| /* |
| * Aic94xx SAS/SATA driver SCB management. |
| * |
| * Copyright (C) 2005 Adaptec, Inc. All rights reserved. |
| * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> |
| * |
| * This file is licensed under GPLv2. |
| * |
| * This file is part of the aic94xx driver. |
| * |
| * The aic94xx driver is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; version 2 of the |
| * License. |
| * |
| * The aic94xx driver is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with the aic94xx driver; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| */ |
| |
| #include <linux/pci.h> |
| |
| #include "aic94xx.h" |
| #include "aic94xx_reg.h" |
| #include "aic94xx_hwi.h" |
| #include "aic94xx_seq.h" |
| |
| #include "aic94xx_dump.h" |
| |
| /* ---------- EMPTY SCB ---------- */ |
| |
| #define DL_PHY_MASK 7 |
| #define BYTES_DMAED 0 |
| #define PRIMITIVE_RECVD 0x08 |
| #define PHY_EVENT 0x10 |
| #define LINK_RESET_ERROR 0x18 |
| #define TIMER_EVENT 0x20 |
| #define REQ_TASK_ABORT 0xF0 |
| #define REQ_DEVICE_RESET 0xF1 |
| #define SIGNAL_NCQ_ERROR 0xF2 |
| #define CLEAR_NCQ_ERROR 0xF3 |
| |
| #define PHY_EVENTS_STATUS (CURRENT_LOSS_OF_SIGNAL | CURRENT_OOB_DONE \ |
| | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \ |
| | CURRENT_OOB_ERROR) |
| |
| static inline void get_lrate_mode(struct asd_phy *phy, u8 oob_mode) |
| { |
| struct sas_phy *sas_phy = phy->sas_phy.phy; |
| |
| switch (oob_mode & 7) { |
| case PHY_SPEED_60: |
| /* FIXME: sas transport class doesn't have this */ |
| phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS; |
| phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS; |
| break; |
| case PHY_SPEED_30: |
| phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS; |
| phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS; |
| break; |
| case PHY_SPEED_15: |
| phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS; |
| phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS; |
| break; |
| } |
| sas_phy->negotiated_linkrate = phy->sas_phy.linkrate; |
| sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS; |
| sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; |
| sas_phy->maximum_linkrate = phy->phy_desc->max_sas_lrate; |
| sas_phy->minimum_linkrate = phy->phy_desc->min_sas_lrate; |
| |
| if (oob_mode & SAS_MODE) |
| phy->sas_phy.oob_mode = SAS_OOB_MODE; |
| else if (oob_mode & SATA_MODE) |
| phy->sas_phy.oob_mode = SATA_OOB_MODE; |
| } |
| |
| static inline void asd_phy_event_tasklet(struct asd_ascb *ascb, |
| struct done_list_struct *dl) |
| { |
| struct asd_ha_struct *asd_ha = ascb->ha; |
| struct sas_ha_struct *sas_ha = &asd_ha->sas_ha; |
| int phy_id = dl->status_block[0] & DL_PHY_MASK; |
| struct asd_phy *phy = &asd_ha->phys[phy_id]; |
| |
| u8 oob_status = dl->status_block[1] & PHY_EVENTS_STATUS; |
| u8 oob_mode = dl->status_block[2]; |
| |
| switch (oob_status) { |
| case CURRENT_LOSS_OF_SIGNAL: |
| /* directly attached device was removed */ |
| ASD_DPRINTK("phy%d: device unplugged\n", phy_id); |
| asd_turn_led(asd_ha, phy_id, 0); |
| sas_phy_disconnected(&phy->sas_phy); |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL); |
| break; |
| case CURRENT_OOB_DONE: |
| /* hot plugged device */ |
| asd_turn_led(asd_ha, phy_id, 1); |
| get_lrate_mode(phy, oob_mode); |
| ASD_DPRINTK("phy%d device plugged: lrate:0x%x, proto:0x%x\n", |
| phy_id, phy->sas_phy.linkrate, phy->sas_phy.iproto); |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE); |
| break; |
| case CURRENT_SPINUP_HOLD: |
| /* hot plug SATA, no COMWAKE sent */ |
| asd_turn_led(asd_ha, phy_id, 1); |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD); |
| break; |
| case CURRENT_GTO_TIMEOUT: |
| case CURRENT_OOB_ERROR: |
| ASD_DPRINTK("phy%d error while OOB: oob status:0x%x\n", phy_id, |
| dl->status_block[1]); |
| asd_turn_led(asd_ha, phy_id, 0); |
| sas_phy_disconnected(&phy->sas_phy); |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR); |
| break; |
| } |
| } |
| |
| /* If phys are enabled sparsely, this will do the right thing. */ |
| static inline unsigned ord_phy(struct asd_ha_struct *asd_ha, |
| struct asd_phy *phy) |
| { |
| u8 enabled_mask = asd_ha->hw_prof.enabled_phys; |
| int i, k = 0; |
| |
| for_each_phy(enabled_mask, enabled_mask, i) { |
| if (&asd_ha->phys[i] == phy) |
| return k; |
| k++; |
| } |
| return 0; |
| } |
| |
| /** |
| * asd_get_attached_sas_addr -- extract/generate attached SAS address |
| * phy: pointer to asd_phy |
| * sas_addr: pointer to buffer where the SAS address is to be written |
| * |
| * This function extracts the SAS address from an IDENTIFY frame |
| * received. If OOB is SATA, then a SAS address is generated from the |
| * HA tables. |
| * |
| * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame |
| * buffer. |
| */ |
| static inline void asd_get_attached_sas_addr(struct asd_phy *phy, u8 *sas_addr) |
| { |
| if (phy->sas_phy.frame_rcvd[0] == 0x34 |
| && phy->sas_phy.oob_mode == SATA_OOB_MODE) { |
| struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha; |
| /* FIS device-to-host */ |
| u64 addr = be64_to_cpu(*(__be64 *)phy->phy_desc->sas_addr); |
| |
| addr += asd_ha->hw_prof.sata_name_base + ord_phy(asd_ha, phy); |
| *(__be64 *)sas_addr = cpu_to_be64(addr); |
| } else { |
| struct sas_identify_frame *idframe = |
| (void *) phy->sas_phy.frame_rcvd; |
| memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE); |
| } |
| } |
| |
| static void asd_form_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy) |
| { |
| int i; |
| struct asd_port *free_port = NULL; |
| struct asd_port *port; |
| struct asd_sas_phy *sas_phy = &phy->sas_phy; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&asd_ha->asd_ports_lock, flags); |
| if (!phy->asd_port) { |
| for (i = 0; i < ASD_MAX_PHYS; i++) { |
| port = &asd_ha->asd_ports[i]; |
| |
| /* Check for wide port */ |
| if (port->num_phys > 0 && |
| memcmp(port->sas_addr, sas_phy->sas_addr, |
| SAS_ADDR_SIZE) == 0 && |
| memcmp(port->attached_sas_addr, |
| sas_phy->attached_sas_addr, |
| SAS_ADDR_SIZE) == 0) { |
| break; |
| } |
| |
| /* Find a free port */ |
| if (port->num_phys == 0 && free_port == NULL) { |
| free_port = port; |
| } |
| } |
| |
| /* Use a free port if this doesn't form a wide port */ |
| if (i >= ASD_MAX_PHYS) { |
| port = free_port; |
| BUG_ON(!port); |
| memcpy(port->sas_addr, sas_phy->sas_addr, |
| SAS_ADDR_SIZE); |
| memcpy(port->attached_sas_addr, |
| sas_phy->attached_sas_addr, |
| SAS_ADDR_SIZE); |
| } |
| port->num_phys++; |
| port->phy_mask |= (1U << sas_phy->id); |
| phy->asd_port = port; |
| } |
| ASD_DPRINTK("%s: updating phy_mask 0x%x for phy%d\n", |
| __FUNCTION__, phy->asd_port->phy_mask, sas_phy->id); |
| asd_update_port_links(asd_ha, phy); |
| spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags); |
| } |
| |
| static void asd_deform_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy) |
| { |
| struct asd_port *port = phy->asd_port; |
| struct asd_sas_phy *sas_phy = &phy->sas_phy; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&asd_ha->asd_ports_lock, flags); |
| if (port) { |
| port->num_phys--; |
| port->phy_mask &= ~(1U << sas_phy->id); |
| phy->asd_port = NULL; |
| } |
| spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags); |
| } |
| |
| static inline void asd_bytes_dmaed_tasklet(struct asd_ascb *ascb, |
| struct done_list_struct *dl, |
| int edb_id, int phy_id) |
| { |
| unsigned long flags; |
| int edb_el = edb_id + ascb->edb_index; |
| struct asd_dma_tok *edb = ascb->ha->seq.edb_arr[edb_el]; |
| struct asd_phy *phy = &ascb->ha->phys[phy_id]; |
| struct sas_ha_struct *sas_ha = phy->sas_phy.ha; |
| u16 size = ((dl->status_block[3] & 7) << 8) | dl->status_block[2]; |
| |
| size = min(size, (u16) sizeof(phy->frame_rcvd)); |
| |
| spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); |
| memcpy(phy->sas_phy.frame_rcvd, edb->vaddr, size); |
| phy->sas_phy.frame_rcvd_size = size; |
| asd_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); |
| spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); |
| asd_dump_frame_rcvd(phy, dl); |
| asd_form_port(ascb->ha, phy); |
| sas_ha->notify_port_event(&phy->sas_phy, PORTE_BYTES_DMAED); |
| } |
| |
| static inline void asd_link_reset_err_tasklet(struct asd_ascb *ascb, |
| struct done_list_struct *dl, |
| int phy_id) |
| { |
| struct asd_ha_struct *asd_ha = ascb->ha; |
| struct sas_ha_struct *sas_ha = &asd_ha->sas_ha; |
| struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; |
| struct asd_phy *phy = &asd_ha->phys[phy_id]; |
| u8 lr_error = dl->status_block[1]; |
| u8 retries_left = dl->status_block[2]; |
| |
| switch (lr_error) { |
| case 0: |
| ASD_DPRINTK("phy%d: Receive ID timer expired\n", phy_id); |
| break; |
| case 1: |
| ASD_DPRINTK("phy%d: Loss of signal\n", phy_id); |
| break; |
| case 2: |
| ASD_DPRINTK("phy%d: Loss of dword sync\n", phy_id); |
| break; |
| case 3: |
| ASD_DPRINTK("phy%d: Receive FIS timeout\n", phy_id); |
| break; |
| default: |
| ASD_DPRINTK("phy%d: unknown link reset error code: 0x%x\n", |
| phy_id, lr_error); |
| break; |
| } |
| |
| asd_turn_led(asd_ha, phy_id, 0); |
| sas_phy_disconnected(sas_phy); |
| asd_deform_port(asd_ha, phy); |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| |
| if (retries_left == 0) { |
| int num = 1; |
| struct asd_ascb *cp = asd_ascb_alloc_list(ascb->ha, &num, |
| GFP_ATOMIC); |
| if (!cp) { |
| asd_printk("%s: out of memory\n", __FUNCTION__); |
| goto out; |
| } |
| ASD_DPRINTK("phy%d: retries:0 performing link reset seq\n", |
| phy_id); |
| asd_build_control_phy(cp, phy_id, ENABLE_PHY); |
| if (asd_post_ascb_list(ascb->ha, cp, 1) != 0) |
| asd_ascb_free(cp); |
| } |
| out: |
| ; |
| } |
| |
| static inline void asd_primitive_rcvd_tasklet(struct asd_ascb *ascb, |
| struct done_list_struct *dl, |
| int phy_id) |
| { |
| unsigned long flags; |
| struct sas_ha_struct *sas_ha = &ascb->ha->sas_ha; |
| struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; |
| struct asd_ha_struct *asd_ha = ascb->ha; |
| struct asd_phy *phy = &asd_ha->phys[phy_id]; |
| u8 reg = dl->status_block[1]; |
| u32 cont = dl->status_block[2] << ((reg & 3)*8); |
| |
| reg &= ~3; |
| switch (reg) { |
| case LmPRMSTAT0BYTE0: |
| switch (cont) { |
| case LmBROADCH: |
| case LmBROADRVCH0: |
| case LmBROADRVCH1: |
| case LmBROADSES: |
| ASD_DPRINTK("phy%d: BROADCAST change received:%d\n", |
| phy_id, cont); |
| spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); |
| sas_phy->sas_prim = ffs(cont); |
| spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); |
| sas_ha->notify_port_event(sas_phy,PORTE_BROADCAST_RCVD); |
| break; |
| |
| case LmUNKNOWNP: |
| ASD_DPRINTK("phy%d: unknown BREAK\n", phy_id); |
| break; |
| |
| default: |
| ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n", |
| phy_id, reg, cont); |
| break; |
| } |
| break; |
| case LmPRMSTAT1BYTE0: |
| switch (cont) { |
| case LmHARDRST: |
| ASD_DPRINTK("phy%d: HARD_RESET primitive rcvd\n", |
| phy_id); |
| /* The sequencer disables all phys on that port. |
| * We have to re-enable the phys ourselves. */ |
| asd_deform_port(asd_ha, phy); |
| sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET); |
| break; |
| |
| default: |
| ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n", |
| phy_id, reg, cont); |
| break; |
| } |
| break; |
| default: |
| ASD_DPRINTK("unknown primitive register:0x%x\n", |
| dl->status_block[1]); |
| break; |
| } |
| } |
| |
| /** |
| * asd_invalidate_edb -- invalidate an EDB and if necessary post the ESCB |
| * @ascb: pointer to Empty SCB |
| * @edb_id: index [0,6] to the empty data buffer which is to be invalidated |
| * |
| * After an EDB has been invalidated, if all EDBs in this ESCB have been |
| * invalidated, the ESCB is posted back to the sequencer. |
| * Context is tasklet/IRQ. |
| */ |
| void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id) |
| { |
| struct asd_seq_data *seq = &ascb->ha->seq; |
| struct empty_scb *escb = &ascb->scb->escb; |
| struct sg_el *eb = &escb->eb[edb_id]; |
| struct asd_dma_tok *edb = seq->edb_arr[ascb->edb_index + edb_id]; |
| |
| memset(edb->vaddr, 0, ASD_EDB_SIZE); |
| eb->flags |= ELEMENT_NOT_VALID; |
| escb->num_valid--; |
| |
| if (escb->num_valid == 0) { |
| int i; |
| /* ASD_DPRINTK("reposting escb: vaddr: 0x%p, " |
| "dma_handle: 0x%08llx, next: 0x%08llx, " |
| "index:%d, opcode:0x%02x\n", |
| ascb->dma_scb.vaddr, |
| (u64)ascb->dma_scb.dma_handle, |
| le64_to_cpu(ascb->scb->header.next_scb), |
| le16_to_cpu(ascb->scb->header.index), |
| ascb->scb->header.opcode); |
| */ |
| escb->num_valid = ASD_EDBS_PER_SCB; |
| for (i = 0; i < ASD_EDBS_PER_SCB; i++) |
| escb->eb[i].flags = 0; |
| if (!list_empty(&ascb->list)) |
| list_del_init(&ascb->list); |
| i = asd_post_escb_list(ascb->ha, ascb, 1); |
| if (i) |
| asd_printk("couldn't post escb, err:%d\n", i); |
| } |
| } |
| |
| static void escb_tasklet_complete(struct asd_ascb *ascb, |
| struct done_list_struct *dl) |
| { |
| struct asd_ha_struct *asd_ha = ascb->ha; |
| struct sas_ha_struct *sas_ha = &asd_ha->sas_ha; |
| int edb = (dl->opcode & DL_PHY_MASK) - 1; /* [0xc1,0xc7] -> [0,6] */ |
| u8 sb_opcode = dl->status_block[0]; |
| int phy_id = sb_opcode & DL_PHY_MASK; |
| struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; |
| struct asd_phy *phy = &asd_ha->phys[phy_id]; |
| |
| if (edb > 6 || edb < 0) { |
| ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n", |
| edb, dl->opcode); |
| ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n", |
| sb_opcode, phy_id); |
| ASD_DPRINTK("escb: vaddr: 0x%p, " |
| "dma_handle: 0x%llx, next: 0x%llx, " |
| "index:%d, opcode:0x%02x\n", |
| ascb->dma_scb.vaddr, |
| (unsigned long long)ascb->dma_scb.dma_handle, |
| (unsigned long long) |
| le64_to_cpu(ascb->scb->header.next_scb), |
| le16_to_cpu(ascb->scb->header.index), |
| ascb->scb->header.opcode); |
| } |
| |
| sb_opcode &= ~DL_PHY_MASK; |
| |
| switch (sb_opcode) { |
| case BYTES_DMAED: |
| ASD_DPRINTK("%s: phy%d: BYTES_DMAED\n", __FUNCTION__, phy_id); |
| asd_bytes_dmaed_tasklet(ascb, dl, edb, phy_id); |
| break; |
| case PRIMITIVE_RECVD: |
| ASD_DPRINTK("%s: phy%d: PRIMITIVE_RECVD\n", __FUNCTION__, |
| phy_id); |
| asd_primitive_rcvd_tasklet(ascb, dl, phy_id); |
| break; |
| case PHY_EVENT: |
| ASD_DPRINTK("%s: phy%d: PHY_EVENT\n", __FUNCTION__, phy_id); |
| asd_phy_event_tasklet(ascb, dl); |
| break; |
| case LINK_RESET_ERROR: |
| ASD_DPRINTK("%s: phy%d: LINK_RESET_ERROR\n", __FUNCTION__, |
| phy_id); |
| asd_link_reset_err_tasklet(ascb, dl, phy_id); |
| break; |
| case TIMER_EVENT: |
| ASD_DPRINTK("%s: phy%d: TIMER_EVENT, lost dw sync\n", |
| __FUNCTION__, phy_id); |
| asd_turn_led(asd_ha, phy_id, 0); |
| /* the device is gone */ |
| sas_phy_disconnected(sas_phy); |
| asd_deform_port(asd_ha, phy); |
| sas_ha->notify_port_event(sas_phy, PORTE_TIMER_EVENT); |
| break; |
| case REQ_TASK_ABORT: |
| ASD_DPRINTK("%s: phy%d: REQ_TASK_ABORT\n", __FUNCTION__, |
| phy_id); |
| break; |
| case REQ_DEVICE_RESET: |
| ASD_DPRINTK("%s: phy%d: REQ_DEVICE_RESET\n", __FUNCTION__, |
| phy_id); |
| break; |
| case SIGNAL_NCQ_ERROR: |
| ASD_DPRINTK("%s: phy%d: SIGNAL_NCQ_ERROR\n", __FUNCTION__, |
| phy_id); |
| break; |
| case CLEAR_NCQ_ERROR: |
| ASD_DPRINTK("%s: phy%d: CLEAR_NCQ_ERROR\n", __FUNCTION__, |
| phy_id); |
| break; |
| default: |
| ASD_DPRINTK("%s: phy%d: unknown event:0x%x\n", __FUNCTION__, |
| phy_id, sb_opcode); |
| ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n", |
| edb, dl->opcode); |
| ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n", |
| sb_opcode, phy_id); |
| ASD_DPRINTK("escb: vaddr: 0x%p, " |
| "dma_handle: 0x%llx, next: 0x%llx, " |
| "index:%d, opcode:0x%02x\n", |
| ascb->dma_scb.vaddr, |
| (unsigned long long)ascb->dma_scb.dma_handle, |
| (unsigned long long) |
| le64_to_cpu(ascb->scb->header.next_scb), |
| le16_to_cpu(ascb->scb->header.index), |
| ascb->scb->header.opcode); |
| |
| break; |
| } |
| |
| asd_invalidate_edb(ascb, edb); |
| } |
| |
| int asd_init_post_escbs(struct asd_ha_struct *asd_ha) |
| { |
| struct asd_seq_data *seq = &asd_ha->seq; |
| int i; |
| |
| for (i = 0; i < seq->num_escbs; i++) |
| seq->escb_arr[i]->tasklet_complete = escb_tasklet_complete; |
| |
| ASD_DPRINTK("posting %d escbs\n", i); |
| return asd_post_escb_list(asd_ha, seq->escb_arr[0], seq->num_escbs); |
| } |
| |
| /* ---------- CONTROL PHY ---------- */ |
| |
| #define CONTROL_PHY_STATUS (CURRENT_DEVICE_PRESENT | CURRENT_OOB_DONE \ |
| | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \ |
| | CURRENT_OOB_ERROR) |
| |
| /** |
| * control_phy_tasklet_complete -- tasklet complete for CONTROL PHY ascb |
| * @ascb: pointer to an ascb |
| * @dl: pointer to the done list entry |
| * |
| * This function completes a CONTROL PHY scb and frees the ascb. |
| * A note on LEDs: |
| * - an LED blinks if there is IO though it, |
| * - if a device is connected to the LED, it is lit, |
| * - if no device is connected to the LED, is is dimmed (off). |
| */ |
| static void control_phy_tasklet_complete(struct asd_ascb *ascb, |
| struct done_list_struct *dl) |
| { |
| struct asd_ha_struct *asd_ha = ascb->ha; |
| struct scb *scb = ascb->scb; |
| struct control_phy *control_phy = &scb->control_phy; |
| u8 phy_id = control_phy->phy_id; |
| struct asd_phy *phy = &ascb->ha->phys[phy_id]; |
| |
| u8 status = dl->status_block[0]; |
| u8 oob_status = dl->status_block[1]; |
| u8 oob_mode = dl->status_block[2]; |
| /* u8 oob_signals= dl->status_block[3]; */ |
| |
| if (status != 0) { |
| ASD_DPRINTK("%s: phy%d status block opcode:0x%x\n", |
| __FUNCTION__, phy_id, status); |
| goto out; |
| } |
| |
| switch (control_phy->sub_func) { |
| case DISABLE_PHY: |
| asd_ha->hw_prof.enabled_phys &= ~(1 << phy_id); |
| asd_turn_led(asd_ha, phy_id, 0); |
| asd_control_led(asd_ha, phy_id, 0); |
| ASD_DPRINTK("%s: disable phy%d\n", __FUNCTION__, phy_id); |
| break; |
| |
| case ENABLE_PHY: |
| asd_control_led(asd_ha, phy_id, 1); |
| if (oob_status & CURRENT_OOB_DONE) { |
| asd_ha->hw_prof.enabled_phys |= (1 << phy_id); |
| get_lrate_mode(phy, oob_mode); |
| asd_turn_led(asd_ha, phy_id, 1); |
| ASD_DPRINTK("%s: phy%d, lrate:0x%x, proto:0x%x\n", |
| __FUNCTION__, phy_id,phy->sas_phy.linkrate, |
| phy->sas_phy.iproto); |
| } else if (oob_status & CURRENT_SPINUP_HOLD) { |
| asd_ha->hw_prof.enabled_phys |= (1 << phy_id); |
| asd_turn_led(asd_ha, phy_id, 1); |
| ASD_DPRINTK("%s: phy%d, spinup hold\n", __FUNCTION__, |
| phy_id); |
| } else if (oob_status & CURRENT_ERR_MASK) { |
| asd_turn_led(asd_ha, phy_id, 0); |
| ASD_DPRINTK("%s: phy%d: error: oob status:0x%02x\n", |
| __FUNCTION__, phy_id, oob_status); |
| } else if (oob_status & (CURRENT_HOT_PLUG_CNCT |
| | CURRENT_DEVICE_PRESENT)) { |
| asd_ha->hw_prof.enabled_phys |= (1 << phy_id); |
| asd_turn_led(asd_ha, phy_id, 1); |
| ASD_DPRINTK("%s: phy%d: hot plug or device present\n", |
| __FUNCTION__, phy_id); |
| } else { |
| asd_ha->hw_prof.enabled_phys |= (1 << phy_id); |
| asd_turn_led(asd_ha, phy_id, 0); |
| ASD_DPRINTK("%s: phy%d: no device present: " |
| "oob_status:0x%x\n", |
| __FUNCTION__, phy_id, oob_status); |
| } |
| break; |
| case RELEASE_SPINUP_HOLD: |
| case PHY_NO_OP: |
| case EXECUTE_HARD_RESET: |
| ASD_DPRINTK("%s: phy%d: sub_func:0x%x\n", __FUNCTION__, |
| phy_id, control_phy->sub_func); |
| /* XXX finish */ |
| break; |
| default: |
| ASD_DPRINTK("%s: phy%d: sub_func:0x%x?\n", __FUNCTION__, |
| phy_id, control_phy->sub_func); |
| break; |
| } |
| out: |
| asd_ascb_free(ascb); |
| } |
| |
| static inline void set_speed_mask(u8 *speed_mask, struct asd_phy_desc *pd) |
| { |
| /* disable all speeds, then enable defaults */ |
| *speed_mask = SAS_SPEED_60_DIS | SAS_SPEED_30_DIS | SAS_SPEED_15_DIS |
| | SATA_SPEED_30_DIS | SATA_SPEED_15_DIS; |
| |
| switch (pd->max_sas_lrate) { |
| case SAS_LINK_RATE_6_0_GBPS: |
| *speed_mask &= ~SAS_SPEED_60_DIS; |
| default: |
| case SAS_LINK_RATE_3_0_GBPS: |
| *speed_mask &= ~SAS_SPEED_30_DIS; |
| case SAS_LINK_RATE_1_5_GBPS: |
| *speed_mask &= ~SAS_SPEED_15_DIS; |
| } |
| |
| switch (pd->min_sas_lrate) { |
| case SAS_LINK_RATE_6_0_GBPS: |
| *speed_mask |= SAS_SPEED_30_DIS; |
| case SAS_LINK_RATE_3_0_GBPS: |
| *speed_mask |= SAS_SPEED_15_DIS; |
| default: |
| case SAS_LINK_RATE_1_5_GBPS: |
| /* nothing to do */ |
| ; |
| } |
| |
| switch (pd->max_sata_lrate) { |
| case SAS_LINK_RATE_3_0_GBPS: |
| *speed_mask &= ~SATA_SPEED_30_DIS; |
| default: |
| case SAS_LINK_RATE_1_5_GBPS: |
| *speed_mask &= ~SATA_SPEED_15_DIS; |
| } |
| |
| switch (pd->min_sata_lrate) { |
| case SAS_LINK_RATE_3_0_GBPS: |
| *speed_mask |= SATA_SPEED_15_DIS; |
| default: |
| case SAS_LINK_RATE_1_5_GBPS: |
| /* nothing to do */ |
| ; |
| } |
| } |
| |
| /** |
| * asd_build_control_phy -- build a CONTROL PHY SCB |
| * @ascb: pointer to an ascb |
| * @phy_id: phy id to control, integer |
| * @subfunc: subfunction, what to actually to do the phy |
| * |
| * This function builds a CONTROL PHY scb. No allocation of any kind |
| * is performed. @ascb is allocated with the list function. |
| * The caller can override the ascb->tasklet_complete to point |
| * to its own callback function. It must call asd_ascb_free() |
| * at its tasklet complete function. |
| * See the default implementation. |
| */ |
| void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc) |
| { |
| struct asd_phy *phy = &ascb->ha->phys[phy_id]; |
| struct scb *scb = ascb->scb; |
| struct control_phy *control_phy = &scb->control_phy; |
| |
| scb->header.opcode = CONTROL_PHY; |
| control_phy->phy_id = (u8) phy_id; |
| control_phy->sub_func = subfunc; |
| |
| switch (subfunc) { |
| case EXECUTE_HARD_RESET: /* 0x81 */ |
| case ENABLE_PHY: /* 0x01 */ |
| /* decide hot plug delay */ |
| control_phy->hot_plug_delay = HOTPLUG_DELAY_TIMEOUT; |
| |
| /* decide speed mask */ |
| set_speed_mask(&control_phy->speed_mask, phy->phy_desc); |
| |
| /* initiator port settings are in the hi nibble */ |
| if (phy->sas_phy.role == PHY_ROLE_INITIATOR) |
| control_phy->port_type = SAS_PROTO_ALL << 4; |
| else if (phy->sas_phy.role == PHY_ROLE_TARGET) |
| control_phy->port_type = SAS_PROTO_ALL; |
| else |
| control_phy->port_type = |
| (SAS_PROTO_ALL << 4) | SAS_PROTO_ALL; |
| |
| /* link reset retries, this should be nominal */ |
| control_phy->link_reset_retries = 10; |
| |
| case RELEASE_SPINUP_HOLD: /* 0x02 */ |
| /* decide the func_mask */ |
| control_phy->func_mask = FUNCTION_MASK_DEFAULT; |
| if (phy->phy_desc->flags & ASD_SATA_SPINUP_HOLD) |
| control_phy->func_mask &= ~SPINUP_HOLD_DIS; |
| else |
| control_phy->func_mask |= SPINUP_HOLD_DIS; |
| } |
| |
| control_phy->conn_handle = cpu_to_le16(0xFFFF); |
| |
| ascb->tasklet_complete = control_phy_tasklet_complete; |
| } |
| |
| /* ---------- INITIATE LINK ADM TASK ---------- */ |
| |
| static void link_adm_tasklet_complete(struct asd_ascb *ascb, |
| struct done_list_struct *dl) |
| { |
| u8 opcode = dl->opcode; |
| struct initiate_link_adm *link_adm = &ascb->scb->link_adm; |
| u8 phy_id = link_adm->phy_id; |
| |
| if (opcode != TC_NO_ERROR) { |
| asd_printk("phy%d: link adm task 0x%x completed with error " |
| "0x%x\n", phy_id, link_adm->sub_func, opcode); |
| } |
| ASD_DPRINTK("phy%d: link adm task 0x%x: 0x%x\n", |
| phy_id, link_adm->sub_func, opcode); |
| |
| asd_ascb_free(ascb); |
| } |
| |
| void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id, |
| u8 subfunc) |
| { |
| struct scb *scb = ascb->scb; |
| struct initiate_link_adm *link_adm = &scb->link_adm; |
| |
| scb->header.opcode = INITIATE_LINK_ADM_TASK; |
| |
| link_adm->phy_id = phy_id; |
| link_adm->sub_func = subfunc; |
| link_adm->conn_handle = cpu_to_le16(0xFFFF); |
| |
| ascb->tasklet_complete = link_adm_tasklet_complete; |
| } |
| |
| /* ---------- SCB timer ---------- */ |
| |
| /** |
| * asd_ascb_timedout -- called when a pending SCB's timer has expired |
| * @data: unsigned long, a pointer to the ascb in question |
| * |
| * This is the default timeout function which does the most necessary. |
| * Upper layers can implement their own timeout function, say to free |
| * resources they have with this SCB, and then call this one at the |
| * end of their timeout function. To do this, one should initialize |
| * the ascb->timer.{function, data, expires} prior to calling the post |
| * funcion. The timer is started by the post function. |
| */ |
| void asd_ascb_timedout(unsigned long data) |
| { |
| struct asd_ascb *ascb = (void *) data; |
| struct asd_seq_data *seq = &ascb->ha->seq; |
| unsigned long flags; |
| |
| ASD_DPRINTK("scb:0x%x timed out\n", ascb->scb->header.opcode); |
| |
| spin_lock_irqsave(&seq->pend_q_lock, flags); |
| seq->pending--; |
| list_del_init(&ascb->list); |
| spin_unlock_irqrestore(&seq->pend_q_lock, flags); |
| |
| asd_ascb_free(ascb); |
| } |
| |
| /* ---------- CONTROL PHY ---------- */ |
| |
| /* Given the spec value, return a driver value. */ |
| static const int phy_func_table[] = { |
| [PHY_FUNC_NOP] = PHY_NO_OP, |
| [PHY_FUNC_LINK_RESET] = ENABLE_PHY, |
| [PHY_FUNC_HARD_RESET] = EXECUTE_HARD_RESET, |
| [PHY_FUNC_DISABLE] = DISABLE_PHY, |
| [PHY_FUNC_RELEASE_SPINUP_HOLD] = RELEASE_SPINUP_HOLD, |
| }; |
| |
| int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func, void *arg) |
| { |
| struct asd_ha_struct *asd_ha = phy->ha->lldd_ha; |
| struct asd_phy_desc *pd = asd_ha->phys[phy->id].phy_desc; |
| struct asd_ascb *ascb; |
| struct sas_phy_linkrates *rates; |
| int res = 1; |
| |
| switch (func) { |
| case PHY_FUNC_CLEAR_ERROR_LOG: |
| return -ENOSYS; |
| case PHY_FUNC_SET_LINK_RATE: |
| rates = arg; |
| if (rates->minimum_linkrate) { |
| pd->min_sas_lrate = rates->minimum_linkrate; |
| pd->min_sata_lrate = rates->minimum_linkrate; |
| } |
| if (rates->maximum_linkrate) { |
| pd->max_sas_lrate = rates->maximum_linkrate; |
| pd->max_sata_lrate = rates->maximum_linkrate; |
| } |
| func = PHY_FUNC_LINK_RESET; |
| break; |
| default: |
| break; |
| } |
| |
| ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL); |
| if (!ascb) |
| return -ENOMEM; |
| |
| asd_build_control_phy(ascb, phy->id, phy_func_table[func]); |
| res = asd_post_ascb_list(asd_ha, ascb , 1); |
| if (res) |
| asd_ascb_free(ascb); |
| |
| return res; |
| } |