 
 |  * with the lock held can cause deadlocks; see schedule() for | 
 |  * details.) | 
 |  */ | 
 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	struct mm_struct *mm = rq->prev_mm; | 
 | 	long prev_state; | 
 |  | 
 | 	rq->prev_mm = NULL; | 
 |  | 
 | 	/* | 
 | 	 * A task struct has one reference for the use as "current". | 
 | 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls | 
 | 	 * schedule one last time. The schedule call will never return, and | 
 | 	 * the scheduled task must drop that reference. | 
 | 	 * The test for TASK_DEAD must occur while the runqueue locks are | 
 | 	 * still held, otherwise prev could be scheduled on another cpu, die | 
 | 	 * there before we look at prev->state, and then the reference would | 
 | 	 * be dropped twice. | 
 | 	 *		Manfred Spraul <manfred@colorfullife.com> | 
 | 	 */ | 
 | 	prev_state = prev->state; | 
 | 	finish_arch_switch(prev); | 
 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
 | 	local_irq_disable(); | 
 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | 
 | 	perf_event_task_sched_in(current); | 
 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
 | 	local_irq_enable(); | 
 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | 
 | 	finish_lock_switch(rq, prev); | 
 |  | 
 | 	fire_sched_in_preempt_notifiers(current); | 
 | 	if (mm) | 
 | 		mmdrop(mm); | 
 | 	if (unlikely(prev_state == TASK_DEAD)) { | 
 | 		/* | 
 | 		 * Remove function-return probe instances associated with this | 
 | 		 * task and put them back on the free list. | 
 | 		 */ | 
 | 		kprobe_flush_task(prev); | 
 | 		put_task_struct(prev); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | /* assumes rq->lock is held */ | 
 | static inline void pre_schedule(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	if (prev->sched_class->pre_schedule) | 
 | 		prev->sched_class->pre_schedule(rq, prev); | 
 | } | 
 |  | 
 | /* rq->lock is NOT held, but preemption is disabled */ | 
 | static inline void post_schedule(struct rq *rq) | 
 | { | 
 | 	if (rq->post_schedule) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 		if (rq->curr->sched_class->post_schedule) | 
 | 			rq->curr->sched_class->post_schedule(rq); | 
 | 		raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 |  | 
 | 		rq->post_schedule = 0; | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline void pre_schedule(struct rq *rq, struct task_struct *p) | 
 | { | 
 | } | 
 |  | 
 | static inline void post_schedule(struct rq *rq) | 
 | { | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /** | 
 |  * schedule_tail - first thing a freshly forked thread must call. | 
 |  * @prev: the thread we just switched away from. | 
 |  */ | 
 | asmlinkage void schedule_tail(struct task_struct *prev) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	struct rq *rq = this_rq(); | 
 |  | 
 | 	finish_task_switch(rq, prev); | 
 |  | 
 | 	/* | 
 | 	 * FIXME: do we need to worry about rq being invalidated by the | 
 | 	 * task_switch? | 
 | 	 */ | 
 | 	post_schedule(rq); | 
 |  | 
 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | 
 | 	/* In this case, finish_task_switch does not reenable preemption */ | 
 | 	preempt_enable(); | 
 | #endif | 
 | 	if (current->set_child_tid) | 
 | 		put_user(task_pid_vnr(current), current->set_child_tid); | 
 | } | 
 |  | 
 | /* | 
 |  * context_switch - switch to the new MM and the new | 
 |  * thread's register state. | 
 |  */ | 
 | static inline void | 
 | context_switch(struct rq *rq, struct task_struct *prev, | 
 | 	       struct task_struct *next) | 
 | { | 
 | 	struct mm_struct *mm, *oldmm; | 
 |  | 
 | 	prepare_task_switch(rq, prev, next); | 
 | 	trace_sched_switch(prev, next); | 
 | 	mm = next->mm; | 
 | 	oldmm = prev->active_mm; | 
 | 	/* | 
 | 	 * For paravirt, this is coupled with an exit in switch_to to | 
 | 	 * combine the page table reload and the switch backend into | 
 | 	 * one hypercall. | 
 | 	 */ | 
 | 	arch_start_context_switch(prev); | 
 |  | 
 | 	if (likely(!mm)) { | 
 | 		next->active_mm = oldmm; | 
 | 		atomic_inc(&oldmm->mm_count); | 
 | 		enter_lazy_tlb(oldmm, next); | 
 | 	} else | 
 | 		switch_mm(oldmm, mm, next); | 
 |  | 
 | 	if (likely(!prev->mm)) { | 
 | 		prev->active_mm = NULL; | 
 | 		rq->prev_mm = oldmm; | 
 | 	} | 
 | 	/* | 
 | 	 * Since the runqueue lock will be released by the next | 
 | 	 * task (which is an invalid locking op but in the case | 
 | 	 * of the scheduler it's an obvious special-case), so we | 
 | 	 * do an early lockdep release here: | 
 | 	 */ | 
 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 
 | 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 
 | #endif | 
 |  | 
 | 	/* Here we just switch the register state and the stack. */ | 
 | 	switch_to(prev, next, prev); | 
 |  | 
 | 	barrier(); | 
 | 	/* | 
 | 	 * this_rq must be evaluated again because prev may have moved | 
 | 	 * CPUs since it called schedule(), thus the 'rq' on its stack | 
 | 	 * frame will be invalid. | 
 | 	 */ | 
 | 	finish_task_switch(this_rq(), prev); | 
 | } | 
 |  | 
 | /* | 
 |  * nr_running, nr_uninterruptible and nr_context_switches: | 
 |  * | 
 |  * externally visible scheduler statistics: current number of runnable | 
 |  * threads, current number of uninterruptible-sleeping threads, total | 
 |  * number of context switches performed since bootup. | 
 |  */ | 
 | unsigned long nr_running(void) | 
 | { | 
 | 	unsigned long i, sum = 0; | 
 |  | 
 | 	for_each_online_cpu(i) | 
 | 		sum += cpu_rq(i)->nr_running; | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long nr_uninterruptible(void) | 
 | { | 
 | 	unsigned long i, sum = 0; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += cpu_rq(i)->nr_uninterruptible; | 
 |  | 
 | 	/* | 
 | 	 * Since we read the counters lockless, it might be slightly | 
 | 	 * inaccurate. Do not allow it to go below zero though: | 
 | 	 */ | 
 | 	if (unlikely((long)sum < 0)) | 
 | 		sum = 0; | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long long nr_context_switches(void) | 
 | { | 
 | 	int i; | 
 | 	unsigned long long sum = 0; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += cpu_rq(i)->nr_switches; | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long nr_iowait(void) | 
 | { | 
 | 	unsigned long i, sum = 0; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += atomic_read(&cpu_rq(i)->nr_iowait); | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long nr_iowait_cpu(int cpu) | 
 | { | 
 | 	struct rq *this = cpu_rq(cpu); | 
 | 	return atomic_read(&this->nr_iowait); | 
 | } | 
 |  | 
 | unsigned long this_cpu_load(void) | 
 | { | 
 | 	struct rq *this = this_rq(); | 
 | 	return this->cpu_load[0]; | 
 | } | 
 |  | 
 |  | 
 | /* Variables and functions for calc_load */ | 
 | static atomic_long_t calc_load_tasks; | 
 | static unsigned long calc_load_update; | 
 | unsigned long avenrun[3]; | 
 | EXPORT_SYMBOL(avenrun); | 
 |  | 
 | static long calc_load_fold_active(struct rq *this_rq) | 
 | { | 
 | 	long nr_active, delta = 0; | 
 |  | 
 | 	nr_active = this_rq->nr_running; | 
 | 	nr_active += (long) this_rq->nr_uninterruptible; | 
 |  | 
 | 	if (nr_active != this_rq->calc_load_active) { | 
 | 		delta = nr_active - this_rq->calc_load_active; | 
 | 		this_rq->calc_load_active = nr_active; | 
 | 	} | 
 |  | 
 | 	return delta; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ | 
 | /* | 
 |  * For NO_HZ we delay the active fold to the next LOAD_FREQ update. | 
 |  * | 
 |  * When making the ILB scale, we should try to pull this in as well. | 
 |  */ | 
 | static atomic_long_t calc_load_tasks_idle; | 
 |  | 
 | static void calc_load_account_idle(struct rq *this_rq) | 
 | { | 
 | 	long delta; | 
 |  | 
 | 	delta = calc_load_fold_active(this_rq); | 
 | 	if (delta) | 
 | 		atomic_long_add(delta, &calc_load_tasks_idle); | 
 | } | 
 |  | 
 | static long calc_load_fold_idle(void) | 
 | { | 
 | 	long delta = 0; | 
 |  | 
 | 	/* | 
 | 	 * Its got a race, we don't care... | 
 | 	 */ | 
 | 	if (atomic_long_read(&calc_load_tasks_idle)) | 
 | 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0); | 
 |  | 
 | 	return delta; | 
 | } | 
 | #else | 
 | static void calc_load_account_idle(struct rq *this_rq) | 
 | { | 
 | } | 
 |  | 
 | static inline long calc_load_fold_idle(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * get_avenrun - get the load average array | 
 |  * @loads:	pointer to dest load array | 
 |  * @offset:	offset to add | 
 |  * @shift:	shift count to shift the result left | 
 |  * | 
 |  * These values are estimates at best, so no need for locking. | 
 |  */ | 
 | void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | 
 | { | 
 | 	loads[0] = (avenrun[0] + offset) << shift; | 
 | 	loads[1] = (avenrun[1] + offset) << shift; | 
 | 	loads[2] = (avenrun[2] + offset) << shift; | 
 | } | 
 |  | 
 | static unsigned long | 
 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | 
 | { | 
 | 	load *= exp; | 
 | 	load += active * (FIXED_1 - exp); | 
 | 	return load >> FSHIFT; | 
 | } | 
 |  | 
 | /* | 
 |  * calc_load - update the avenrun load estimates 10 ticks after the | 
 |  * CPUs have updated calc_load_tasks. | 
 |  */ | 
 | void calc_global_load(void) | 
 | { | 
 | 	unsigned long upd = calc_load_update + 10; | 
 | 	long active; | 
 |  | 
 | 	if (time_before(jiffies, upd)) | 
 | 		return; | 
 |  | 
 | 	active = atomic_long_read(&calc_load_tasks); | 
 | 	active = active > 0 ? active * FIXED_1 : 0; | 
 |  | 
 | 	avenrun[0] = calc_load(avenrun[0], EXP_1, active); | 
 | 	avenrun[1] = calc_load(avenrun[1], EXP_5, active); | 
 | 	avenrun[2] = calc_load(avenrun[2], EXP_15, active); | 
 |  | 
 | 	calc_load_update += LOAD_FREQ; | 
 | } | 
 |  | 
 | /* | 
 |  * Called from update_cpu_load() to periodically update this CPU's | 
 |  * active count. | 
 |  */ | 
 | static void calc_load_account_active(struct rq *this_rq) | 
 | { | 
 | 	long delta; | 
 |  | 
 | 	if (time_before(jiffies, this_rq->calc_load_update)) | 
 | 		return; | 
 |  | 
 | 	delta  = calc_load_fold_active(this_rq); | 
 | 	delta += calc_load_fold_idle(); | 
 | 	if (delta) | 
 | 		atomic_long_add(delta, &calc_load_tasks); | 
 |  | 
 | 	this_rq->calc_load_update += LOAD_FREQ; | 
 | } | 
 |  | 
 | /* | 
 |  * The exact cpuload at various idx values, calculated at every tick would be | 
 |  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load | 
 |  * | 
 |  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called | 
 |  * on nth tick when cpu may be busy, then we have: | 
 |  * load = ((2^idx - 1) / 2^idx)^(n-1) * load | 
 |  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load | 
 |  * | 
 |  * decay_load_missed() below does efficient calculation of | 
 |  * load = ((2^idx - 1) / 2^idx)^(n-1) * load | 
 |  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load | 
 |  * | 
 |  * The calculation is approximated on a 128 point scale. | 
 |  * degrade_zero_ticks is the number of ticks after which load at any | 
 |  * particular idx is approximated to be zero. | 
 |  * degrade_factor is a precomputed table, a row for each load idx. | 
 |  * Each column corresponds to degradation factor for a power of two ticks, | 
 |  * based on 128 point scale. | 
 |  * Example: | 
 |  * row 2, col 3 (=12) says that the degradation at load idx 2 after | 
 |  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). | 
 |  * | 
 |  * With this power of 2 load factors, we can degrade the load n times | 
 |  * by looking at 1 bits in n and doing as many mult/shift instead of | 
 |  * n mult/shifts needed by the exact degradation. | 
 |  */ | 
 | #define DEGRADE_SHIFT		7 | 
 | static const unsigned char | 
 | 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; | 
 | static const unsigned char | 
 | 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { | 
 | 					{0, 0, 0, 0, 0, 0, 0, 0}, | 
 | 					{64, 32, 8, 0, 0, 0, 0, 0}, | 
 | 					{96, 72, 40, 12, 1, 0, 0}, | 
 | 					{112, 98, 75, 43, 15, 1, 0}, | 
 | 					{120, 112, 98, 76, 45, 16, 2} }; | 
 |  | 
 | /* | 
 |  * Update cpu_load for any missed ticks, due to tickless idle. The backlog | 
 |  * would be when CPU is idle and so we just decay the old load without | 
 |  * adding any new load. | 
 |  */ | 
 | static unsigned long | 
 | decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) | 
 | { | 
 | 	int j = 0; | 
 |  | 
 | 	if (!missed_updates) | 
 | 		return load; | 
 |  | 
 | 	if (missed_updates >= degrade_zero_ticks[idx]) | 
 | 		return 0; | 
 |  | 
 | 	if (idx == 1) | 
 | 		return load >> missed_updates; | 
 |  | 
 | 	while (missed_updates) { | 
 | 		if (missed_updates % 2) | 
 | 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; | 
 |  | 
 | 		missed_updates >>= 1; | 
 | 		j++; | 
 | 	} | 
 | 	return load; | 
 | } | 
 |  | 
 | /* | 
 |  * Update rq->cpu_load[] statistics. This function is usually called every | 
 |  * scheduler tick (TICK_NSEC). With tickless idle this will not be called | 
 |  * every tick. We fix it up based on jiffies. | 
 |  */ | 
 | static void update_cpu_load(struct rq *this_rq) | 
 | { | 
 | 	unsigned long this_load = this_rq->load.weight; | 
 | 	unsigned long curr_jiffies = jiffies; | 
 | 	unsigned long pending_updates; | 
 | 	int i, scale; | 
 |  | 
 | 	this_rq->nr_load_updates++; | 
 |  | 
 | 	/* Avoid repeated calls on same jiffy, when moving in and out of idle */ | 
 | 	if (curr_jiffies == this_rq->last_load_update_tick) | 
 | 		return; | 
 |  | 
 | 	pending_updates = curr_jiffies - this_rq->last_load_update_tick; | 
 | 	this_rq->last_load_update_tick = curr_jiffies; | 
 |  | 
 | 	/* Update our load: */ | 
 | 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ | 
 | 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | 
 | 		unsigned long old_load, new_load; | 
 |  | 
 | 		/* scale is effectively 1 << i now, and >> i divides by scale */ | 
 |  | 
 | 		old_load = this_rq->cpu_load[i]; | 
 | 		old_load = decay_load_missed(old_load, pending_updates - 1, i); | 
 | 		new_load = this_load; | 
 | 		/* | 
 | 		 * Round up the averaging division if load is increasing. This | 
 | 		 * prevents us from getting stuck on 9 if the load is 10, for | 
 | 		 * example. | 
 | 		 */ | 
 | 		if (new_load > old_load) | 
 | 			new_load += scale - 1; | 
 |  | 
 | 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; | 
 | 	} | 
 |  | 
 | 	sched_avg_update(this_rq); | 
 | } | 
 |  | 
 | static void update_cpu_load_active(struct rq *this_rq) | 
 | { | 
 | 	update_cpu_load(this_rq); | 
 |  | 
 | 	calc_load_account_active(this_rq); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | /* | 
 |  * sched_exec - execve() is a valuable balancing opportunity, because at | 
 |  * this point the task has the smallest effective memory and cache footprint. | 
 |  */ | 
 | void sched_exec(void) | 
 | { | 
 | 	struct task_struct *p = current; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	int dest_cpu; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0); | 
 | 	if (dest_cpu == smp_processor_id()) | 
 | 		goto unlock; | 
 |  | 
 | 	/* | 
 | 	 * select_task_rq() can race against ->cpus_allowed | 
 | 	 */ | 
 | 	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) && | 
 | 	    likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) { | 
 | 		struct migration_arg arg = { p, dest_cpu }; | 
 |  | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); | 
 | 		return; | 
 | 	} | 
 | unlock: | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 
 |  | 
 | EXPORT_PER_CPU_SYMBOL(kstat); | 
 |  | 
 | /* | 
 |  * Return any ns on the sched_clock that have not yet been accounted in | 
 |  * @p in case that task is currently running. | 
 |  * | 
 |  * Called with task_rq_lock() held on @rq. | 
 |  */ | 
 | static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) | 
 | { | 
 | 	u64 ns = 0; | 
 |  | 
 | 	if (task_current(rq, p)) { | 
 | 		update_rq_clock(rq); | 
 | 		ns = rq->clock - p->se.exec_start; | 
 | 		if ((s64)ns < 0) | 
 | 			ns = 0; | 
 | 	} | 
 |  | 
 | 	return ns; | 
 | } | 
 |  | 
 | unsigned long long task_delta_exec(struct task_struct *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	u64 ns = 0; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	ns = do_task_delta_exec(p, rq); | 
 | 	task_rq_unlock(rq, &flags); | 
 |  | 
 | 	return ns; | 
 | } | 
 |  | 
 | /* | 
 |  * Return accounted runtime for the task. | 
 |  * In case the task is currently running, return the runtime plus current's | 
 |  * pending runtime that have not been accounted yet. | 
 |  */ | 
 | unsigned long long task_sched_runtime(struct task_struct *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	u64 ns = 0; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); | 
 | 	task_rq_unlock(rq, &flags); | 
 |  | 
 | 	return ns; | 
 | } | 
 |  | 
 | /* | 
 |  * Return sum_exec_runtime for the thread group. | 
 |  * In case the task is currently running, return the sum plus current's | 
 |  * pending runtime that have not been accounted yet. | 
 |  * | 
 |  * Note that the thread group might have other running tasks as well, | 
 |  * so the return value not includes other pending runtime that other | 
 |  * running tasks might have. | 
 |  */ | 
 | unsigned long long thread_group_sched_runtime(struct task_struct *p) | 
 | { | 
 | 	struct task_cputime totals; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	u64 ns; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	thread_group_cputime(p, &totals); | 
 | 	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); | 
 | 	task_rq_unlock(rq, &flags); | 
 |  | 
 | 	return ns; | 
 | } | 
 |  | 
 | /* | 
 |  * Account user cpu time to a process. | 
 |  * @p: the process that the cpu time gets accounted to | 
 |  * @cputime: the cpu time spent in user space since the last update | 
 |  * @cputime_scaled: cputime scaled by cpu frequency | 
 |  */ | 
 | void account_user_time(struct task_struct *p, cputime_t cputime, | 
 | 		       cputime_t cputime_scaled) | 
 | { | 
 | 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
 | 	cputime64_t tmp; | 
 |  | 
 | 	/* Add user time to process. */ | 
 | 	p->utime = cputime_add(p->utime, cputime); | 
 | 	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); | 
 | 	account_group_user_time(p, cputime); | 
 |  | 
 | 	/* Add user time to cpustat. */ | 
 | 	tmp = cputime_to_cputime64(cputime); | 
 | 	if (TASK_NICE(p) > 0) | 
 | 		cpustat->nice = cputime64_add(cpustat->nice, tmp); | 
 | 	else | 
 | 		cpustat->user = cputime64_add(cpustat->user, tmp); | 
 |  | 
 | 	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); | 
 | 	/* Account for user time used */ | 
 | 	acct_update_integrals(p); | 
 | } | 
 |  | 
 | /* | 
 |  * Account guest cpu time to a process. | 
 |  * @p: the process that the cpu time gets accounted to | 
 |  * @cputime: the cpu time spent in virtual machine since the last update | 
 |  * @cputime_scaled: cputime scaled by cpu frequency | 
 |  */ | 
 | static void account_guest_time(struct task_struct *p, cputime_t cputime, | 
 | 			       cputime_t cputime_scaled) | 
 | { | 
 | 	cputime64_t tmp; | 
 | 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
 |  | 
 | 	tmp = cputime_to_cputime64(cputime); | 
 |  | 
 | 	/* Add guest time to process. */ | 
 | 	p->utime = cputime_add(p->utime, cputime); | 
 | 	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); | 
 | 	account_group_user_time(p, cputime); | 
 | 	p->gtime = cputime_add(p->gtime, cputime); | 
 |  | 
 | 	/* Add guest time to cpustat. */ | 
 | 	if (TASK_NICE(p) > 0) { | 
 | 		cpustat->nice = cputime64_add(cpustat->nice, tmp); | 
 | 		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); | 
 | 	} else { | 
 | 		cpustat->user = cputime64_add(cpustat->user, tmp); | 
 | 		cpustat->guest = cputime64_add(cpustat->guest, tmp); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Account system cpu time to a process. | 
 |  * @p: the process that the cpu time gets accounted to | 
 |  * @hardirq_offset: the offset to subtract from hardirq_count() | 
 |  * @cputime: the cpu time spent in kernel space since the last update | 
 |  * @cputime_scaled: cputime scaled by cpu frequency | 
 |  */ | 
 | void account_system_time(struct task_struct *p, int hardirq_offset, | 
 | 			 cputime_t cputime, cputime_t cputime_scaled) | 
 | { | 
 | 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
 | 	cputime64_t tmp; | 
 |  | 
 | 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { | 
 | 		account_guest_time(p, cputime, cputime_scaled); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Add system time to process. */ | 
 | 	p->stime = cputime_add(p->stime, cputime); | 
 | 	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); | 
 | 	account_group_system_time(p, cputime); | 
 |  | 
 | 	/* Add system time to cpustat. */ | 
 | 	tmp = cputime_to_cputime64(cputime); | 
 | 	if (hardirq_count() - hardirq_offset) | 
 | 		cpustat->irq = cputime64_add(cpustat->irq, tmp); | 
 | 	else if (softirq_count()) | 
 | 		cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | 
 | 	else | 
 | 		cpustat->system = cputime64_add(cpustat->system, tmp); | 
 |  | 
 | 	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); | 
 |  | 
 | 	/* Account for system time used */ | 
 | 	acct_update_integrals(p); | 
 | } | 
 |  | 
 | /* | 
 |  * Account for involuntary wait time. | 
 |  * @steal: the cpu time spent in involuntary wait | 
 |  */ | 
 | void account_steal_time(cputime_t cputime) | 
 | { | 
 | 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
 | 	cputime64_t cputime64 = cputime_to_cputime64(cputime); | 
 |  | 
 | 	cpustat->steal = cputime64_add(cpustat->steal, cputime64); | 
 | } | 
 |  | 
 | /* | 
 |  * Account for idle time. | 
 |  * @cputime: the cpu time spent in idle wait | 
 |  */ | 
 | void account_idle_time(cputime_t cputime) | 
 | { | 
 | 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
 | 	cputime64_t cputime64 = cputime_to_cputime64(cputime); | 
 | 	struct rq *rq = this_rq(); | 
 |  | 
 | 	if (atomic_read(&rq->nr_iowait) > 0) | 
 | 		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); | 
 | 	else | 
 | 		cpustat->idle = cputime64_add(cpustat->idle, cputime64); | 
 | } | 
 |  | 
 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING | 
 |  | 
 | /* | 
 |  * Account a single tick of cpu time. | 
 |  * @p: the process that the cpu time gets accounted to | 
 |  * @user_tick: indicates if the tick is a user or a system tick | 
 |  */ | 
 | void account_process_tick(struct task_struct *p, int user_tick) | 
 | { | 
 | 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); | 
 | 	struct rq *rq = this_rq(); | 
 |  | 
 | 	if (user_tick) | 
 | 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); | 
 | 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) | 
 | 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, | 
 | 				    one_jiffy_scaled); | 
 | 	else | 
 | 		account_idle_time(cputime_one_jiffy); | 
 | } | 
 |  | 
 | /* | 
 |  * Account multiple ticks of steal time. | 
 |  * @p: the process from which the cpu time has been stolen | 
 |  * @ticks: number of stolen ticks | 
 |  */ | 
 | void account_steal_ticks(unsigned long ticks) | 
 | { | 
 | 	account_steal_time(jiffies_to_cputime(ticks)); | 
 | } | 
 |  | 
 | /* | 
 |  * Account multiple ticks of idle time. | 
 |  * @ticks: number of stolen ticks | 
 |  */ | 
 | void account_idle_ticks(unsigned long ticks) | 
 | { | 
 | 	account_idle_time(jiffies_to_cputime(ticks)); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Use precise platform statistics if available: | 
 |  */ | 
 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | 
 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | 
 | { | 
 | 	*ut = p->utime; | 
 | 	*st = p->stime; | 
 | } | 
 |  | 
 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | 
 | { | 
 | 	struct task_cputime cputime; | 
 |  | 
 | 	thread_group_cputime(p, &cputime); | 
 |  | 
 | 	*ut = cputime.utime; | 
 | 	*st = cputime.stime; | 
 | } | 
 | #else | 
 |  | 
 | #ifndef nsecs_to_cputime | 
 | # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs) | 
 | #endif | 
 |  | 
 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | 
 | { | 
 | 	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); | 
 |  | 
 | 	/* | 
 | 	 * Use CFS's precise accounting: | 
 | 	 */ | 
 | 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime); | 
 |  | 
 | 	if (total) { | 
 | 		u64 temp; | 
 |  | 
 | 		temp = (u64)(rtime * utime); | 
 | 		do_div(temp, total); | 
 | 		utime = (cputime_t)temp; | 
 | 	} else | 
 | 		utime = rtime; | 
 |  | 
 | 	/* | 
 | 	 * Compare with previous values, to keep monotonicity: | 
 | 	 */ | 
 | 	p->prev_utime = max(p->prev_utime, utime); | 
 | 	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); | 
 |  | 
 | 	*ut = p->prev_utime; | 
 | 	*st = p->prev_stime; | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called with siglock held. | 
 |  */ | 
 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | 
 | { | 
 | 	struct signal_struct *sig = p->signal; | 
 | 	struct task_cputime cputime; | 
 | 	cputime_t rtime, utime, total; | 
 |  | 
 | 	thread_group_cputime(p, &cputime); | 
 |  | 
 | 	total = cputime_add(cputime.utime, cputime.stime); | 
 | 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime); | 
 |  | 
 | 	if (total) { | 
 | 		u64 temp; | 
 |  | 
 | 		temp = (u64)(rtime * cputime.utime); | 
 | 		do_div(temp, total); | 
 | 		utime = (cputime_t)temp; | 
 | 	} else | 
 | 		utime = rtime; | 
 |  | 
 | 	sig->prev_utime = max(sig->prev_utime, utime); | 
 | 	sig->prev_stime = max(sig->prev_stime, | 
 | 			      cputime_sub(rtime, sig->prev_utime)); | 
 |  | 
 | 	*ut = sig->prev_utime; | 
 | 	*st = sig->prev_stime; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * This function gets called by the timer code, with HZ frequency. | 
 |  * We call it with interrupts disabled. | 
 |  * | 
 |  * It also gets called by the fork code, when changing the parent's | 
 |  * timeslices. | 
 |  */ | 
 | void scheduler_tick(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	struct task_struct *curr = rq->curr; | 
 |  | 
 | 	sched_clock_tick(); | 
 |  | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	update_rq_clock(rq); | 
 | 	update_cpu_load_active(rq); | 
 | 	curr->sched_class->task_tick(rq, curr, 0); | 
 | 	raw_spin_unlock(&rq->lock); | 
 |  | 
 | 	perf_event_task_tick(curr); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	rq->idle_at_tick = idle_cpu(cpu); | 
 | 	trigger_load_balance(rq, cpu); | 
 | #endif | 
 | } | 
 |  | 
 | notrace unsigned long get_parent_ip(unsigned long addr) | 
 | { | 
 | 	if (in_lock_functions(addr)) { | 
 | 		addr = CALLER_ADDR2; | 
 | 		if (in_lock_functions(addr)) | 
 | 			addr = CALLER_ADDR3; | 
 | 	} | 
 | 	return addr; | 
 | } | 
 |  | 
 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ | 
 | 				defined(CONFIG_PREEMPT_TRACER)) | 
 |  | 
 | void __kprobes add_preempt_count(int val) | 
 | { | 
 | #ifdef CONFIG_DEBUG_PREEMPT | 
 | 	/* | 
 | 	 * Underflow? | 
 | 	 */ | 
 | 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) | 
 | 		return; | 
 | #endif | 
 | 	preempt_count() += val; | 
 | #ifdef CONFIG_DEBUG_PREEMPT | 
 | 	/* | 
 | 	 * Spinlock count overflowing soon? | 
 | 	 */ | 
 | 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= | 
 | 				PREEMPT_MASK - 10); | 
 | #endif | 
 | 	if (preempt_count() == val) | 
 | 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | 
 | } | 
 | EXPORT_SYMBOL(add_preempt_count); | 
 |  | 
 | void __kprobes sub_preempt_count(int val) | 
 | { | 
 | #ifdef CONFIG_DEBUG_PREEMPT | 
 | 	/* | 
 | 	 * Underflow? | 
 | 	 */ | 
 | 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) | 
 | 		return; | 
 | 	/* | 
 | 	 * Is the spinlock portion underflowing? | 
 | 	 */ | 
 | 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && | 
 | 			!(preempt_count() & PREEMPT_MASK))) | 
 | 		return; | 
 | #endif | 
 |  | 
 | 	if (preempt_count() == val) | 
 | 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | 
 | 	preempt_count() -= val; | 
 | } | 
 | EXPORT_SYMBOL(sub_preempt_count); | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Print scheduling while atomic bug: | 
 |  */ | 
 | static noinline void __schedule_bug(struct task_struct *prev) | 
 | { | 
 | 	struct pt_regs *regs = get_irq_regs(); | 
 |  | 
 | 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | 
 | 		prev->comm, prev->pid, preempt_count()); | 
 |  | 
 | 	debug_show_held_locks(prev); | 
 | 	print_modules(); | 
 | 	if (irqs_disabled()) | 
 | 		print_irqtrace_events(prev); | 
 |  | 
 | 	if (regs) | 
 | 		show_regs(regs); | 
 | 	else | 
 | 		dump_stack(); | 
 | } | 
 |  | 
 | /* | 
 |  * Various schedule()-time debugging checks and statistics: | 
 |  */ | 
 | static inline void schedule_debug(struct task_struct *prev) | 
 | { | 
 | 	/* | 
 | 	 * Test if we are atomic. Since do_exit() needs to call into | 
 | 	 * schedule() atomically, we ignore that path for now. | 
 | 	 * Otherwise, whine if we are scheduling when we should not be. | 
 | 	 */ | 
 | 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) | 
 | 		__schedule_bug(prev); | 
 |  | 
 | 	profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 
 |  | 
 | 	schedstat_inc(this_rq(), sched_count); | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	if (unlikely(prev->lock_depth >= 0)) { | 
 | 		schedstat_inc(this_rq(), bkl_count); | 
 | 		schedstat_inc(prev, sched_info.bkl_count); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	if (prev->se.on_rq) | 
 | 		update_rq_clock(rq); | 
 | 	rq->skip_clock_update = 0; | 
 | 	prev->sched_class->put_prev_task(rq, prev); | 
 | } | 
 |  | 
 | /* | 
 |  * Pick up the highest-prio task: | 
 |  */ | 
 | static inline struct task_struct * | 
 | pick_next_task(struct rq *rq) | 
 | { | 
 | 	const struct sched_class *class; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	/* | 
 | 	 * Optimization: we know that if all tasks are in | 
 | 	 * the fair class we can call that function directly: | 
 | 	 */ | 
 | 	if (likely(rq->nr_running == rq->cfs.nr_running)) { | 
 | 		p = fair_sched_class.pick_next_task(rq); | 
 | 		if (likely(p)) | 
 | 			return p; | 
 | 	} | 
 |  | 
 | 	class = sched_class_highest; | 
 | 	for ( ; ; ) { | 
 | 		p = class->pick_next_task(rq); | 
 | 		if (p) | 
 | 			return p; | 
 | 		/* | 
 | 		 * Will never be NULL as the idle class always | 
 | 		 * returns a non-NULL p: | 
 | 		 */ | 
 | 		class = class->next; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * schedule() is the main scheduler function. | 
 |  */ | 
 | asmlinkage void __sched schedule(void) | 
 | { | 
 | 	struct task_struct *prev, *next; | 
 | 	unsigned long *switch_count; | 
 | 	struct rq *rq; | 
 | 	int cpu; | 
 |  | 
 | need_resched: | 
 | 	preempt_disable(); | 
 | 	cpu = smp_processor_id(); | 
 | 	rq = cpu_rq(cpu); | 
 | 	rcu_note_context_switch(cpu); | 
 | 	prev = rq->curr; | 
 |  | 
 | 	release_kernel_lock(prev); | 
 | need_resched_nonpreemptible: | 
 |  | 
 | 	schedule_debug(prev); | 
 |  | 
 | 	if (sched_feat(HRTICK)) | 
 | 		hrtick_clear(rq); | 
 |  | 
 | 	raw_spin_lock_irq(&rq->lock); | 
 | 	clear_tsk_need_resched(prev); | 
 |  | 
 | 	switch_count = &prev->nivcsw; | 
 | 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 
 | 		if (unlikely(signal_pending_state(prev->state, prev))) { | 
 | 			prev->state = TASK_RUNNING; | 
 | 		} else { | 
 | 			/* | 
 | 			 * If a worker is going to sleep, notify and | 
 | 			 * ask workqueue whether it wants to wake up a | 
 | 			 * task to maintain concurrency.  If so, wake | 
 | 			 * up the task. | 
 | 			 */ | 
 | 			if (prev->flags & PF_WQ_WORKER) { | 
 | 				struct task_struct *to_wakeup; | 
 |  | 
 | 				to_wakeup = wq_worker_sleeping(prev, cpu); | 
 | 				if (to_wakeup) | 
 | 					try_to_wake_up_local(to_wakeup); | 
 | 			} | 
 | 			deactivate_task(rq, prev, DEQUEUE_SLEEP); | 
 | 		} | 
 | 		switch_count = &prev->nvcsw; | 
 | 	} | 
 |  | 
 | 	pre_schedule(rq, prev); | 
 |  | 
 | 	if (unlikely(!rq->nr_running)) | 
 | 		idle_balance(cpu, rq); | 
 |  | 
 | 	put_prev_task(rq, prev); | 
 | 	next = pick_next_task(rq); | 
 |  | 
 | 	if (likely(prev != next)) { | 
 | 		sched_info_switch(prev, next); | 
 | 		perf_event_task_sched_out(prev, next); | 
 |  | 
 | 		rq->nr_switches++; | 
 | 		rq->curr = next; | 
 | 		++*switch_count; | 
 |  | 
 | 		context_switch(rq, prev, next); /* unlocks the rq */ | 
 | 		/* | 
 | 		 * The context switch have flipped the stack from under us | 
 | 		 * and restored the local variables which were saved when | 
 | 		 * this task called schedule() in the past. prev == current | 
 | 		 * is still correct, but it can be moved to another cpu/rq. | 
 | 		 */ | 
 | 		cpu = smp_processor_id(); | 
 | 		rq = cpu_rq(cpu); | 
 | 	} else | 
 | 		raw_spin_unlock_irq(&rq->lock); | 
 |  | 
 | 	post_schedule(rq); | 
 |  | 
 | 	if (unlikely(reacquire_kernel_lock(prev))) | 
 | 		goto need_resched_nonpreemptible; | 
 |  | 
 | 	preempt_enable_no_resched(); | 
 | 	if (need_resched()) | 
 | 		goto need_resched; | 
 | } | 
 | EXPORT_SYMBOL(schedule); | 
 |  | 
 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER | 
 | /* | 
 |  * Look out! "owner" is an entirely speculative pointer | 
 |  * access and not reliable. | 
 |  */ | 
 | int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) | 
 | { | 
 | 	unsigned int cpu; | 
 | 	struct rq *rq; | 
 |  | 
 | 	if (!sched_feat(OWNER_SPIN)) | 
 | 		return 0; | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 	/* | 
 | 	 * Need to access the cpu field knowing that | 
 | 	 * DEBUG_PAGEALLOC could have unmapped it if | 
 | 	 * the mutex owner just released it and exited. | 
 | 	 */ | 
 | 	if (probe_kernel_address(&owner->cpu, cpu)) | 
 | 		return 0; | 
 | #else | 
 | 	cpu = owner->cpu; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Even if the access succeeded (likely case), | 
 | 	 * the cpu field may no longer be valid. | 
 | 	 */ | 
 | 	if (cpu >= nr_cpumask_bits) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We need to validate that we can do a | 
 | 	 * get_cpu() and that we have the percpu area. | 
 | 	 */ | 
 | 	if (!cpu_online(cpu)) | 
 | 		return 0; | 
 |  | 
 | 	rq = cpu_rq(cpu); | 
 |  | 
 | 	for (;;) { | 
 | 		/* | 
 | 		 * Owner changed, break to re-assess state. | 
 | 		 */ | 
 | 		if (lock->owner != owner) { | 
 | 			/* | 
 | 			 * If the lock has switched to a different owner, | 
 | 			 * we likely have heavy contention. Return 0 to quit | 
 | 			 * optimistic spinning and not contend further: | 
 | 			 */ | 
 | 			if (lock->owner) | 
 | 				return 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Is that owner really running on that cpu? | 
 | 		 */ | 
 | 		if (task_thread_info(rq->curr) != owner || need_resched()) | 
 | 			return 0; | 
 |  | 
 | 		cpu_relax(); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | /* | 
 |  * this is the entry point to schedule() from in-kernel preemption | 
 |  * off of preempt_enable. Kernel preemptions off return from interrupt | 
 |  * occur there and call schedule directly. | 
 |  */ | 
 | asmlinkage void __sched notrace preempt_schedule(void) | 
 | { | 
 | 	struct thread_info *ti = current_thread_info(); | 
 |  | 
 | 	/* | 
 | 	 * If there is a non-zero preempt_count or interrupts are disabled, | 
 | 	 * we do not want to preempt the current task. Just return.. | 
 | 	 */ | 
 | 	if (likely(ti->preempt_count || irqs_disabled())) | 
 | 		return; | 
 |  | 
 | 	do { | 
 | 		add_preempt_count_notrace(PREEMPT_ACTIVE); | 
 | 		schedule(); | 
 | 		sub_preempt_count_notrace(PREEMPT_ACTIVE); | 
 |  | 
 | 		/* | 
 | 		 * Check again in case we missed a preemption opportunity | 
 | 		 * between schedule and now. | 
 | 		 */ | 
 | 		barrier(); | 
 | 	} while (need_resched()); | 
 | } | 
 | EXPORT_SYMBOL(preempt_schedule); | 
 |  | 
 | /* | 
 |  * this is the entry point to schedule() from kernel preemption | 
 |  * off of irq context. | 
 |  * Note, that this is called and return with irqs disabled. This will | 
 |  * protect us against recursive calling from irq. | 
 |  */ | 
 | asmlinkage void __sched preempt_schedule_irq(void) | 
 | { | 
 | 	struct thread_info *ti = current_thread_info(); | 
 |  | 
 | 	/* Catch callers which need to be fixed */ | 
 | 	BUG_ON(ti->preempt_count || !irqs_disabled()); | 
 |  | 
 | 	do { | 
 | 		add_preempt_count(PREEMPT_ACTIVE); | 
 | 		local_irq_enable(); | 
 | 		schedule(); | 
 | 		local_irq_disable(); | 
 | 		sub_preempt_count(PREEMPT_ACTIVE); | 
 |  | 
 | 		/* | 
 | 		 * Check again in case we missed a preemption opportunity | 
 | 		 * between schedule and now. | 
 | 		 */ | 
 | 		barrier(); | 
 | 	} while (need_resched()); | 
 | } | 
 |  | 
 | #endif /* CONFIG_PREEMPT */ | 
 |  | 
 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, | 
 | 			  void *key) | 
 | { | 
 | 	return try_to_wake_up(curr->private, mode, wake_flags); | 
 | } | 
 | EXPORT_SYMBOL(default_wake_function); | 
 |  | 
 | /* | 
 |  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just | 
 |  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | 
 |  * number) then we wake all the non-exclusive tasks and one exclusive task. | 
 |  * | 
 |  * There are circumstances in which we can try to wake a task which has already | 
 |  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns | 
 |  * zero in this (rare) case, and we handle it by continuing to scan the queue. | 
 |  */ | 
 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 
 | 			int nr_exclusive, int wake_flags, void *key) | 
 | { | 
 | 	wait_queue_t *curr, *next; | 
 |  | 
 | 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | 
 | 		unsigned flags = curr->flags; | 
 |  | 
 | 		if (curr->func(curr, mode, wake_flags, key) && | 
 | 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * __wake_up - wake up threads blocked on a waitqueue. | 
 |  * @q: the waitqueue | 
 |  * @mode: which threads | 
 |  * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
 |  * @key: is directly passed to the wakeup function | 
 |  * | 
 |  * It may be assumed that this function implies a write memory barrier before | 
 |  * changing the task state if and only if any tasks are woken up. | 
 |  */ | 
 | void __wake_up(wait_queue_head_t *q, unsigned int mode, | 
 | 			int nr_exclusive, void *key) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&q->lock, flags); | 
 | 	__wake_up_common(q, mode, nr_exclusive, 0, key); | 
 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(__wake_up); | 
 |  | 
 | /* | 
 |  * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | 
 |  */ | 
 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | 
 | { | 
 | 	__wake_up_common(q, mode, 1, 0, NULL); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__wake_up_locked); | 
 |  | 
 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) | 
 | { | 
 | 	__wake_up_common(q, mode, 1, 0, key); | 
 | } | 
 |  | 
 | /** | 
 |  * __wake_up_sync_key - wake up threads blocked on a waitqueue. | 
 |  * @q: the waitqueue | 
 |  * @mode: which threads | 
 |  * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
 |  * @key: opaque value to be passed to wakeup targets | 
 |  * | 
 |  * The sync wakeup differs that the waker knows that it will schedule | 
 |  * away soon, so while the target thread will be woken up, it will not | 
 |  * be migrated to another CPU - ie. the two threads are 'synchronized' | 
 |  * with each other. This can prevent needless bouncing between CPUs. | 
 |  * | 
 |  * On UP it can prevent extra preemption. | 
 |  * | 
 |  * It may be assumed that this function implies a write memory barrier before | 
 |  * changing the task state if and only if any tasks are woken up. | 
 |  */ | 
 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | 
 | 			int nr_exclusive, void *key) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int wake_flags = WF_SYNC; | 
 |  | 
 | 	if (unlikely(!q)) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(!nr_exclusive)) | 
 | 		wake_flags = 0; | 
 |  | 
 | 	spin_lock_irqsave(&q->lock, flags); | 
 | 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key); | 
 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | 
 |  | 
 | /* | 
 |  * __wake_up_sync - see __wake_up_sync_key() | 
 |  */ | 
 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 
 | { | 
 | 	__wake_up_sync_key(q, mode, nr_exclusive, NULL); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */ | 
 |  | 
 | /** | 
 |  * complete: - signals a single thread waiting on this completion | 
 |  * @x:  holds the state of this particular completion | 
 |  * | 
 |  * This will wake up a single thread waiting on this completion. Threads will be | 
 |  * awakened in the same order in which they were queued. | 
 |  * | 
 |  * See also complete_all(), wait_for_completion() and related routines. | 
 |  * | 
 |  * It may be assumed that this function implies a write memory barrier before | 
 |  * changing the task state if and only if any tasks are woken up. | 
 |  */ | 
 | void complete(struct completion *x) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&x->wait.lock, flags); | 
 | 	x->done++; | 
 | 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); | 
 | 	spin_unlock_irqrestore(&x->wait.lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(complete); | 
 |  | 
 | /** | 
 |  * complete_all: - signals all threads waiting on this completion | 
 |  * @x:  holds the state of this particular completion | 
 |  * | 
 |  * This will wake up all threads waiting on this particular completion event. | 
 |  * | 
 |  * It may be assumed that this function implies a write memory barrier before | 
 |  * changing the task state if and only if any tasks are woken up. | 
 |  */ | 
 | void complete_all(struct completion *x) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&x->wait.lock, flags); | 
 | 	x->done += UINT_MAX/2; | 
 | 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); | 
 | 	spin_unlock_irqrestore(&x->wait.lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(complete_all); | 
 |  | 
 | static inline long __sched | 
 | do_wait_for_common(struct completion *x, long timeout, int state) | 
 | { | 
 | 	if (!x->done) { | 
 | 		DECLARE_WAITQUEUE(wait, current); | 
 |  | 
 | 		__add_wait_queue_tail_exclusive(&x->wait, &wait); | 
 | 		do { | 
 | 			if (signal_pending_state(state, current)) { | 
 | 				timeout = -ERESTARTSYS; | 
 | 				break; | 
 | 			} | 
 | 			__set_current_state(state); | 
 | 			spin_unlock_irq(&x->wait.lock); | 
 | 			timeout = schedule_timeout(timeout); | 
 | 			spin_lock_irq(&x->wait.lock); | 
 | 		} while (!x->done && timeout); | 
 | 		__remove_wait_queue(&x->wait, &wait); | 
 | 		if (!x->done) | 
 | 			return timeout; | 
 | 	} | 
 | 	x->done--; | 
 | 	return timeout ?: 1; | 
 | } | 
 |  | 
 | static long __sched | 
 | wait_for_common(struct completion *x, long timeout, int state) | 
 | { | 
 | 	might_sleep(); | 
 |  | 
 | 	spin_lock_irq(&x->wait.lock); | 
 | 	timeout = do_wait_for_common(x, timeout, state); | 
 | 	spin_unlock_irq(&x->wait.lock); | 
 | 	return timeout; | 
 | } | 
 |  | 
 | /** | 
 |  * wait_for_completion: - waits for completion of a task | 
 |  * @x:  holds the state of this particular completion | 
 |  * | 
 |  * This waits to be signaled for completion of a specific task. It is NOT | 
 |  * interruptible and there is no timeout. | 
 |  * | 
 |  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout | 
 |  * and interrupt capability. Also see complete(). | 
 |  */ | 
 | void __sched wait_for_completion(struct completion *x) | 
 | { | 
 | 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion); | 
 |  | 
 | /** | 
 |  * wait_for_completion_timeout: - waits for completion of a task (w/timeout) | 
 |  * @x:  holds the state of this particular completion | 
 |  * @timeout:  timeout value in jiffies | 
 |  * | 
 |  * This waits for either a completion of a specific task to be signaled or for a | 
 |  * specified timeout to expire. The timeout is in jiffies. It is not | 
 |  * interruptible. | 
 |  */ | 
 | unsigned long __sched | 
 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | 
 | { | 
 | 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion_timeout); | 
 |  | 
 | /** | 
 |  * wait_for_completion_interruptible: - waits for completion of a task (w/intr) | 
 |  * @x:  holds the state of this particular completion | 
 |  * | 
 |  * This waits for completion of a specific task to be signaled. It is | 
 |  * interruptible. | 
 |  */ | 
 | int __sched wait_for_completion_interruptible(struct completion *x) | 
 | { | 
 | 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); | 
 | 	if (t == -ERESTARTSYS) | 
 | 		return t; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion_interruptible); | 
 |  | 
 | /** | 
 |  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) | 
 |  * @x:  holds the state of this particular completion | 
 |  * @timeout:  timeout value in jiffies | 
 |  * | 
 |  * This waits for either a completion of a specific task to be signaled or for a | 
 |  * specified timeout to expire. It is interruptible. The timeout is in jiffies. | 
 |  */ | 
 | unsigned long __sched | 
 | wait_for_completion_interruptible_timeout(struct completion *x, | 
 | 					  unsigned long timeout) | 
 | { | 
 | 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | 
 |  | 
 | /** | 
 |  * wait_for_completion_killable: - waits for completion of a task (killable) | 
 |  * @x:  holds the state of this particular completion | 
 |  * | 
 |  * This waits to be signaled for completion of a specific task. It can be | 
 |  * interrupted by a kill signal. | 
 |  */ | 
 | int __sched wait_for_completion_killable(struct completion *x) | 
 | { | 
 | 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); | 
 | 	if (t == -ERESTARTSYS) | 
 | 		return t; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion_killable); | 
 |  | 
 | /** | 
 |  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) | 
 |  * @x:  holds the state of this particular completion | 
 |  * @timeout:  timeout value in jiffies | 
 |  * | 
 |  * This waits for either a completion of a specific task to be | 
 |  * signaled or for a specified timeout to expire. It can be | 
 |  * interrupted by a kill signal. The timeout is in jiffies. | 
 |  */ | 
 | unsigned long __sched | 
 | wait_for_completion_killable_timeout(struct completion *x, | 
 | 				     unsigned long timeout) | 
 | { | 
 | 	return wait_for_common(x, timeout, TASK_KILLABLE); | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion_killable_timeout); | 
 |  | 
 | /** | 
 |  *	try_wait_for_completion - try to decrement a completion without blocking | 
 |  *	@x:	completion structure | 
 |  * | 
 |  *	Returns: 0 if a decrement cannot be done without blocking | 
 |  *		 1 if a decrement succeeded. | 
 |  * | 
 |  *	If a completion is being used as a counting completion, | 
 |  *	attempt to decrement the counter without blocking. This | 
 |  *	enables us to avoid waiting if the resource the completion | 
 |  *	is protecting is not available. | 
 |  */ | 
 | bool try_wait_for_completion(struct completion *x) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret = 1; | 
 |  | 
 | 	spin_lock_irqsave(&x->wait.lock, flags); | 
 | 	if (!x->done) | 
 | 		ret = 0; | 
 | 	else | 
 | 		x->done--; | 
 | 	spin_unlock_irqrestore(&x->wait.lock, flags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(try_wait_for_completion); | 
 |  | 
 | /** | 
 |  *	completion_done - Test to see if a completion has any waiters | 
 |  *	@x:	completion structure | 
 |  * | 
 |  *	Returns: 0 if there are waiters (wait_for_completion() in progress) | 
 |  *		 1 if there are no waiters. | 
 |  * | 
 |  */ | 
 | bool completion_done(struct completion *x) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret = 1; | 
 |  | 
 | 	spin_lock_irqsave(&x->wait.lock, flags); | 
 | 	if (!x->done) | 
 | 		ret = 0; | 
 | 	spin_unlock_irqrestore(&x->wait.lock, flags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(completion_done); | 
 |  | 
 | static long __sched | 
 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) | 
 | { | 
 | 	unsigned long flags; | 
 | 	wait_queue_t wait; | 
 |  | 
 | 	init_waitqueue_entry(&wait, current); | 
 |  | 
 | 	__set_current_state(state); | 
 |  | 
 | 	spin_lock_irqsave(&q->lock, flags); | 
 | 	__add_wait_queue(q, &wait); | 
 | 	spin_unlock(&q->lock); | 
 | 	timeout = schedule_timeout(timeout); | 
 | 	spin_lock_irq(&q->lock); | 
 | 	__remove_wait_queue(q, &wait); | 
 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 |  | 
 | 	return timeout; | 
 | } | 
 |  | 
 | void __sched interruptible_sleep_on(wait_queue_head_t *q) | 
 | { | 
 | 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | 
 | } | 
 | EXPORT_SYMBOL(interruptible_sleep_on); | 
 |  | 
 | long __sched | 
 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
 | { | 
 | 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); | 
 | } | 
 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); | 
 |  | 
 | void __sched sleep_on(wait_queue_head_t *q) | 
 | { | 
 | 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | 
 | } | 
 | EXPORT_SYMBOL(sleep_on); | 
 |  | 
 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
 | { | 
 | 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); | 
 | } | 
 | EXPORT_SYMBOL(sleep_on_timeout); | 
 |  | 
 | #ifdef CONFIG_RT_MUTEXES | 
 |  | 
 | /* | 
 |  * rt_mutex_setprio - set the current priority of a task | 
 |  * @p: task | 
 |  * @prio: prio value (kernel-internal form) | 
 |  * | 
 |  * This function changes the 'effective' priority of a task. It does | 
 |  * not touch ->normal_prio like __setscheduler(). | 
 |  * | 
 |  * Used by the rt_mutex code to implement priority inheritance logic. | 
 |  */ | 
 | void rt_mutex_setprio(struct task_struct *p, int prio) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int oldprio, on_rq, running; | 
 | 	struct rq *rq; | 
 | 	const struct sched_class *prev_class; | 
 |  | 
 | 	BUG_ON(prio < 0 || prio > MAX_PRIO); | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 |  | 
 | 	oldprio = p->prio; | 
 | 	prev_class = p->sched_class; | 
 | 	on_rq = p->se.on_rq; | 
 | 	running = task_current(rq, p); | 
 | 	if (on_rq) | 
 | 		dequeue_task(rq, p, 0); | 
 | 	if (running) | 
 | 		p->sched_class->put_prev_task(rq, p); | 
 |  | 
 | 	if (rt_prio(prio)) | 
 | 		p->sched_class = &rt_sched_class; | 
 | 	else | 
 | 		p->sched_class = &fair_sched_class; | 
 |  | 
 | 	p->prio = prio; | 
 |  | 
 | 	if (running) | 
 | 		p->sched_class->set_curr_task(rq); | 
 | 	if (on_rq) { | 
 | 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); | 
 |  | 
 | 		check_class_changed(rq, p, prev_class, oldprio, running); | 
 | 	} | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | void set_user_nice(struct task_struct *p, long nice) | 
 | { | 
 | 	int old_prio, delta, on_rq; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 |  | 
 | 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | 
 | 		return; | 
 | 	/* | 
 | 	 * We have to be careful, if called from sys_setpriority(), | 
 | 	 * the task might be in the middle of scheduling on another CPU. | 
 | 	 */ | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	/* | 
 | 	 * The RT priorities are set via sched_setscheduler(), but we still | 
 | 	 * allow the 'normal' nice value to be set - but as expected | 
 | 	 * it wont have any effect on scheduling until the task is | 
 | 	 * SCHED_FIFO/SCHED_RR: | 
 | 	 */ | 
 | 	if (task_has_rt_policy(p)) { | 
 | 		p->static_prio = NICE_TO_PRIO(nice); | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	on_rq = p->se.on_rq; | 
 | 	if (on_rq) | 
 | 		dequeue_task(rq, p, 0); | 
 |  | 
 | 	p->static_prio = NICE_TO_PRIO(nice); | 
 | 	set_load_weight(p); | 
 | 	old_prio = p->prio; | 
 | 	p->prio = effective_prio(p); | 
 | 	delta = p->prio - old_prio; | 
 |  | 
 | 	if (on_rq) { | 
 | 		enqueue_task(rq, p, 0); | 
 | 		/* | 
 | 		 * If the task increased its priority or is running and | 
 | 		 * lowered its priority, then reschedule its CPU: | 
 | 		 */ | 
 | 		if (delta < 0 || (delta > 0 && task_running(rq, p))) | 
 | 			resched_task(rq->curr); | 
 | 	} | 
 | out_unlock: | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 | EXPORT_SYMBOL(set_user_nice); | 
 |  | 
 | /* | 
 |  * can_nice - check if a task can reduce its nice value | 
 |  * @p: task | 
 |  * @nice: nice value | 
 |  */ | 
 | int can_nice(const struct task_struct *p, const int nice) | 
 | { | 
 | 	/* convert nice value [19,-20] to rlimit style value [1,40] */ | 
 | 	int nice_rlim = 20 - nice; | 
 |  | 
 | 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || | 
 | 		capable(CAP_SYS_NICE)); | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_NICE | 
 |  | 
 | /* | 
 |  * sys_nice - change the priority of the current process. | 
 |  * @increment: priority increment | 
 |  * | 
 |  * sys_setpriority is a more generic, but much slower function that | 
 |  * does similar things. | 
 |  */ | 
 | SYSCALL_DEFINE1(nice, int, increment) | 
 | { | 
 | 	long nice, retval; | 
 |  | 
 | 	/* | 
 | 	 * Setpriority might change our priority at the same moment. | 
 | 	 * We don't have to worry. Conceptually one call occurs first | 
 | 	 * and we have a single winner. | 
 | 	 */ | 
 | 	if (increment < -40) | 
 | 		increment = -40; | 
 | 	if (increment > 40) | 
 | 		increment = 40; | 
 |  | 
 | 	nice = TASK_NICE(current) + increment; | 
 | 	if (nice < -20) | 
 | 		nice = -20; | 
 | 	if (nice > 19) | 
 | 		nice = 19; | 
 |  | 
 | 	if (increment < 0 && !can_nice(current, nice)) | 
 | 		return -EPERM; | 
 |  | 
 | 	retval = security_task_setnice(current, nice); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	set_user_nice(current, nice); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /** | 
 |  * task_prio - return the priority value of a given task. | 
 |  * @p: the task in question. | 
 |  * | 
 |  * This is the priority value as seen by users in /proc. | 
 |  * RT tasks are offset by -200. Normal tasks are centered | 
 |  * around 0, value goes from -16 to +15. | 
 |  */ | 
 | int task_prio(const struct task_struct *p) | 
 | { | 
 | 	return p->prio - MAX_RT_PRIO; | 
 | } | 
 |  | 
 | /** | 
 |  * task_nice - return the nice value of a given task. | 
 |  * @p: the task in question. | 
 |  */ | 
 | int task_nice(const struct task_struct *p) | 
 | { | 
 | 	return TASK_NICE(p); | 
 | } | 
 | EXPORT_SYMBOL(task_nice); | 
 |  | 
 | /** | 
 |  * idle_cpu - is a given cpu idle currently? | 
 |  * @cpu: the processor in question. | 
 |  */ | 
 | int idle_cpu(int cpu) | 
 | { | 
 | 	return cpu_curr(cpu) == cpu_rq(cpu)->idle; | 
 | } | 
 |  | 
 | /** | 
 |  * idle_task - return the idle task for a given cpu. | 
 |  * @cpu: the processor in question. | 
 |  */ | 
 | struct task_struct *idle_task(int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->idle; | 
 | } | 
 |  | 
 | /** | 
 |  * find_process_by_pid - find a process with a matching PID value. | 
 |  * @pid: the pid in question. | 
 |  */ | 
 | static struct task_struct *find_process_by_pid(pid_t pid) | 
 | { | 
 | 	return pid ? find_task_by_vpid(pid) : current; | 
 | } | 
 |  | 
 | /* Actually do priority change: must hold rq lock. */ | 
 | static void | 
 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | 
 | { | 
 | 	BUG_ON(p->se.on_rq); | 
 |  | 
 | 	p->policy = policy; | 
 | 	p->rt_priority = prio; | 
 | 	p->normal_prio = normal_prio(p); | 
 | 	/* we are holding p->pi_lock already */ | 
 | 	p->prio = rt_mutex_getprio(p); | 
 | 	if (rt_prio(p->prio)) | 
 | 		p->sched_class = &rt_sched_class; | 
 | 	else | 
 | 		p->sched_class = &fair_sched_class; | 
 | 	set_load_weight(p); | 
 | } | 
 |  | 
 | /* | 
 |  * check the target process has a UID that matches the current process's | 
 |  */ | 
 | static bool check_same_owner(struct task_struct *p) | 
 | { | 
 | 	const struct cred *cred = current_cred(), *pcred; | 
 | 	bool match; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	pcred = __task_cred(p); | 
 | 	match = (cred->euid == pcred->euid || | 
 | 		 cred->euid == pcred->uid); | 
 | 	rcu_read_unlock(); | 
 | 	return match; | 
 | } | 
 |  | 
 | static int __sched_setscheduler(struct task_struct *p, int policy, | 
 | 				struct sched_param *param, bool user) | 
 | { | 
 | 	int retval, oldprio, oldpolicy = -1, on_rq, running; | 
 | 	unsigned long flags; | 
 | 	const struct sched_class *prev_class; | 
 | 	struct rq *rq; | 
 | 	int reset_on_fork; | 
 |  | 
 | 	/* may grab non-irq protected spin_locks */ | 
 | 	BUG_ON(in_interrupt()); | 
 | recheck: | 
 | 	/* double check policy once rq lock held */ | 
 | 	if (policy < 0) { | 
 | 		reset_on_fork = p->sched_reset_on_fork; | 
 | 		policy = oldpolicy = p->policy; | 
 | 	} else { | 
 | 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); | 
 | 		policy &= ~SCHED_RESET_ON_FORK; | 
 |  | 
 | 		if (policy != SCHED_FIFO && policy != SCHED_RR && | 
 | 				policy != SCHED_NORMAL && policy != SCHED_BATCH && | 
 | 				policy != SCHED_IDLE) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Valid priorities for SCHED_FIFO and SCHED_RR are | 
 | 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, | 
 | 	 * SCHED_BATCH and SCHED_IDLE is 0. | 
 | 	 */ | 
 | 	if (param->sched_priority < 0 || | 
 | 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || | 
 | 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) | 
 | 		return -EINVAL; | 
 | 	if (rt_policy(policy) != (param->sched_priority != 0)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Allow unprivileged RT tasks to decrease priority: | 
 | 	 */ | 
 | 	if (user && !capable(CAP_SYS_NICE)) { | 
 | 		if (rt_policy(policy)) { | 
 | 			unsigned long rlim_rtprio = | 
 | 					task_rlimit(p, RLIMIT_RTPRIO); | 
 |  | 
 | 			/* can't set/change the rt policy */ | 
 | 			if (policy != p->policy && !rlim_rtprio) | 
 | 				return -EPERM; | 
 |  | 
 | 			/* can't increase priority */ | 
 | 			if (param->sched_priority > p->rt_priority && | 
 | 			    param->sched_priority > rlim_rtprio) | 
 | 				return -EPERM; | 
 | 		} | 
 | 		/* | 
 | 		 * Like positive nice levels, dont allow tasks to | 
 | 		 * move out of SCHED_IDLE either: | 
 | 		 */ | 
 | 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) | 
 | 			return -EPERM; | 
 |  | 
 | 		/* can't change other user's priorities */ | 
 | 		if (!check_same_owner(p)) | 
 | 			return -EPERM; | 
 |  | 
 | 		/* Normal users shall not reset the sched_reset_on_fork flag */ | 
 | 		if (p->sched_reset_on_fork && !reset_on_fork) | 
 | 			return -EPERM; | 
 | 	} | 
 |  | 
 | 	if (user) { | 
 | 		retval = security_task_setscheduler(p, policy, param); | 
 | 		if (retval) | 
 | 			return retval; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * make sure no PI-waiters arrive (or leave) while we are | 
 | 	 * changing the priority of the task: | 
 | 	 */ | 
 | 	raw_spin_lock_irqsave(&p->pi_lock, flags); | 
 | 	/* | 
 | 	 * To be able to change p->policy safely, the apropriate | 
 | 	 * runqueue lock must be held. | 
 | 	 */ | 
 | 	rq = __task_rq_lock(p); | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	if (user) { | 
 | 		/* | 
 | 		 * Do not allow realtime tasks into groups that have no runtime | 
 | 		 * assigned. | 
 | 		 */ | 
 | 		if (rt_bandwidth_enabled() && rt_policy(policy) && | 
 | 				task_group(p)->rt_bandwidth.rt_runtime == 0) { | 
 | 			__task_rq_unlock(rq); | 
 | 			raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
 | 			return -EPERM; | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* recheck policy now with rq lock held */ | 
 | 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 
 | 		policy = oldpolicy = -1; | 
 | 		__task_rq_unlock(rq); | 
 | 		raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
 | 		goto recheck; | 
 | 	} | 
 | 	on_rq = p->se.on_rq; | 
 | 	running = task_current(rq, p); | 
 | 	if (on_rq) | 
 | 		deactivate_task(rq, p, 0); | 
 | 	if (running) | 
 | 		p->sched_class->put_prev_task(rq, p); | 
 |  | 
 | 	p->sched_reset_on_fork = reset_on_fork; | 
 |  | 
 | 	oldprio = p->prio; | 
 | 	prev_class = p->sched_class; | 
 | 	__setscheduler(rq, p, policy, param->sched_priority); | 
 |  | 
 | 	if (running) | 
 | 		p->sched_class->set_curr_task(rq); | 
 | 	if (on_rq) { | 
 | 		activate_task(rq, p, 0); | 
 |  | 
 | 		check_class_changed(rq, p, prev_class, oldprio, running); | 
 | 	} | 
 | 	__task_rq_unlock(rq); | 
 | 	raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
 |  | 
 | 	rt_mutex_adjust_pi(p); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | 
 |  * @p: the task in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  * | 
 |  * NOTE that the task may be already dead. | 
 |  */ | 
 | int sched_setscheduler(struct task_struct *p, int policy, | 
 | 		       struct sched_param *param) | 
 | { | 
 | 	return __sched_setscheduler(p, policy, param, true); | 
 | } | 
 | EXPORT_SYMBOL_GPL(sched_setscheduler); | 
 |  | 
 | /** | 
 |  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | 
 |  * @p: the task in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  * | 
 |  * Just like sched_setscheduler, only don't bother checking if the | 
 |  * current context has permission.  For example, this is needed in | 
 |  * stop_machine(): we create temporary high priority worker threads, | 
 |  * but our caller might not have that capability. | 
 |  */ | 
 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | 
 | 			       struct sched_param *param) | 
 | { | 
 | 	return __sched_setscheduler(p, policy, param, false); | 
 | } | 
 |  | 
 | static int | 
 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
 | { | 
 | 	struct sched_param lparam; | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	if (!param || pid < 0) | 
 | 		return -EINVAL; | 
 | 	if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	retval = -ESRCH; | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (p != NULL) | 
 | 		retval = sched_setscheduler(p, policy, &lparam); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 
 |  * @pid: the pid in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  */ | 
 | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, | 
 | 		struct sched_param __user *, param) | 
 | { | 
 | 	/* negative values for policy are not valid */ | 
 | 	if (policy < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return do_sched_setscheduler(pid, policy, param); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setparam - set/change the RT priority of a thread | 
 |  * @pid: the pid in question. | 
 |  * @param: structure containing the new RT priority. | 
 |  */ | 
 | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) | 
 | { | 
 | 	return do_sched_setscheduler(pid, -1, param); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 
 |  * @pid: the pid in question. | 
 |  */ | 
 | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	if (pid < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	rcu_read_lock(); | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (p) { | 
 | 		retval = security_task_getscheduler(p); | 
 | 		if (!retval) | 
 | 			retval = p->policy | 
 | 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getparam - get the RT priority of a thread | 
 |  * @pid: the pid in question. | 
 |  * @param: structure containing the RT priority. | 
 |  */ | 
 | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | 
 | { | 
 | 	struct sched_param lp; | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	if (!param || pid < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	p = find_process_by_pid(pid); | 
 | 	retval = -ESRCH; | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	lp.sched_priority = p->rt_priority; | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * This one might sleep, we cannot do it with a spinlock held ... | 
 | 	 */ | 
 | 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 
 |  | 
 | 	return retval; | 
 |  | 
 | out_unlock: | 
 | 	rcu_read_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) | 
 | { | 
 | 	cpumask_var_t cpus_allowed, new_mask; | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	get_online_cpus(); | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) { | 
 | 		rcu_read_unlock(); | 
 | 		put_online_cpus(); | 
 | 		return -ESRCH; | 
 | 	} | 
 |  | 
 | 	/* Prevent p going away */ | 
 | 	get_task_struct(p); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { | 
 | 		retval = -ENOMEM; | 
 | 		goto out_put_task; | 
 | 	} | 
 | 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { | 
 | 		retval = -ENOMEM; | 
 | 		goto out_free_cpus_allowed; | 
 | 	} | 
 | 	retval = -EPERM; | 
 | 	if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_setscheduler(p, 0, NULL); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	cpuset_cpus_allowed(p, cpus_allowed); | 
 | 	cpumask_and(new_mask, in_mask, cpus_allowed); | 
 |  again: | 
 | 	retval = set_cpus_allowed_ptr(p, new_mask); | 
 |  | 
 | 	if (!retval) { | 
 | 		cpuset_cpus_allowed(p, cpus_allowed); | 
 | 		if (!cpumask_subset(new_mask, cpus_allowed)) { | 
 | 			/* | 
 | 			 * We must have raced with a concurrent cpuset | 
 | 			 * update. Just reset the cpus_allowed to the | 
 | 			 * cpuset's cpus_allowed | 
 | 			 */ | 
 | 			cpumask_copy(new_mask, cpus_allowed); | 
 | 			goto again; | 
 | 		} | 
 | 	} | 
 | out_unlock: | 
 | 	free_cpumask_var(new_mask); | 
 | out_free_cpus_allowed: | 
 | 	free_cpumask_var(cpus_allowed); | 
 | out_put_task: | 
 | 	put_task_struct(p); | 
 | 	put_online_cpus(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 
 | 			     struct cpumask *new_mask) | 
 | { | 
 | 	if (len < cpumask_size()) | 
 | 		cpumask_clear(new_mask); | 
 | 	else if (len > cpumask_size()) | 
 | 		len = cpumask_size(); | 
 |  | 
 | 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setaffinity - set the cpu affinity of a process | 
 |  * @pid: pid of the process | 
 |  * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
 |  * @user_mask_ptr: user-space pointer to the new cpu mask | 
 |  */ | 
 | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, | 
 | 		unsigned long __user *, user_mask_ptr) | 
 | { | 
 | 	cpumask_var_t new_mask; | 
 | 	int retval; | 
 |  | 
 | 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); | 
 | 	if (retval == 0) | 
 | 		retval = sched_setaffinity(pid, new_mask); | 
 | 	free_cpumask_var(new_mask); | 
 | 	return retval; | 
 | } | 
 |  | 
 | long sched_getaffinity(pid_t pid, struct cpumask *mask) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	int retval; | 
 |  | 
 | 	get_online_cpus(); | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); | 
 | 	task_rq_unlock(rq, &flags); | 
 |  | 
 | out_unlock: | 
 | 	rcu_read_unlock(); | 
 | 	put_online_cpus(); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getaffinity - get the cpu affinity of a process | 
 |  * @pid: pid of the process | 
 |  * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
 |  * @user_mask_ptr: user-space pointer to hold the current cpu mask | 
 |  */ | 
 | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, | 
 | 		unsigned long __user *, user_mask_ptr) | 
 | { | 
 | 	int ret; | 
 | 	cpumask_var_t mask; | 
 |  | 
 | 	if ((len * BITS_PER_BYTE) < nr_cpu_ids) | 
 | 		return -EINVAL; | 
 | 	if (len & (sizeof(unsigned long)-1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = sched_getaffinity(pid, mask); | 
 | 	if (ret == 0) { | 
 | 		size_t retlen = min_t(size_t, len, cpumask_size()); | 
 |  | 
 | 		if (copy_to_user(user_mask_ptr, mask, retlen)) | 
 | 			ret = -EFAULT; | 
 | 		else | 
 | 			ret = retlen; | 
 | 	} | 
 | 	free_cpumask_var(mask); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_yield - yield the current processor to other threads. | 
 |  * | 
 |  * This function yields the current CPU to other tasks. If there are no | 
 |  * other threads running on this CPU then this function will return. | 
 |  */ | 
 | SYSCALL_DEFINE0(sched_yield) | 
 | { | 
 | 	struct rq *rq = this_rq_lock(); | 
 |  | 
 | 	schedstat_inc(rq, yld_count); | 
 | 	current->sched_class->yield_task(rq); | 
 |  | 
 | 	/* | 
 | 	 * Since we are going to call schedule() anyway, there's | 
 | 	 * no need to preempt or enable interrupts: | 
 | 	 */ | 
 | 	__release(rq->lock); | 
 | 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 
 | 	do_raw_spin_unlock(&rq->lock); | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	schedule(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int should_resched(void) | 
 | { | 
 | 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); | 
 | } | 
 |  | 
 | static void __cond_resched(void) | 
 | { | 
 | 	add_preempt_count(PREEMPT_ACTIVE); | 
 | 	schedule(); | 
 | 	sub_preempt_count(PREEMPT_ACTIVE); | 
 | } | 
 |  | 
 | int __sched _cond_resched(void) | 
 | { | 
 | 	if (should_resched()) { | 
 | 		__cond_resched(); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(_cond_resched); | 
 |  | 
 | /* | 
 |  * __cond_resched_lock() - if a reschedule is pending, drop the given lock, | 
 |  * call schedule, and on return reacquire the lock. | 
 |  * | 
 |  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level | 
 |  * operations here to prevent schedule() from being called twice (once via | 
 |  * spin_unlock(), once by hand). | 
 |  */ | 
 | int __cond_resched_lock(spinlock_t *lock) | 
 | { | 
 | 	int resched = should_resched(); | 
 | 	int ret = 0; | 
 |  | 
 | 	lockdep_assert_held(lock); | 
 |  | 
 | 	if (spin_needbreak(lock) || resched) { | 
 | 		spin_unlock(lock); | 
 | 		if (resched) | 
 | 			__cond_resched(); | 
 | 		else | 
 | 			cpu_relax(); | 
 | 		ret = 1; | 
 | 		spin_lock(lock); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(__cond_resched_lock); | 
 |  | 
 | int __sched __cond_resched_softirq(void) | 
 | { | 
 | 	BUG_ON(!in_softirq()); | 
 |  | 
 | 	if (should_resched()) { | 
 | 		local_bh_enable(); | 
 | 		__cond_resched(); | 
 | 		local_bh_disable(); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(__cond_resched_softirq); | 
 |  | 
 | /** | 
 |  * yield - yield the current processor to other threads. | 
 |  * | 
 |  * This is a shortcut for kernel-space yielding - it marks the | 
 |  * thread runnable and calls sys_sched_yield(). | 
 |  */ | 
 | void __sched yield(void) | 
 | { | 
 | 	set_current_state(TASK_RUNNING); | 
 | 	sys_sched_yield(); | 
 | } | 
 | EXPORT_SYMBOL(yield); | 
 |  | 
 | /* | 
 |  * This task is about to go to sleep on IO. Increment rq->nr_iowait so | 
 |  * that process accounting knows that this is a task in IO wait state. | 
 |  */ | 
 | void __sched io_schedule(void) | 
 | { | 
 | 	struct rq *rq = raw_rq(); | 
 |  | 
 | 	delayacct_blkio_start(); | 
 | 	atomic_inc(&rq->nr_iowait); | 
 | 	current->in_iowait = 1; | 
 | 	schedule(); | 
 | 	current->in_iowait = 0; | 
 | 	atomic_dec(&rq->nr_iowait); | 
 | 	delayacct_blkio_end(); | 
 | } | 
 | EXPORT_SYMBOL(io_schedule); | 
 |  | 
 | long __sched io_schedule_timeout(long timeout) | 
 | { | 
 | 	struct rq *rq = raw_rq(); | 
 | 	long ret; | 
 |  | 
 | 	delayacct_blkio_start(); | 
 | 	atomic_inc(&rq->nr_iowait); | 
 | 	current->in_iowait = 1; | 
 | 	ret = schedule_timeout(timeout); | 
 | 	current->in_iowait = 0; | 
 | 	atomic_dec(&rq->nr_iowait); | 
 | 	delayacct_blkio_end(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_get_priority_max - return maximum RT priority. | 
 |  * @policy: scheduling class. | 
 |  * | 
 |  * this syscall returns the maximum rt_priority that can be used | 
 |  * by a given scheduling class. | 
 |  */ | 
 | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	switch (policy) { | 
 | 	case SCHED_FIFO: | 
 | 	case SCHED_RR: | 
 | 		ret = MAX_USER_RT_PRIO-1; | 
 | 		break; | 
 | 	case SCHED_NORMAL: | 
 | 	case SCHED_BATCH: | 
 | 	case SCHED_IDLE: | 
 | 		ret = 0; | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_get_priority_min - return minimum RT priority. | 
 |  * @policy: scheduling class. | 
 |  * | 
 |  * this syscall returns the minimum rt_priority that can be used | 
 |  * by a given scheduling class. | 
 |  */ | 
 | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	switch (policy) { | 
 | 	case SCHED_FIFO: | 
 | 	case SCHED_RR: | 
 | 		ret = 1; | 
 | 		break; | 
 | 	case SCHED_NORMAL: | 
 | 	case SCHED_BATCH: | 
 | 	case SCHED_IDLE: | 
 | 		ret = 0; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_rr_get_interval - return the default timeslice of a process. | 
 |  * @pid: pid of the process. | 
 |  * @interval: userspace pointer to the timeslice value. | 
 |  * | 
 |  * this syscall writes the default timeslice value of a given process | 
 |  * into the user-space timespec buffer. A value of '0' means infinity. | 
 |  */ | 
 | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | 
 | 		struct timespec __user *, interval) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	unsigned int time_slice; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	int retval; | 
 | 	struct timespec t; | 
 |  | 
 | 	if (pid < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	rcu_read_lock(); | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	time_slice = p->sched_class->get_rr_interval(rq, p); | 
 | 	task_rq_unlock(rq, &flags); | 
 |  | 
 | 	rcu_read_unlock(); | 
 | 	jiffies_to_timespec(time_slice, &t); | 
 | 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 
 | 	return retval; | 
 |  | 
 | out_unlock: | 
 | 	rcu_read_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; | 
 |  | 
 | void sched_show_task(struct task_struct *p) | 
 | { | 
 | 	unsigned long free = 0; | 
 | 	unsigned state; | 
 |  | 
 | 	state = p->state ? __ffs(p->state) + 1 : 0; | 
 | 	printk(KERN_INFO "%-13.13s %c", p->comm, | 
 | 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); | 
 | #if BITS_PER_LONG == 32 | 
 | 	if (state == TASK_RUNNING) | 
 | 		printk(KERN_CONT " running  "); | 
 | 	else | 
 | 		printk(KERN_CONT " %08lx ", thread_saved_pc(p)); | 
 | #else | 
 | 	if (state == TASK_RUNNING) | 
 | 		printk(KERN_CONT "  running task    "); | 
 | 	else | 
 | 		printk(KERN_CONT " %016lx ", thread_saved_pc(p)); | 
 | #endif | 
 | #ifdef CONFIG_DEBUG_STACK_USAGE | 
 | 	free = stack_not_used(p); | 
 | #endif | 
 | 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, | 
 | 		task_pid_nr(p), task_pid_nr(p->real_parent), | 
 | 		(unsigned long)task_thread_info(p)->flags); | 
 |  | 
 | 	show_stack(p, NULL); | 
 | } | 
 |  | 
 | void show_state_filter(unsigned long state_filter) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 |  | 
 | #if BITS_PER_LONG == 32 | 
 | 	printk(KERN_INFO | 
 | 		"  task                PC stack   pid father\n"); | 
 | #else | 
 | 	printk(KERN_INFO | 
 | 		"  task                        PC stack   pid father\n"); | 
 | #endif | 
 | 	read_lock(&tasklist_lock); | 
 | 	do_each_thread(g, p) { | 
 | 		/* | 
 | 		 * reset the NMI-timeout, listing all files on a slow | 
 | 		 * console might take alot of time: | 
 | 		 */ | 
 | 		touch_nmi_watchdog(); | 
 | 		if (!state_filter || (p->state & state_filter)) | 
 | 			sched_show_task(p); | 
 | 	} while_each_thread(g, p); | 
 |  | 
 | 	touch_all_softlockup_watchdogs(); | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	sysrq_sched_debug_show(); | 
 | #endif | 
 | 	read_unlock(&tasklist_lock); | 
 | 	/* | 
 | 	 * Only show locks if all tasks are dumped: | 
 | 	 */ | 
 | 	if (!state_filter) | 
 | 		debug_show_all_locks(); | 
 | } | 
 |  | 
 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) | 
 | { | 
 | 	idle->sched_class = &idle_sched_class; | 
 | } | 
 |  | 
 | /** | 
 |  * init_idle - set up an idle thread for a given CPU | 
 |  * @idle: task in question | 
 |  * @cpu: cpu the idle task belongs to | 
 |  * | 
 |  * NOTE: this function does not set the idle thread's NEED_RESCHED | 
 |  * flag, to make booting more robust. | 
 |  */ | 
 | void __cpuinit init_idle(struct task_struct *idle, int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 |  | 
 | 	__sched_fork(idle); | 
 | 	idle->state = TASK_RUNNING; | 
 | 	idle->se.exec_start = sched_clock(); | 
 |  | 
 | 	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); | 
 | 	__set_task_cpu(idle, cpu); | 
 |  | 
 | 	rq->curr = rq->idle = idle; | 
 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 
 | 	idle->oncpu = 1; | 
 | #endif | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 |  | 
 | 	/* Set the preempt count _outside_ the spinlocks! */ | 
 | #if defined(CONFIG_PREEMPT) | 
 | 	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); | 
 | #else | 
 | 	task_thread_info(idle)->preempt_count = 0; | 
 | #endif | 
 | 	/* | 
 | 	 * The idle tasks have their own, simple scheduling class: | 
 | 	 */ | 
 | 	idle->sched_class = &idle_sched_class; | 
 | 	ftrace_graph_init_task(idle); | 
 | } | 
 |  | 
 | /* | 
 |  * In a system that switches off the HZ timer nohz_cpu_mask | 
 |  * indicates which cpus entered this state. This is used | 
 |  * in the rcu update to wait only for active cpus. For system | 
 |  * which do not switch off the HZ timer nohz_cpu_mask should | 
 |  * always be CPU_BITS_NONE. | 
 |  */ | 
 | cpumask_var_t nohz_cpu_mask; | 
 |  | 
 | /* | 
 |  * Increase the granularity value when there are more CPUs, | 
 |  * because with more CPUs the 'effective latency' as visible | 
 |  * to users decreases. But the relationship is not linear, | 
 |  * so pick a second-best guess by going with the log2 of the | 
 |  * number of CPUs. | 
 |  * | 
 |  * This idea comes from the SD scheduler of Con Kolivas: | 
 |  */ | 
 | static int get_update_sysctl_factor(void) | 
 | { | 
 | 	unsigned int cpus = min_t(int, num_online_cpus(), 8); | 
 | 	unsigned int factor; | 
 |  | 
 | 	switch (sysctl_sched_tunable_scaling) { | 
 | 	case SCHED_TUNABLESCALING_NONE: | 
 | 		factor = 1; | 
 | 		break; | 
 | 	case SCHED_TUNABLESCALING_LINEAR: | 
 | 		factor = cpus; | 
 | 		break; | 
 | 	case SCHED_TUNABLESCALING_LOG: | 
 | 	default: | 
 | 		factor = 1 + ilog2(cpus); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return factor; | 
 | } | 
 |  | 
 | static void update_sysctl(void) | 
 | { | 
 | 	unsigned int factor = get_update_sysctl_factor(); | 
 |  | 
 | #define SET_SYSCTL(name) \ | 
 | 	(sysctl_##name = (factor) * normalized_sysctl_##name) | 
 | 	SET_SYSCTL(sched_min_granularity); | 
 | 	SET_SYSCTL(sched_latency); | 
 | 	SET_SYSCTL(sched_wakeup_granularity); | 
 | 	SET_SYSCTL(sched_shares_ratelimit); | 
 | #undef SET_SYSCTL | 
 | } | 
 |  | 
 | static inline void sched_init_granularity(void) | 
 | { | 
 | 	update_sysctl(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * This is how migration works: | 
 |  * | 
 |  * 1) we invoke migration_cpu_stop() on the target CPU using | 
 |  *    stop_one_cpu(). | 
 |  * 2) stopper starts to run (implicitly forcing the migrated thread | 
 |  *    off the CPU) | 
 |  * 3) it checks whether the migrated task is still in the wrong runqueue. | 
 |  * 4) if it's in the wrong runqueue then the migration thread removes | 
 |  *    it and puts it into the right queue. | 
 |  * 5) stopper completes and stop_one_cpu() returns and the migration | 
 |  *    is done. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Change a given task's CPU affinity. Migrate the thread to a | 
 |  * proper CPU and schedule it away if the CPU it's executing on | 
 |  * is removed from the allowed bitmask. | 
 |  * | 
 |  * NOTE: the caller must have a valid reference to the task, the | 
 |  * task must not exit() & deallocate itself prematurely. The | 
 |  * call is not atomic; no spinlocks may be held. | 
 |  */ | 
 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	unsigned int dest_cpu; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Serialize against TASK_WAKING so that ttwu() and wunt() can | 
 | 	 * drop the rq->lock and still rely on ->cpus_allowed. | 
 | 	 */ | 
 | again: | 
 | 	while (task_is_waking(p)) | 
 | 		cpu_relax(); | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	if (task_is_waking(p)) { | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	if (!cpumask_intersects(new_mask, cpu_active_mask)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && | 
 | 		     !cpumask_equal(&p->cpus_allowed, new_mask))) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (p->sched_class->set_cpus_allowed) | 
 | 		p->sched_class->set_cpus_allowed(p, new_mask); | 
 | 	else { | 
 | 		cpumask_copy(&p->cpus_allowed, new_mask); | 
 | 		p->rt.nr_cpus_allowed = cpumask_weight(new_mask); | 
 | 	} | 
 |  | 
 | 	/* Can the task run on the task's current CPU? If so, we're done */ | 
 | 	if (cpumask_test_cpu(task_cpu(p), new_mask)) | 
 | 		goto out; | 
 |  | 
 | 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); | 
 | 	if (migrate_task(p, dest_cpu)) { | 
 | 		struct migration_arg arg = { p, dest_cpu }; | 
 | 		/* Need help from migration thread: drop lock and wait. */ | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); | 
 | 		tlb_migrate_finish(p->mm); | 
 | 		return 0; | 
 | 	} | 
 | out: | 
 | 	task_rq_unlock(rq, &flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); | 
 |  | 
 | /* | 
 |  * Move (not current) task off this cpu, onto dest cpu. We're doing | 
 |  * this because either it can't run here any more (set_cpus_allowed() | 
 |  * away from this CPU, or CPU going down), or because we're | 
 |  * attempting to rebalance this task on exec (sched_exec). | 
 |  * | 
 |  * So we race with normal scheduler movements, but that's OK, as long | 
 |  * as the task is no longer on this CPU. | 
 |  * | 
 |  * Returns non-zero if task was successfully migrated. | 
 |  */ | 
 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 
 | { | 
 | 	struct rq *rq_dest, *rq_src; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (unlikely(!cpu_active(dest_cpu))) | 
 | 		return ret; | 
 |  | 
 | 	rq_src = cpu_rq(src_cpu); | 
 | 	rq_dest = cpu_rq(dest_cpu); | 
 |  | 
 | 	double_rq_lock(rq_src, rq_dest); | 
 | 	/* Already moved. */ | 
 | 	if (task_cpu(p) != src_cpu) | 
 | 		goto done; | 
 | 	/* Affinity changed (again). */ | 
 | 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | 
 | 		goto fail; | 
 |  | 
 | 	/* | 
 | 	 * If we're not on a rq, the next wake-up will ensure we're | 
 | 	 * placed properly. | 
 | 	 */ | 
 | 	if (p->se.on_rq) { | 
 | 		deactivate_task(rq_src, p, 0); | 
 | 		set_task_cpu(p, dest_cpu); | 
 | 		activate_task(rq_dest, p, 0); | 
 | 		check_preempt_curr(rq_dest, p, 0); | 
 | 	} | 
 | done: | 
 | 	ret = 1; | 
 | fail: | 
 | 	double_rq_unlock(rq_src, rq_dest); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * migration_cpu_stop - this will be executed by a highprio stopper thread | 
 |  * and performs thread migration by bumping thread off CPU then | 
 |  * 'pushing' onto another runqueue. | 
 |  */ | 
 | static int migration_cpu_stop(void *data) | 
 | { | 
 | 	struct migration_arg *arg = data; | 
 |  | 
 | 	/* | 
 | 	 * The original target cpu might have gone down and we might | 
 | 	 * be on another cpu but it doesn't matter. | 
 | 	 */ | 
 | 	local_irq_disable(); | 
 | 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); | 
 | 	local_irq_enable(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | /* | 
 |  * Figure out where task on dead CPU should go, use force if necessary. | 
 |  */ | 
 | void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) | 
 | { | 
 | 	struct rq *rq = cpu_rq(dead_cpu); | 
 | 	int needs_cpu, uninitialized_var(dest_cpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING); | 
 | 	if (needs_cpu) | 
 | 		dest_cpu = select_fallback_rq(dead_cpu, p); | 
 | 	raw_spin_unlock(&rq->lock); | 
 | 	/* | 
 | 	 * It can only fail if we race with set_cpus_allowed(), | 
 | 	 * in the racer should migrate the task anyway. | 
 | 	 */ | 
 | 	if (needs_cpu) | 
 | 		__migrate_task(p, dead_cpu, dest_cpu); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * While a dead CPU has no uninterruptible tasks queued at this point, | 
 |  * it might still have a nonzero ->nr_uninterruptible counter, because | 
 |  * for performance reasons the counter is not stricly tracking tasks to | 
 |  * their home CPUs. So we just add the counter to another CPU's counter, | 
 |  * to keep the global sum constant after CPU-down: | 
 |  */ | 
 | static void migrate_nr_uninterruptible(struct rq *rq_src) | 
 | { | 
 | 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	double_rq_lock(rq_src, rq_dest); | 
 | 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | 
 | 	rq_src->nr_uninterruptible = 0; | 
 | 	double_rq_unlock(rq_src, rq_dest); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* Run through task list and migrate tasks from the dead cpu. */ | 
 | static void migrate_live_tasks(int src_cpu) | 
 | { | 
 | 	struct task_struct *p, *t; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 |  | 
 | 	do_each_thread(t, p) { | 
 | 		if (p == current) | 
 | 			continue; | 
 |  | 
 | 		if (task_cpu(p) == src_cpu) | 
 | 			move_task_off_dead_cpu(src_cpu, p); | 
 | 	} while_each_thread(t, p); | 
 |  | 
 | 	read_unlock(&tasklist_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Schedules idle task to be the next runnable task on current CPU. | 
 |  * It does so by boosting its priority to highest possible. | 
 |  * Used by CPU offline code. | 
 |  */ | 
 | void sched_idle_next(void) | 
 | { | 
 | 	int this_cpu = smp_processor_id(); | 
 | 	struct rq *rq = cpu_rq(this_cpu); | 
 | 	struct task_struct *p = rq->idle; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* cpu has to be offline */ | 
 | 	BUG_ON(cpu_online(this_cpu)); | 
 |  | 
 | 	/* | 
 | 	 * Strictly not necessary since rest of the CPUs are stopped by now | 
 | 	 * and interrupts disabled on the current cpu. | 
 | 	 */ | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 |  | 
 | 	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | 
 |  | 
 | 	activate_task(rq, p, 0); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Ensures that the idle task is using init_mm right before its cpu goes | 
 |  * offline. | 
 |  */ | 
 | void idle_task_exit(void) | 
 | { | 
 | 	struct mm_struct *mm = current->active_mm; | 
 |  | 
 | 	BUG_ON(cpu_online(smp_processor_id())); | 
 |  | 
 | 	if (mm != &init_mm) | 
 | 		switch_mm(mm, &init_mm, current); | 
 | 	mmdrop(mm); | 
 | } | 
 |  | 
 | /* called under rq->lock with disabled interrupts */ | 
 | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) | 
 | { | 
 | 	struct rq *rq = cpu_rq(dead_cpu); | 
 |  | 
 | 	/* Must be exiting, otherwise would be on tasklist. */ | 
 | 	BUG_ON(!p->exit_state); | 
 |  | 
 | 	/* Cannot have done final schedule yet: would have vanished. */ | 
 | 	BUG_ON(p->state == TASK_DEAD); | 
 |  | 
 | 	get_task_struct(p); | 
 |  | 
 | 	/* | 
 | 	 * Drop lock around migration; if someone else moves it, | 
 | 	 * that's OK. No task can be added to this CPU, so iteration is | 
 | 	 * fine. | 
 | 	 */ | 
 | 	raw_spin_unlock_irq(&rq->lock); | 
 | 	move_task_off_dead_cpu(dead_cpu, p); | 
 | 	raw_spin_lock_irq(&rq->lock); | 
 |  | 
 | 	put_task_struct(p); | 
 | } | 
 |  | 
 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | 
 | static void migrate_dead_tasks(unsigned int dead_cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(dead_cpu); | 
 | 	struct task_struct *next; | 
 |  | 
 | 	for ( ; ; ) { | 
 | 		if (!rq->nr_running) | 
 | 			break; | 
 | 		next = pick_next_task(rq); | 
 | 		if (!next) | 
 | 			break; | 
 | 		next->sched_class->put_prev_task(rq, next); | 
 | 		migrate_dead(dead_cpu, next); | 
 |  | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * remove the tasks which were accounted by rq from calc_load_tasks. | 
 |  */ | 
 | static void calc_global_load_remove(struct rq *rq) | 
 | { | 
 | 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks); | 
 | 	rq->calc_load_active = 0; | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) | 
 |  | 
 | static struct ctl_table sd_ctl_dir[] = { | 
 | 	{ | 
 | 		.procname	= "sched_domain", | 
 | 		.mode		= 0555, | 
 | 	}, | 
 | 	{} | 
 | }; | 
 |  | 
 | static struct ctl_table sd_ctl_root[] = { | 
 | 	{ | 
 | 		.procname	= "kernel", | 
 | 		.mode		= 0555, | 
 | 		.child		= sd_ctl_dir, | 
 | 	}, | 
 | 	{} | 
 | }; | 
 |  | 
 | static struct ctl_table *sd_alloc_ctl_entry(int n) | 
 | { | 
 | 	struct ctl_table *entry = | 
 | 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); | 
 |  | 
 | 	return entry; | 
 | } | 
 |  | 
 | static void sd_free_ctl_entry(struct ctl_table **tablep) | 
 | { | 
 | 	struct ctl_table *entry; | 
 |  | 
 | 	/* | 
 | 	 * In the intermediate directories, both the child directory and | 
 | 	 * procname are dynamically allocated and could fail but the mode | 
 | 	 * will always be set. In the lowest directory the names are | 
 | 	 * static strings and all have proc handlers. | 
 | 	 */ | 
 | 	for (entry = *tablep; entry->mode; entry++) { | 
 | 		if (entry->child) | 
 | 			sd_free_ctl_entry(&entry->child); | 
 | 		if (entry->proc_handler == NULL) | 
 | 			kfree(entry->procname); | 
 | 	} | 
 |  | 
 | 	kfree(*tablep); | 
 | 	*tablep = NULL; | 
 | } | 
 |  | 
 | static void | 
 | set_table_entry(struct ctl_table *entry, | 
 | 		const char *procname, void *data, int maxlen, | 
 | 		mode_t mode, proc_handler *proc_handler) | 
 | { | 
 | 	entry->procname = procname; | 
 | 	entry->data = data; | 
 | 	entry->maxlen = maxlen; | 
 | 	entry->mode = mode; | 
 | 	entry->proc_handler = proc_handler; | 
 | } | 
 |  | 
 | static struct ctl_table * | 
 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | 
 | { | 
 | 	struct ctl_table *table = sd_alloc_ctl_entry(13); | 
 |  | 
 | 	if (table == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	set_table_entry(&table[0], "min_interval", &sd->min_interval, | 
 | 		sizeof(long), 0644, proc_doulongvec_minmax); | 
 | 	set_table_entry(&table[1], "max_interval", &sd->max_interval, | 
 | 		sizeof(long), 0644, proc_doulongvec_minmax); | 
 | 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[9], "cache_nice_tries", | 
 | 		&sd->cache_nice_tries, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[10], "flags", &sd->flags, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax); | 
 | 	set_table_entry(&table[11], "name", sd->name, | 
 | 		CORENAME_MAX_SIZE, 0444, proc_dostring); | 
 | 	/* &table[12] is terminator */ | 
 |  | 
 | 	return table; | 
 | } | 
 |  | 
 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) | 
 | { | 
 | 	struct ctl_table *entry, *table; | 
 | 	struct sched_domain *sd; | 
 | 	int domain_num = 0, i; | 
 | 	char buf[32]; | 
 |  | 
 | 	for_each_domain(cpu, sd) | 
 | 		domain_num++; | 
 | 	entry = table = sd_alloc_ctl_entry(domain_num + 1); | 
 | 	if (table == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	i = 0; | 
 | 	for_each_domain(cpu, sd) { | 
 | 		snprintf(buf, 32, "domain%d", i); | 
 | 		entry->procname = kstrdup(buf, GFP_KERNEL); | 
 | 		entry->mode = 0555; | 
 | 		entry->child = sd_alloc_ctl_domain_table(sd); | 
 | 		entry++; | 
 | 		i++; | 
 | 	} | 
 | 	return table; | 
 | } | 
 |  | 
 | static struct ctl_table_header *sd_sysctl_header; | 
 | static void register_sched_domain_sysctl(void) | 
 | { | 
 | 	int i, cpu_num = num_possible_cpus(); | 
 | 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | 
 | 	char buf[32]; | 
 |  | 
 | 	WARN_ON(sd_ctl_dir[0].child); | 
 | 	sd_ctl_dir[0].child = entry; | 
 |  | 
 | 	if (entry == NULL) | 
 | 		return; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		snprintf(buf, 32, "cpu%d", i); | 
 | 		entry->procname = kstrdup(buf, GFP_KERNEL); | 
 | 		entry->mode = 0555; | 
 | 		entry->child = sd_alloc_ctl_cpu_table(i); | 
 | 		entry++; | 
 | 	} | 
 |  | 
 | 	WARN_ON(sd_sysctl_header); | 
 | 	sd_sysctl_header = register_sysctl_table(sd_ctl_root); | 
 | } | 
 |  | 
 | /* may be called multiple times per register */ | 
 | static void unregister_sched_domain_sysctl(void) | 
 | { | 
 | 	if (sd_sysctl_header) | 
 | 		unregister_sysctl_table(sd_sysctl_header); | 
 | 	sd_sysctl_header = NULL; | 
 | 	if (sd_ctl_dir[0].child) | 
 | 		sd_free_ctl_entry(&sd_ctl_dir[0].child); | 
 | } | 
 | #else | 
 | static void register_sched_domain_sysctl(void) | 
 | { | 
 | } | 
 | static void unregister_sched_domain_sysctl(void) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static void set_rq_online(struct rq *rq) | 
 | { | 
 | 	if (!rq->online) { | 
 | 		const struct sched_class *class; | 
 |  | 
 | 		cpumask_set_cpu(rq->cpu, rq->rd->online); | 
 | 		rq->online = 1; | 
 |  | 
 | 		for_each_class(class) { | 
 | 			if (class->rq_online) | 
 | 				class->rq_online(rq); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void set_rq_offline(struct rq *rq) | 
 | { | 
 | 	if (rq->online) { | 
 | 		const struct sched_class *class; | 
 |  | 
 | 		for_each_class(class) { | 
 | 			if (class->rq_offline) | 
 | 				class->rq_offline(rq); | 
 | 		} | 
 |  | 
 | 		cpumask_clear_cpu(rq->cpu, rq->rd->online); | 
 | 		rq->online = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * migration_call - callback that gets triggered when a CPU is added. | 
 |  * Here we can start up the necessary migration thread for the new CPU. | 
 |  */ | 
 | static int __cpuinit | 
 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | 
 | { | 
 | 	int cpu = (long)hcpu; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	switch (action) { | 
 |  | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_UP_PREPARE_FROZEN: | 
 | 		rq->calc_load_update = calc_load_update; | 
 | 		break; | 
 |  | 
 | 	case CPU_ONLINE: | 
 | 	case CPU_ONLINE_FROZEN: | 
 | 		/* Update our root-domain */ | 
 | 		raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 		if (rq->rd) { | 
 | 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 
 |  | 
 | 			set_rq_online(rq); | 
 | 		} | 
 | 		raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | 		break; | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 		migrate_live_tasks(cpu); | 
 | 		/* Idle task back to normal (off runqueue, low prio) */ | 
 | 		raw_spin_lock_irq(&rq->lock); | 
 | 		deactivate_task(rq, rq->idle, 0); | 
 | 		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0); | 
 | 		rq->idle->sched_class = &idle_sched_class; | 
 | 		migrate_dead_tasks(cpu); | 
 | 		raw_spin_unlock_irq(&rq->lock); | 
 | 		migrate_nr_uninterruptible(rq); | 
 | 		BUG_ON(rq->nr_running != 0); | 
 | 		calc_global_load_remove(rq); | 
 | 		break; | 
 |  | 
 | 	case CPU_DYING: | 
 | 	case CPU_DYING_FROZEN: | 
 | 		/* Update our root-domain */ | 
 | 		raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 		if (rq->rd) { | 
 | 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 
 | 			set_rq_offline(rq); | 
 | 		} | 
 | 		raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | 		break; | 
 | #endif | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | /* | 
 |  * Register at high priority so that task migration (migrate_all_tasks) | 
 |  * happens before everything else.  This has to be lower priority than | 
 |  * the notifier in the perf_event subsystem, though. | 
 |  */ | 
 | static struct notifier_block __cpuinitdata migration_notifier = { | 
 | 	.notifier_call = migration_call, | 
 | 	.priority = CPU_PRI_MIGRATION, | 
 | }; | 
 |  | 
 | static int __cpuinit sched_cpu_active(struct notifier_block *nfb, | 
 | 				      unsigned long action, void *hcpu) | 
 | { | 
 | 	switch (action & ~CPU_TASKS_FROZEN) { | 
 | 	case CPU_ONLINE: | 
 | 	case CPU_DOWN_FAILED: | 
 | 		set_cpu_active((long)hcpu, true); | 
 | 		return NOTIFY_OK; | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 | } | 
 |  | 
 | static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, | 
 | 					unsigned long action, void *hcpu) | 
 | { | 
 | 	switch (action & ~CPU_TASKS_FROZEN) { | 
 | 	case CPU_DOWN_PREPARE: | 
 | 		set_cpu_active((long)hcpu, false); | 
 | 		return NOTIFY_OK; | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 | } | 
 |  | 
 | static int __init migration_init(void) | 
 | { | 
 | 	void *cpu = (void *)(long)smp_processor_id(); | 
 | 	int err; | 
 |  | 
 | 	/* Initialize migration for the boot CPU */ | 
 | 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | 
 | 	BUG_ON(err == NOTIFY_BAD); | 
 | 	migration_call(&migration_notifier, CPU_ONLINE, cpu); | 
 | 	register_cpu_notifier(&migration_notifier); | 
 |  | 
 | 	/* Register cpu active notifiers */ | 
 | 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); | 
 | 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_initcall(migration_init); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 |  | 
 | static __read_mostly int sched_domain_debug_enabled; | 
 |  | 
 | static int __init sched_domain_debug_setup(char *str) | 
 | { | 
 | 	sched_domain_debug_enabled = 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("sched_debug", sched_domain_debug_setup); | 
 |  | 
 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | 
 | 				  struct cpumask *groupmask) | 
 | { | 
 | 	struct sched_group *group = sd->groups; | 
 | 	char str[256]; | 
 |  | 
 | 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); | 
 | 	cpumask_clear(groupmask); | 
 |  | 
 | 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | 
 |  | 
 | 	if (!(sd->flags & SD_LOAD_BALANCE)) { | 
 | 		printk("does not load-balance\n"); | 
 | 		if (sd->parent) | 
 | 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" | 
 | 					" has parent"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	printk(KERN_CONT "span %s level %s\n", str, sd->name); | 
 |  | 
 | 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { | 
 | 		printk(KERN_ERR "ERROR: domain->span does not contain " | 
 | 				"CPU%d\n", cpu); | 
 | 	} | 
 | 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { | 
 | 		printk(KERN_ERR "ERROR: domain->groups does not contain" | 
 | 				" CPU%d\n", cpu); | 
 | 	} | 
 |  | 
 | 	printk(KERN_DEBUG "%*s groups:", level + 1, ""); | 
 | 	do { | 
 | 		if (!group) { | 
 | 			printk("\n"); | 
 | 			printk(KERN_ERR "ERROR: group is NULL\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!group->cpu_power) { | 
 | 			printk(KERN_CONT "\n"); | 
 | 			printk(KERN_ERR "ERROR: domain->cpu_power not " | 
 | 					"set\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!cpumask_weight(sched_group_cpus(group))) { | 
 | 			printk(KERN_CONT "\n"); | 
 | 			printk(KERN_ERR "ERROR: empty group\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (cpumask_intersects(groupmask, sched_group_cpus(group))) { | 
 | 			printk(KERN_CONT "\n"); | 
 | 			printk(KERN_ERR "ERROR: repeated CPUs\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		cpumask_or(groupmask, groupmask, sched_group_cpus(group)); | 
 |  | 
 | 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); | 
 |  | 
 | 		printk(KERN_CONT " %s", str); | 
 | 		if (group->cpu_power != SCHED_LOAD_SCALE) { | 
 | 			printk(KERN_CONT " (cpu_power = %d)", | 
 | 				group->cpu_power); | 
 | 		} | 
 |  | 
 | 		group = group->next; | 
 | 	} while (group != sd->groups); | 
 | 	printk(KERN_CONT "\n"); | 
 |  | 
 | 	if (!cpumask_equal(sched_domain_span(sd), groupmask)) | 
 | 		printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | 
 |  | 
 | 	if (sd->parent && | 
 | 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent))) | 
 | 		printk(KERN_ERR "ERROR: parent span is not a superset " | 
 | 			"of domain->span\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	cpumask_var_t groupmask; | 
 | 	int level = 0; | 
 |  | 
 | 	if (!sched_domain_debug_enabled) | 
 | 		return; | 
 |  | 
 | 	if (!sd) { | 
 | 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | 
 |  | 
 | 	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { | 
 | 		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (;;) { | 
 | 		if (sched_domain_debug_one(sd, cpu, level, groupmask)) | 
 | 			break; | 
 | 		level++; | 
 | 		sd = sd->parent; | 
 | 		if (!sd) | 
 | 			break; | 
 | 	} | 
 | 	free_cpumask_var(groupmask); | 
 | } | 
 | #else /* !CONFIG_SCHED_DEBUG */ | 
 | # define sched_domain_debug(sd, cpu) do { } while (0) | 
 | #endif /* CONFIG_SCHED_DEBUG */ | 
 |  | 
 | static int sd_degenerate(struct sched_domain *sd) | 
 | { | 
 | 	if (cpumask_weight(sched_domain_span(sd)) == 1) | 
 | 		return 1; | 
 |  | 
 | 	/* Following flags need at least 2 groups */ | 
 | 	if (sd->flags & (SD_LOAD_BALANCE | | 
 | 			 SD_BALANCE_NEWIDLE | | 
 | 			 SD_BALANCE_FORK | | 
 | 			 SD_BALANCE_EXEC | | 
 | 			 SD_SHARE_CPUPOWER | | 
 | 			 SD_SHARE_PKG_RESOURCES)) { | 
 | 		if (sd->groups != sd->groups->next) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* Following flags don't use groups */ | 
 | 	if (sd->flags & (SD_WAKE_AFFINE)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int | 
 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | 
 | { | 
 | 	unsigned long cflags = sd->flags, pflags = parent->flags; | 
 |  | 
 | 	if (sd_degenerate(parent)) | 
 | 		return 1; | 
 |  | 
 | 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) | 
 | 		return 0; | 
 |  | 
 | 	/* Flags needing groups don't count if only 1 group in parent */ | 
 | 	if (parent->groups == parent->groups->next) { | 
 | 		pflags &= ~(SD_LOAD_BALANCE | | 
 | 				SD_BALANCE_NEWIDLE | | 
 | 				SD_BALANCE_FORK | | 
 | 				SD_BALANCE_EXEC | | 
 | 				SD_SHARE_CPUPOWER | | 
 | 				SD_SHARE_PKG_RESOURCES); | 
 | 		if (nr_node_ids == 1) | 
 | 			pflags &= ~SD_SERIALIZE; | 
 | 	} | 
 | 	if (~cflags & pflags) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void free_rootdomain(struct root_domain *rd) | 
 | { | 
 | 	synchronize_sched(); | 
 |  | 
 | 	cpupri_cleanup(&rd->cpupri); | 
 |  | 
 | 	free_cpumask_var(rd->rto_mask); | 
 | 	free_cpumask_var(rd->online); | 
 | 	free_cpumask_var(rd->span); | 
 | 	kfree(rd); | 
 | } | 
 |  | 
 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) | 
 | { | 
 | 	struct root_domain *old_rd = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 |  | 
 | 	if (rq->rd) { | 
 | 		old_rd = rq->rd; | 
 |  | 
 | 		if (cpumask_test_cpu(rq->cpu, old_rd->online)) | 
 | 			set_rq_offline(rq); | 
 |  | 
 | 		cpumask_clear_cpu(rq->cpu, old_rd->span); | 
 |  | 
 | 		/* | 
 | 		 * If we dont want to free the old_rt yet then | 
 | 		 * set old_rd to NULL to skip the freeing later | 
 | 		 * in this function: | 
 | 		 */ | 
 | 		if (!atomic_dec_and_test(&old_rd->refcount)) | 
 | 			old_rd = NULL; | 
 | 	} | 
 |  | 
 | 	atomic_inc(&rd->refcount); | 
 | 	rq->rd = rd; | 
 |  | 
 | 	cpumask_set_cpu(rq->cpu, rd->span); | 
 | 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) | 
 | 		set_rq_online(rq); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 |  | 
 | 	if (old_rd) | 
 | 		free_rootdomain(old_rd); | 
 | } | 
 |  | 
 | static int init_rootdomain(struct root_domain *rd) | 
 | { | 
 | 	memset(rd, 0, sizeof(*rd)); | 
 |  | 
 | 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) | 
 | 		goto out; | 
 | 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) | 
 | 		goto free_span; | 
 | 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) | 
 | 		goto free_online; | 
 |  | 
 | 	if (cpupri_init(&rd->cpupri) != 0) | 
 | 		goto free_rto_mask; | 
 | 	return 0; | 
 |  | 
 | free_rto_mask: | 
 | 	free_cpumask_var(rd->rto_mask); | 
 | free_online: | 
 | 	free_cpumask_var(rd->online); | 
 | free_span: | 
 | 	free_cpumask_var(rd->span); | 
 | out: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void init_defrootdomain(void) | 
 | { | 
 | 	init_rootdomain(&def_root_domain); | 
 |  | 
 | 	atomic_set(&def_root_domain.refcount, 1); | 
 | } | 
 |  | 
 | static struct root_domain *alloc_rootdomain(void) | 
 | { | 
 | 	struct root_domain *rd; | 
 |  | 
 | 	rd = kmalloc(sizeof(*rd), GFP_KERNEL); | 
 | 	if (!rd) | 
 | 		return NULL; | 
 |  | 
 | 	if (init_rootdomain(rd) != 0) { | 
 | 		kfree(rd); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return rd; | 
 | } | 
 |  | 
 | /* | 
 |  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must | 
 |  * hold the hotplug lock. | 
 |  */ | 
 | static void | 
 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	struct sched_domain *tmp; | 
 |  | 
 | 	for (tmp = sd; tmp; tmp = tmp->parent) | 
 | 		tmp->span_weight = cpumask_weight(sched_domain_span(tmp)); | 
 |  | 
 | 	/* Remove the sched domains which do not contribute to scheduling. */ | 
 | 	for (tmp = sd; tmp; ) { | 
 | 		struct sched_domain *parent = tmp->parent; | 
 | 		if (!parent) | 
 | 			break; | 
 |  | 
 | 		if (sd_parent_degenerate(tmp, parent)) { | 
 | 			tmp->parent = parent->parent; | 
 | 			if (parent->parent) | 
 | 				parent->parent->child = tmp; | 
 | 		} else | 
 | 			tmp = tmp->parent; | 
 | 	} | 
 |  | 
 | 	if (sd && sd_degenerate(sd)) { | 
 | 		sd = sd->parent; | 
 | 		if (sd) | 
 | 			sd->child = NULL; | 
 | 	} | 
 |  | 
 | 	sched_domain_debug(sd, cpu); | 
 |  | 
 | 	rq_attach_root(rq, rd); | 
 | 	rcu_assign_pointer(rq->sd, sd); | 
 | } | 
 |  | 
 | /* cpus with isolated domains */ | 
 | static cpumask_var_t cpu_isolated_map; | 
 |  | 
 | /* Setup the mask of cpus configured for isolated domains */ | 
 | static int __init isolated_cpu_setup(char *str) | 
 | { | 
 | 	alloc_bootmem_cpumask_var(&cpu_isolated_map); | 
 | 	cpulist_parse(str, cpu_isolated_map); | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("isolcpus=", isolated_cpu_setup); | 
 |  | 
 | /* | 
 |  * init_sched_build_groups takes the cpumask we wish to span, and a pointer | 
 |  * to a function which identifies what group(along with sched group) a CPU | 
 |  * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids | 
 |  * (due to the fact that we keep track of groups covered with a struct cpumask). | 
 |  * | 
 |  * init_sched_build_groups will build a circular linked list of the groups | 
 |  * covered by the given span, and will set each group's ->cpumask correctly, | 
 |  * and ->cpu_power to 0. | 
 |  */ | 
 | static void | 
 | init_sched_build_groups(const struct cpumask *span, | 
 | 			const struct cpumask *cpu_map, | 
 | 			int (*group_fn)(int cpu, const struct cpumask *cpu_map, | 
 | 					struct sched_group **sg, | 
 | 					struct cpumask *tmpmask), | 
 | 			struct cpumask *covered, struct cpumask *tmpmask) | 
 | { | 
 | 	struct sched_group *first = NULL, *last = NULL; | 
 | 	int i; | 
 |  | 
 | 	cpumask_clear(covered); | 
 |  | 
 | 	for_each_cpu(i, span) { | 
 | 		struct sched_group *sg; | 
 | 		int group = group_fn(i, cpu_map, &sg, tmpmask); | 
 | 		int j; | 
 |  | 
 | 		if (cpumask_test_cpu(i, covered)) | 
 | 			continue; | 
 |  | 
 | 		cpumask_clear(sched_group_cpus(sg)); | 
 | 		sg->cpu_power = 0; | 
 |  | 
 | 		for_each_cpu(j, span) { | 
 | 			if (group_fn(j, cpu_map, NULL, tmpmask) != group) | 
 | 				continue; | 
 |  | 
 | 			cpumask_set_cpu(j, covered); | 
 | 			cpumask_set_cpu(j, sched_group_cpus(sg)); | 
 | 		} | 
 | 		if (!first) | 
 | 			first = sg; | 
 | 		if (last) | 
 | 			last->next = sg; | 
 | 		last = sg; | 
 | 	} | 
 | 	last->next = first; | 
 | } | 
 |  | 
 | #define SD_NODES_PER_DOMAIN 16 | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 |  | 
 | /** | 
 |  * find_next_best_node - find the next node to include in a sched_domain | 
 |  * @node: node whose sched_domain we're building | 
 |  * @used_nodes: nodes already in the sched_domain | 
 |  * | 
 |  * Find the next node to include in a given scheduling domain. Simply | 
 |  * finds the closest node not already in the @used_nodes map. | 
 |  * | 
 |  * Should use nodemask_t. | 
 |  */ | 
 | static int find_next_best_node(int node, nodemask_t *used_nodes) | 
 | { | 
 | 	int i, n, val, min_val, best_node = 0; | 
 |  | 
 | 	min_val = INT_MAX; | 
 |  | 
 | 	for (i = 0; i < nr_node_ids; i++) { | 
 | 		/* Start at @node */ | 
 | 		n = (node + i) % nr_node_ids; | 
 |  | 
 | 		if (!nr_cpus_node(n)) | 
 | 			continue; | 
 |  | 
 | 		/* Skip already used nodes */ | 
 | 		if (node_isset(n, *used_nodes)) | 
 | 			continue; | 
 |  | 
 | 		/* Simple min distance search */ | 
 | 		val = node_distance(node, n); | 
 |  | 
 | 		if (val < min_val) { | 
 | 			min_val = val; | 
 | 			best_node = n; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	node_set(best_node, *used_nodes); | 
 | 	return best_node; | 
 | } | 
 |  | 
 | /** | 
 |  * sched_domain_node_span - get a cpumask for a node's sched_domain | 
 |  * @node: node whose cpumask we're constructing | 
 |  * @span: resulting cpumask | 
 |  * | 
 |  * Given a node, construct a good cpumask for its sched_domain to span. It | 
 |  * should be one that prevents unnecessary balancing, but also spreads tasks | 
 |  * out optimally. | 
 |  */ | 
 | static void sched_domain_node_span(int node, struct cpumask *span) | 
 | { | 
 | 	nodemask_t used_nodes; | 
 | 	int i; | 
 |  | 
 | 	cpumask_clear(span); | 
 | 	nodes_clear(used_nodes); | 
 |  | 
 | 	cpumask_or(span, span, cpumask_of_node(node)); | 
 | 	node_set(node, used_nodes); | 
 |  | 
 | 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | 
 | 		int next_node = find_next_best_node(node, &used_nodes); | 
 |  | 
 | 		cpumask_or(span, span, cpumask_of_node(next_node)); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; | 
 |  | 
 | /* | 
 |  * The cpus mask in sched_group and sched_domain hangs off the end. | 
 |  * | 
 |  * ( See the the comments in include/linux/sched.h:struct sched_group | 
 |  *   and struct sched_domain. ) | 
 |  */ | 
 | struct static_sched_group { | 
 | 	struct sched_group sg; | 
 | 	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); | 
 | }; | 
 |  | 
 | struct static_sched_domain { | 
 | 	struct sched_domain sd; | 
 | 	DECLARE_BITMAP(span, CONFIG_NR_CPUS); | 
 | }; | 
 |  | 
 | struct s_data { | 
 | #ifdef CONFIG_NUMA | 
 | 	int			sd_allnodes; | 
 | 	cpumask_var_t		domainspan; | 
 | 	cpumask_var_t		covered; | 
 | 	cpumask_var_t		notcovered; | 
 | #endif | 
 | 	cpumask_var_t		nodemask; | 
 | 	cpumask_var_t		this_sibling_map; | 
 | 	cpumask_var_t		this_core_map; | 
 | 	cpumask_var_t		send_covered; | 
 | 	cpumask_var_t		tmpmask; | 
 | 	struct sched_group	**sched_group_nodes; | 
 | 	struct root_domain	*rd; | 
 | }; | 
 |  | 
 | enum s_alloc { | 
 | 	sa_sched_groups = 0, | 
 | 	sa_rootdomain, | 
 | 	sa_tmpmask, | 
 | 	sa_send_covered, | 
 | 	sa_this_core_map, | 
 | 	sa_this_sibling_map, | 
 | 	sa_nodemask, | 
 | 	sa_sched_group_nodes, | 
 | #ifdef CONFIG_NUMA | 
 | 	sa_notcovered, | 
 | 	sa_covered, | 
 | 	sa_domainspan, | 
 | #endif | 
 | 	sa_none, | 
 | }; | 
 |  | 
 | /* | 
 |  * SMT sched-domains: | 
 |  */ | 
 | #ifdef CONFIG_SCHED_SMT | 
 | static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); | 
 | static DEFINE_PER_CPU(struct static_sched_group, sched_groups); | 
 |  | 
 | static int | 
 | cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, | 
 | 		 struct sched_group **sg, struct cpumask *unused) | 
 | { | 
 | 	if (sg) | 
 | 		*sg = &per_cpu(sched_groups, cpu).sg; | 
 | 	return cpu; | 
 | } | 
 | #endif /* CONFIG_SCHED_SMT */ | 
 |  | 
 | /* | 
 |  * multi-core sched-domains: | 
 |  */ | 
 | #ifdef CONFIG_SCHED_MC | 
 | static DEFINE_PER_CPU(struct static_sched_domain, core_domains); | 
 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); | 
 | #endif /* CONFIG_SCHED_MC */ | 
 |  | 
 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | 
 | static int | 
 | cpu_to_core_group(int cpu, const struct cpumask *cpu_map, | 
 | 		  struct sched_group **sg, struct cpumask *mask) | 
 | { | 
 | 	int group; | 
 |  | 
 | 	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); | 
 | 	group = cpumask_first(mask); | 
 | 	if (sg) | 
 | 		*sg = &per_cpu(sched_group_core, group).sg; | 
 | 	return group; | 
 | } | 
 | #elif defined(CONFIG_SCHED_MC) | 
 | static int | 
 | cpu_to_core_group(int cpu, const struct cpumask *cpu_map, | 
 | 		  struct sched_group **sg, struct cpumask *unused) | 
 | { | 
 | 	if (sg) | 
 | 		*sg = &per_cpu(sched_group_core, cpu).sg; | 
 | 	return cpu; | 
 | } | 
 | #endif | 
 |  | 
 | static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); | 
 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); | 
 |  | 
 | static int | 
 | cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, | 
 | 		  struct sched_group **sg, struct cpumask *mask) | 
 | { | 
 | 	int group; | 
 | #ifdef CONFIG_SCHED_MC | 
 | 	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); | 
 | 	group = cpumask_first(mask); | 
 | #elif defined(CONFIG_SCHED_SMT) | 
 | 	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); | 
 | 	group = cpumask_first(mask); | 
 | #else | 
 | 	group = cpu; | 
 | #endif | 
 | 	if (sg) | 
 | 		*sg = &per_cpu(sched_group_phys, group).sg; | 
 | 	return group; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * The init_sched_build_groups can't handle what we want to do with node | 
 |  * groups, so roll our own. Now each node has its own list of groups which | 
 |  * gets dynamically allocated. | 
 |  */ | 
 | static DEFINE_PER_CPU(struct static_sched_domain, node_domains); | 
 | static struct sched_group ***sched_group_nodes_bycpu; | 
 |  | 
 | static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); | 
 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); | 
 |  | 
 | static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, | 
 | 				 struct sched_group **sg, | 
 | 				 struct cpumask *nodemask) | 
 | { | 
 | 	int group; | 
 |  | 
 | 	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); | 
 | 	group = cpumask_first(nodemask); | 
 |  | 
 | 	if (sg) | 
 | 		*sg = &per_cpu(sched_group_allnodes, group).sg; | 
 | 	return group; | 
 | } | 
 |  | 
 | static void init_numa_sched_groups_power(struct sched_group *group_head) | 
 | { | 
 | 	struct sched_group *sg = group_head; | 
 | 	int j; | 
 |  | 
 | 	if (!sg) | 
 | 		return; | 
 | 	do { | 
 | 		for_each_cpu(j, sched_group_cpus(sg)) { | 
 | 			struct sched_domain *sd; | 
 |  | 
 | 			sd = &per_cpu(phys_domains, j).sd; | 
 | 			if (j != group_first_cpu(sd->groups)) { | 
 | 				/* | 
 | 				 * Only add "power" once for each | 
 | 				 * physical package. | 
 | 				 */ | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			sg->cpu_power += sd->groups->cpu_power; | 
 | 		} | 
 | 		sg = sg->next; | 
 | 	} while (sg != group_head); | 
 | } | 
 |  | 
 | static int build_numa_sched_groups(struct s_data *d, | 
 | 				   const struct cpumask *cpu_map, int num) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	struct sched_group *sg, *prev; | 
 | 	int n, j; | 
 |  | 
 | 	cpumask_clear(d->covered); | 
 | 	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); | 
 | 	if (cpumask_empty(d->nodemask)) { | 
 | 		d->sched_group_nodes[num] = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	sched_domain_node_span(num, d->domainspan); | 
 | 	cpumask_and(d->domainspan, d->domainspan, cpu_map); | 
 |  | 
 | 	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | 
 | 			  GFP_KERNEL, num); | 
 | 	if (!sg) { | 
 | 		printk(KERN_WARNING "Can not alloc domain group for node %d\n", | 
 | 		       num); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	d->sched_group_nodes[num] = sg; | 
 |  | 
 | 	for_each_cpu(j, d->nodemask) { | 
 | 		sd = &per_cpu(node_domains, j).sd; | 
 | 		sd->groups = sg; | 
 | 	} | 
 |  | 
 | 	sg->cpu_power = 0; | 
 | 	cpumask_copy(sched_group_cpus(sg), d->nodemask); | 
 | 	sg->next = sg; | 
 | 	cpumask_or(d->covered, d->covered, d->nodemask); | 
 |  | 
 | 	prev = sg; | 
 | 	for (j = 0; j < nr_node_ids; j++) { | 
 | 		n = (num + j) % nr_node_ids; | 
 | 		cpumask_complement(d->notcovered, d->covered); | 
 | 		cpumask_and(d->tmpmask, d->notcovered, cpu_map); | 
 | 		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); | 
 | 		if (cpumask_empty(d->tmpmask)) | 
 | 			break; | 
 | 		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); | 
 | 		if (cpumask_empty(d->tmpmask)) | 
 | 			continue; | 
 | 		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | 
 | 				  GFP_KERNEL, num); | 
 | 		if (!sg) { | 
 | 			printk(KERN_WARNING | 
 | 			       "Can not alloc domain group for node %d\n", j); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		sg->cpu_power = 0; | 
 | 		cpumask_copy(sched_group_cpus(sg), d->tmpmask); | 
 | 		sg->next = prev->next; | 
 | 		cpumask_or(d->covered, d->covered, d->tmpmask); | 
 | 		prev->next = sg; | 
 | 		prev = sg; | 
 | 	} | 
 | out: | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* Free memory allocated for various sched_group structures */ | 
 | static void free_sched_groups(const struct cpumask *cpu_map, | 
 | 			      struct cpumask *nodemask) | 
 | { | 
 | 	int cpu, i; | 
 |  | 
 | 	for_each_cpu(cpu, cpu_map) { | 
 | 		struct sched_group **sched_group_nodes | 
 | 			= sched_group_nodes_bycpu[cpu]; | 
 |  | 
 | 		if (!sched_group_nodes) | 
 | 			continue; | 
 |  | 
 | 		for (i = 0; i < nr_node_ids; i++) { | 
 | 			struct sched_group *oldsg, *sg = sched_group_nodes[i]; | 
 |  | 
 | 			cpumask_and(nodemask, cpumask_of_node(i), cpu_map); | 
 | 			if (cpumask_empty(nodemask)) | 
 | 				continue; | 
 |  | 
 | 			if (sg == NULL) | 
 | 				continue; | 
 | 			sg = sg->next; | 
 | next_sg: | 
 | 			oldsg = sg; | 
 | 			sg = sg->next; | 
 | 			kfree(oldsg); | 
 | 			if (oldsg != sched_group_nodes[i]) | 
 | 				goto next_sg; | 
 | 		} | 
 | 		kfree(sched_group_nodes); | 
 | 		sched_group_nodes_bycpu[cpu] = NULL; | 
 | 	} | 
 | } | 
 | #else /* !CONFIG_NUMA */ | 
 | static void free_sched_groups(const struct cpumask *cpu_map, | 
 | 			      struct cpumask *nodemask) | 
 | { | 
 | } | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | /* | 
 |  * Initialize sched groups cpu_power. | 
 |  * | 
 |  * cpu_power indicates the capacity of sched group, which is used while | 
 |  * distributing the load between different sched groups in a sched domain. | 
 |  * Typically cpu_power for all the groups in a sched domain will be same unless | 
 |  * there are asymmetries in the topology. If there are asymmetries, group | 
 |  * having more cpu_power will pickup more load compared to the group having | 
 |  * less cpu_power. | 
 |  */ | 
 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | 
 | { | 
 | 	struct sched_domain *child; | 
 | 	struct sched_group *group; | 
 | 	long power; | 
 | 	int weight; | 
 |  | 
 | 	WARN_ON(!sd || !sd->groups); | 
 |  | 
 | 	if (cpu != group_first_cpu(sd->groups)) | 
 | 		return; | 
 |  | 
 | 	child = sd->child; | 
 |  | 
 | 	sd->groups->cpu_power = 0; | 
 |  | 
 | 	if (!child) { | 
 | 		power = SCHED_LOAD_SCALE; | 
 | 		weight = cpumask_weight(sched_domain_span(sd)); | 
 | 		/* | 
 | 		 * SMT siblings share the power of a single core. | 
 | 		 * Usually multiple threads get a better yield out of | 
 | 		 * that one core than a single thread would have, | 
 | 		 * reflect that in sd->smt_gain. | 
 | 		 */ | 
 | 		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | 
 | 			power *= sd->smt_gain; | 
 | 			power /= weight; | 
 | 			power >>= SCHED_LOAD_SHIFT; | 
 | 		} | 
 | 		sd->groups->cpu_power += power; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Add cpu_power of each child group to this groups cpu_power. | 
 | 	 */ | 
 | 	group = child->groups; | 
 | 	do { | 
 | 		sd->groups->cpu_power += group->cpu_power; | 
 | 		group = group->next; | 
 | 	} while (group != child->groups); | 
 | } | 
 |  | 
 | /* | 
 |  * Initializers for schedule domains | 
 |  * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | # define SD_INIT_NAME(sd, type)		sd->name = #type | 
 | #else | 
 | # define SD_INIT_NAME(sd, type)		do { } while (0) | 
 | #endif | 
 |  | 
 | #define	SD_INIT(sd, type)	sd_init_##type(sd) | 
 |  | 
 | #define SD_INIT_FUNC(type)	\ | 
 | static noinline void sd_init_##type(struct sched_domain *sd)	\ | 
 | {								\ | 
 | 	memset(sd, 0, sizeof(*sd));				\ | 
 | 	*sd = SD_##type##_INIT;					\ | 
 | 	sd->level = SD_LV_##type;				\ | 
 | 	SD_INIT_NAME(sd, type);					\ | 
 | } | 
 |  | 
 | SD_INIT_FUNC(CPU) | 
 | #ifdef CONFIG_NUMA | 
 |  SD_INIT_FUNC(ALLNODES) | 
 |  SD_INIT_FUNC(NODE) | 
 | #endif | 
 | #ifdef CONFIG_SCHED_SMT | 
 |  SD_INIT_FUNC(SIBLING) | 
 | #endif | 
 | #ifdef CONFIG_SCHED_MC | 
 |  SD_INIT_FUNC(MC) | 
 | #endif | 
 |  | 
 | static int default_relax_domain_level = -1; | 
 |  | 
 | static int __init setup_relax_domain_level(char *str) | 
 | { | 
 | 	unsigned long val; | 
 |  | 
 | 	val = simple_strtoul(str, NULL, 0); | 
 | 	if (val < SD_LV_MAX) | 
 | 		default_relax_domain_level = val; | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("relax_domain_level=", setup_relax_domain_level); | 
 |  | 
 | static void set_domain_attribute(struct sched_domain *sd, | 
 | 				 struct sched_domain_attr *attr) | 
 | { | 
 | 	int request; | 
 |  | 
 | 	if (!attr || attr->relax_domain_level < 0) { | 
 | 		if (default_relax_domain_level < 0) | 
 | 			return; | 
 | 		else | 
 | 			request = default_relax_domain_level; | 
 | 	} else | 
 | 		request = attr->relax_domain_level; | 
 | 	if (request < sd->level) { | 
 | 		/* turn off idle balance on this domain */ | 
 | 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); | 
 | 	} else { | 
 | 		/* turn on idle balance on this domain */ | 
 | 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); | 
 | 	} | 
 | } | 
 |  | 
 | static void __free_domain_allocs(struct s_data *d, enum s_alloc what, | 
 | 				 const struct cpumask *cpu_map) | 
 | { | 
 | 	switch (what) { | 
 | 	case sa_sched_groups: | 
 | 		free_sched_groups(cpu_map, d->tmpmask); /* fall through */ | 
 | 		d->sched_group_nodes = NULL; | 
 | 	case sa_rootdomain: | 
 | 		free_rootdomain(d->rd); /* fall through */ | 
 | 	case sa_tmpmask: | 
 | 		free_cpumask_var(d->tmpmask); /* fall through */ | 
 | 	case sa_send_covered: | 
 | 		free_cpumask_var(d->send_covered); /* fall through */ | 
 | 	case sa_this_core_map: | 
 | 		free_cpumask_var(d->this_core_map); /* fall through */ | 
 | 	case sa_this_sibling_map: | 
 | 		free_cpumask_var(d->this_sibling_map); /* fall through */ | 
 | 	case sa_nodemask: | 
 | 		free_cpumask_var(d->nodemask); /* fall through */ | 
 | 	case sa_sched_group_nodes: | 
 | #ifdef CONFIG_NUMA | 
 | 		kfree(d->sched_group_nodes); /* fall through */ | 
 | 	case sa_notcovered: | 
 | 		free_cpumask_var(d->notcovered); /* fall through */ | 
 | 	case sa_covered: | 
 | 		free_cpumask_var(d->covered); /* fall through */ | 
 | 	case sa_domainspan: | 
 | 		free_cpumask_var(d->domainspan); /* fall through */ | 
 | #endif | 
 | 	case sa_none: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, | 
 | 						   const struct cpumask *cpu_map) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) | 
 | 		return sa_none; | 
 | 	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) | 
 | 		return sa_domainspan; | 
 | 	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) | 
 | 		return sa_covered; | 
 | 	/* Allocate the per-node list of sched groups */ | 
 | 	d->sched_group_nodes = kcalloc(nr_node_ids, | 
 | 				      sizeof(struct sched_group *), GFP_KERNEL); | 
 | 	if (!d->sched_group_nodes) { | 
 | 		printk(KERN_WARNING "Can not alloc sched group node list\n"); | 
 | 		return sa_notcovered; | 
 | 	} | 
 | 	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; | 
 | #endif | 
 | 	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) | 
 | 		return sa_sched_group_nodes; | 
 | 	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) | 
 | 		return sa_nodemask; | 
 | 	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) | 
 | 		return sa_this_sibling_map; | 
 | 	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) | 
 | 		return sa_this_core_map; | 
 | 	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) | 
 | 		return sa_send_covered; | 
 | 	d->rd = alloc_rootdomain(); | 
 | 	if (!d->rd) { | 
 | 		printk(KERN_WARNING "Cannot alloc root domain\n"); | 
 | 		return sa_tmpmask; | 
 | 	} | 
 | 	return sa_rootdomain; | 
 | } | 
 |  | 
 | static struct sched_domain *__build_numa_sched_domains(struct s_data *d, | 
 | 	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) | 
 | { | 
 | 	struct sched_domain *sd = NULL; | 
 | #ifdef CONFIG_NUMA | 
 | 	struct sched_domain *parent; | 
 |  | 
 | 	d->sd_allnodes = 0; | 
 | 	if (cpumask_weight(cpu_map) > | 
 | 	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { | 
 | 		sd = &per_cpu(allnodes_domains, i).sd; | 
 | 		SD_INIT(sd, ALLNODES); | 
 | 		set_domain_attribute(sd, attr); | 
 | 		cpumask_copy(sched_domain_span(sd), cpu_map); | 
 | 		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); | 
 | 		d->sd_allnodes = 1; | 
 | 	} | 
 | 	parent = sd; | 
 |  | 
 | 	sd = &per_cpu(node_domains, i).sd; | 
 | 	SD_INIT(sd, NODE); | 
 | 	set_domain_attribute(sd, attr); | 
 | 	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); | 
 | 	sd->parent = parent; | 
 | 	if (parent) | 
 | 		parent->child = sd; | 
 | 	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); | 
 | #endif | 
 | 	return sd; | 
 | } | 
 |  | 
 | static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, | 
 | 	const struct cpumask *cpu_map, struct sched_domain_attr *attr, | 
 | 	struct sched_domain *parent, int i) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	sd = &per_cpu(phys_domains, i).sd; | 
 | 	SD_INIT(sd, CPU); | 
 | 	set_domain_attribute(sd, attr); | 
 | 	cpumask_copy(sched_domain_span(sd), d->nodemask); | 
 | 	sd->parent = parent; | 
 | 	if (parent) | 
 | 		parent->child = sd; | 
 | 	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); | 
 | 	return sd; | 
 | } | 
 |  | 
 | static struct sched_domain *__build_mc_sched_domain(struct s_data *d, | 
 | 	const struct cpumask *cpu_map, struct sched_domain_attr *attr, | 
 | 	struct sched_domain *parent, int i) | 
 | { | 
 | 	struct sched_domain *sd = parent; | 
 | #ifdef CONFIG_SCHED_MC | 
 | 	sd = &per_cpu(core_domains, i).sd; | 
 | 	SD_INIT(sd, MC); | 
 | 	set_domain_attribute(sd, attr); | 
 | 	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); | 
 | 	sd->parent = parent; | 
 | 	parent->child = sd; | 
 | 	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); | 
 | #endif | 
 | 	return sd; | 
 | } | 
 |  | 
 | static struct sched_domain *__build_smt_sched_domain(struct s_data *d, | 
 | 	const struct cpumask *cpu_map, struct sched_domain_attr *attr, | 
 | 	struct sched_domain *parent, int i) | 
 | { | 
 | 	struct sched_domain *sd = parent; | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 	sd = &per_cpu(cpu_domains, i).sd; | 
 | 	SD_INIT(sd, SIBLING); | 
 | 	set_domain_attribute(sd, attr); | 
 | 	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); | 
 | 	sd->parent = parent; | 
 | 	parent->child = sd; | 
 | 	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); | 
 | #endif | 
 | 	return sd; | 
 | } | 
 |  | 
 | static void build_sched_groups(struct s_data *d, enum sched_domain_level l, | 
 | 			       const struct cpumask *cpu_map, int cpu) | 
 | { | 
 | 	switch (l) { | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 	case SD_LV_SIBLING: /* set up CPU (sibling) groups */ | 
 | 		cpumask_and(d->this_sibling_map, cpu_map, | 
 | 			    topology_thread_cpumask(cpu)); | 
 | 		if (cpu == cpumask_first(d->this_sibling_map)) | 
 | 			init_sched_build_groups(d->this_sibling_map, cpu_map, | 
 | 						&cpu_to_cpu_group, | 
 | 						d->send_covered, d->tmpmask); | 
 | 		break; | 
 | #endif | 
 | #ifdef CONFIG_SCHED_MC | 
 | 	case SD_LV_MC: /* set up multi-core groups */ | 
 | 		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); | 
 | 		if (cpu == cpumask_first(d->this_core_map)) | 
 | 			init_sched_build_groups(d->this_core_map, cpu_map, | 
 | 						&cpu_to_core_group, | 
 | 						d->send_covered, d->tmpmask); | 
 | 		break; | 
 | #endif | 
 | 	case SD_LV_CPU: /* set up physical groups */ | 
 | 		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); | 
 | 		if (!cpumask_empty(d->nodemask)) | 
 | 			init_sched_build_groups(d->nodemask, cpu_map, | 
 | 						&cpu_to_phys_group, | 
 | 						d->send_covered, d->tmpmask); | 
 | 		break; | 
 | #ifdef CONFIG_NUMA | 
 | 	case SD_LV_ALLNODES: | 
 | 		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, | 
 | 					d->send_covered, d->tmpmask); | 
 | 		break; | 
 | #endif | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Build sched domains for a given set of cpus and attach the sched domains | 
 |  * to the individual cpus | 
 |  */ | 
 | static int __build_sched_domains(const struct cpumask *cpu_map, | 
 | 				 struct sched_domain_attr *attr) | 
 | { | 
 | 	enum s_alloc alloc_state = sa_none; | 
 | 	struct s_data d; | 
 | 	struct sched_domain *sd; | 
 | 	int i; | 
 | #ifdef CONFIG_NUMA | 
 | 	d.sd_allnodes = 0; | 
 | #endif | 
 |  | 
 | 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map); | 
 | 	if (alloc_state != sa_rootdomain) | 
 | 		goto error; | 
 | 	alloc_state = sa_sched_groups; | 
 |  | 
 | 	/* | 
 | 	 * Set up domains for cpus specified by the cpu_map. | 
 | 	 */ | 
 | 	for_each_cpu(i, cpu_map) { | 
 | 		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), | 
 | 			    cpu_map); | 
 |  | 
 | 		sd = __build_numa_sched_domains(&d, cpu_map, attr, i); | 
 | 		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); | 
 | 		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); | 
 | 		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); | 
 | 	} | 
 |  | 
 | 	for_each_cpu(i, cpu_map) { | 
 | 		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); | 
 | 		build_sched_groups(&d, SD_LV_MC, cpu_map, i); | 
 | 	} | 
 |  | 
 | 	/* Set up physical groups */ | 
 | 	for (i = 0; i < nr_node_ids; i++) | 
 | 		build_sched_groups(&d, SD_LV_CPU, cpu_map, i); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	/* Set up node groups */ | 
 | 	if (d.sd_allnodes) | 
 | 		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); | 
 |  | 
 | 	for (i = 0; i < nr_node_ids; i++) | 
 | 		if (build_numa_sched_groups(&d, cpu_map, i)) | 
 | 			goto error; | 
 | #endif | 
 |  | 
 | 	/* Calculate CPU power for physical packages and nodes */ | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 	for_each_cpu(i, cpu_map) { | 
 | 		sd = &per_cpu(cpu_domains, i).sd; | 
 | 		init_sched_groups_power(i, sd); | 
 | 	} | 
 | #endif | 
 | #ifdef CONFIG_SCHED_MC | 
 | 	for_each_cpu(i, cpu_map) { | 
 | 		sd = &per_cpu(core_domains, i).sd; | 
 | 		init_sched_groups_power(i, sd); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	for_each_cpu(i, cpu_map) { | 
 | 		sd = &per_cpu(phys_domains, i).sd; | 
 | 		init_sched_groups_power(i, sd); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	for (i = 0; i < nr_node_ids; i++) | 
 | 		init_numa_sched_groups_power(d.sched_group_nodes[i]); | 
 |  | 
 | 	if (d.sd_allnodes) { | 
 | 		struct sched_group *sg; | 
 |  | 
 | 		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, | 
 | 								d.tmpmask); | 
 | 		init_numa_sched_groups_power(sg); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Attach the domains */ | 
 | 	for_each_cpu(i, cpu_map) { | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 		sd = &per_cpu(cpu_domains, i).sd; | 
 | #elif defined(CONFIG_SCHED_MC) | 
 | 		sd = &per_cpu(core_domains, i).sd; | 
 | #else | 
 | 		sd = &per_cpu(phys_domains, i).sd; | 
 | #endif | 
 | 		cpu_attach_domain(sd, d.rd, i); | 
 | 	} | 
 |  | 
 | 	d.sched_group_nodes = NULL; /* don't free this we still need it */ | 
 | 	__free_domain_allocs(&d, sa_tmpmask, cpu_map); | 
 | 	return 0; | 
 |  | 
 | error: | 
 | 	__free_domain_allocs(&d, alloc_state, cpu_map); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int build_sched_domains(const struct cpumask *cpu_map) | 
 | { | 
 | 	return __build_sched_domains(cpu_map, NULL); | 
 | } | 
 |  | 
 | static cpumask_var_t *doms_cur;	/* current sched domains */ | 
 | static int ndoms_cur;		/* number of sched domains in 'doms_cur' */ | 
 | static struct sched_domain_attr *dattr_cur; | 
 | 				/* attribues of custom domains in 'doms_cur' */ | 
 |  | 
 | /* | 
 |  * Special case: If a kmalloc of a doms_cur partition (array of | 
 |  * cpumask) fails, then fallback to a single sched domain, | 
 |  * as determined by the single cpumask fallback_doms. | 
 |  */ | 
 | static cpumask_var_t fallback_doms; | 
 |  | 
 | /* | 
 |  * arch_update_cpu_topology lets virtualized architectures update the | 
 |  * cpu core maps. It is supposed to return 1 if the topology changed | 
 |  * or 0 if it stayed the same. | 
 |  */ | 
 | int __attribute__((weak)) arch_update_cpu_topology(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | cpumask_var_t *alloc_sched_domains(unsigned int ndoms) | 
 | { | 
 | 	int i; | 
 | 	cpumask_var_t *doms; | 
 |  | 
 | 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); | 
 | 	if (!doms) | 
 | 		return NULL; | 
 | 	for (i = 0; i < ndoms; i++) { | 
 | 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { | 
 | 			free_sched_domains(doms, i); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 | 	return doms; | 
 | } | 
 |  | 
 | void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) | 
 | { | 
 | 	unsigned int i; | 
 | 	for (i = 0; i < ndoms; i++) | 
 | 		free_cpumask_var(doms[i]); | 
 | 	kfree(doms); | 
 | } | 
 |  | 
 | /* | 
 |  * Set up scheduler domains and groups. Callers must hold the hotplug lock. | 
 |  * For now this just excludes isolated cpus, but could be used to | 
 |  * exclude other special cases in the future. | 
 |  */ | 
 | static int arch_init_sched_domains(const struct cpumask *cpu_map) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	arch_update_cpu_topology(); | 
 | 	ndoms_cur = 1; | 
 | 	doms_cur = alloc_sched_domains(ndoms_cur); | 
 | 	if (!doms_cur) | 
 | 		doms_cur = &fallback_doms; | 
 | 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); | 
 | 	dattr_cur = NULL; | 
 | 	err = build_sched_domains(doms_cur[0]); | 
 | 	register_sched_domain_sysctl(); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void arch_destroy_sched_domains(const struct cpumask *cpu_map, | 
 | 				       struct cpumask *tmpmask) | 
 | { | 
 | 	free_sched_groups(cpu_map, tmpmask); | 
 | } | 
 |  | 
 | /* | 
 |  * Detach sched domains from a group of cpus specified in cpu_map | 
 |  * These cpus will now be attached to the NULL domain | 
 |  */ | 
 | static void detach_destroy_domains(const struct cpumask *cpu_map) | 
 | { | 
 | 	/* Save because hotplug lock held. */ | 
 | 	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); | 
 | 	int i; | 
 |  | 
 | 	for_each_cpu(i, cpu_map) | 
 | 		cpu_attach_domain(NULL, &def_root_domain, i); | 
 | 	synchronize_sched(); | 
 | 	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); | 
 | } | 
 |  | 
 | /* handle null as "default" */ | 
 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | 
 | 			struct sched_domain_attr *new, int idx_new) | 
 | { | 
 | 	struct sched_domain_attr tmp; | 
 |  | 
 | 	/* fast path */ | 
 | 	if (!new && !cur) | 
 | 		return 1; | 
 |  | 
 | 	tmp = SD_ATTR_INIT; | 
 | 	return !memcmp(cur ? (cur + idx_cur) : &tmp, | 
 | 			new ? (new + idx_new) : &tmp, | 
 | 			sizeof(struct sched_domain_attr)); | 
 | } | 
 |  | 
 | /* | 
 |  * Partition sched domains as specified by the 'ndoms_new' | 
 |  * cpumasks in the array doms_new[] of cpumasks. This compares | 
 |  * doms_new[] to the current sched domain partitioning, doms_cur[]. | 
 |  * It destroys each deleted domain and builds each new domain. | 
 |  * | 
 |  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. | 
 |  * The masks don't intersect (don't overlap.) We should setup one | 
 |  * sched domain for each mask. CPUs not in any of the cpumasks will | 
 |  * not be load balanced. If the same cpumask appears both in the | 
 |  * current 'doms_cur' domains and in the new 'doms_new', we can leave | 
 |  * it as it is. | 
 |  * | 
 |  * The passed in 'doms_new' should be allocated using | 
 |  * alloc_sched_domains.  This routine takes ownership of it and will | 
 |  * free_sched_domains it when done with it. If the caller failed the | 
 |  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, | 
 |  * and partition_sched_domains() will fallback to the single partition | 
 |  * 'fallback_doms', it also forces the domains to be rebuilt. | 
 |  * | 
 |  * If doms_new == NULL it will be replaced with cpu_online_mask. | 
 |  * ndoms_new == 0 is a special case for destroying existing domains, | 
 |  * and it will not create the default domain. | 
 |  * | 
 |  * Call with hotplug lock held | 
 |  */ | 
 | void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], | 
 | 			     struct sched_domain_attr *dattr_new) | 
 | { | 
 | 	int i, j, n; | 
 | 	int new_topology; | 
 |  | 
 | 	mutex_lock(&sched_domains_mutex); | 
 |  | 
 | 	/* always unregister in case we don't destroy any domains */ | 
 | 	unregister_sched_domain_sysctl(); | 
 |  | 
 | 	/* Let architecture update cpu core mappings. */ | 
 | 	new_topology = arch_update_cpu_topology(); | 
 |  | 
 | 	n = doms_new ? ndoms_new : 0; | 
 |  | 
 | 	/* Destroy deleted domains */ | 
 | 	for (i = 0; i < ndoms_cur; i++) { | 
 | 		for (j = 0; j < n && !new_topology; j++) { | 
 | 			if (cpumask_equal(doms_cur[i], doms_new[j]) | 
 | 			    && dattrs_equal(dattr_cur, i, dattr_new, j)) | 
 | 				goto match1; | 
 | 		} | 
 | 		/* no match - a current sched domain not in new doms_new[] */ | 
 | 		detach_destroy_domains(doms_cur[i]); | 
 | match1: | 
 | 		; | 
 | 	} | 
 |  | 
 | 	if (doms_new == NULL) { | 
 | 		ndoms_cur = 0; | 
 | 		doms_new = &fallback_doms; | 
 | 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); | 
 | 		WARN_ON_ONCE(dattr_new); | 
 | 	} | 
 |  | 
 | 	/* Build new domains */ | 
 | 	for (i = 0; i < ndoms_new; i++) { | 
 | 		for (j = 0; j < ndoms_cur && !new_topology; j++) { | 
 | 			if (cpumask_equal(doms_new[i], doms_cur[j]) | 
 | 			    && dattrs_equal(dattr_new, i, dattr_cur, j)) | 
 | 				goto match2; | 
 | 		} | 
 | 		/* no match - add a new doms_new */ | 
 | 		__build_sched_domains(doms_new[i], | 
 | 					dattr_new ? dattr_new + i : NULL); | 
 | match2: | 
 | 		; | 
 | 	} | 
 |  | 
 | 	/* Remember the new sched domains */ | 
 | 	if (doms_cur != &fallback_doms) | 
 | 		free_sched_domains(doms_cur, ndoms_cur); | 
 | 	kfree(dattr_cur);	/* kfree(NULL) is safe */ | 
 | 	doms_cur = doms_new; | 
 | 	dattr_cur = dattr_new; | 
 | 	ndoms_cur = ndoms_new; | 
 |  | 
 | 	register_sched_domain_sysctl(); | 
 |  | 
 | 	mutex_unlock(&sched_domains_mutex); | 
 | } | 
 |  | 
 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
 | static void arch_reinit_sched_domains(void) | 
 | { | 
 | 	get_online_cpus(); | 
 |  | 
 | 	/* Destroy domains first to force the rebuild */ | 
 | 	partition_sched_domains(0, NULL, NULL); | 
 |  | 
 | 	rebuild_sched_domains(); | 
 | 	put_online_cpus(); | 
 | } | 
 |  | 
 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | 
 | { | 
 | 	unsigned int level = 0; | 
 |  | 
 | 	if (sscanf(buf, "%u", &level) != 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * level is always be positive so don't check for | 
 | 	 * level < POWERSAVINGS_BALANCE_NONE which is 0 | 
 | 	 * What happens on 0 or 1 byte write, | 
 | 	 * need to check for count as well? | 
 | 	 */ | 
 |  | 
 | 	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (smt) | 
 | 		sched_smt_power_savings = level; | 
 | 	else | 
 | 		sched_mc_power_savings = level; | 
 |  | 
 | 	arch_reinit_sched_domains(); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHED_MC | 
 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, | 
 | 					   struct sysdev_class_attribute *attr, | 
 | 					   char *page) | 
 | { | 
 | 	return sprintf(page, "%u\n", sched_mc_power_savings); | 
 | } | 
 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, | 
 | 					    struct sysdev_class_attribute *attr, | 
 | 					    const char *buf, size_t count) | 
 | { | 
 | 	return sched_power_savings_store(buf, count, 0); | 
 | } | 
 | static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, | 
 | 			 sched_mc_power_savings_show, | 
 | 			 sched_mc_power_savings_store); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SCHED_SMT | 
 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, | 
 | 					    struct sysdev_class_attribute *attr, | 
 | 					    char *page) | 
 | { | 
 | 	return sprintf(page, "%u\n", sched_smt_power_savings); | 
 | } | 
 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, | 
 | 					     struct sysdev_class_attribute *attr, | 
 | 					     const char *buf, size_t count) | 
 | { | 
 | 	return sched_power_savings_store(buf, count, 1); | 
 | } | 
 | static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, | 
 | 		   sched_smt_power_savings_show, | 
 | 		   sched_smt_power_savings_store); | 
 | #endif | 
 |  | 
 | int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 	if (smt_capable()) | 
 | 		err = sysfs_create_file(&cls->kset.kobj, | 
 | 					&attr_sched_smt_power_savings.attr); | 
 | #endif | 
 | #ifdef CONFIG_SCHED_MC | 
 | 	if (!err && mc_capable()) | 
 | 		err = sysfs_create_file(&cls->kset.kobj, | 
 | 					&attr_sched_mc_power_savings.attr); | 
 | #endif | 
 | 	return err; | 
 | } | 
 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 
 |  | 
 | /* | 
 |  * Update cpusets according to cpu_active mask.  If cpusets are | 
 |  * disabled, cpuset_update_active_cpus() becomes a simple wrapper | 
 |  * around partition_sched_domains(). | 
 |  */ | 
 | static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, | 
 | 			     void *hcpu) | 
 | { | 
 | 	switch (action & ~CPU_TASKS_FROZEN) { | 
 | 	case CPU_ONLINE: | 
 | 	case CPU_DOWN_FAILED: | 
 | 		cpuset_update_active_cpus(); | 
 | 		return NOTIFY_OK; | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 | } | 
 |  | 
 | static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, | 
 | 			       void *hcpu) | 
 | { | 
 | 	switch (action & ~CPU_TASKS_FROZEN) { | 
 | 	case CPU_DOWN_PREPARE: | 
 | 		cpuset_update_active_cpus(); | 
 | 		return NOTIFY_OK; | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 | } | 
 |  | 
 | static int update_runtime(struct notifier_block *nfb, | 
 | 				unsigned long action, void *hcpu) | 
 | { | 
 | 	int cpu = (int)(long)hcpu; | 
 |  | 
 | 	switch (action) { | 
 | 	case CPU_DOWN_PREPARE: | 
 | 	case CPU_DOWN_PREPARE_FROZEN: | 
 | 		disable_runtime(cpu_rq(cpu)); | 
 | 		return NOTIFY_OK; | 
 |  | 
 | 	case CPU_DOWN_FAILED: | 
 | 	case CPU_DOWN_FAILED_FROZEN: | 
 | 	case CPU_ONLINE: | 
 | 	case CPU_ONLINE_FROZEN: | 
 | 		enable_runtime(cpu_rq(cpu)); | 
 | 		return NOTIFY_OK; | 
 |  | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 | } | 
 |  | 
 | void __init sched_init_smp(void) | 
 | { | 
 | 	cpumask_var_t non_isolated_cpus; | 
 |  | 
 | 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | 
 | 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | 
 |  | 
 | #if defined(CONFIG_NUMA) | 
 | 	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | 
 | 								GFP_KERNEL); | 
 | 	BUG_ON(sched_group_nodes_bycpu == NULL); | 
 | #endif | 
 | 	get_online_cpus(); | 
 | 	mutex_lock(&sched_domains_mutex); | 
 | 	arch_init_sched_domains(cpu_active_mask); | 
 | 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); | 
 | 	if (cpumask_empty(non_isolated_cpus)) | 
 | 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); | 
 | 	mutex_unlock(&sched_domains_mutex); | 
 | 	put_online_cpus(); | 
 |  | 
 | 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); | 
 | 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); | 
 |  | 
 | 	/* RT runtime code needs to handle some hotplug events */ | 
 | 	hotcpu_notifier(update_runtime, 0); | 
 |  | 
 | 	init_hrtick(); | 
 |  | 
 | 	/* Move init over to a non-isolated CPU */ | 
 | 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) | 
 | 		BUG(); | 
 | 	sched_init_granularity(); | 
 | 	free_cpumask_var(non_isolated_cpus); | 
 |  | 
 | 	init_sched_rt_class(); | 
 | } | 
 | #else | 
 | void __init sched_init_smp(void) | 
 | { | 
 | 	sched_init_granularity(); | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | const_debug unsigned int sysctl_timer_migration = 1; | 
 |  | 
 | int in_sched_functions(unsigned long addr) | 
 | { | 
 | 	return in_lock_functions(addr) || | 
 | 		(addr >= (unsigned long)__sched_text_start | 
 | 		&& addr < (unsigned long)__sched_text_end); | 
 | } | 
 |  | 
 | static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) | 
 | { | 
 | 	cfs_rq->tasks_timeline = RB_ROOT; | 
 | 	INIT_LIST_HEAD(&cfs_rq->tasks); | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	cfs_rq->rq = rq; | 
 | #endif | 
 | 	cfs_rq->min_vruntime = (u64)(-(1LL << 20)); | 
 | } | 
 |  | 
 | static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | 
 | { | 
 | 	struct rt_prio_array *array; | 
 | 	int i; | 
 |  | 
 | 	array = &rt_rq->active; | 
 | 	for (i = 0; i < MAX_RT_PRIO; i++) { | 
 | 		INIT_LIST_HEAD(array->queue + i); | 
 | 		__clear_bit(i, array->bitmap); | 
 | 	} | 
 | 	/* delimiter for bitsearch: */ | 
 | 	__set_bit(MAX_RT_PRIO, array->bitmap); | 
 |  | 
 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
 | 	rt_rq->highest_prio.curr = MAX_RT_PRIO; | 
 | #ifdef CONFIG_SMP | 
 | 	rt_rq->highest_prio.next = MAX_RT_PRIO; | 
 | #endif | 
 | #endif | 
 | #ifdef CONFIG_SMP | 
 | 	rt_rq->rt_nr_migratory = 0; | 
 | 	rt_rq->overloaded = 0; | 
 | 	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock); | 
 | #endif | 
 |  | 
 | 	rt_rq->rt_time = 0; | 
 | 	rt_rq->rt_throttled = 0; | 
 | 	rt_rq->rt_runtime = 0; | 
 | 	raw_spin_lock_init(&rt_rq->rt_runtime_lock); | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	rt_rq->rt_nr_boosted = 0; | 
 | 	rt_rq->rq = rq; | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | 
 | 				struct sched_entity *se, int cpu, int add, | 
 | 				struct sched_entity *parent) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	tg->cfs_rq[cpu] = cfs_rq; | 
 | 	init_cfs_rq(cfs_rq, rq); | 
 | 	cfs_rq->tg = tg; | 
 | 	if (add) | 
 | 		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | 
 |  | 
 | 	tg->se[cpu] = se; | 
 | 	/* se could be NULL for init_task_group */ | 
 | 	if (!se) | 
 | 		return; | 
 |  | 
 | 	if (!parent) | 
 | 		se->cfs_rq = &rq->cfs; | 
 | 	else | 
 | 		se->cfs_rq = parent->my_q; | 
 |  | 
 | 	se->my_q = cfs_rq; | 
 | 	se->load.weight = tg->shares; | 
 | 	se->load.inv_weight = 0; | 
 | 	se->parent = parent; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | 
 | 		struct sched_rt_entity *rt_se, int cpu, int add, | 
 | 		struct sched_rt_entity *parent) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	tg->rt_rq[cpu] = rt_rq; | 
 | 	init_rt_rq(rt_rq, rq); | 
 | 	rt_rq->tg = tg; | 
 | 	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | 
 | 	if (add) | 
 | 		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | 
 |  | 
 | 	tg->rt_se[cpu] = rt_se; | 
 | 	if (!rt_se) | 
 | 		return; | 
 |  | 
 | 	if (!parent) | 
 | 		rt_se->rt_rq = &rq->rt; | 
 | 	else | 
 | 		rt_se->rt_rq = parent->my_q; | 
 |  | 
 | 	rt_se->my_q = rt_rq; | 
 | 	rt_se->parent = parent; | 
 | 	INIT_LIST_HEAD(&rt_se->run_list); | 
 | } | 
 | #endif | 
 |  | 
 | void __init sched_init(void) | 
 | { | 
 | 	int i, j; | 
 | 	unsigned long alloc_size = 0, ptr; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 
 | #endif | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 
 | #endif | 
 | #ifdef CONFIG_CPUMASK_OFFSTACK | 
 | 	alloc_size += num_possible_cpus() * cpumask_size(); | 
 | #endif | 
 | 	if (alloc_size) { | 
 | 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 		init_task_group.se = (struct sched_entity **)ptr; | 
 | 		ptr += nr_cpu_ids * sizeof(void **); | 
 |  | 
 | 		init_task_group.cfs_rq = (struct cfs_rq **)ptr; | 
 | 		ptr += nr_cpu_ids * sizeof(void **); | 
 |  | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 		init_task_group.rt_se = (struct sched_rt_entity **)ptr; | 
 | 		ptr += nr_cpu_ids * sizeof(void **); | 
 |  | 
 | 		init_task_group.rt_rq = (struct rt_rq **)ptr; | 
 | 		ptr += nr_cpu_ids * sizeof(void **); | 
 |  | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 | #ifdef CONFIG_CPUMASK_OFFSTACK | 
 | 		for_each_possible_cpu(i) { | 
 | 			per_cpu(load_balance_tmpmask, i) = (void *)ptr; | 
 | 			ptr += cpumask_size(); | 
 | 		} | 
 | #endif /* CONFIG_CPUMASK_OFFSTACK */ | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	init_defrootdomain(); | 
 | #endif | 
 |  | 
 | 	init_rt_bandwidth(&def_rt_bandwidth, | 
 | 			global_rt_period(), global_rt_runtime()); | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	init_rt_bandwidth(&init_task_group.rt_bandwidth, | 
 | 			global_rt_period(), global_rt_runtime()); | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 | 	list_add(&init_task_group.list, &task_groups); | 
 | 	INIT_LIST_HEAD(&init_task_group.children); | 
 |  | 
 | #endif /* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP | 
 | 	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), | 
 | 					    __alignof__(unsigned long)); | 
 | #endif | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct rq *rq; | 
 |  | 
 | 		rq = cpu_rq(i); | 
 | 		raw_spin_lock_init(&rq->lock); | 
 | 		rq->nr_running = 0; | 
 | 		rq->calc_load_active = 0; | 
 | 		rq->calc_load_update = jiffies + LOAD_FREQ; | 
 | 		init_cfs_rq(&rq->cfs, rq); | 
 | 		init_rt_rq(&rq->rt, rq); | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 		init_task_group.shares = init_task_group_load; | 
 | 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 | 		/* | 
 | 		 * How much cpu bandwidth does init_task_group get? | 
 | 		 * | 
 | 		 * In case of task-groups formed thr' the cgroup filesystem, it | 
 | 		 * gets 100% of the cpu resources in the system. This overall | 
 | 		 * system cpu resource is divided among the tasks of | 
 | 		 * init_task_group and its child task-groups in a fair manner, | 
 | 		 * based on each entity's (task or task-group's) weight | 
 | 		 * (se->load.weight). | 
 | 		 * | 
 | 		 * In other words, if init_task_group has 10 tasks of weight | 
 | 		 * 1024) and two child groups A0 and A1 (of weight 1024 each), | 
 | 		 * then A0's share of the cpu resource is: | 
 | 		 * | 
 | 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | 
 | 		 * | 
 | 		 * We achieve this by letting init_task_group's tasks sit | 
 | 		 * directly in rq->cfs (i.e init_task_group->se[] = NULL). | 
 | 		 */ | 
 | 		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); | 
 | #endif | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list); | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 | 		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); | 
 | #endif | 
 | #endif | 
 |  | 
 | 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++) | 
 | 			rq->cpu_load[j] = 0; | 
 |  | 
 | 		rq->last_load_update_tick = jiffies; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 		rq->sd = NULL; | 
 | 		rq->rd = NULL; | 
 | 		rq->cpu_power = SCHED_LOAD_SCALE; | 
 | 		rq->post_schedule = 0; | 
 | 		rq->active_balance = 0; | 
 | 		rq->next_balance = jiffies; | 
 | 		rq->push_cpu = 0; | 
 | 		rq->cpu = i; | 
 | 		rq->online = 0; | 
 | 		rq->idle_stamp = 0; | 
 | 		rq->avg_idle = 2*sysctl_sched_migration_cost; | 
 | 		rq_attach_root(rq, &def_root_domain); | 
 | #ifdef CONFIG_NO_HZ | 
 | 		rq->nohz_balance_kick = 0; | 
 | 		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i)); | 
 | #endif | 
 | #endif | 
 | 		init_rq_hrtick(rq); | 
 | 		atomic_set(&rq->nr_iowait, 0); | 
 | 	} | 
 |  | 
 | 	set_load_weight(&init_task); | 
 |  | 
 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
 | 	INIT_HLIST_HEAD(&init_task.preempt_notifiers); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RT_MUTEXES | 
 | 	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * The boot idle thread does lazy MMU switching as well: | 
 | 	 */ | 
 | 	atomic_inc(&init_mm.mm_count); | 
 | 	enter_lazy_tlb(&init_mm, current); | 
 |  | 
 | 	/* | 
 | 	 * Make us the idle thread. Technically, schedule() should not be | 
 | 	 * called from this thread, however somewhere below it might be, | 
 | 	 * but because we are the idle thread, we just pick up running again | 
 | 	 * when this runqueue becomes "idle". | 
 | 	 */ | 
 | 	init_idle(current, smp_processor_id()); | 
 |  | 
 | 	calc_load_update = jiffies + LOAD_FREQ; | 
 |  | 
 | 	/* | 
 | 	 * During early bootup we pretend to be a normal task: | 
 | 	 */ | 
 | 	current->sched_class = &fair_sched_class; | 
 |  | 
 | 	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ | 
 | 	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); | 
 | #ifdef CONFIG_SMP | 
 | #ifdef CONFIG_NO_HZ | 
 | 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); | 
 | 	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT); | 
 | 	atomic_set(&nohz.load_balancer, nr_cpu_ids); | 
 | 	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids); | 
 | 	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids); | 
 | #endif | 
 | 	/* May be allocated at isolcpus cmdline parse time */ | 
 | 	if (cpu_isolated_map == NULL) | 
 | 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 
 | #endif /* SMP */ | 
 |  | 
 | 	perf_event_init(); | 
 |  | 
 | 	scheduler_running = 1; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 
 | static inline int preempt_count_equals(int preempt_offset) | 
 | { | 
 | 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); | 
 |  | 
 | 	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); | 
 | } | 
 |  | 
 | void __might_sleep(const char *file, int line, int preempt_offset) | 
 | { | 
 | #ifdef in_atomic | 
 | 	static unsigned long prev_jiffy;	/* ratelimiting */ | 
 |  | 
 | 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || | 
 | 	    system_state != SYSTEM_RUNNING || oops_in_progress) | 
 | 		return; | 
 | 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
 | 		return; | 
 | 	prev_jiffy = jiffies; | 
 |  | 
 | 	printk(KERN_ERR | 
 | 		"BUG: sleeping function called from invalid context at %s:%d\n", | 
 | 			file, line); | 
 | 	printk(KERN_ERR | 
 | 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | 
 | 			in_atomic(), irqs_disabled(), | 
 | 			current->pid, current->comm); | 
 |  | 
 | 	debug_show_held_locks(current); | 
 | 	if (irqs_disabled()) | 
 | 		print_irqtrace_events(current); | 
 | 	dump_stack(); | 
 | #endif | 
 | } | 
 | EXPORT_SYMBOL(__might_sleep); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MAGIC_SYSRQ | 
 | static void normalize_task(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	int on_rq; | 
 |  | 
 | 	on_rq = p->se.on_rq; | 
 | 	if (on_rq) | 
 | 		deactivate_task(rq, p, 0); | 
 | 	__setscheduler(rq, p, SCHED_NORMAL, 0); | 
 | 	if (on_rq) { | 
 | 		activate_task(rq, p, 0); | 
 | 		resched_task(rq->curr); | 
 | 	} | 
 | } | 
 |  | 
 | void normalize_rt_tasks(void) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 |  | 
 | 	read_lock_irqsave(&tasklist_lock, flags); | 
 | 	do_each_thread(g, p) { | 
 | 		/* | 
 | 		 * Only normalize user tasks: | 
 | 		 */ | 
 | 		if (!p->mm) | 
 | 			continue; | 
 |  | 
 | 		p->se.exec_start		= 0; | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 		p->se.statistics.wait_start	= 0; | 
 | 		p->se.statistics.sleep_start	= 0; | 
 | 		p->se.statistics.block_start	= 0; | 
 | #endif | 
 |  | 
 | 		if (!rt_task(p)) { | 
 | 			/* | 
 | 			 * Renice negative nice level userspace | 
 | 			 * tasks back to 0: | 
 | 			 */ | 
 | 			if (TASK_NICE(p) < 0 && p->mm) | 
 | 				set_user_nice(p, 0); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		raw_spin_lock(&p->pi_lock); | 
 | 		rq = __task_rq_lock(p); | 
 |  | 
 | 		normalize_task(rq, p); | 
 |  | 
 | 		__task_rq_unlock(rq); | 
 | 		raw_spin_unlock(&p->pi_lock); | 
 | 	} while_each_thread(g, p); | 
 |  | 
 | 	read_unlock_irqrestore(&tasklist_lock, flags); | 
 | } | 
 |  | 
 | #endif /* CONFIG_MAGIC_SYSRQ */ | 
 |  | 
 | #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) | 
 | /* | 
 |  * These functions are only useful for the IA64 MCA handling, or kdb. | 
 |  * | 
 |  * They can only be called when the whole system has been | 
 |  * stopped - every CPU needs to be quiescent, and no scheduling | 
 |  * activity can take place. Using them for anything else would | 
 |  * be a serious bug, and as a result, they aren't even visible | 
 |  * under any other configuration. | 
 |  */ | 
 |  | 
 | /** | 
 |  * curr_task - return the current task for a given cpu. | 
 |  * @cpu: the processor in question. | 
 |  * | 
 |  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
 |  */ | 
 | struct task_struct *curr_task(int cpu) | 
 | { | 
 | 	return cpu_curr(cpu); | 
 | } | 
 |  | 
 | #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ | 
 |  | 
 | #ifdef CONFIG_IA64 | 
 | /** | 
 |  * set_curr_task - set the current task for a given cpu. | 
 |  * @cpu: the processor in question. | 
 |  * @p: the task pointer to set. | 
 |  * | 
 |  * Description: This function must only be used when non-maskable interrupts | 
 |  * are serviced on a separate stack. It allows the architecture to switch the | 
 |  * notion of the current task on a cpu in a non-blocking manner. This function | 
 |  * must be called with all CPU's synchronized, and interrupts disabled, the | 
 |  * and caller must save the original value of the current task (see | 
 |  * curr_task() above) and restore that value before reenabling interrupts and | 
 |  * re-starting the system. | 
 |  * | 
 |  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
 |  */ | 
 | void set_curr_task(int cpu, struct task_struct *p) | 
 | { | 
 | 	cpu_curr(cpu) = p; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static void free_fair_sched_group(struct task_group *tg) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		if (tg->cfs_rq) | 
 | 			kfree(tg->cfs_rq[i]); | 
 | 		if (tg->se) | 
 | 			kfree(tg->se[i]); | 
 | 	} | 
 |  | 
 | 	kfree(tg->cfs_rq); | 
 | 	kfree(tg->se); | 
 | } | 
 |  | 
 | static | 
 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se; | 
 | 	struct rq *rq; | 
 | 	int i; | 
 |  | 
 | 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); | 
 | 	if (!tg->cfs_rq) | 
 | 		goto err; | 
 | 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); | 
 | 	if (!tg->se) | 
 | 		goto err; | 
 |  | 
 | 	tg->shares = NICE_0_LOAD; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		rq = cpu_rq(i); | 
 |  | 
 | 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | 
 | 				      GFP_KERNEL, cpu_to_node(i)); | 
 | 		if (!cfs_rq) | 
 | 			goto err; | 
 |  | 
 | 		se = kzalloc_node(sizeof(struct sched_entity), | 
 | 				  GFP_KERNEL, cpu_to_node(i)); | 
 | 		if (!se) | 
 | 			goto err_free_rq; | 
 |  | 
 | 		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 |  | 
 |  err_free_rq: | 
 | 	kfree(cfs_rq); | 
 |  err: | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | 
 | { | 
 | 	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, | 
 | 			&cpu_rq(cpu)->leaf_cfs_rq_list); | 
 | } | 
 |  | 
 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | 
 | { | 
 | 	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); | 
 | } | 
 | #else /* !CONFG_FAIR_GROUP_SCHED */ | 
 | static inline void free_fair_sched_group(struct task_group *tg) | 
 | { | 
 | } | 
 |  | 
 | static inline | 
 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | 
 | { | 
 | } | 
 |  | 
 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | 
 | { | 
 | } | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | static void free_rt_sched_group(struct task_group *tg) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	destroy_rt_bandwidth(&tg->rt_bandwidth); | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		if (tg->rt_rq) | 
 | 			kfree(tg->rt_rq[i]); | 
 | 		if (tg->rt_se) | 
 | 			kfree(tg->rt_se[i]); | 
 | 	} | 
 |  | 
 | 	kfree(tg->rt_rq); | 
 | 	kfree(tg->rt_se); | 
 | } | 
 |  | 
 | static | 
 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 
 | { | 
 | 	struct rt_rq *rt_rq; | 
 | 	struct sched_rt_entity *rt_se; | 
 | 	struct rq *rq; | 
 | 	int i; | 
 |  | 
 | 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); | 
 | 	if (!tg->rt_rq) | 
 | 		goto err; | 
 | 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); | 
 | 	if (!tg->rt_se) | 
 | 		goto err; | 
 |  | 
 | 	init_rt_bandwidth(&tg->rt_bandwidth, | 
 | 			ktime_to_ns(def_rt_bandwidth.rt_period), 0); | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		rq = cpu_rq(i); | 
 |  | 
 | 		rt_rq = kzalloc_node(sizeof(struct rt_rq), | 
 | 				     GFP_KERNEL, cpu_to_node(i)); | 
 | 		if (!rt_rq) | 
 | 			goto err; | 
 |  | 
 | 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | 
 | 				     GFP_KERNEL, cpu_to_node(i)); | 
 | 		if (!rt_se) | 
 | 			goto err_free_rq; | 
 |  | 
 | 		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 |  | 
 |  err_free_rq: | 
 | 	kfree(rt_rq); | 
 |  err: | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | 
 | { | 
 | 	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, | 
 | 			&cpu_rq(cpu)->leaf_rt_rq_list); | 
 | } | 
 |  | 
 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | 
 | { | 
 | 	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); | 
 | } | 
 | #else /* !CONFIG_RT_GROUP_SCHED */ | 
 | static inline void free_rt_sched_group(struct task_group *tg) | 
 | { | 
 | } | 
 |  | 
 | static inline | 
 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | 
 | { | 
 | } | 
 |  | 
 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | 
 | { | 
 | } | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 | static void free_sched_group(struct task_group *tg) | 
 | { | 
 | 	free_fair_sched_group(tg); | 
 | 	free_rt_sched_group(tg); | 
 | 	kfree(tg); | 
 | } | 
 |  | 
 | /* allocate runqueue etc for a new task group */ | 
 | struct task_group *sched_create_group(struct task_group *parent) | 
 | { | 
 | 	struct task_group *tg; | 
 | 	unsigned long flags; | 
 | 	int i; | 
 |  | 
 | 	tg = kzalloc(sizeof(*tg), GFP_KERNEL); | 
 | 	if (!tg) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (!alloc_fair_sched_group(tg, parent)) | 
 | 		goto err; | 
 |  | 
 | 	if (!alloc_rt_sched_group(tg, parent)) | 
 | 		goto err; | 
 |  | 
 | 	spin_lock_irqsave(&task_group_lock, flags); | 
 | 	for_each_possible_cpu(i) { | 
 | 		register_fair_sched_group(tg, i); | 
 | 		register_rt_sched_group(tg, i); | 
 | 	} | 
 | 	list_add_rcu(&tg->list, &task_groups); | 
 |  | 
 | 	WARN_ON(!parent); /* root should already exist */ | 
 |  | 
 | 	tg->parent = parent; | 
 | 	INIT_LIST_HEAD(&tg->children); | 
 | 	list_add_rcu(&tg->siblings, &parent->children); | 
 | 	spin_unlock_irqrestore(&task_group_lock, flags); | 
 |  | 
 | 	return tg; | 
 |  | 
 | err: | 
 | 	free_sched_group(tg); | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | /* rcu callback to free various structures associated with a task group */ | 
 | static void free_sched_group_rcu(struct rcu_head *rhp) | 
 | { | 
 | 	/* now it should be safe to free those cfs_rqs */ | 
 | 	free_sched_group(container_of(rhp, struct task_group, rcu)); | 
 | } | 
 |  | 
 | /* Destroy runqueue etc associated with a task group */ | 
 | void sched_destroy_group(struct task_group *tg) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int i; | 
 |  | 
 | 	spin_lock_irqsave(&task_group_lock, flags); | 
 | 	for_each_possible_cpu(i) { | 
 | 		unregister_fair_sched_group(tg, i); | 
 | 		unregister_rt_sched_group(tg, i); | 
 | 	} | 
 | 	list_del_rcu(&tg->list); | 
 | 	list_del_rcu(&tg->siblings); | 
 | 	spin_unlock_irqrestore(&task_group_lock, flags); | 
 |  | 
 | 	/* wait for possible concurrent references to cfs_rqs complete */ | 
 | 	call_rcu(&tg->rcu, free_sched_group_rcu); | 
 | } | 
 |  | 
 | /* change task's runqueue when it moves between groups. | 
 |  *	The caller of this function should have put the task in its new group | 
 |  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | 
 |  *	reflect its new group. | 
 |  */ | 
 | void sched_move_task(struct task_struct *tsk) | 
 | { | 
 | 	int on_rq, running; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 |  | 
 | 	rq = task_rq_lock(tsk, &flags); | 
 |  | 
 | 	running = task_current(rq, tsk); | 
 | 	on_rq = tsk->se.on_rq; | 
 |  | 
 | 	if (on_rq) | 
 | 		dequeue_task(rq, tsk, 0); | 
 | 	if (unlikely(running)) | 
 | 		tsk->sched_class->put_prev_task(rq, tsk); | 
 |  | 
 | 	set_task_rq(tsk, task_cpu(tsk)); | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	if (tsk->sched_class->moved_group) | 
 | 		tsk->sched_class->moved_group(tsk, on_rq); | 
 | #endif | 
 |  | 
 | 	if (unlikely(running)) | 
 | 		tsk->sched_class->set_curr_task(rq); | 
 | 	if (on_rq) | 
 | 		enqueue_task(rq, tsk, 0); | 
 |  | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 | #endif /* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = se->cfs_rq; | 
 | 	int on_rq; | 
 |  | 
 | 	on_rq = se->on_rq; | 
 | 	if (on_rq) | 
 | 		dequeue_entity(cfs_rq, se, 0); | 
 |  | 
 | 	se->load.weight = shares; | 
 | 	se->load.inv_weight = 0; | 
 |  | 
 | 	if (on_rq) | 
 | 		enqueue_entity(cfs_rq, se, 0); | 
 | } | 
 |  | 
 | static void set_se_shares(struct sched_entity *se, unsigned long shares) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = se->cfs_rq; | 
 | 	struct rq *rq = cfs_rq->rq; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 	__set_se_shares(se, shares); | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 |  | 
 | static DEFINE_MUTEX(shares_mutex); | 
 |  | 
 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | 
 | { | 
 | 	int i; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * We can't change the weight of the root cgroup. | 
 | 	 */ | 
 | 	if (!tg->se[0]) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (shares < MIN_SHARES) | 
 | 		shares = MIN_SHARES; | 
 | 	else if (shares > MAX_SHARES) | 
 | 		shares = MAX_SHARES; | 
 |  | 
 | 	mutex_lock(&shares_mutex); | 
 | 	if (tg->shares == shares) | 
 | 		goto done; | 
 |  | 
 | 	spin_lock_irqsave(&task_group_lock, flags); | 
 | 	for_each_possible_cpu(i) | 
 | 		unregister_fair_sched_group(tg, i); | 
 | 	list_del_rcu(&tg->siblings); | 
 | 	spin_unlock_irqrestore(&task_group_lock, flags); | 
 |  | 
 | 	/* wait for any ongoing reference to this group to finish */ | 
 | 	synchronize_sched(); | 
 |  | 
 | 	/* | 
 | 	 * Now we are free to modify the group's share on each cpu | 
 | 	 * w/o tripping rebalance_share or load_balance_fair. | 
 | 	 */ | 
 | 	tg->shares = shares; | 
 | 	for_each_possible_cpu(i) { | 
 | 		/* | 
 | 		 * force a rebalance | 
 | 		 */ | 
 | 		cfs_rq_set_shares(tg->cfs_rq[i], 0); | 
 | 		set_se_shares(tg->se[i], shares); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enable load balance activity on this group, by inserting it back on | 
 | 	 * each cpu's rq->leaf_cfs_rq_list. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&task_group_lock, flags); | 
 | 	for_each_possible_cpu(i) | 
 | 		register_fair_sched_group(tg, i); | 
 | 	list_add_rcu(&tg->siblings, &tg->parent->children); | 
 | 	spin_unlock_irqrestore(&task_group_lock, flags); | 
 | done: | 
 | 	mutex_unlock(&shares_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | unsigned long sched_group_shares(struct task_group *tg) | 
 | { | 
 | 	return tg->shares; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | /* | 
 |  * Ensure that the real time constraints are schedulable. | 
 |  */ | 
 | static DEFINE_MUTEX(rt_constraints_mutex); | 
 |  | 
 | static unsigned long to_ratio(u64 period, u64 runtime) | 
 | { | 
 | 	if (runtime == RUNTIME_INF) | 
 | 		return 1ULL << 20; | 
 |  | 
 | 	return div64_u64(runtime << 20, period); | 
 | } | 
 |  | 
 | /* Must be called with tasklist_lock held */ | 
 | static inline int tg_has_rt_tasks(struct task_group *tg) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 |  | 
 | 	do_each_thread(g, p) { | 
 | 		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) | 
 | 			return 1; | 
 | 	} while_each_thread(g, p); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct rt_schedulable_data { | 
 | 	struct task_group *tg; | 
 | 	u64 rt_period; | 
 | 	u64 rt_runtime; | 
 | }; | 
 |  | 
 | static int tg_schedulable(struct task_group *tg, void *data) | 
 | { | 
 | 	struct rt_schedulable_data *d = data; | 
 | 	struct task_group *child; | 
 | 	unsigned long total, sum = 0; | 
 | 	u64 period, runtime; | 
 |  | 
 | 	period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
 | 	runtime = tg->rt_bandwidth.rt_runtime; | 
 |  | 
 | 	if (tg == d->tg) { | 
 | 		period = d->rt_period; | 
 | 		runtime = d->rt_runtime; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Cannot have more runtime than the period. | 
 | 	 */ | 
 | 	if (runtime > period && runtime != RUNTIME_INF) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Ensure we don't starve existing RT tasks. | 
 | 	 */ | 
 | 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	total = to_ratio(period, runtime); | 
 |  | 
 | 	/* | 
 | 	 * Nobody can have more than the global setting allows. | 
 | 	 */ | 
 | 	if (total > to_ratio(global_rt_period(), global_rt_runtime())) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * The sum of our children's runtime should not exceed our own. | 
 | 	 */ | 
 | 	list_for_each_entry_rcu(child, &tg->children, siblings) { | 
 | 		period = ktime_to_ns(child->rt_bandwidth.rt_period); | 
 | 		runtime = child->rt_bandwidth.rt_runtime; | 
 |  | 
 | 		if (child == d->tg) { | 
 | 			period = d->rt_period; | 
 | 			runtime = d->rt_runtime; | 
 | 		} | 
 |  | 
 | 		sum += to_ratio(period, runtime); | 
 | 	} | 
 |  | 
 | 	if (sum > total) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | 
 | { | 
 | 	struct rt_schedulable_data data = { | 
 | 		.tg = tg, | 
 | 		.rt_period = period, | 
 | 		.rt_runtime = runtime, | 
 | 	}; | 
 |  | 
 | 	return walk_tg_tree(tg_schedulable, tg_nop, &data); | 
 | } | 
 |  | 
 | static int tg_set_bandwidth(struct task_group *tg, | 
 | 		u64 rt_period, u64 rt_runtime) | 
 | { | 
 | 	int i, err = 0; | 
 |  | 
 | 	mutex_lock(&rt_constraints_mutex); | 
 | 	read_lock(&tasklist_lock); | 
 | 	err = __rt_schedulable(tg, rt_period, rt_runtime); | 
 | 	if (err) | 
 | 		goto unlock; | 
 |  | 
 | 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 
 | 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | 
 | 	tg->rt_bandwidth.rt_runtime = rt_runtime; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct rt_rq *rt_rq = tg->rt_rq[i]; | 
 |  | 
 | 		raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 		rt_rq->rt_runtime = rt_runtime; | 
 | 		raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 	} | 
 | 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 
 |  unlock: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	mutex_unlock(&rt_constraints_mutex); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) | 
 | { | 
 | 	u64 rt_runtime, rt_period; | 
 |  | 
 | 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
 | 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | 
 | 	if (rt_runtime_us < 0) | 
 | 		rt_runtime = RUNTIME_INF; | 
 |  | 
 | 	return tg_set_bandwidth(tg, rt_period, rt_runtime); | 
 | } | 
 |  | 
 | long sched_group_rt_runtime(struct task_group *tg) | 
 | { | 
 | 	u64 rt_runtime_us; | 
 |  | 
 | 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) | 
 | 		return -1; | 
 |  | 
 | 	rt_runtime_us = tg->rt_bandwidth.rt_runtime; | 
 | 	do_div(rt_runtime_us, NSEC_PER_USEC); | 
 | 	return rt_runtime_us; | 
 | } | 
 |  | 
 | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | 
 | { | 
 | 	u64 rt_runtime, rt_period; | 
 |  | 
 | 	rt_period = (u64)rt_period_us * NSEC_PER_USEC; | 
 | 	rt_runtime = tg->rt_bandwidth.rt_runtime; | 
 |  | 
 | 	if (rt_period == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return tg_set_bandwidth(tg, rt_period, rt_runtime); | 
 | } | 
 |  | 
 | long sched_group_rt_period(struct task_group *tg) | 
 | { | 
 | 	u64 rt_period_us; | 
 |  | 
 | 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
 | 	do_div(rt_period_us, NSEC_PER_USEC); | 
 | 	return rt_period_us; | 
 | } | 
 |  | 
 | static int sched_rt_global_constraints(void) | 
 | { | 
 | 	u64 runtime, period; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (sysctl_sched_rt_period <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	runtime = global_rt_runtime(); | 
 | 	period = global_rt_period(); | 
 |  | 
 | 	/* | 
 | 	 * Sanity check on the sysctl variables. | 
 | 	 */ | 
 | 	if (runtime > period && runtime != RUNTIME_INF) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&rt_constraints_mutex); | 
 | 	read_lock(&tasklist_lock); | 
 | 	ret = __rt_schedulable(NULL, 0, 0); | 
 | 	read_unlock(&tasklist_lock); | 
 | 	mutex_unlock(&rt_constraints_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | 
 | { | 
 | 	/* Don't accept realtime tasks when there is no way for them to run */ | 
 | 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | #else /* !CONFIG_RT_GROUP_SCHED */ | 
 | static int sched_rt_global_constraints(void) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int i; | 
 |  | 
 | 	if (sysctl_sched_rt_period <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * There's always some RT tasks in the root group | 
 | 	 * -- migration, kstopmachine etc.. | 
 | 	 */ | 
 | 	if (sysctl_sched_rt_runtime == 0) | 
 | 		return -EBUSY; | 
 |  | 
 | 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct rt_rq *rt_rq = &cpu_rq(i)->rt; | 
 |  | 
 | 		raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 		rt_rq->rt_runtime = global_rt_runtime(); | 
 | 		raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 	} | 
 | 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | int sched_rt_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int ret; | 
 | 	int old_period, old_runtime; | 
 | 	static DEFINE_MUTEX(mutex); | 
 |  | 
 | 	mutex_lock(&mutex); | 
 | 	old_period = sysctl_sched_rt_period; | 
 | 	old_runtime = sysctl_sched_rt_runtime; | 
 |  | 
 | 	ret = proc_dointvec(table, write, buffer, lenp, ppos); | 
 |  | 
 | 	if (!ret && write) { | 
 | 		ret = sched_rt_global_constraints(); | 
 | 		if (ret) { | 
 | 			sysctl_sched_rt_period = old_period; | 
 | 			sysctl_sched_rt_runtime = old_runtime; | 
 | 		} else { | 
 | 			def_rt_bandwidth.rt_runtime = global_rt_runtime(); | 
 | 			def_rt_bandwidth.rt_period = | 
 | 				ns_to_ktime(global_rt_period()); | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 |  | 
 | /* return corresponding task_group object of a cgroup */ | 
 | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) | 
 | { | 
 | 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), | 
 | 			    struct task_group, css); | 
 | } | 
 |  | 
 | static struct cgroup_subsys_state * | 
 | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) | 
 | { | 
 | 	struct task_group *tg, *parent; | 
 |  | 
 | 	if (!cgrp->parent) { | 
 | 		/* This is early initialization for the top cgroup */ | 
 | 		return &init_task_group.css; | 
 | 	} | 
 |  | 
 | 	parent = cgroup_tg(cgrp->parent); | 
 | 	tg = sched_create_group(parent); | 
 | 	if (IS_ERR(tg)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	return &tg->css; | 
 | } | 
 |  | 
 | static void | 
 | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | 
 | { | 
 | 	struct task_group *tg = cgroup_tg(cgrp); | 
 |  | 
 | 	sched_destroy_group(tg); | 
 | } | 
 |  | 
 | static int | 
 | cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | 
 | { | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) | 
 | 		return -EINVAL; | 
 | #else | 
 | 	/* We don't support RT-tasks being in separate groups */ | 
 | 	if (tsk->sched_class != &fair_sched_class) | 
 | 		return -EINVAL; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 
 | 		      struct task_struct *tsk, bool threadgroup) | 
 | { | 
 | 	int retval = cpu_cgroup_can_attach_task(cgrp, tsk); | 
 | 	if (retval) | 
 | 		return retval; | 
 | 	if (threadgroup) { | 
 | 		struct task_struct *c; | 
 | 		rcu_read_lock(); | 
 | 		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | 
 | 			retval = cpu_cgroup_can_attach_task(cgrp, c); | 
 | 			if (retval) { | 
 | 				rcu_read_unlock(); | 
 | 				return retval; | 
 | 			} | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 
 | 		  struct cgroup *old_cont, struct task_struct *tsk, | 
 | 		  bool threadgroup) | 
 | { | 
 | 	sched_move_task(tsk); | 
 | 	if (threadgroup) { | 
 | 		struct task_struct *c; | 
 | 		rcu_read_lock(); | 
 | 		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | 
 | 			sched_move_task(c); | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, | 
 | 				u64 shareval) | 
 | { | 
 | 	return sched_group_set_shares(cgroup_tg(cgrp), shareval); | 
 | } | 
 |  | 
 | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) | 
 | { | 
 | 	struct task_group *tg = cgroup_tg(cgrp); | 
 |  | 
 | 	return (u64) tg->shares; | 
 | } | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, | 
 | 				s64 val) | 
 | { | 
 | 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); | 
 | } | 
 |  | 
 | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) | 
 | { | 
 | 	return sched_group_rt_runtime(cgroup_tg(cgrp)); | 
 | } | 
 |  | 
 | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, | 
 | 		u64 rt_period_us) | 
 | { | 
 | 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); | 
 | } | 
 |  | 
 | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) | 
 | { | 
 | 	return sched_group_rt_period(cgroup_tg(cgrp)); | 
 | } | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | static struct cftype cpu_files[] = { | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	{ | 
 | 		.name = "shares", | 
 | 		.read_u64 = cpu_shares_read_u64, | 
 | 		.write_u64 = cpu_shares_write_u64, | 
 | 	}, | 
 | #endif | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	{ | 
 | 		.name = "rt_runtime_us", | 
 | 		.read_s64 = cpu_rt_runtime_read, | 
 | 		.write_s64 = cpu_rt_runtime_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "rt_period_us", | 
 | 		.read_u64 = cpu_rt_period_read_uint, | 
 | 		.write_u64 = cpu_rt_period_write_uint, | 
 | 	}, | 
 | #endif | 
 | }; | 
 |  | 
 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | 
 | { | 
 | 	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); | 
 | } | 
 |  | 
 | struct cgroup_subsys cpu_cgroup_subsys = { | 
 | 	.name		= "cpu", | 
 | 	.create		= cpu_cgroup_create, | 
 | 	.destroy	= cpu_cgroup_destroy, | 
 | 	.can_attach	= cpu_cgroup_can_attach, | 
 | 	.attach		= cpu_cgroup_attach, | 
 | 	.populate	= cpu_cgroup_populate, | 
 | 	.subsys_id	= cpu_cgroup_subsys_id, | 
 | 	.early_init	= 1, | 
 | }; | 
 |  | 
 | #endif	/* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_CGROUP_CPUACCT | 
 |  | 
 | /* | 
 |  * CPU accounting code for task groups. | 
 |  * | 
 |  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh | 
 |  * (balbir@in.ibm.com). | 
 |  */ | 
 |  | 
 | /* track cpu usage of a group of tasks and its child groups */ | 
 | struct cpuacct { | 
 | 	struct cgroup_subsys_state css; | 
 | 	/* cpuusage holds pointer to a u64-type object on every cpu */ | 
 | 	u64 __percpu *cpuusage; | 
 | 	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; | 
 | 	struct cpuacct *parent; | 
 | }; | 
 |  | 
 | struct cgroup_subsys cpuacct_subsys; | 
 |  | 
 | /* return cpu accounting group corresponding to this container */ | 
 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) | 
 | { | 
 | 	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), | 
 | 			    struct cpuacct, css); | 
 | } | 
 |  | 
 | /* return cpu accounting group to which this task belongs */ | 
 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | 
 | { | 
 | 	return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | 
 | 			    struct cpuacct, css); | 
 | } | 
 |  | 
 | /* create a new cpu accounting group */ | 
 | static struct cgroup_subsys_state *cpuacct_create( | 
 | 	struct cgroup_subsys *ss, struct cgroup *cgrp) | 
 | { | 
 | 	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); | 
 | 	int i; | 
 |  | 
 | 	if (!ca) | 
 | 		goto out; | 
 |  | 
 | 	ca->cpuusage = alloc_percpu(u64); | 
 | 	if (!ca->cpuusage) | 
 | 		goto out_free_ca; | 
 |  | 
 | 	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) | 
 | 		if (percpu_counter_init(&ca->cpustat[i], 0)) | 
 | 			goto out_free_counters; | 
 |  | 
 | 	if (cgrp->parent) | 
 | 		ca->parent = cgroup_ca(cgrp->parent); | 
 |  | 
 | 	return &ca->css; | 
 |  | 
 | out_free_counters: | 
 | 	while (--i >= 0) | 
 | 		percpu_counter_destroy(&ca->cpustat[i]); | 
 | 	free_percpu(ca->cpuusage); | 
 | out_free_ca: | 
 | 	kfree(ca); | 
 | out: | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | /* destroy an existing cpu accounting group */ | 
 | static void | 
 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | 
 | { | 
 | 	struct cpuacct *ca = cgroup_ca(cgrp); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) | 
 | 		percpu_counter_destroy(&ca->cpustat[i]); | 
 | 	free_percpu(ca->cpuusage); | 
 | 	kfree(ca); | 
 | } | 
 |  | 
 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | 
 | { | 
 | 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | 
 | 	u64 data; | 
 |  | 
 | #ifndef CONFIG_64BIT | 
 | 	/* | 
 | 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms. | 
 | 	 */ | 
 | 	raw_spin_lock_irq(&cpu_rq(cpu)->lock); | 
 | 	data = *cpuusage; | 
 | 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock); | 
 | #else | 
 | 	data = *cpuusage; | 
 | #endif | 
 |  | 
 | 	return data; | 
 | } | 
 |  | 
 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | 
 | { | 
 | 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | 
 |  | 
 | #ifndef CONFIG_64BIT | 
 | 	/* | 
 | 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms. | 
 | 	 */ | 
 | 	raw_spin_lock_irq(&cpu_rq(cpu)->lock); | 
 | 	*cpuusage = val; | 
 | 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock); | 
 | #else | 
 | 	*cpuusage = val; | 
 | #endif | 
 | } | 
 |  | 
 | /* return total cpu usage (in nanoseconds) of a group */ | 
 | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) | 
 | { | 
 | 	struct cpuacct *ca = cgroup_ca(cgrp); | 
 | 	u64 totalcpuusage = 0; | 
 | 	int i; | 
 |  | 
 | 	for_each_present_cpu(i) | 
 | 		totalcpuusage += cpuacct_cpuusage_read(ca, i); | 
 |  | 
 | 	return totalcpuusage; | 
 | } | 
 |  | 
 | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, | 
 | 								u64 reset) | 
 | { | 
 | 	struct cpuacct *ca = cgroup_ca(cgrp); | 
 | 	int err = 0; | 
 | 	int i; | 
 |  | 
 | 	if (reset) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	for_each_present_cpu(i) | 
 | 		cpuacct_cpuusage_write(ca, i, 0); | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, | 
 | 				   struct seq_file *m) | 
 | { | 
 | 	struct cpuacct *ca = cgroup_ca(cgroup); | 
 | 	u64 percpu; | 
 | 	int i; | 
 |  | 
 | 	for_each_present_cpu(i) { | 
 | 		percpu = cpuacct_cpuusage_read(ca, i); | 
 | 		seq_printf(m, "%llu ", (unsigned long long) percpu); | 
 | 	} | 
 | 	seq_printf(m, "\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const char *cpuacct_stat_desc[] = { | 
 | 	[CPUACCT_STAT_USER] = "user", | 
 | 	[CPUACCT_STAT_SYSTEM] = "system", | 
 | }; | 
 |  | 
 | static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, | 
 | 		struct cgroup_map_cb *cb) | 
 | { | 
 | 	struct cpuacct *ca = cgroup_ca(cgrp); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { | 
 | 		s64 val = percpu_counter_read(&ca->cpustat[i]); | 
 | 		val = cputime64_to_clock_t(val); | 
 | 		cb->fill(cb, cpuacct_stat_desc[i], val); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct cftype files[] = { | 
 | 	{ | 
 | 		.name = "usage", | 
 | 		.read_u64 = cpuusage_read, | 
 | 		.write_u64 = cpuusage_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "usage_percpu", | 
 | 		.read_seq_string = cpuacct_percpu_seq_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "stat", | 
 | 		.read_map = cpuacct_stats_show, | 
 | 	}, | 
 | }; | 
 |  | 
 | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) | 
 | { | 
 | 	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); | 
 | } | 
 |  | 
 | /* | 
 |  * charge this task's execution time to its accounting group. | 
 |  * | 
 |  * called with rq->lock held. | 
 |  */ | 
 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | 
 | { | 
 | 	struct cpuacct *ca; | 
 | 	int cpu; | 
 |  | 
 | 	if (unlikely(!cpuacct_subsys.active)) | 
 | 		return; | 
 |  | 
 | 	cpu = task_cpu(tsk); | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	ca = task_ca(tsk); | 
 |  | 
 | 	for (; ca; ca = ca->parent) { | 
 | 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | 
 | 		*cpuusage += cputime; | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large | 
 |  * in cputime_t units. As a result, cpuacct_update_stats calls | 
 |  * percpu_counter_add with values large enough to always overflow the | 
 |  * per cpu batch limit causing bad SMP scalability. | 
 |  * | 
 |  * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we | 
 |  * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled | 
 |  * and enabled. We cap it at INT_MAX which is the largest allowed batch value. | 
 |  */ | 
 | #ifdef CONFIG_SMP | 
 | #define CPUACCT_BATCH	\ | 
 | 	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) | 
 | #else | 
 | #define CPUACCT_BATCH	0 | 
 | #endif | 
 |  | 
 | /* | 
 |  * Charge the system/user time to the task's accounting group. | 
 |  */ | 
 | static void cpuacct_update_stats(struct task_struct *tsk, | 
 | 		enum cpuacct_stat_index idx, cputime_t val) | 
 | { | 
 | 	struct cpuacct *ca; | 
 | 	int batch = CPUACCT_BATCH; | 
 |  | 
 | 	if (unlikely(!cpuacct_subsys.active)) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ca = task_ca(tsk); | 
 |  | 
 | 	do { | 
 | 		__percpu_counter_add(&ca->cpustat[idx], val, batch); | 
 | 		ca = ca->parent; | 
 | 	} while (ca); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | struct cgroup_subsys cpuacct_subsys = { | 
 | 	.name = "cpuacct", | 
 | 	.create = cpuacct_create, | 
 | 	.destroy = cpuacct_destroy, | 
 | 	.populate = cpuacct_populate, | 
 | 	.subsys_id = cpuacct_subsys_id, | 
 | }; | 
 | #endif	/* CONFIG_CGROUP_CPUACCT */ | 
 |  | 
 | #ifndef CONFIG_SMP | 
 |  | 
 | void synchronize_sched_expedited(void) | 
 | { | 
 | 	barrier(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | 
 |  | 
 | #else /* #ifndef CONFIG_SMP */ | 
 |  | 
 | static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0); | 
 |  | 
 | static int synchronize_sched_expedited_cpu_stop(void *data) | 
 | { | 
 | 	/* | 
 | 	 * There must be a full memory barrier on each affected CPU | 
 | 	 * between the time that try_stop_cpus() is called and the | 
 | 	 * time that it returns. | 
 | 	 * | 
 | 	 * In the current initial implementation of cpu_stop, the | 
 | 	 * above condition is already met when the control reaches | 
 | 	 * this point and the following smp_mb() is not strictly | 
 | 	 * necessary.  Do smp_mb() anyway for documentation and | 
 | 	 * robustness against future implementation changes. | 
 | 	 */ | 
 | 	smp_mb(); /* See above comment block. */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Wait for an rcu-sched grace period to elapse, but use "big hammer" | 
 |  * approach to force grace period to end quickly.  This consumes | 
 |  * significant time on all CPUs, and is thus not recommended for | 
 |  * any sort of common-case code. | 
 |  * | 
 |  * Note that it is illegal to call this function while holding any | 
 |  * lock that is acquired by a CPU-hotplug notifier.  Failing to | 
 |  * observe this restriction will result in deadlock. | 
 |  */ | 
 | void synchronize_sched_expedited(void) | 
 | { | 
 | 	int snap, trycount = 0; | 
 |  | 
 | 	smp_mb();  /* ensure prior mod happens before capturing snap. */ | 
 | 	snap = atomic_read(&synchronize_sched_expedited_count) + 1; | 
 | 	get_online_cpus(); | 
 | 	while (try_stop_cpus(cpu_online_mask, | 
 | 			     synchronize_sched_expedited_cpu_stop, | 
 | 			     NULL) == -EAGAIN) { | 
 | 		put_online_cpus(); | 
 | 		if (trycount++ < 10) | 
 | 			udelay(trycount * num_online_cpus()); | 
 | 		else { | 
 | 			synchronize_sched(); | 
 | 			return; | 
 | 		} | 
 | 		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) { | 
 | 			smp_mb(); /* ensure test happens before caller kfree */ | 
 | 			return; | 
 | 		} | 
 | 		get_online_cpus(); | 
 | 	} | 
 | 	atomic_inc(&synchronize_sched_expedited_count); | 
 | 	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */ | 
 | 	put_online_cpus(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | 
 |  | 
 | #endif /* #else #ifndef CONFIG_SMP */ |