blob: d8fa276e368b4fc038b62a941191b3d25393b8f6 [file] [log] [blame]
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Toplevel file. Relies on dhd_linux.c to send commands to the dongle. */
#include <linux/kernel.h>
#include <linux/etherdevice.h>
#include <linux/module.h>
#include <net/cfg80211.h>
#include <net/netlink.h>
#include <brcmu_utils.h>
#include <defs.h>
#include <brcmu_wifi.h>
#include "dhd.h"
#include "dhd_dbg.h"
#include "tracepoint.h"
#include "fwil_types.h"
#include "p2p.h"
#include "btcoex.h"
#include "wl_cfg80211.h"
#include "fwil.h"
#define BRCMF_SCAN_IE_LEN_MAX 2048
#define BRCMF_PNO_VERSION 2
#define BRCMF_PNO_TIME 30
#define BRCMF_PNO_REPEAT 4
#define BRCMF_PNO_FREQ_EXPO_MAX 3
#define BRCMF_PNO_MAX_PFN_COUNT 16
#define BRCMF_PNO_ENABLE_ADAPTSCAN_BIT 6
#define BRCMF_PNO_HIDDEN_BIT 2
#define BRCMF_PNO_WPA_AUTH_ANY 0xFFFFFFFF
#define BRCMF_PNO_SCAN_COMPLETE 1
#define BRCMF_PNO_SCAN_INCOMPLETE 0
#define BRCMF_IFACE_MAX_CNT 3
#define WPA_OUI "\x00\x50\xF2" /* WPA OUI */
#define WPA_OUI_TYPE 1
#define RSN_OUI "\x00\x0F\xAC" /* RSN OUI */
#define WME_OUI_TYPE 2
#define WPS_OUI_TYPE 4
#define VS_IE_FIXED_HDR_LEN 6
#define WPA_IE_VERSION_LEN 2
#define WPA_IE_MIN_OUI_LEN 4
#define WPA_IE_SUITE_COUNT_LEN 2
#define WPA_CIPHER_NONE 0 /* None */
#define WPA_CIPHER_WEP_40 1 /* WEP (40-bit) */
#define WPA_CIPHER_TKIP 2 /* TKIP: default for WPA */
#define WPA_CIPHER_AES_CCM 4 /* AES (CCM) */
#define WPA_CIPHER_WEP_104 5 /* WEP (104-bit) */
#define RSN_AKM_NONE 0 /* None (IBSS) */
#define RSN_AKM_UNSPECIFIED 1 /* Over 802.1x */
#define RSN_AKM_PSK 2 /* Pre-shared Key */
#define RSN_CAP_LEN 2 /* Length of RSN capabilities */
#define RSN_CAP_PTK_REPLAY_CNTR_MASK 0x000C
#define VNDR_IE_CMD_LEN 4 /* length of the set command
* string :"add", "del" (+ NUL)
*/
#define VNDR_IE_COUNT_OFFSET 4
#define VNDR_IE_PKTFLAG_OFFSET 8
#define VNDR_IE_VSIE_OFFSET 12
#define VNDR_IE_HDR_SIZE 12
#define VNDR_IE_PARSE_LIMIT 5
#define DOT11_MGMT_HDR_LEN 24 /* d11 management header len */
#define DOT11_BCN_PRB_FIXED_LEN 12 /* beacon/probe fixed length */
#define BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS 320
#define BRCMF_SCAN_JOIN_PASSIVE_DWELL_TIME_MS 400
#define BRCMF_SCAN_JOIN_PROBE_INTERVAL_MS 20
#define BRCMF_ASSOC_PARAMS_FIXED_SIZE \
(sizeof(struct brcmf_assoc_params_le) - sizeof(u16))
static bool check_vif_up(struct brcmf_cfg80211_vif *vif)
{
if (!test_bit(BRCMF_VIF_STATUS_READY, &vif->sme_state)) {
brcmf_dbg(INFO, "device is not ready : status (%lu)\n",
vif->sme_state);
return false;
}
return true;
}
#define CHAN2G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _flags) { \
.band = IEEE80211_BAND_5GHZ, \
.center_freq = 5000 + (5 * (_channel)), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define RATE_TO_BASE100KBPS(rate) (((rate) * 10) / 2)
#define RATETAB_ENT(_rateid, _flags) \
{ \
.bitrate = RATE_TO_BASE100KBPS(_rateid), \
.hw_value = (_rateid), \
.flags = (_flags), \
}
static struct ieee80211_rate __wl_rates[] = {
RATETAB_ENT(BRCM_RATE_1M, 0),
RATETAB_ENT(BRCM_RATE_2M, IEEE80211_RATE_SHORT_PREAMBLE),
RATETAB_ENT(BRCM_RATE_5M5, IEEE80211_RATE_SHORT_PREAMBLE),
RATETAB_ENT(BRCM_RATE_11M, IEEE80211_RATE_SHORT_PREAMBLE),
RATETAB_ENT(BRCM_RATE_6M, 0),
RATETAB_ENT(BRCM_RATE_9M, 0),
RATETAB_ENT(BRCM_RATE_12M, 0),
RATETAB_ENT(BRCM_RATE_18M, 0),
RATETAB_ENT(BRCM_RATE_24M, 0),
RATETAB_ENT(BRCM_RATE_36M, 0),
RATETAB_ENT(BRCM_RATE_48M, 0),
RATETAB_ENT(BRCM_RATE_54M, 0),
};
#define wl_a_rates (__wl_rates + 4)
#define wl_a_rates_size 8
#define wl_g_rates (__wl_rates + 0)
#define wl_g_rates_size 12
static struct ieee80211_channel __wl_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static struct ieee80211_channel __wl_5ghz_a_channels[] = {
CHAN5G(34, 0), CHAN5G(36, 0),
CHAN5G(38, 0), CHAN5G(40, 0),
CHAN5G(42, 0), CHAN5G(44, 0),
CHAN5G(46, 0), CHAN5G(48, 0),
CHAN5G(52, 0), CHAN5G(56, 0),
CHAN5G(60, 0), CHAN5G(64, 0),
CHAN5G(100, 0), CHAN5G(104, 0),
CHAN5G(108, 0), CHAN5G(112, 0),
CHAN5G(116, 0), CHAN5G(120, 0),
CHAN5G(124, 0), CHAN5G(128, 0),
CHAN5G(132, 0), CHAN5G(136, 0),
CHAN5G(140, 0), CHAN5G(149, 0),
CHAN5G(153, 0), CHAN5G(157, 0),
CHAN5G(161, 0), CHAN5G(165, 0),
CHAN5G(184, 0), CHAN5G(188, 0),
CHAN5G(192, 0), CHAN5G(196, 0),
CHAN5G(200, 0), CHAN5G(204, 0),
CHAN5G(208, 0), CHAN5G(212, 0),
CHAN5G(216, 0),
};
static struct ieee80211_supported_band __wl_band_2ghz = {
.band = IEEE80211_BAND_2GHZ,
.channels = __wl_2ghz_channels,
.n_channels = ARRAY_SIZE(__wl_2ghz_channels),
.bitrates = wl_g_rates,
.n_bitrates = wl_g_rates_size,
.ht_cap = {IEEE80211_HT_CAP_SUP_WIDTH_20_40, true},
};
static struct ieee80211_supported_band __wl_band_5ghz_a = {
.band = IEEE80211_BAND_5GHZ,
.channels = __wl_5ghz_a_channels,
.n_channels = ARRAY_SIZE(__wl_5ghz_a_channels),
.bitrates = wl_a_rates,
.n_bitrates = wl_a_rates_size,
};
/* This is to override regulatory domains defined in cfg80211 module (reg.c)
* By default world regulatory domain defined in reg.c puts the flags
* NL80211_RRF_NO_IR for 5GHz channels (for * 36..48 and 149..165).
* With respect to these flags, wpa_supplicant doesn't * start p2p
* operations on 5GHz channels. All the changes in world regulatory
* domain are to be done here.
*/
static const struct ieee80211_regdomain brcmf_regdom = {
.n_reg_rules = 4,
.alpha2 = "99",
.reg_rules = {
/* IEEE 802.11b/g, channels 1..11 */
REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
/* If any */
/* IEEE 802.11 channel 14 - Only JP enables
* this and for 802.11b only
*/
REG_RULE(2484-10, 2484+10, 20, 6, 20, 0),
/* IEEE 802.11a, channel 36..64 */
REG_RULE(5150-10, 5350+10, 80, 6, 20, 0),
/* IEEE 802.11a, channel 100..165 */
REG_RULE(5470-10, 5850+10, 80, 6, 20, 0), }
};
static const u32 __wl_cipher_suites[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
WLAN_CIPHER_SUITE_AES_CMAC,
};
/* Vendor specific ie. id = 221, oui and type defines exact ie */
struct brcmf_vs_tlv {
u8 id;
u8 len;
u8 oui[3];
u8 oui_type;
};
struct parsed_vndr_ie_info {
u8 *ie_ptr;
u32 ie_len; /* total length including id & length field */
struct brcmf_vs_tlv vndrie;
};
struct parsed_vndr_ies {
u32 count;
struct parsed_vndr_ie_info ie_info[VNDR_IE_PARSE_LIMIT];
};
static int brcmf_roamoff;
module_param_named(roamoff, brcmf_roamoff, int, S_IRUSR);
MODULE_PARM_DESC(roamoff, "do not use internal roaming engine");
/* Quarter dBm units to mW
* Table starts at QDBM_OFFSET, so the first entry is mW for qdBm=153
* Table is offset so the last entry is largest mW value that fits in
* a u16.
*/
#define QDBM_OFFSET 153 /* Offset for first entry */
#define QDBM_TABLE_LEN 40 /* Table size */
/* Smallest mW value that will round up to the first table entry, QDBM_OFFSET.
* Value is ( mW(QDBM_OFFSET - 1) + mW(QDBM_OFFSET) ) / 2
*/
#define QDBM_TABLE_LOW_BOUND 6493 /* Low bound */
/* Largest mW value that will round down to the last table entry,
* QDBM_OFFSET + QDBM_TABLE_LEN-1.
* Value is ( mW(QDBM_OFFSET + QDBM_TABLE_LEN - 1) +
* mW(QDBM_OFFSET + QDBM_TABLE_LEN) ) / 2.
*/
#define QDBM_TABLE_HIGH_BOUND 64938 /* High bound */
static const u16 nqdBm_to_mW_map[QDBM_TABLE_LEN] = {
/* qdBm: +0 +1 +2 +3 +4 +5 +6 +7 */
/* 153: */ 6683, 7079, 7499, 7943, 8414, 8913, 9441, 10000,
/* 161: */ 10593, 11220, 11885, 12589, 13335, 14125, 14962, 15849,
/* 169: */ 16788, 17783, 18836, 19953, 21135, 22387, 23714, 25119,
/* 177: */ 26607, 28184, 29854, 31623, 33497, 35481, 37584, 39811,
/* 185: */ 42170, 44668, 47315, 50119, 53088, 56234, 59566, 63096
};
static u16 brcmf_qdbm_to_mw(u8 qdbm)
{
uint factor = 1;
int idx = qdbm - QDBM_OFFSET;
if (idx >= QDBM_TABLE_LEN)
/* clamp to max u16 mW value */
return 0xFFFF;
/* scale the qdBm index up to the range of the table 0-40
* where an offset of 40 qdBm equals a factor of 10 mW.
*/
while (idx < 0) {
idx += 40;
factor *= 10;
}
/* return the mW value scaled down to the correct factor of 10,
* adding in factor/2 to get proper rounding.
*/
return (nqdBm_to_mW_map[idx] + factor / 2) / factor;
}
static u8 brcmf_mw_to_qdbm(u16 mw)
{
u8 qdbm;
int offset;
uint mw_uint = mw;
uint boundary;
/* handle boundary case */
if (mw_uint <= 1)
return 0;
offset = QDBM_OFFSET;
/* move mw into the range of the table */
while (mw_uint < QDBM_TABLE_LOW_BOUND) {
mw_uint *= 10;
offset -= 40;
}
for (qdbm = 0; qdbm < QDBM_TABLE_LEN - 1; qdbm++) {
boundary = nqdBm_to_mW_map[qdbm] + (nqdBm_to_mW_map[qdbm + 1] -
nqdBm_to_mW_map[qdbm]) / 2;
if (mw_uint < boundary)
break;
}
qdbm += (u8) offset;
return qdbm;
}
static u16 chandef_to_chanspec(struct brcmu_d11inf *d11inf,
struct cfg80211_chan_def *ch)
{
struct brcmu_chan ch_inf;
s32 primary_offset;
brcmf_dbg(TRACE, "chandef: control %d center %d width %d\n",
ch->chan->center_freq, ch->center_freq1, ch->width);
ch_inf.chnum = ieee80211_frequency_to_channel(ch->center_freq1);
primary_offset = ch->center_freq1 - ch->chan->center_freq;
switch (ch->width) {
case NL80211_CHAN_WIDTH_20:
ch_inf.bw = BRCMU_CHAN_BW_20;
WARN_ON(primary_offset != 0);
break;
case NL80211_CHAN_WIDTH_40:
ch_inf.bw = BRCMU_CHAN_BW_40;
if (primary_offset < 0)
ch_inf.sb = BRCMU_CHAN_SB_U;
else
ch_inf.sb = BRCMU_CHAN_SB_L;
break;
case NL80211_CHAN_WIDTH_80:
ch_inf.bw = BRCMU_CHAN_BW_80;
if (primary_offset < 0) {
if (primary_offset < -CH_10MHZ_APART)
ch_inf.sb = BRCMU_CHAN_SB_UU;
else
ch_inf.sb = BRCMU_CHAN_SB_UL;
} else {
if (primary_offset > CH_10MHZ_APART)
ch_inf.sb = BRCMU_CHAN_SB_LL;
else
ch_inf.sb = BRCMU_CHAN_SB_LU;
}
break;
default:
WARN_ON_ONCE(1);
}
switch (ch->chan->band) {
case IEEE80211_BAND_2GHZ:
ch_inf.band = BRCMU_CHAN_BAND_2G;
break;
case IEEE80211_BAND_5GHZ:
ch_inf.band = BRCMU_CHAN_BAND_5G;
break;
default:
WARN_ON_ONCE(1);
}
d11inf->encchspec(&ch_inf);
return ch_inf.chspec;
}
u16 channel_to_chanspec(struct brcmu_d11inf *d11inf,
struct ieee80211_channel *ch)
{
struct brcmu_chan ch_inf;
ch_inf.chnum = ieee80211_frequency_to_channel(ch->center_freq);
ch_inf.bw = BRCMU_CHAN_BW_20;
d11inf->encchspec(&ch_inf);
return ch_inf.chspec;
}
/* Traverse a string of 1-byte tag/1-byte length/variable-length value
* triples, returning a pointer to the substring whose first element
* matches tag
*/
const struct brcmf_tlv *
brcmf_parse_tlvs(const void *buf, int buflen, uint key)
{
const struct brcmf_tlv *elt = buf;
int totlen = buflen;
/* find tagged parameter */
while (totlen >= TLV_HDR_LEN) {
int len = elt->len;
/* validate remaining totlen */
if ((elt->id == key) && (totlen >= (len + TLV_HDR_LEN)))
return elt;
elt = (struct brcmf_tlv *)((u8 *)elt + (len + TLV_HDR_LEN));
totlen -= (len + TLV_HDR_LEN);
}
return NULL;
}
/* Is any of the tlvs the expected entry? If
* not update the tlvs buffer pointer/length.
*/
static bool
brcmf_tlv_has_ie(const u8 *ie, const u8 **tlvs, u32 *tlvs_len,
const u8 *oui, u32 oui_len, u8 type)
{
/* If the contents match the OUI and the type */
if (ie[TLV_LEN_OFF] >= oui_len + 1 &&
!memcmp(&ie[TLV_BODY_OFF], oui, oui_len) &&
type == ie[TLV_BODY_OFF + oui_len]) {
return true;
}
if (tlvs == NULL)
return false;
/* point to the next ie */
ie += ie[TLV_LEN_OFF] + TLV_HDR_LEN;
/* calculate the length of the rest of the buffer */
*tlvs_len -= (int)(ie - *tlvs);
/* update the pointer to the start of the buffer */
*tlvs = ie;
return false;
}
static struct brcmf_vs_tlv *
brcmf_find_wpaie(const u8 *parse, u32 len)
{
const struct brcmf_tlv *ie;
while ((ie = brcmf_parse_tlvs(parse, len, WLAN_EID_VENDOR_SPECIFIC))) {
if (brcmf_tlv_has_ie((const u8 *)ie, &parse, &len,
WPA_OUI, TLV_OUI_LEN, WPA_OUI_TYPE))
return (struct brcmf_vs_tlv *)ie;
}
return NULL;
}
static struct brcmf_vs_tlv *
brcmf_find_wpsie(const u8 *parse, u32 len)
{
const struct brcmf_tlv *ie;
while ((ie = brcmf_parse_tlvs(parse, len, WLAN_EID_VENDOR_SPECIFIC))) {
if (brcmf_tlv_has_ie((u8 *)ie, &parse, &len,
WPA_OUI, TLV_OUI_LEN, WPS_OUI_TYPE))
return (struct brcmf_vs_tlv *)ie;
}
return NULL;
}
static void convert_key_from_CPU(struct brcmf_wsec_key *key,
struct brcmf_wsec_key_le *key_le)
{
key_le->index = cpu_to_le32(key->index);
key_le->len = cpu_to_le32(key->len);
key_le->algo = cpu_to_le32(key->algo);
key_le->flags = cpu_to_le32(key->flags);
key_le->rxiv.hi = cpu_to_le32(key->rxiv.hi);
key_le->rxiv.lo = cpu_to_le16(key->rxiv.lo);
key_le->iv_initialized = cpu_to_le32(key->iv_initialized);
memcpy(key_le->data, key->data, sizeof(key->data));
memcpy(key_le->ea, key->ea, sizeof(key->ea));
}
static int
send_key_to_dongle(struct net_device *ndev, struct brcmf_wsec_key *key)
{
int err;
struct brcmf_wsec_key_le key_le;
convert_key_from_CPU(key, &key_le);
brcmf_netdev_wait_pend8021x(ndev);
err = brcmf_fil_bsscfg_data_set(netdev_priv(ndev), "wsec_key", &key_le,
sizeof(key_le));
if (err)
brcmf_err("wsec_key error (%d)\n", err);
return err;
}
static s32
brcmf_configure_arp_offload(struct brcmf_if *ifp, bool enable)
{
s32 err;
u32 mode;
if (enable)
mode = BRCMF_ARP_OL_AGENT | BRCMF_ARP_OL_PEER_AUTO_REPLY;
else
mode = 0;
/* Try to set and enable ARP offload feature, this may fail, then it */
/* is simply not supported and err 0 will be returned */
err = brcmf_fil_iovar_int_set(ifp, "arp_ol", mode);
if (err) {
brcmf_dbg(TRACE, "failed to set ARP offload mode to 0x%x, err = %d\n",
mode, err);
err = 0;
} else {
err = brcmf_fil_iovar_int_set(ifp, "arpoe", enable);
if (err) {
brcmf_dbg(TRACE, "failed to configure (%d) ARP offload err = %d\n",
enable, err);
err = 0;
} else
brcmf_dbg(TRACE, "successfully configured (%d) ARP offload to 0x%x\n",
enable, mode);
}
return err;
}
static bool brcmf_is_apmode(struct brcmf_cfg80211_vif *vif)
{
enum nl80211_iftype iftype;
iftype = vif->wdev.iftype;
return iftype == NL80211_IFTYPE_AP || iftype == NL80211_IFTYPE_P2P_GO;
}
static bool brcmf_is_ibssmode(struct brcmf_cfg80211_vif *vif)
{
return vif->wdev.iftype == NL80211_IFTYPE_ADHOC;
}
static struct wireless_dev *brcmf_cfg80211_add_iface(struct wiphy *wiphy,
const char *name,
enum nl80211_iftype type,
u32 *flags,
struct vif_params *params)
{
brcmf_dbg(TRACE, "enter: %s type %d\n", name, type);
switch (type) {
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_WDS:
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_MESH_POINT:
return ERR_PTR(-EOPNOTSUPP);
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_GO:
case NL80211_IFTYPE_P2P_DEVICE:
return brcmf_p2p_add_vif(wiphy, name, type, flags, params);
case NL80211_IFTYPE_UNSPECIFIED:
default:
return ERR_PTR(-EINVAL);
}
}
void brcmf_set_mpc(struct brcmf_if *ifp, int mpc)
{
s32 err = 0;
if (check_vif_up(ifp->vif)) {
err = brcmf_fil_iovar_int_set(ifp, "mpc", mpc);
if (err) {
brcmf_err("fail to set mpc\n");
return;
}
brcmf_dbg(INFO, "MPC : %d\n", mpc);
}
}
s32 brcmf_notify_escan_complete(struct brcmf_cfg80211_info *cfg,
struct brcmf_if *ifp, bool aborted,
bool fw_abort)
{
struct brcmf_scan_params_le params_le;
struct cfg80211_scan_request *scan_request;
s32 err = 0;
brcmf_dbg(SCAN, "Enter\n");
/* clear scan request, because the FW abort can cause a second call */
/* to this functon and might cause a double cfg80211_scan_done */
scan_request = cfg->scan_request;
cfg->scan_request = NULL;
if (timer_pending(&cfg->escan_timeout))
del_timer_sync(&cfg->escan_timeout);
if (fw_abort) {
/* Do a scan abort to stop the driver's scan engine */
brcmf_dbg(SCAN, "ABORT scan in firmware\n");
memset(&params_le, 0, sizeof(params_le));
memset(params_le.bssid, 0xFF, ETH_ALEN);
params_le.bss_type = DOT11_BSSTYPE_ANY;
params_le.scan_type = 0;
params_le.channel_num = cpu_to_le32(1);
params_le.nprobes = cpu_to_le32(1);
params_le.active_time = cpu_to_le32(-1);
params_le.passive_time = cpu_to_le32(-1);
params_le.home_time = cpu_to_le32(-1);
/* Scan is aborted by setting channel_list[0] to -1 */
params_le.channel_list[0] = cpu_to_le16(-1);
/* E-Scan (or anyother type) can be aborted by SCAN */
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCAN,
&params_le, sizeof(params_le));
if (err)
brcmf_err("Scan abort failed\n");
}
brcmf_set_mpc(ifp, 1);
/*
* e-scan can be initiated by scheduled scan
* which takes precedence.
*/
if (cfg->sched_escan) {
brcmf_dbg(SCAN, "scheduled scan completed\n");
cfg->sched_escan = false;
if (!aborted)
cfg80211_sched_scan_results(cfg_to_wiphy(cfg));
} else if (scan_request) {
brcmf_dbg(SCAN, "ESCAN Completed scan: %s\n",
aborted ? "Aborted" : "Done");
cfg80211_scan_done(scan_request, aborted);
}
if (!test_and_clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status))
brcmf_dbg(SCAN, "Scan complete, probably P2P scan\n");
return err;
}
static
int brcmf_cfg80211_del_iface(struct wiphy *wiphy, struct wireless_dev *wdev)
{
struct brcmf_cfg80211_info *cfg = wiphy_priv(wiphy);
struct net_device *ndev = wdev->netdev;
/* vif event pending in firmware */
if (brcmf_cfg80211_vif_event_armed(cfg))
return -EBUSY;
if (ndev) {
if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status) &&
cfg->escan_info.ifp == netdev_priv(ndev))
brcmf_notify_escan_complete(cfg, netdev_priv(ndev),
true, true);
brcmf_fil_iovar_int_set(netdev_priv(ndev), "mpc", 1);
}
switch (wdev->iftype) {
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_WDS:
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_MESH_POINT:
return -EOPNOTSUPP;
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_GO:
case NL80211_IFTYPE_P2P_DEVICE:
return brcmf_p2p_del_vif(wiphy, wdev);
case NL80211_IFTYPE_UNSPECIFIED:
default:
return -EINVAL;
}
return -EOPNOTSUPP;
}
static s32
brcmf_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev,
enum nl80211_iftype type, u32 *flags,
struct vif_params *params)
{
struct brcmf_cfg80211_info *cfg = wiphy_priv(wiphy);
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_cfg80211_vif *vif = ifp->vif;
s32 infra = 0;
s32 ap = 0;
s32 err = 0;
brcmf_dbg(TRACE, "Enter, ndev=%p, type=%d\n", ndev, type);
switch (type) {
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_WDS:
brcmf_err("type (%d) : currently we do not support this type\n",
type);
return -EOPNOTSUPP;
case NL80211_IFTYPE_ADHOC:
infra = 0;
break;
case NL80211_IFTYPE_STATION:
/* Ignore change for p2p IF. Unclear why supplicant does this */
if ((vif->wdev.iftype == NL80211_IFTYPE_P2P_CLIENT) ||
(vif->wdev.iftype == NL80211_IFTYPE_P2P_GO)) {
brcmf_dbg(TRACE, "Ignoring cmd for p2p if\n");
/* WAR: It is unexpected to get a change of VIF for P2P
* IF, but it happens. The request can not be handled
* but returning EPERM causes a crash. Returning 0
* without setting ieee80211_ptr->iftype causes trace
* (WARN_ON) but it works with wpa_supplicant
*/
return 0;
}
infra = 1;
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
ap = 1;
break;
default:
err = -EINVAL;
goto done;
}
if (ap) {
if (type == NL80211_IFTYPE_P2P_GO) {
brcmf_dbg(INFO, "IF Type = P2P GO\n");
err = brcmf_p2p_ifchange(cfg, BRCMF_FIL_P2P_IF_GO);
}
if (!err) {
set_bit(BRCMF_VIF_STATUS_AP_CREATING, &vif->sme_state);
brcmf_dbg(INFO, "IF Type = AP\n");
}
} else {
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, infra);
if (err) {
brcmf_err("WLC_SET_INFRA error (%d)\n", err);
err = -EAGAIN;
goto done;
}
brcmf_dbg(INFO, "IF Type = %s\n", brcmf_is_ibssmode(vif) ?
"Adhoc" : "Infra");
}
ndev->ieee80211_ptr->iftype = type;
done:
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static void brcmf_escan_prep(struct brcmf_cfg80211_info *cfg,
struct brcmf_scan_params_le *params_le,
struct cfg80211_scan_request *request)
{
u32 n_ssids;
u32 n_channels;
s32 i;
s32 offset;
u16 chanspec;
char *ptr;
struct brcmf_ssid_le ssid_le;
memset(params_le->bssid, 0xFF, ETH_ALEN);
params_le->bss_type = DOT11_BSSTYPE_ANY;
params_le->scan_type = 0;
params_le->channel_num = 0;
params_le->nprobes = cpu_to_le32(-1);
params_le->active_time = cpu_to_le32(-1);
params_le->passive_time = cpu_to_le32(-1);
params_le->home_time = cpu_to_le32(-1);
memset(&params_le->ssid_le, 0, sizeof(params_le->ssid_le));
/* if request is null exit so it will be all channel broadcast scan */
if (!request)
return;
n_ssids = request->n_ssids;
n_channels = request->n_channels;
/* Copy channel array if applicable */
brcmf_dbg(SCAN, "### List of channelspecs to scan ### %d\n",
n_channels);
if (n_channels > 0) {
for (i = 0; i < n_channels; i++) {
chanspec = channel_to_chanspec(&cfg->d11inf,
request->channels[i]);
brcmf_dbg(SCAN, "Chan : %d, Channel spec: %x\n",
request->channels[i]->hw_value, chanspec);
params_le->channel_list[i] = cpu_to_le16(chanspec);
}
} else {
brcmf_dbg(SCAN, "Scanning all channels\n");
}
/* Copy ssid array if applicable */
brcmf_dbg(SCAN, "### List of SSIDs to scan ### %d\n", n_ssids);
if (n_ssids > 0) {
offset = offsetof(struct brcmf_scan_params_le, channel_list) +
n_channels * sizeof(u16);
offset = roundup(offset, sizeof(u32));
ptr = (char *)params_le + offset;
for (i = 0; i < n_ssids; i++) {
memset(&ssid_le, 0, sizeof(ssid_le));
ssid_le.SSID_len =
cpu_to_le32(request->ssids[i].ssid_len);
memcpy(ssid_le.SSID, request->ssids[i].ssid,
request->ssids[i].ssid_len);
if (!ssid_le.SSID_len)
brcmf_dbg(SCAN, "%d: Broadcast scan\n", i);
else
brcmf_dbg(SCAN, "%d: scan for %s size =%d\n",
i, ssid_le.SSID, ssid_le.SSID_len);
memcpy(ptr, &ssid_le, sizeof(ssid_le));
ptr += sizeof(ssid_le);
}
} else {
brcmf_dbg(SCAN, "Broadcast scan %p\n", request->ssids);
if ((request->ssids) && request->ssids->ssid_len) {
brcmf_dbg(SCAN, "SSID %s len=%d\n",
params_le->ssid_le.SSID,
request->ssids->ssid_len);
params_le->ssid_le.SSID_len =
cpu_to_le32(request->ssids->ssid_len);
memcpy(&params_le->ssid_le.SSID, request->ssids->ssid,
request->ssids->ssid_len);
}
}
/* Adding mask to channel numbers */
params_le->channel_num =
cpu_to_le32((n_ssids << BRCMF_SCAN_PARAMS_NSSID_SHIFT) |
(n_channels & BRCMF_SCAN_PARAMS_COUNT_MASK));
}
static s32
brcmf_run_escan(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp,
struct cfg80211_scan_request *request, u16 action)
{
s32 params_size = BRCMF_SCAN_PARAMS_FIXED_SIZE +
offsetof(struct brcmf_escan_params_le, params_le);
struct brcmf_escan_params_le *params;
s32 err = 0;
brcmf_dbg(SCAN, "E-SCAN START\n");
if (request != NULL) {
/* Allocate space for populating ssids in struct */
params_size += sizeof(u32) * ((request->n_channels + 1) / 2);
/* Allocate space for populating ssids in struct */
params_size += sizeof(struct brcmf_ssid) * request->n_ssids;
}
params = kzalloc(params_size, GFP_KERNEL);
if (!params) {
err = -ENOMEM;
goto exit;
}
BUG_ON(params_size + sizeof("escan") >= BRCMF_DCMD_MEDLEN);
brcmf_escan_prep(cfg, &params->params_le, request);
params->version = cpu_to_le32(BRCMF_ESCAN_REQ_VERSION);
params->action = cpu_to_le16(action);
params->sync_id = cpu_to_le16(0x1234);
err = brcmf_fil_iovar_data_set(ifp, "escan", params, params_size);
if (err) {
if (err == -EBUSY)
brcmf_dbg(INFO, "system busy : escan canceled\n");
else
brcmf_err("error (%d)\n", err);
}
kfree(params);
exit:
return err;
}
static s32
brcmf_do_escan(struct brcmf_cfg80211_info *cfg, struct wiphy *wiphy,
struct brcmf_if *ifp, struct cfg80211_scan_request *request)
{
s32 err;
u32 passive_scan;
struct brcmf_scan_results *results;
struct escan_info *escan = &cfg->escan_info;
brcmf_dbg(SCAN, "Enter\n");
escan->ifp = ifp;
escan->wiphy = wiphy;
escan->escan_state = WL_ESCAN_STATE_SCANNING;
passive_scan = cfg->active_scan ? 0 : 1;
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PASSIVE_SCAN,
passive_scan);
if (err) {
brcmf_err("error (%d)\n", err);
return err;
}
brcmf_set_mpc(ifp, 0);
results = (struct brcmf_scan_results *)cfg->escan_info.escan_buf;
results->version = 0;
results->count = 0;
results->buflen = WL_ESCAN_RESULTS_FIXED_SIZE;
err = escan->run(cfg, ifp, request, WL_ESCAN_ACTION_START);
if (err)
brcmf_set_mpc(ifp, 1);
return err;
}
static s32
brcmf_cfg80211_escan(struct wiphy *wiphy, struct brcmf_cfg80211_vif *vif,
struct cfg80211_scan_request *request,
struct cfg80211_ssid *this_ssid)
{
struct brcmf_if *ifp = vif->ifp;
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct cfg80211_ssid *ssids;
struct brcmf_cfg80211_scan_req *sr = &cfg->scan_req_int;
u32 passive_scan;
bool escan_req;
bool spec_scan;
s32 err;
u32 SSID_len;
brcmf_dbg(SCAN, "START ESCAN\n");
if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
brcmf_err("Scanning already: status (%lu)\n", cfg->scan_status);
return -EAGAIN;
}
if (test_bit(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status)) {
brcmf_err("Scanning being aborted: status (%lu)\n",
cfg->scan_status);
return -EAGAIN;
}
if (test_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status)) {
brcmf_err("Scanning suppressed: status (%lu)\n",
cfg->scan_status);
return -EAGAIN;
}
if (test_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) {
brcmf_err("Connecting: status (%lu)\n", ifp->vif->sme_state);
return -EAGAIN;
}
/* If scan req comes for p2p0, send it over primary I/F */
if (vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif)
vif = cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif;
/* Arm scan timeout timer */
mod_timer(&cfg->escan_timeout, jiffies +
WL_ESCAN_TIMER_INTERVAL_MS * HZ / 1000);
escan_req = false;
if (request) {
/* scan bss */
ssids = request->ssids;
escan_req = true;
} else {
/* scan in ibss */
/* we don't do escan in ibss */
ssids = this_ssid;
}
cfg->scan_request = request;
set_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
if (escan_req) {
cfg->escan_info.run = brcmf_run_escan;
err = brcmf_p2p_scan_prep(wiphy, request, vif);
if (err)
goto scan_out;
err = brcmf_do_escan(cfg, wiphy, vif->ifp, request);
if (err)
goto scan_out;
} else {
brcmf_dbg(SCAN, "ssid \"%s\", ssid_len (%d)\n",
ssids->ssid, ssids->ssid_len);
memset(&sr->ssid_le, 0, sizeof(sr->ssid_le));
SSID_len = min_t(u8, sizeof(sr->ssid_le.SSID), ssids->ssid_len);
sr->ssid_le.SSID_len = cpu_to_le32(0);
spec_scan = false;
if (SSID_len) {
memcpy(sr->ssid_le.SSID, ssids->ssid, SSID_len);
sr->ssid_le.SSID_len = cpu_to_le32(SSID_len);
spec_scan = true;
} else
brcmf_dbg(SCAN, "Broadcast scan\n");
passive_scan = cfg->active_scan ? 0 : 1;
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PASSIVE_SCAN,
passive_scan);
if (err) {
brcmf_err("WLC_SET_PASSIVE_SCAN error (%d)\n", err);
goto scan_out;
}
brcmf_set_mpc(ifp, 0);
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCAN,
&sr->ssid_le, sizeof(sr->ssid_le));
if (err) {
if (err == -EBUSY)
brcmf_dbg(INFO, "BUSY: scan for \"%s\" canceled\n",
sr->ssid_le.SSID);
else
brcmf_err("WLC_SCAN error (%d)\n", err);
brcmf_set_mpc(ifp, 1);
goto scan_out;
}
}
return 0;
scan_out:
clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
if (timer_pending(&cfg->escan_timeout))
del_timer_sync(&cfg->escan_timeout);
cfg->scan_request = NULL;
return err;
}
static s32
brcmf_cfg80211_scan(struct wiphy *wiphy, struct cfg80211_scan_request *request)
{
struct brcmf_cfg80211_vif *vif;
s32 err = 0;
brcmf_dbg(TRACE, "Enter\n");
vif = container_of(request->wdev, struct brcmf_cfg80211_vif, wdev);
if (!check_vif_up(vif))
return -EIO;
err = brcmf_cfg80211_escan(wiphy, vif, request, NULL);
if (err)
brcmf_err("scan error (%d)\n", err);
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32 brcmf_set_rts(struct net_device *ndev, u32 rts_threshold)
{
s32 err = 0;
err = brcmf_fil_iovar_int_set(netdev_priv(ndev), "rtsthresh",
rts_threshold);
if (err)
brcmf_err("Error (%d)\n", err);
return err;
}
static s32 brcmf_set_frag(struct net_device *ndev, u32 frag_threshold)
{
s32 err = 0;
err = brcmf_fil_iovar_int_set(netdev_priv(ndev), "fragthresh",
frag_threshold);
if (err)
brcmf_err("Error (%d)\n", err);
return err;
}
static s32 brcmf_set_retry(struct net_device *ndev, u32 retry, bool l)
{
s32 err = 0;
u32 cmd = (l ? BRCMF_C_SET_LRL : BRCMF_C_SET_SRL);
err = brcmf_fil_cmd_int_set(netdev_priv(ndev), cmd, retry);
if (err) {
brcmf_err("cmd (%d) , error (%d)\n", cmd, err);
return err;
}
return err;
}
static s32 brcmf_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct net_device *ndev = cfg_to_ndev(cfg);
struct brcmf_if *ifp = netdev_priv(ndev);
s32 err = 0;
brcmf_dbg(TRACE, "Enter\n");
if (!check_vif_up(ifp->vif))
return -EIO;
if (changed & WIPHY_PARAM_RTS_THRESHOLD &&
(cfg->conf->rts_threshold != wiphy->rts_threshold)) {
cfg->conf->rts_threshold = wiphy->rts_threshold;
err = brcmf_set_rts(ndev, cfg->conf->rts_threshold);
if (!err)
goto done;
}
if (changed & WIPHY_PARAM_FRAG_THRESHOLD &&
(cfg->conf->frag_threshold != wiphy->frag_threshold)) {
cfg->conf->frag_threshold = wiphy->frag_threshold;
err = brcmf_set_frag(ndev, cfg->conf->frag_threshold);
if (!err)
goto done;
}
if (changed & WIPHY_PARAM_RETRY_LONG
&& (cfg->conf->retry_long != wiphy->retry_long)) {
cfg->conf->retry_long = wiphy->retry_long;
err = brcmf_set_retry(ndev, cfg->conf->retry_long, true);
if (!err)
goto done;
}
if (changed & WIPHY_PARAM_RETRY_SHORT
&& (cfg->conf->retry_short != wiphy->retry_short)) {
cfg->conf->retry_short = wiphy->retry_short;
err = brcmf_set_retry(ndev, cfg->conf->retry_short, false);
if (!err)
goto done;
}
done:
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static void brcmf_init_prof(struct brcmf_cfg80211_profile *prof)
{
memset(prof, 0, sizeof(*prof));
}
static void brcmf_link_down(struct brcmf_cfg80211_vif *vif)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(vif->wdev.wiphy);
s32 err = 0;
brcmf_dbg(TRACE, "Enter\n");
if (test_bit(BRCMF_VIF_STATUS_CONNECTED, &vif->sme_state)) {
brcmf_dbg(INFO, "Call WLC_DISASSOC to stop excess roaming\n ");
err = brcmf_fil_cmd_data_set(vif->ifp,
BRCMF_C_DISASSOC, NULL, 0);
if (err) {
brcmf_err("WLC_DISASSOC failed (%d)\n", err);
}
clear_bit(BRCMF_VIF_STATUS_CONNECTED, &vif->sme_state);
cfg80211_disconnected(vif->wdev.netdev, 0, NULL, 0, GFP_KERNEL);
}
clear_bit(BRCMF_VIF_STATUS_CONNECTING, &vif->sme_state);
clear_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status);
brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_ENABLED, 0);
brcmf_dbg(TRACE, "Exit\n");
}
static s32
brcmf_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_ibss_params *params)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
struct brcmf_join_params join_params;
size_t join_params_size = 0;
s32 err = 0;
s32 wsec = 0;
s32 bcnprd;
u16 chanspec;
brcmf_dbg(TRACE, "Enter\n");
if (!check_vif_up(ifp->vif))
return -EIO;
if (params->ssid)
brcmf_dbg(CONN, "SSID: %s\n", params->ssid);
else {
brcmf_dbg(CONN, "SSID: NULL, Not supported\n");
return -EOPNOTSUPP;
}
set_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);
if (params->bssid)
brcmf_dbg(CONN, "BSSID: %pM\n", params->bssid);
else
brcmf_dbg(CONN, "No BSSID specified\n");
if (params->chandef.chan)
brcmf_dbg(CONN, "channel: %d\n",
params->chandef.chan->center_freq);
else
brcmf_dbg(CONN, "no channel specified\n");
if (params->channel_fixed)
brcmf_dbg(CONN, "fixed channel required\n");
else
brcmf_dbg(CONN, "no fixed channel required\n");
if (params->ie && params->ie_len)
brcmf_dbg(CONN, "ie len: %d\n", params->ie_len);
else
brcmf_dbg(CONN, "no ie specified\n");
if (params->beacon_interval)
brcmf_dbg(CONN, "beacon interval: %d\n",
params->beacon_interval);
else
brcmf_dbg(CONN, "no beacon interval specified\n");
if (params->basic_rates)
brcmf_dbg(CONN, "basic rates: %08X\n", params->basic_rates);
else
brcmf_dbg(CONN, "no basic rates specified\n");
if (params->privacy)
brcmf_dbg(CONN, "privacy required\n");
else
brcmf_dbg(CONN, "no privacy required\n");
/* Configure Privacy for starter */
if (params->privacy)
wsec |= WEP_ENABLED;
err = brcmf_fil_iovar_int_set(ifp, "wsec", wsec);
if (err) {
brcmf_err("wsec failed (%d)\n", err);
goto done;
}
/* Configure Beacon Interval for starter */
if (params->beacon_interval)
bcnprd = params->beacon_interval;
else
bcnprd = 100;
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_BCNPRD, bcnprd);
if (err) {
brcmf_err("WLC_SET_BCNPRD failed (%d)\n", err);
goto done;
}
/* Configure required join parameter */
memset(&join_params, 0, sizeof(struct brcmf_join_params));
/* SSID */
profile->ssid.SSID_len = min_t(u32, params->ssid_len, 32);
memcpy(profile->ssid.SSID, params->ssid, profile->ssid.SSID_len);
memcpy(join_params.ssid_le.SSID, params->ssid, profile->ssid.SSID_len);
join_params.ssid_le.SSID_len = cpu_to_le32(profile->ssid.SSID_len);
join_params_size = sizeof(join_params.ssid_le);
/* BSSID */
if (params->bssid) {
memcpy(join_params.params_le.bssid, params->bssid, ETH_ALEN);
join_params_size = sizeof(join_params.ssid_le) +
BRCMF_ASSOC_PARAMS_FIXED_SIZE;
memcpy(profile->bssid, params->bssid, ETH_ALEN);
} else {
memset(join_params.params_le.bssid, 0xFF, ETH_ALEN);
memset(profile->bssid, 0, ETH_ALEN);
}
/* Channel */
if (params->chandef.chan) {
u32 target_channel;
cfg->channel =
ieee80211_frequency_to_channel(
params->chandef.chan->center_freq);
if (params->channel_fixed) {
/* adding chanspec */
chanspec = chandef_to_chanspec(&cfg->d11inf,
&params->chandef);
join_params.params_le.chanspec_list[0] =
cpu_to_le16(chanspec);
join_params.params_le.chanspec_num = cpu_to_le32(1);
join_params_size += sizeof(join_params.params_le);
}
/* set channel for starter */
target_channel = cfg->channel;
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_CHANNEL,
target_channel);
if (err) {
brcmf_err("WLC_SET_CHANNEL failed (%d)\n", err);
goto done;
}
} else
cfg->channel = 0;
cfg->ibss_starter = false;
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID,
&join_params, join_params_size);
if (err) {
brcmf_err("WLC_SET_SSID failed (%d)\n", err);
goto done;
}
done:
if (err)
clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *ndev)
{
struct brcmf_if *ifp = netdev_priv(ndev);
s32 err = 0;
brcmf_dbg(TRACE, "Enter\n");
if (!check_vif_up(ifp->vif))
return -EIO;
brcmf_link_down(ifp->vif);
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32 brcmf_set_wpa_version(struct net_device *ndev,
struct cfg80211_connect_params *sme)
{
struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev);
struct brcmf_cfg80211_security *sec;
s32 val = 0;
s32 err = 0;
if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_1)
val = WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED;
else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2)
val = WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED;
else
val = WPA_AUTH_DISABLED;
brcmf_dbg(CONN, "setting wpa_auth to 0x%0x\n", val);
err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "wpa_auth", val);
if (err) {
brcmf_err("set wpa_auth failed (%d)\n", err);
return err;
}
sec = &profile->sec;
sec->wpa_versions = sme->crypto.wpa_versions;
return err;
}
static s32 brcmf_set_auth_type(struct net_device *ndev,
struct cfg80211_connect_params *sme)
{
struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev);
struct brcmf_cfg80211_security *sec;
s32 val = 0;
s32 err = 0;
switch (sme->auth_type) {
case NL80211_AUTHTYPE_OPEN_SYSTEM:
val = 0;
brcmf_dbg(CONN, "open system\n");
break;
case NL80211_AUTHTYPE_SHARED_KEY:
val = 1;
brcmf_dbg(CONN, "shared key\n");
break;
case NL80211_AUTHTYPE_AUTOMATIC:
val = 2;
brcmf_dbg(CONN, "automatic\n");
break;
case NL80211_AUTHTYPE_NETWORK_EAP:
brcmf_dbg(CONN, "network eap\n");
default:
val = 2;
brcmf_err("invalid auth type (%d)\n", sme->auth_type);
break;
}
err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "auth", val);
if (err) {
brcmf_err("set auth failed (%d)\n", err);
return err;
}
sec = &profile->sec;
sec->auth_type = sme->auth_type;
return err;
}
static s32
brcmf_set_wsec_mode(struct net_device *ndev,
struct cfg80211_connect_params *sme, bool mfp)
{
struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev);
struct brcmf_cfg80211_security *sec;
s32 pval = 0;
s32 gval = 0;
s32 wsec;
s32 err = 0;
if (sme->crypto.n_ciphers_pairwise) {
switch (sme->crypto.ciphers_pairwise[0]) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
pval = WEP_ENABLED;
break;
case WLAN_CIPHER_SUITE_TKIP:
pval = TKIP_ENABLED;
break;
case WLAN_CIPHER_SUITE_CCMP:
pval = AES_ENABLED;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
pval = AES_ENABLED;
break;
default:
brcmf_err("invalid cipher pairwise (%d)\n",
sme->crypto.ciphers_pairwise[0]);
return -EINVAL;
}
}
if (sme->crypto.cipher_group) {
switch (sme->crypto.cipher_group) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
gval = WEP_ENABLED;
break;
case WLAN_CIPHER_SUITE_TKIP:
gval = TKIP_ENABLED;
break;
case WLAN_CIPHER_SUITE_CCMP:
gval = AES_ENABLED;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
gval = AES_ENABLED;
break;
default:
brcmf_err("invalid cipher group (%d)\n",
sme->crypto.cipher_group);
return -EINVAL;
}
}
brcmf_dbg(CONN, "pval (%d) gval (%d)\n", pval, gval);
/* In case of privacy, but no security and WPS then simulate */
/* setting AES. WPS-2.0 allows no security */
if (brcmf_find_wpsie(sme->ie, sme->ie_len) && !pval && !gval &&
sme->privacy)
pval = AES_ENABLED;
if (mfp)
wsec = pval | gval | MFP_CAPABLE;
else
wsec = pval | gval;
err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "wsec", wsec);
if (err) {
brcmf_err("error (%d)\n", err);
return err;
}
sec = &profile->sec;
sec->cipher_pairwise = sme->crypto.ciphers_pairwise[0];
sec->cipher_group = sme->crypto.cipher_group;
return err;
}
static s32
brcmf_set_key_mgmt(struct net_device *ndev, struct cfg80211_connect_params *sme)
{
struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev);
struct brcmf_cfg80211_security *sec;
s32 val = 0;
s32 err = 0;
if (sme->crypto.n_akm_suites) {
err = brcmf_fil_bsscfg_int_get(netdev_priv(ndev),
"wpa_auth", &val);
if (err) {
brcmf_err("could not get wpa_auth (%d)\n", err);
return err;
}
if (val & (WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED)) {
switch (sme->crypto.akm_suites[0]) {
case WLAN_AKM_SUITE_8021X:
val = WPA_AUTH_UNSPECIFIED;
break;
case WLAN_AKM_SUITE_PSK:
val = WPA_AUTH_PSK;
break;
default:
brcmf_err("invalid cipher group (%d)\n",
sme->crypto.cipher_group);
return -EINVAL;
}
} else if (val & (WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED)) {
switch (sme->crypto.akm_suites[0]) {
case WLAN_AKM_SUITE_8021X:
val = WPA2_AUTH_UNSPECIFIED;
break;
case WLAN_AKM_SUITE_PSK:
val = WPA2_AUTH_PSK;
break;
default:
brcmf_err("invalid cipher group (%d)\n",
sme->crypto.cipher_group);
return -EINVAL;
}
}
brcmf_dbg(CONN, "setting wpa_auth to %d\n", val);
err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev),
"wpa_auth", val);
if (err) {
brcmf_err("could not set wpa_auth (%d)\n", err);
return err;
}
}
sec = &profile->sec;
sec->wpa_auth = sme->crypto.akm_suites[0];
return err;
}
static s32
brcmf_set_sharedkey(struct net_device *ndev,
struct cfg80211_connect_params *sme)
{
struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev);
struct brcmf_cfg80211_security *sec;
struct brcmf_wsec_key key;
s32 val;
s32 err = 0;
brcmf_dbg(CONN, "key len (%d)\n", sme->key_len);
if (sme->key_len == 0)
return 0;
sec = &profile->sec;
brcmf_dbg(CONN, "wpa_versions 0x%x cipher_pairwise 0x%x\n",
sec->wpa_versions, sec->cipher_pairwise);
if (sec->wpa_versions & (NL80211_WPA_VERSION_1 | NL80211_WPA_VERSION_2))
return 0;
if (!(sec->cipher_pairwise &
(WLAN_CIPHER_SUITE_WEP40 | WLAN_CIPHER_SUITE_WEP104)))
return 0;
memset(&key, 0, sizeof(key));
key.len = (u32) sme->key_len;
key.index = (u32) sme->key_idx;
if (key.len > sizeof(key.data)) {
brcmf_err("Too long key length (%u)\n", key.len);
return -EINVAL;
}
memcpy(key.data, sme->key, key.len);
key.flags = BRCMF_PRIMARY_KEY;
switch (sec->cipher_pairwise) {
case WLAN_CIPHER_SUITE_WEP40:
key.algo = CRYPTO_ALGO_WEP1;
break;
case WLAN_CIPHER_SUITE_WEP104:
key.algo = CRYPTO_ALGO_WEP128;
break;
default:
brcmf_err("Invalid algorithm (%d)\n",
sme->crypto.ciphers_pairwise[0]);
return -EINVAL;
}
/* Set the new key/index */
brcmf_dbg(CONN, "key length (%d) key index (%d) algo (%d)\n",
key.len, key.index, key.algo);
brcmf_dbg(CONN, "key \"%s\"\n", key.data);
err = send_key_to_dongle(ndev, &key);
if (err)
return err;
if (sec->auth_type == NL80211_AUTHTYPE_SHARED_KEY) {
brcmf_dbg(CONN, "set auth_type to shared key\n");
val = WL_AUTH_SHARED_KEY; /* shared key */
err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "auth", val);
if (err)
brcmf_err("set auth failed (%d)\n", err);
}
return err;
}
static
enum nl80211_auth_type brcmf_war_auth_type(struct brcmf_if *ifp,
enum nl80211_auth_type type)
{
u32 ci;
if (type == NL80211_AUTHTYPE_AUTOMATIC) {
/* shift to ignore chip revision */
ci = brcmf_get_chip_info(ifp) >> 4;
switch (ci) {
case 43236:
brcmf_dbg(CONN, "43236 WAR: use OPEN instead of AUTO\n");
return NL80211_AUTHTYPE_OPEN_SYSTEM;
default:
break;
}
}
return type;
}
static s32
brcmf_cfg80211_connect(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_connect_params *sme)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
struct ieee80211_channel *chan = sme->channel;
struct brcmf_join_params join_params;
size_t join_params_size;
const struct brcmf_tlv *rsn_ie;
const struct brcmf_vs_tlv *wpa_ie;
const void *ie;
u32 ie_len;
struct brcmf_ext_join_params_le *ext_join_params;
u16 chanspec;
s32 err = 0;
brcmf_dbg(TRACE, "Enter\n");
if (!check_vif_up(ifp->vif))
return -EIO;
if (!sme->ssid) {
brcmf_err("Invalid ssid\n");
return -EOPNOTSUPP;
}
if (ifp->vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif) {
/* A normal (non P2P) connection request setup. */
ie = NULL;
ie_len = 0;
/* find the WPA_IE */
wpa_ie = brcmf_find_wpaie((u8 *)sme->ie, sme->ie_len);
if (wpa_ie) {
ie = wpa_ie;
ie_len = wpa_ie->len + TLV_HDR_LEN;
} else {
/* find the RSN_IE */
rsn_ie = brcmf_parse_tlvs((const u8 *)sme->ie,
sme->ie_len,
WLAN_EID_RSN);
if (rsn_ie) {
ie = rsn_ie;
ie_len = rsn_ie->len + TLV_HDR_LEN;
}
}
brcmf_fil_iovar_data_set(ifp, "wpaie", ie, ie_len);
}
err = brcmf_vif_set_mgmt_ie(ifp->vif, BRCMF_VNDR_IE_ASSOCREQ_FLAG,
sme->ie, sme->ie_len);
if (err)
brcmf_err("Set Assoc REQ IE Failed\n");
else
brcmf_dbg(TRACE, "Applied Vndr IEs for Assoc request\n");
set_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);
if (chan) {
cfg->channel =
ieee80211_frequency_to_channel(chan->center_freq);
chanspec = channel_to_chanspec(&cfg->d11inf, chan);
brcmf_dbg(CONN, "channel=%d, center_req=%d, chanspec=0x%04x\n",
cfg->channel, chan->center_freq, chanspec);
} else {
cfg->channel = 0;
chanspec = 0;
}
brcmf_dbg(INFO, "ie (%p), ie_len (%zd)\n", sme->ie, sme->ie_len);
err = brcmf_set_wpa_version(ndev, sme);
if (err) {
brcmf_err("wl_set_wpa_version failed (%d)\n", err);
goto done;
}
sme->auth_type = brcmf_war_auth_type(ifp, sme->auth_type);
err = brcmf_set_auth_type(ndev, sme);
if (err) {
brcmf_err("wl_set_auth_type failed (%d)\n", err);
goto done;
}
err = brcmf_set_wsec_mode(ndev, sme, sme->mfp == NL80211_MFP_REQUIRED);
if (err) {
brcmf_err("wl_set_set_cipher failed (%d)\n", err);
goto done;
}
err = brcmf_set_key_mgmt(ndev, sme);
if (err) {
brcmf_err("wl_set_key_mgmt failed (%d)\n", err);
goto done;
}
err = brcmf_set_sharedkey(ndev, sme);
if (err) {
brcmf_err("brcmf_set_sharedkey failed (%d)\n", err);
goto done;
}
profile->ssid.SSID_len = min_t(u32, (u32)sizeof(profile->ssid.SSID),
(u32)sme->ssid_len);
memcpy(&profile->ssid.SSID, sme->ssid, profile->ssid.SSID_len);
if (profile->ssid.SSID_len < IEEE80211_MAX_SSID_LEN) {
profile->ssid.SSID[profile->ssid.SSID_len] = 0;
brcmf_dbg(CONN, "SSID \"%s\", len (%d)\n", profile->ssid.SSID,
profile->ssid.SSID_len);
}
/* Join with specific BSSID and cached SSID
* If SSID is zero join based on BSSID only
*/
join_params_size = offsetof(struct brcmf_ext_join_params_le, assoc_le) +
offsetof(struct brcmf_assoc_params_le, chanspec_list);
if (cfg->channel)
join_params_size += sizeof(u16);
ext_join_params = kzalloc(join_params_size, GFP_KERNEL);
if (ext_join_params == NULL) {
err = -ENOMEM;
goto done;
}
ext_join_params->ssid_le.SSID_len = cpu_to_le32(profile->ssid.SSID_len);
memcpy(&ext_join_params->ssid_le.SSID, sme->ssid,
profile->ssid.SSID_len);
/* Set up join scan parameters */
ext_join_params->scan_le.scan_type = -1;
ext_join_params->scan_le.home_time = cpu_to_le32(-1);
if (sme->bssid)
memcpy(&ext_join_params->assoc_le.bssid, sme->bssid, ETH_ALEN);
else
memset(&ext_join_params->assoc_le.bssid, 0xFF, ETH_ALEN);
if (cfg->channel) {
ext_join_params->assoc_le.chanspec_num = cpu_to_le32(1);
ext_join_params->assoc_le.chanspec_list[0] =
cpu_to_le16(chanspec);
/* Increase dwell time to receive probe response or detect
* beacon from target AP at a noisy air only during connect
* command.
*/
ext_join_params->scan_le.active_time =
cpu_to_le32(BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS);
ext_join_params->scan_le.passive_time =
cpu_to_le32(BRCMF_SCAN_JOIN_PASSIVE_DWELL_TIME_MS);
/* To sync with presence period of VSDB GO send probe request
* more frequently. Probe request will be stopped when it gets
* probe response from target AP/GO.
*/
ext_join_params->scan_le.nprobes =
cpu_to_le32(BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS /
BRCMF_SCAN_JOIN_PROBE_INTERVAL_MS);
} else {
ext_join_params->scan_le.active_time = cpu_to_le32(-1);
ext_join_params->scan_le.passive_time = cpu_to_le32(-1);
ext_join_params->scan_le.nprobes = cpu_to_le32(-1);
}
err = brcmf_fil_bsscfg_data_set(ifp, "join", ext_join_params,
join_params_size);
kfree(ext_join_params);
if (!err)
/* This is it. join command worked, we are done */
goto done;
/* join command failed, fallback to set ssid */
memset(&join_params, 0, sizeof(join_params));
join_params_size = sizeof(join_params.ssid_le);
memcpy(&join_params.ssid_le.SSID, sme->ssid, profile->ssid.SSID_len);
join_params.ssid_le.SSID_len = cpu_to_le32(profile->ssid.SSID_len);
if (sme->bssid)
memcpy(join_params.params_le.bssid, sme->bssid, ETH_ALEN);
else
memset(join_params.params_le.bssid, 0xFF, ETH_ALEN);
if (cfg->channel) {
join_params.params_le.chanspec_list[0] = cpu_to_le16(chanspec);
join_params.params_le.chanspec_num = cpu_to_le32(1);
join_params_size += sizeof(join_params.params_le);
}
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID,
&join_params, join_params_size);
if (err)
brcmf_err("BRCMF_C_SET_SSID failed (%d)\n", err);
done:
if (err)
clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *ndev,
u16 reason_code)
{
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
struct brcmf_scb_val_le scbval;
s32 err = 0;
brcmf_dbg(TRACE, "Enter. Reason code = %d\n", reason_code);
if (!check_vif_up(ifp->vif))
return -EIO;
clear_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state);
cfg80211_disconnected(ndev, reason_code, NULL, 0, GFP_KERNEL);
memcpy(&scbval.ea, &profile->bssid, ETH_ALEN);
scbval.val = cpu_to_le32(reason_code);
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_DISASSOC,
&scbval, sizeof(scbval));
if (err)
brcmf_err("error (%d)\n", err);
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_cfg80211_set_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev,
enum nl80211_tx_power_setting type, s32 mbm)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct net_device *ndev = cfg_to_ndev(cfg);
struct brcmf_if *ifp = netdev_priv(ndev);
u16 txpwrmw;
s32 err = 0;
s32 disable = 0;
s32 dbm = MBM_TO_DBM(mbm);
brcmf_dbg(TRACE, "Enter\n");
if (!check_vif_up(ifp->vif))
return -EIO;
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
break;
case NL80211_TX_POWER_LIMITED:
case NL80211_TX_POWER_FIXED:
if (dbm < 0) {
brcmf_err("TX_POWER_FIXED - dbm is negative\n");
err = -EINVAL;
goto done;
}
break;
}
/* Make sure radio is off or on as far as software is concerned */
disable = WL_RADIO_SW_DISABLE << 16;
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_RADIO, disable);
if (err)
brcmf_err("WLC_SET_RADIO error (%d)\n", err);
if (dbm > 0xffff)
txpwrmw = 0xffff;
else
txpwrmw = (u16) dbm;
err = brcmf_fil_iovar_int_set(ifp, "qtxpower",
(s32)brcmf_mw_to_qdbm(txpwrmw));
if (err)
brcmf_err("qtxpower error (%d)\n", err);
cfg->conf->tx_power = dbm;
done:
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32 brcmf_cfg80211_get_tx_power(struct wiphy *wiphy,
struct wireless_dev *wdev,
s32 *dbm)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg));
s32 txpwrdbm;
u8 result;
s32 err = 0;
brcmf_dbg(TRACE, "Enter\n");
if (!check_vif_up(ifp->vif))
return -EIO;
err = brcmf_fil_iovar_int_get(ifp, "qtxpower", &txpwrdbm);
if (err) {
brcmf_err("error (%d)\n", err);
goto done;
}
result = (u8) (txpwrdbm & ~WL_TXPWR_OVERRIDE);
*dbm = (s32) brcmf_qdbm_to_mw(result);
done:
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_idx, bool unicast, bool multicast)
{
struct brcmf_if *ifp = netdev_priv(ndev);
u32 index;
u32 wsec;
s32 err = 0;
brcmf_dbg(TRACE, "Enter\n");
brcmf_dbg(CONN, "key index (%d)\n", key_idx);
if (!check_vif_up(ifp->vif))
return -EIO;
err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec);
if (err) {
brcmf_err("WLC_GET_WSEC error (%d)\n", err);
goto done;
}
if (wsec & WEP_ENABLED) {
/* Just select a new current key */
index = key_idx;
err = brcmf_fil_cmd_int_set(ifp,
BRCMF_C_SET_KEY_PRIMARY, index);
if (err)
brcmf_err("error (%d)\n", err);
}
done:
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_add_keyext(struct wiphy *wiphy, struct net_device *ndev,
u8 key_idx, const u8 *mac_addr, struct key_params *params)
{
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_wsec_key key;
s32 err = 0;
u8 keybuf[8];
memset(&key, 0, sizeof(key));
key.index = (u32) key_idx;
/* Instead of bcast for ea address for default wep keys,
driver needs it to be Null */
if (!is_multicast_ether_addr(mac_addr))
memcpy((char *)&key.ea, (void *)mac_addr, ETH_ALEN);
key.len = (u32) params->key_len;
/* check for key index change */
if (key.len == 0) {
/* key delete */
err = send_key_to_dongle(ndev, &key);
if (err)
brcmf_err("key delete error (%d)\n", err);
} else {
if (key.len > sizeof(key.data)) {
brcmf_err("Invalid key length (%d)\n", key.len);
return -EINVAL;
}
brcmf_dbg(CONN, "Setting the key index %d\n", key.index);
memcpy(key.data, params->key, key.len);
if (!brcmf_is_apmode(ifp->vif) &&
(params->cipher == WLAN_CIPHER_SUITE_TKIP)) {
brcmf_dbg(CONN, "Swapping RX/TX MIC key\n");
memcpy(keybuf, &key.data[24], sizeof(keybuf));
memcpy(&key.data[24], &key.data[16], sizeof(keybuf));
memcpy(&key.data[16], keybuf, sizeof(keybuf));
}
/* if IW_ENCODE_EXT_RX_SEQ_VALID set */
if (params->seq && params->seq_len == 6) {
/* rx iv */
u8 *ivptr;
ivptr = (u8 *) params->seq;
key.rxiv.hi = (ivptr[5] << 24) | (ivptr[4] << 16) |
(ivptr[3] << 8) | ivptr[2];
key.rxiv.lo = (ivptr[1] << 8) | ivptr[0];
key.iv_initialized = true;
}
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
key.algo = CRYPTO_ALGO_WEP1;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP40\n");
break;
case WLAN_CIPHER_SUITE_WEP104:
key.algo = CRYPTO_ALGO_WEP128;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP104\n");
break;
case WLAN_CIPHER_SUITE_TKIP:
key.algo = CRYPTO_ALGO_TKIP;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_TKIP\n");
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
key.algo = CRYPTO_ALGO_AES_CCM;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_AES_CMAC\n");
break;
case WLAN_CIPHER_SUITE_CCMP:
key.algo = CRYPTO_ALGO_AES_CCM;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_CCMP\n");
break;
default:
brcmf_err("Invalid cipher (0x%x)\n", params->cipher);
return -EINVAL;
}
err = send_key_to_dongle(ndev, &key);
if (err)
brcmf_err("wsec_key error (%d)\n", err);
}
return err;
}
static s32
brcmf_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_idx, bool pairwise, const u8 *mac_addr,
struct key_params *params)
{
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_wsec_key key;
s32 val;
s32 wsec;
s32 err = 0;
u8 keybuf[8];
brcmf_dbg(TRACE, "Enter\n");
brcmf_dbg(CONN, "key index (%d)\n", key_idx);
if (!check_vif_up(ifp->vif))
return -EIO;
if (mac_addr &&
(params->cipher != WLAN_CIPHER_SUITE_WEP40) &&
(params->cipher != WLAN_CIPHER_SUITE_WEP104)) {
brcmf_dbg(TRACE, "Exit");
return brcmf_add_keyext(wiphy, ndev, key_idx, mac_addr, params);
}
memset(&key, 0, sizeof(key));
key.len = (u32) params->key_len;
key.index = (u32) key_idx;
if (key.len > sizeof(key.data)) {
brcmf_err("Too long key length (%u)\n", key.len);
err = -EINVAL;
goto done;
}
memcpy(key.data, params->key, key.len);
key.flags = BRCMF_PRIMARY_KEY;
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
key.algo = CRYPTO_ALGO_WEP1;
val = WEP_ENABLED;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP40\n");
break;
case WLAN_CIPHER_SUITE_WEP104:
key.algo = CRYPTO_ALGO_WEP128;
val = WEP_ENABLED;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP104\n");
break;
case WLAN_CIPHER_SUITE_TKIP:
if (!brcmf_is_apmode(ifp->vif)) {
brcmf_dbg(CONN, "Swapping RX/TX MIC key\n");
memcpy(keybuf, &key.data[24], sizeof(keybuf));
memcpy(&key.data[24], &key.data[16], sizeof(keybuf));
memcpy(&key.data[16], keybuf, sizeof(keybuf));
}
key.algo = CRYPTO_ALGO_TKIP;
val = TKIP_ENABLED;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_TKIP\n");
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
key.algo = CRYPTO_ALGO_AES_CCM;
val = AES_ENABLED;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_AES_CMAC\n");
break;
case WLAN_CIPHER_SUITE_CCMP:
key.algo = CRYPTO_ALGO_AES_CCM;
val = AES_ENABLED;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_CCMP\n");
break;
default:
brcmf_err("Invalid cipher (0x%x)\n", params->cipher);
err = -EINVAL;
goto done;
}
err = send_key_to_dongle(ndev, &key);
if (err)
goto done;
err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec);
if (err) {
brcmf_err("get wsec error (%d)\n", err);
goto done;
}
wsec |= val;
err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec);
if (err) {
brcmf_err("set wsec error (%d)\n", err);
goto done;
}
done:
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_idx, bool pairwise, const u8 *mac_addr)
{
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_wsec_key key;
s32 err = 0;
brcmf_dbg(TRACE, "Enter\n");
if (!check_vif_up(ifp->vif))
return -EIO;
if (key_idx >= DOT11_MAX_DEFAULT_KEYS) {
/* we ignore this key index in this case */
brcmf_err("invalid key index (%d)\n", key_idx);
return -EINVAL;
}
memset(&key, 0, sizeof(key));
key.index = (u32) key_idx;
key.flags = BRCMF_PRIMARY_KEY;
key.algo = CRYPTO_ALGO_OFF;
brcmf_dbg(CONN, "key index (%d)\n", key_idx);
/* Set the new key/index */
err = send_key_to_dongle(ndev, &key);
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie,
void (*callback) (void *cookie, struct key_params * params))
{
struct key_params params;
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
struct brcmf_cfg80211_security *sec;
s32 wsec;
s32 err = 0;
brcmf_dbg(TRACE, "Enter\n");
brcmf_dbg(CONN, "key index (%d)\n", key_idx);
if (!check_vif_up(ifp->vif))
return -EIO;
memset(&params, 0, sizeof(params));
err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec);
if (err) {
brcmf_err("WLC_GET_WSEC error (%d)\n", err);
/* Ignore this error, may happen during DISASSOC */
err = -EAGAIN;
goto done;
}
if (wsec & WEP_ENABLED) {
sec = &profile->sec;
if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP40) {
params.cipher = WLAN_CIPHER_SUITE_WEP40;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP40\n");
} else if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP104) {
params.cipher = WLAN_CIPHER_SUITE_WEP104;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP104\n");
}
} else if (wsec & TKIP_ENABLED) {
params.cipher = WLAN_CIPHER_SUITE_TKIP;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_TKIP\n");
} else if (wsec & AES_ENABLED) {
params.cipher = WLAN_CIPHER_SUITE_AES_CMAC;
brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_AES_CMAC\n");
} else {
brcmf_err("Invalid algo (0x%x)\n", wsec);
err = -EINVAL;
goto done;
}
callback(cookie, &params);
done:
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_cfg80211_config_default_mgmt_key(struct wiphy *wiphy,
struct net_device *ndev, u8 key_idx)
{
brcmf_dbg(INFO, "Not supported\n");
return -EOPNOTSUPP;
}
static s32
brcmf_cfg80211_get_station(struct wiphy *wiphy, struct net_device *ndev,
const u8 *mac, struct station_info *sinfo)
{
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
struct brcmf_scb_val_le scb_val;
int rssi;
s32 rate;
s32 err = 0;
u8 *bssid = profile->bssid;
struct brcmf_sta_info_le sta_info_le;
u32 beacon_period;
u32 dtim_period;
brcmf_dbg(TRACE, "Enter, MAC %pM\n", mac);
if (!check_vif_up(ifp->vif))
return -EIO;
if (brcmf_is_apmode(ifp->vif)) {
memcpy(&sta_info_le, mac, ETH_ALEN);
err = brcmf_fil_iovar_data_get(ifp, "sta_info",
&sta_info_le,
sizeof(sta_info_le));
if (err < 0) {
brcmf_err("GET STA INFO failed, %d\n", err);
goto done;
}
sinfo->filled = STATION_INFO_INACTIVE_TIME;
sinfo->inactive_time = le32_to_cpu(sta_info_le.idle) * 1000;
if (le32_to_cpu(sta_info_le.flags) & BRCMF_STA_ASSOC) {
sinfo->filled |= STATION_INFO_CONNECTED_TIME;
sinfo->connected_time = le32_to_cpu(sta_info_le.in);
}
brcmf_dbg(TRACE, "STA idle time : %d ms, connected time :%d sec\n",
sinfo->inactive_time, sinfo->connected_time);
} else if (ifp->vif->wdev.iftype == NL80211_IFTYPE_STATION) {
if (memcmp(mac, bssid, ETH_ALEN)) {
brcmf_err("Wrong Mac address cfg_mac-%pM wl_bssid-%pM\n",
mac, bssid);
err = -ENOENT;
goto done;
}
/* Report the current tx rate */
err = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_RATE, &rate);
if (err) {
brcmf_err("Could not get rate (%d)\n", err);
goto done;
} else {
sinfo->filled |= STATION_INFO_TX_BITRATE;
sinfo->txrate.legacy = rate * 5;
brcmf_dbg(CONN, "Rate %d Mbps\n", rate / 2);
}
if (test_bit(BRCMF_VIF_STATUS_CONNECTED,
&ifp->vif->sme_state)) {
memset(&scb_val, 0, sizeof(scb_val));
err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_RSSI,
&scb_val, sizeof(scb_val));
if (err) {
brcmf_err("Could not get rssi (%d)\n", err);
goto done;
} else {
rssi = le32_to_cpu(scb_val.val);
sinfo->filled |= STATION_INFO_SIGNAL;
sinfo->signal = rssi;
brcmf_dbg(CONN, "RSSI %d dBm\n", rssi);
}
err = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_BCNPRD,
&beacon_period);
if (err) {
brcmf_err("Could not get beacon period (%d)\n",
err);
goto done;
} else {
sinfo->bss_param.beacon_interval =
beacon_period;
brcmf_dbg(CONN, "Beacon peroid %d\n",
beacon_period);
}
err = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_DTIMPRD,
&dtim_period);
if (err) {
brcmf_err("Could not get DTIM period (%d)\n",
err);
goto done;
} else {
sinfo->bss_param.dtim_period = dtim_period;
brcmf_dbg(CONN, "DTIM peroid %d\n",
dtim_period);
}
sinfo->filled |= STATION_INFO_BSS_PARAM;
}
} else
err = -EPERM;
done:
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *ndev,
bool enabled, s32 timeout)
{
s32 pm;
s32 err = 0;
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct brcmf_if *ifp = netdev_priv(ndev);
brcmf_dbg(TRACE, "Enter\n");
/*
* Powersave enable/disable request is coming from the
* cfg80211 even before the interface is up. In that
* scenario, driver will be storing the power save
* preference in cfg struct to apply this to
* FW later while initializing the dongle
*/
cfg->pwr_save = enabled;
if (!check_vif_up(ifp->vif)) {
brcmf_dbg(INFO, "Device is not ready, storing the value in cfg_info struct\n");
goto done;
}
pm = enabled ? PM_FAST : PM_OFF;
/* Do not enable the power save after assoc if it is a p2p interface */
if (ifp->vif->wdev.iftype == NL80211_IFTYPE_P2P_CLIENT) {
brcmf_dbg(INFO, "Do not enable power save for P2P clients\n");
pm = PM_OFF;
}
brcmf_dbg(INFO, "power save %s\n", (pm ? "enabled" : "disabled"));
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, pm);
if (err) {
if (err == -ENODEV)
brcmf_err("net_device is not ready yet\n");
else
brcmf_err("error (%d)\n", err);
}
done:
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32 brcmf_inform_single_bss(struct brcmf_cfg80211_info *cfg,
struct brcmf_bss_info_le *bi)
{
struct wiphy *wiphy = cfg_to_wiphy(cfg);
struct ieee80211_channel *notify_channel;
struct cfg80211_bss *bss;
struct ieee80211_supported_band *band;
struct brcmu_chan ch;
s32 err = 0;
u16 channel;
u32 freq;
u16 notify_capability;
u16 notify_interval;
u8 *notify_ie;
size_t notify_ielen;
s32 notify_signal;
if (le32_to_cpu(bi->length) > WL_BSS_INFO_MAX) {
brcmf_err("Bss info is larger than buffer. Discarding\n");
return 0;
}
if (!bi->ctl_ch) {
ch.chspec = le16_to_cpu(bi->chanspec);
cfg->d11inf.decchspec(&ch);
bi->ctl_ch = ch.chnum;
}
channel = bi->ctl_ch;
if (channel <= CH_MAX_2G_CHANNEL)
band = wiphy->bands[IEEE80211_BAND_2GHZ];
else
band = wiphy->bands[IEEE80211_BAND_5GHZ];
freq = ieee80211_channel_to_frequency(channel, band->band);
notify_channel = ieee80211_get_channel(wiphy, freq);
notify_capability = le16_to_cpu(bi->capability);
notify_interval = le16_to_cpu(bi->beacon_period);
notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset);
notify_ielen = le32_to_cpu(bi->ie_length);
notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100;
brcmf_dbg(CONN, "bssid: %pM\n", bi->BSSID);
brcmf_dbg(CONN, "Channel: %d(%d)\n", channel, freq);
brcmf_dbg(CONN, "Capability: %X\n", notify_capability);
brcmf_dbg(CONN, "Beacon interval: %d\n", notify_interval);
brcmf_dbg(CONN, "Signal: %d\n", notify_signal);
bss = cfg80211_inform_bss(wiphy, notify_channel, (const u8 *)bi->BSSID,
0, notify_capability, notify_interval, notify_ie,
notify_ielen, notify_signal, GFP_KERNEL);
if (!bss)
return -ENOMEM;
cfg80211_put_bss(wiphy, bss);
return err;
}
static struct brcmf_bss_info_le *
next_bss_le(struct brcmf_scan_results *list, struct brcmf_bss_info_le *bss)
{
if (bss == NULL)
return list->bss_info_le;
return (struct brcmf_bss_info_le *)((unsigned long)bss +
le32_to_cpu(bss->length));
}
static s32 brcmf_inform_bss(struct brcmf_cfg80211_info *cfg)
{
struct brcmf_scan_results *bss_list;
struct brcmf_bss_info_le *bi = NULL; /* must be initialized */
s32 err = 0;
int i;
bss_list = cfg->bss_list;
if (bss_list->count != 0 &&
bss_list->version != BRCMF_BSS_INFO_VERSION) {
brcmf_err("Version %d != WL_BSS_INFO_VERSION\n",
bss_list->version);
return -EOPNOTSUPP;
}
brcmf_dbg(SCAN, "scanned AP count (%d)\n", bss_list->count);
for (i = 0; i < bss_list->count; i++) {
bi = next_bss_le(bss_list, bi);
err = brcmf_inform_single_bss(cfg, bi);
if (err)
break;
}
return err;
}
static s32 wl_inform_ibss(struct brcmf_cfg80211_info *cfg,
struct net_device *ndev, const u8 *bssid)
{
struct wiphy *wiphy = cfg_to_wiphy(cfg);
struct ieee80211_channel *notify_channel;
struct brcmf_bss_info_le *bi = NULL;
struct ieee80211_supported_band *band;
struct cfg80211_bss *bss;
struct brcmu_chan ch;
u8 *buf = NULL;
s32 err = 0;
u32 freq;
u16 notify_capability;
u16 notify_interval;
u8 *notify_ie;
size_t notify_ielen;
s32 notify_signal;
brcmf_dbg(TRACE, "Enter\n");
buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL);
if (buf == NULL) {
err = -ENOMEM;
goto CleanUp;
}
*(__le32 *)buf = cpu_to_le32(WL_BSS_INFO_MAX);
err = brcmf_fil_cmd_data_get(netdev_priv(ndev), BRCMF_C_GET_BSS_INFO,
buf, WL_BSS_INFO_MAX);
if (err) {
brcmf_err("WLC_GET_BSS_INFO failed: %d\n", err);
goto CleanUp;
}
bi = (struct brcmf_bss_info_le *)(buf + 4);
ch.chspec = le16_to_cpu(bi->chanspec);
cfg->d11inf.decchspec(&ch);
if (ch.band == BRCMU_CHAN_BAND_2G)
band = wiphy->bands[IEEE80211_BAND_2GHZ];
else
band = wiphy->bands[IEEE80211_BAND_5GHZ];
freq = ieee80211_channel_to_frequency(ch.chnum, band->band);
notify_channel = ieee80211_get_channel(wiphy, freq);
notify_capability = le16_to_cpu(bi->capability);
notify_interval = le16_to_cpu(bi->beacon_period);
notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset);
notify_ielen = le32_to_cpu(bi->ie_length);
notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100;
brcmf_dbg(CONN, "channel: %d(%d)\n", ch.chnum, freq);
brcmf_dbg(CONN, "capability: %X\n", notify_capability);
brcmf_dbg(CONN, "beacon interval: %d\n", notify_interval);
brcmf_dbg(CONN, "signal: %d\n", notify_signal);
bss = cfg80211_inform_bss(wiphy, notify_channel, bssid,
0, notify_capability, notify_interval,
notify_ie, notify_ielen, notify_signal, GFP_KERNEL);
if (!bss) {
err = -ENOMEM;
goto CleanUp;
}
cfg80211_put_bss(wiphy, bss);
CleanUp:
kfree(buf);
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32 brcmf_update_bss_info(struct brcmf_cfg80211_info *cfg,
struct brcmf_if *ifp)
{
struct brcmf_cfg80211_profile *profile = ndev_to_prof(ifp->ndev);
struct brcmf_bss_info_le *bi;
struct brcmf_ssid *ssid;
const struct brcmf_tlv *tim;
u16 beacon_interval;
u8 dtim_period;
size_t ie_len;
u8 *ie;
s32 err = 0;
brcmf_dbg(TRACE, "Enter\n");
if (brcmf_is_ibssmode(ifp->vif))
return err;
ssid = &profile->ssid;
*(__le32 *)cfg->extra_buf = cpu_to_le32(WL_EXTRA_BUF_MAX);
err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BSS_INFO,
cfg->extra_buf, WL_EXTRA_BUF_MAX);
if (err) {
brcmf_err("Could not get bss info %d\n", err);
goto update_bss_info_out;
}
bi = (struct brcmf_bss_info_le *)(cfg->extra_buf + 4);
err = brcmf_inform_single_bss(cfg, bi);
if (err)
goto update_bss_info_out;
ie = ((u8 *)bi) + le16_to_cpu(bi->ie_offset);
ie_len = le32_to_cpu(bi->ie_length);
beacon_interval = le16_to_cpu(bi->beacon_period);
tim = brcmf_parse_tlvs(ie, ie_len, WLAN_EID_TIM);
if (tim)
dtim_period = tim->data[1];
else {
/*
* active scan was done so we could not get dtim
* information out of probe response.
* so we speficially query dtim information to dongle.
*/
u32 var;
err = brcmf_fil_iovar_int_get(ifp, "dtim_assoc", &var);
if (err) {
brcmf_err("wl dtim_assoc failed (%d)\n", err);
goto update_bss_info_out;
}
dtim_period = (u8)var;
}
update_bss_info_out:
brcmf_dbg(TRACE, "Exit");
return err;
}
void brcmf_abort_scanning(struct brcmf_cfg80211_info *cfg)
{
struct escan_info *escan = &cfg->escan_info;
set_bit(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status);
if (cfg->scan_request) {
escan->escan_state = WL_ESCAN_STATE_IDLE;
brcmf_notify_escan_complete(cfg, escan->ifp, true, true);
}
clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
clear_bit(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status);
}
static void brcmf_cfg80211_escan_timeout_worker(struct work_struct *work)
{
struct brcmf_cfg80211_info *cfg =
container_of(work, struct brcmf_cfg80211_info,
escan_timeout_work);
brcmf_notify_escan_complete(cfg, cfg->escan_info.ifp, true, true);
}
static void brcmf_escan_timeout(unsigned long data)
{
struct brcmf_cfg80211_info *cfg =
(struct brcmf_cfg80211_info *)data;
if (cfg->scan_request) {
brcmf_err("timer expired\n");
schedule_work(&cfg->escan_timeout_work);
}
}
static s32
brcmf_compare_update_same_bss(struct brcmf_cfg80211_info *cfg,
struct brcmf_bss_info_le *bss,
struct brcmf_bss_info_le *bss_info_le)
{
struct brcmu_chan ch_bss, ch_bss_info_le;
ch_bss.chspec = le16_to_cpu(bss->chanspec);
cfg->d11inf.decchspec(&ch_bss);
ch_bss_info_le.chspec = le16_to_cpu(bss_info_le->chanspec);
cfg->d11inf.decchspec(&ch_bss_info_le);
if (!memcmp(&bss_info_le->BSSID, &bss->BSSID, ETH_ALEN) &&
ch_bss.band == ch_bss_info_le.band &&
bss_info_le->SSID_len == bss->SSID_len &&
!memcmp(bss_info_le->SSID, bss->SSID, bss_info_le->SSID_len)) {
if ((bss->flags & BRCMF_BSS_RSSI_ON_CHANNEL) ==
(bss_info_le->flags & BRCMF_BSS_RSSI_ON_CHANNEL)) {
s16 bss_rssi = le16_to_cpu(bss->RSSI);
s16 bss_info_rssi = le16_to_cpu(bss_info_le->RSSI);
/* preserve max RSSI if the measurements are
* both on-channel or both off-channel
*/
if (bss_info_rssi > bss_rssi)
bss->RSSI = bss_info_le->RSSI;
} else if ((bss->flags & BRCMF_BSS_RSSI_ON_CHANNEL) &&
(bss_info_le->flags & BRCMF_BSS_RSSI_ON_CHANNEL) == 0) {
/* preserve the on-channel rssi measurement
* if the new measurement is off channel
*/
bss->RSSI = bss_info_le->RSSI;
bss->flags |= BRCMF_BSS_RSSI_ON_CHANNEL;
}
return 1;
}
return 0;
}
static s32
brcmf_cfg80211_escan_handler(struct brcmf_if *ifp,
const struct brcmf_event_msg *e, void *data)
{
struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
s32 status;
s32 err = 0;
struct brcmf_escan_result_le *escan_result_le;
struct brcmf_bss_info_le *bss_info_le;
struct brcmf_bss_info_le *bss = NULL;
u32 bi_length;
struct brcmf_scan_results *list;
u32 i;
bool aborted;
status = e->status;
if (!test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
brcmf_err("scan not ready, bssidx=%d\n", ifp->bssidx);
return -EPERM;
}
if (status == BRCMF_E_STATUS_PARTIAL) {
brcmf_dbg(SCAN, "ESCAN Partial result\n");
escan_result_le = (struct brcmf_escan_result_le *) data;
if (!escan_result_le) {
brcmf_err("Invalid escan result (NULL pointer)\n");
goto exit;
}
if (le16_to_cpu(escan_result_le->bss_count) != 1) {
brcmf_err("Invalid bss_count %d: ignoring\n",
escan_result_le->bss_count);
goto exit;
}
bss_info_le = &escan_result_le->bss_info_le;
if (brcmf_p2p_scan_finding_common_channel(cfg, bss_info_le))
goto exit;
if (!cfg->scan_request) {
brcmf_dbg(SCAN, "result without cfg80211 request\n");
goto exit;
}
bi_length = le32_to_cpu(bss_info_le->length);
if (bi_length != (le32_to_cpu(escan_result_le->buflen) -
WL_ESCAN_RESULTS_FIXED_SIZE)) {
brcmf_err("Invalid bss_info length %d: ignoring\n",
bi_length);
goto exit;
}
if (!(cfg_to_wiphy(cfg)->interface_modes &
BIT(NL80211_IFTYPE_ADHOC))) {
if (le16_to_cpu(bss_info_le->capability) &
WLAN_CAPABILITY_IBSS) {
brcmf_err("Ignoring IBSS result\n");
goto exit;
}
}
list = (struct brcmf_scan_results *)
cfg->escan_info.escan_buf;
if (bi_length > WL_ESCAN_BUF_SIZE - list->buflen) {
brcmf_err("Buffer is too small: ignoring\n");
goto exit;
}
for (i = 0; i < list->count; i++) {
bss = bss ? (struct brcmf_bss_info_le *)
((unsigned char *)bss +
le32_to_cpu(bss->length)) : list->bss_info_le;
if (brcmf_compare_update_same_bss(cfg, bss,
bss_info_le))
goto exit;
}
memcpy(&(cfg->escan_info.escan_buf[list->buflen]),
bss_info_le, bi_length);
list->version = le32_to_cpu(bss_info_le->version);
list->buflen += bi_length;
list->count++;
} else {
cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE;
if (brcmf_p2p_scan_finding_common_channel(cfg, NULL))
goto exit;
if (cfg->scan_request) {
cfg->bss_list = (struct brcmf_scan_results *)
cfg->escan_info.escan_buf;
brcmf_inform_bss(cfg);
aborted = status != BRCMF_E_STATUS_SUCCESS;
brcmf_notify_escan_complete(cfg, ifp, aborted,
false);
} else
brcmf_dbg(SCAN, "Ignored scan complete result 0x%x\n",
status);
}
exit:
return err;
}
static void brcmf_init_escan(struct brcmf_cfg80211_info *cfg)
{
brcmf_fweh_register(cfg->pub, BRCMF_E_ESCAN_RESULT,
brcmf_cfg80211_escan_handler);
cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE;
/* Init scan_timeout timer */
init_timer(&cfg->escan_timeout);
cfg->escan_timeout.data = (unsigned long) cfg;
cfg->escan_timeout.function = brcmf_escan_timeout;
INIT_WORK(&cfg->escan_timeout_work,
brcmf_cfg80211_escan_timeout_worker);
}
static __always_inline void brcmf_delay(u32 ms)
{
if (ms < 1000 / HZ) {
cond_resched();
mdelay(ms);
} else {
msleep(ms);
}
}
static s32 brcmf_cfg80211_resume(struct wiphy *wiphy)
{
brcmf_dbg(TRACE, "Enter\n");
return 0;
}
static s32 brcmf_cfg80211_suspend(struct wiphy *wiphy,
struct cfg80211_wowlan *wow)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct net_device *ndev = cfg_to_ndev(cfg);
struct brcmf_cfg80211_vif *vif;
brcmf_dbg(TRACE, "Enter\n");
/*
* if the primary net_device is not READY there is nothing
* we can do but pray resume goes smoothly.
*/
vif = ((struct brcmf_if *)netdev_priv(ndev))->vif;
if (!check_vif_up(vif))
goto exit;
list_for_each_entry(vif, &cfg->vif_list, list) {
if (!test_bit(BRCMF_VIF_STATUS_READY, &vif->sme_state))
continue;
/*
* While going to suspend if associated with AP disassociate
* from AP to save power while system is in suspended state
*/
brcmf_link_down(vif);
/* Make sure WPA_Supplicant receives all the event
* generated due to DISASSOC call to the fw to keep
* the state fw and WPA_Supplicant state consistent
*/
brcmf_delay(500);
}
/* end any scanning */
if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status))
brcmf_abort_scanning(cfg);
/* Turn off watchdog timer */
brcmf_set_mpc(netdev_priv(ndev), 1);
exit:
brcmf_dbg(TRACE, "Exit\n");
/* clear any scanning activity */
cfg->scan_status = 0;
return 0;
}
static __used s32
brcmf_update_pmklist(struct net_device *ndev,
struct brcmf_cfg80211_pmk_list *pmk_list, s32 err)
{
int i, j;
int pmkid_len;
pmkid_len = le32_to_cpu(pmk_list->pmkids.npmkid);
brcmf_dbg(CONN, "No of elements %d\n", pmkid_len);
for (i = 0; i < pmkid_len; i++) {
brcmf_dbg(CONN, "PMKID[%d]: %pM =\n", i,
&pmk_list->pmkids.pmkid[i].BSSID);
for (j = 0; j < WLAN_PMKID_LEN; j++)
brcmf_dbg(CONN, "%02x\n",
pmk_list->pmkids.pmkid[i].PMKID[j]);
}
if (!err)
brcmf_fil_iovar_data_set(netdev_priv(ndev), "pmkid_info",
(char *)pmk_list, sizeof(*pmk_list));
return err;
}
static s32
brcmf_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_pmksa *pmksa)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct brcmf_if *ifp = netdev_priv(ndev);
struct pmkid_list *pmkids = &cfg->pmk_list->pmkids;
s32 err = 0;
int i;
int pmkid_len;
brcmf_dbg(TRACE, "Enter\n");
if (!check_vif_up(ifp->vif))
return -EIO;
pmkid_len = le32_to_cpu(pmkids->npmkid);
for (i = 0; i < pmkid_len; i++)
if (!memcmp(pmksa->bssid, pmkids->pmkid[i].BSSID, ETH_ALEN))
break;
if (i < WL_NUM_PMKIDS_MAX) {
memcpy(pmkids->pmkid[i].BSSID, pmksa->bssid, ETH_ALEN);
memcpy(pmkids->pmkid[i].PMKID, pmksa->pmkid, WLAN_PMKID_LEN);
if (i == pmkid_len) {
pmkid_len++;
pmkids->npmkid = cpu_to_le32(pmkid_len);
}
} else
err = -EINVAL;
brcmf_dbg(CONN, "set_pmksa,IW_PMKSA_ADD - PMKID: %pM =\n",
pmkids->pmkid[pmkid_len].BSSID);
for (i = 0; i < WLAN_PMKID_LEN; i++)
brcmf_dbg(CONN, "%02x\n", pmkids->pmkid[pmkid_len].PMKID[i]);
err = brcmf_update_pmklist(ndev, cfg->pmk_list, err);
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_pmksa *pmksa)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct brcmf_if *ifp = netdev_priv(ndev);
struct pmkid_list pmkid;
s32 err = 0;
int i, pmkid_len;
brcmf_dbg(TRACE, "Enter\n");
if (!check_vif_up(ifp->vif))
return -EIO;
memcpy(&pmkid.pmkid[0].BSSID, pmksa->bssid, ETH_ALEN);
memcpy(&pmkid.pmkid[0].PMKID, pmksa->pmkid, WLAN_PMKID_LEN);
brcmf_dbg(CONN, "del_pmksa,IW_PMKSA_REMOVE - PMKID: %pM =\n",
&pmkid.pmkid[0].BSSID);
for (i = 0; i < WLAN_PMKID_LEN; i++)
brcmf_dbg(CONN, "%02x\n", pmkid.pmkid[0].PMKID[i]);
pmkid_len = le32_to_cpu(cfg->pmk_list->pmkids.npmkid);
for (i = 0; i < pmkid_len; i++)
if (!memcmp
(pmksa->bssid, &cfg->pmk_list->pmkids.pmkid[i].BSSID,
ETH_ALEN))
break;
if ((pmkid_len > 0)
&& (i < pmkid_len)) {
memset(&cfg->pmk_list->pmkids.pmkid[i], 0,
sizeof(struct pmkid));
for (; i < (pmkid_len - 1); i++) {
memcpy(&cfg->pmk_list->pmkids.pmkid[i].BSSID,
&cfg->pmk_list->pmkids.pmkid[i + 1].BSSID,
ETH_ALEN);
memcpy(&cfg->pmk_list->pmkids.pmkid[i].PMKID,
&cfg->pmk_list->pmkids.pmkid[i + 1].PMKID,
WLAN_PMKID_LEN);
}
cfg->pmk_list->pmkids.npmkid = cpu_to_le32(pmkid_len - 1);
} else
err = -EINVAL;
err = brcmf_update_pmklist(ndev, cfg->pmk_list, err);
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *ndev)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct brcmf_if *ifp = netdev_priv(ndev);
s32 err = 0;
brcmf_dbg(TRACE, "Enter\n");
if (!check_vif_up(ifp->vif))
return -EIO;
memset(cfg->pmk_list, 0, sizeof(*cfg->pmk_list));
err = brcmf_update_pmklist(ndev, cfg->pmk_list, err);
brcmf_dbg(TRACE, "Exit\n");
return err;
}
/*
* PFN result doesn't have all the info which are
* required by the supplicant
* (For e.g IEs) Do a target Escan so that sched scan results are reported
* via wl_inform_single_bss in the required format. Escan does require the
* scan request in the form of cfg80211_scan_request. For timebeing, create
* cfg80211_scan_request one out of the received PNO event.
*/
static s32
brcmf_notify_sched_scan_results(struct brcmf_if *ifp,
const struct brcmf_event_msg *e, void *data)
{
struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
struct brcmf_pno_net_info_le *netinfo, *netinfo_start;
struct cfg80211_scan_request *request = NULL;
struct cfg80211_ssid *ssid = NULL;
struct ieee80211_channel *channel = NULL;
struct wiphy *wiphy = cfg_to_wiphy(cfg);
int err = 0;
int channel_req = 0;
int band = 0;
struct brcmf_pno_scanresults_le *pfn_result;
u32 result_count;
u32 status;
brcmf_dbg(SCAN, "Enter\n");
if (e->event_code == BRCMF_E_PFN_NET_LOST) {
brcmf_dbg(SCAN, "PFN NET LOST event. Do Nothing\n");
return 0;
}
pfn_result = (struct brcmf_pno_scanresults_le *)data;
result_count = le32_to_cpu(pfn_result->count);
status = le32_to_cpu(pfn_result->status);
/*
* PFN event is limited to fit 512 bytes so we may get
* multiple NET_FOUND events. For now place a warning here.
*/
WARN_ON(status != BRCMF_PNO_SCAN_COMPLETE);
brcmf_dbg(SCAN, "PFN NET FOUND event. count: %d\n", result_count);
if (result_count > 0) {
int i;
request = kzalloc(sizeof(*request), GFP_KERNEL);
ssid = kcalloc(result_count, sizeof(*ssid), GFP_KERNEL);
channel = kcalloc(result_count, sizeof(*channel), GFP_KERNEL);
if (!request || !ssid || !channel) {
err = -ENOMEM;
goto out_err;
}
request->wiphy = wiphy;
data += sizeof(struct brcmf_pno_scanresults_le);
netinfo_start = (struct brcmf_pno_net_info_le *)data;
for (i = 0; i < result_count; i++) {
netinfo = &netinfo_start[i];
if (!netinfo) {
brcmf_err("Invalid netinfo ptr. index: %d\n",
i);
err = -EINVAL;
goto out_err;
}
brcmf_dbg(SCAN, "SSID:%s Channel:%d\n",
netinfo->SSID, netinfo->channel);
memcpy(ssid[i].ssid, netinfo->SSID, netinfo->SSID_len);
ssid[i].ssid_len = netinfo->SSID_len;
request->n_ssids++;
channel_req = netinfo->channel;
if (channel_req <= CH_MAX_2G_CHANNEL)
band = NL80211_BAND_2GHZ;
else
band = NL80211_BAND_5GHZ;
channel[i].center_freq =
ieee80211_channel_to_frequency(channel_req,
band);
channel[i].band = band;
channel[i].flags |= IEEE80211_CHAN_NO_HT40;
request->channels[i] = &channel[i];
request->n_channels++;
}
/* assign parsed ssid array */
if (request->n_ssids)
request->ssids = &ssid[0];
if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
/* Abort any on-going scan */
brcmf_abort_scanning(cfg);
}
set_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
cfg->escan_info.run = brcmf_run_escan;
err = brcmf_do_escan(cfg, wiphy, ifp, request);
if (err) {
clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
goto out_err;
}
cfg->sched_escan = true;
cfg->scan_request = request;
} else {
brcmf_err("FALSE PNO Event. (pfn_count == 0)\n");
goto out_err;
}
kfree(ssid);
kfree(channel);
kfree(request);
return 0;
out_err:
kfree(ssid);
kfree(channel);
kfree(request);
cfg80211_sched_scan_stopped(wiphy);
return err;
}
static int brcmf_dev_pno_clean(struct net_device *ndev)
{
int ret;
/* Disable pfn */
ret = brcmf_fil_iovar_int_set(netdev_priv(ndev), "pfn", 0);
if (ret == 0) {
/* clear pfn */
ret = brcmf_fil_iovar_data_set(netdev_priv(ndev), "pfnclear",
NULL, 0);
}
if (ret < 0)
brcmf_err("failed code %d\n", ret);
return ret;
}
static int brcmf_dev_pno_config(struct net_device *ndev)
{
struct brcmf_pno_param_le pfn_param;
memset(&pfn_param, 0, sizeof(pfn_param));
pfn_param.version = cpu_to_le32(BRCMF_PNO_VERSION);
/* set extra pno params */
pfn_param.flags = cpu_to_le16(1 << BRCMF_PNO_ENABLE_ADAPTSCAN_BIT);
pfn_param.repeat = BRCMF_PNO_REPEAT;
pfn_param.exp = BRCMF_PNO_FREQ_EXPO_MAX;
/* set up pno scan fr */
pfn_param.scan_freq = cpu_to_le32(BRCMF_PNO_TIME);
return brcmf_fil_iovar_data_set(netdev_priv(ndev), "pfn_set",
&pfn_param, sizeof(pfn_param));
}
static int
brcmf_cfg80211_sched_scan_start(struct wiphy *wiphy,
struct net_device *ndev,
struct cfg80211_sched_scan_request *request)
{
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_cfg80211_info *cfg = wiphy_priv(wiphy);
struct brcmf_pno_net_param_le pfn;
int i;
int ret = 0;
brcmf_dbg(SCAN, "Enter n_match_sets:%d n_ssids:%d\n",
request->n_match_sets, request->n_ssids);
if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
brcmf_err("Scanning already: status (%lu)\n", cfg->scan_status);
return -EAGAIN;
}
if (test_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status)) {
brcmf_err("Scanning suppressed: status (%lu)\n",
cfg->scan_status);
return -EAGAIN;
}
if (!request->n_ssids || !request->n_match_sets) {
brcmf_dbg(SCAN, "Invalid sched scan req!! n_ssids:%d\n",
request->n_ssids);
return -EINVAL;
}
if (request->n_ssids > 0) {
for (i = 0; i < request->n_ssids; i++) {
/* Active scan req for ssids */
brcmf_dbg(SCAN, ">>> Active scan req for ssid (%s)\n",
request->ssids[i].ssid);
/*
* match_set ssids is a supert set of n_ssid list,
* so we need not add these set seperately.
*/
}
}
if (request->n_match_sets > 0) {
/* clean up everything */
ret = brcmf_dev_pno_clean(ndev);
if (ret < 0) {
brcmf_err("failed error=%d\n", ret);
return ret;
}
/* configure pno */
ret = brcmf_dev_pno_config(ndev);
if (ret < 0) {
brcmf_err("PNO setup failed!! ret=%d\n", ret);
return -EINVAL;
}
/* configure each match set */
for (i = 0; i < request->n_match_sets; i++) {
struct cfg80211_ssid *ssid;
u32 ssid_len;
ssid = &request->match_sets[i].ssid;
ssid_len = ssid->ssid_len;
if (!ssid_len) {
brcmf_err("skip broadcast ssid\n");
continue;
}
pfn.auth = cpu_to_le32(WLAN_AUTH_OPEN);
pfn.wpa_auth = cpu_to_le32(BRCMF_PNO_WPA_AUTH_ANY);
pfn.wsec = cpu_to_le32(0);
pfn.infra = cpu_to_le32(1);
pfn.flags = cpu_to_le32(1 << BRCMF_PNO_HIDDEN_BIT);
pfn.ssid.SSID_len = cpu_to_le32(ssid_len);
memcpy(pfn.ssid.SSID, ssid->ssid, ssid_len);
ret = brcmf_fil_iovar_data_set(ifp, "pfn_add", &pfn,
sizeof(pfn));
brcmf_dbg(SCAN, ">>> PNO filter %s for ssid (%s)\n",
ret == 0 ? "set" : "failed", ssid->ssid);
}
/* Enable the PNO */
if (brcmf_fil_iovar_int_set(ifp, "pfn", 1) < 0) {
brcmf_err("PNO enable failed!! ret=%d\n", ret);
return -EINVAL;
}
} else {
return -EINVAL;
}
return 0;
}
static int brcmf_cfg80211_sched_scan_stop(struct wiphy *wiphy,
struct net_device *ndev)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
brcmf_dbg(SCAN, "enter\n");
brcmf_dev_pno_clean(ndev);
if (cfg->sched_escan)
brcmf_notify_escan_complete(cfg, netdev_priv(ndev), true, true);
return 0;
}
#ifdef CONFIG_NL80211_TESTMODE
static int brcmf_cfg80211_testmode(struct wiphy *wiphy,
struct wireless_dev *wdev,
void *data, int len)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct net_device *ndev = cfg_to_ndev(cfg);
struct brcmf_dcmd *dcmd = data;
struct sk_buff *reply;
int ret;
brcmf_dbg(TRACE, "cmd %x set %d buf %p len %d\n", dcmd->cmd, dcmd->set,
dcmd->buf, dcmd->len);
if (dcmd->set)
ret = brcmf_fil_cmd_data_set(netdev_priv(ndev), dcmd->cmd,
dcmd->buf, dcmd->len);
else
ret = brcmf_fil_cmd_data_get(netdev_priv(ndev), dcmd->cmd,
dcmd->buf, dcmd->len);
if (ret == 0) {
reply = cfg80211_testmode_alloc_reply_skb(wiphy, sizeof(*dcmd));
nla_put(reply, NL80211_ATTR_TESTDATA, sizeof(*dcmd), dcmd);
ret = cfg80211_testmode_reply(reply);
}
return ret;
}
#endif
static s32 brcmf_configure_opensecurity(struct brcmf_if *ifp)
{
s32 err;
/* set auth */
err = brcmf_fil_bsscfg_int_set(ifp, "auth", 0);
if (err < 0) {
brcmf_err("auth error %d\n", err);
return err;
}
/* set wsec */
err = brcmf_fil_bsscfg_int_set(ifp, "wsec", 0);
if (err < 0) {
brcmf_err("wsec error %d\n", err);
return err;
}
/* set upper-layer auth */
err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", WPA_AUTH_NONE);
if (err < 0) {
brcmf_err("wpa_auth error %d\n", err);
return err;
}
return 0;
}
static bool brcmf_valid_wpa_oui(u8 *oui, bool is_rsn_ie)
{
if (is_rsn_ie)
return (memcmp(oui, RSN_OUI, TLV_OUI_LEN) == 0);
return (memcmp(oui, WPA_OUI, TLV_OUI_LEN) == 0);
}
static s32
brcmf_configure_wpaie(struct net_device *ndev,
const struct brcmf_vs_tlv *wpa_ie,
bool is_rsn_ie)
{
struct brcmf_if *ifp = netdev_priv(ndev);
u32 auth = 0; /* d11 open authentication */
u16 count;
s32 err = 0;
s32 len = 0;
u32 i;
u32 wsec;
u32 pval = 0;
u32 gval = 0;
u32 wpa_auth = 0;
u32 offset;
u8 *data;
u16 rsn_cap;
u32 wme_bss_disable;
brcmf_dbg(TRACE, "Enter\n");
if (wpa_ie == NULL)
goto exit;
len = wpa_ie->len + TLV_HDR_LEN;
data = (u8 *)wpa_ie;
offset = TLV_HDR_LEN;
if (!is_rsn_ie)
offset += VS_IE_FIXED_HDR_LEN;
else
offset += WPA_IE_VERSION_LEN;
/* check for multicast cipher suite */
if (offset + WPA_IE_MIN_OUI_LEN > len) {
err = -EINVAL;
brcmf_err("no multicast cipher suite\n");
goto exit;
}
if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) {
err = -EINVAL;
brcmf_err("ivalid OUI\n");
goto exit;
}
offset += TLV_OUI_LEN;
/* pick up multicast cipher */
switch (data[offset]) {
case WPA_CIPHER_NONE:
gval = 0;
break;
case WPA_CIPHER_WEP_40:
case WPA_CIPHER_WEP_104:
gval = WEP_ENABLED;
break;
case WPA_CIPHER_TKIP:
gval = TKIP_ENABLED;
break;
case WPA_CIPHER_AES_CCM:
gval = AES_ENABLED;
break;
default:
err = -EINVAL;
brcmf_err("Invalid multi cast cipher info\n");
goto exit;
}
offset++;
/* walk thru unicast cipher list and pick up what we recognize */
count = data[offset] + (data[offset + 1] << 8);
offset += WPA_IE_SUITE_COUNT_LEN;
/* Check for unicast suite(s) */
if (offset + (WPA_IE_MIN_OUI_LEN * count) > len) {
err = -EINVAL;
brcmf_err("no unicast cipher suite\n");
goto exit;
}
for (i = 0; i < count; i++) {
if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) {
err = -EINVAL;
brcmf_err("ivalid OUI\n");
goto exit;
}
offset += TLV_OUI_LEN;
switch (data[offset]) {
case WPA_CIPHER_NONE:
break;
case WPA_CIPHER_WEP_40:
case WPA_CIPHER_WEP_104:
pval |= WEP_ENABLED;
break;
case WPA_CIPHER_TKIP:
pval |= TKIP_ENABLED;
break;
case WPA_CIPHER_AES_CCM:
pval |= AES_ENABLED;
break;
default:
brcmf_err("Ivalid unicast security info\n");
}
offset++;
}
/* walk thru auth management suite list and pick up what we recognize */
count = data[offset] + (data[offset + 1] << 8);
offset += WPA_IE_SUITE_COUNT_LEN;
/* Check for auth key management suite(s) */
if (offset + (WPA_IE_MIN_OUI_LEN * count) > len) {
err = -EINVAL;
brcmf_err("no auth key mgmt suite\n");
goto exit;
}
for (i = 0; i < count; i++) {
if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) {
err = -EINVAL;
brcmf_err("ivalid OUI\n");
goto exit;
}
offset += TLV_OUI_LEN;
switch (data[offset]) {
case RSN_AKM_NONE:
brcmf_dbg(TRACE, "RSN_AKM_NONE\n");
wpa_auth |= WPA_AUTH_NONE;
break;
case RSN_AKM_UNSPECIFIED:
brcmf_dbg(TRACE, "RSN_AKM_UNSPECIFIED\n");
is_rsn_ie ? (wpa_auth |= WPA2_AUTH_UNSPECIFIED) :
(wpa_auth |= WPA_AUTH_UNSPECIFIED);
break;
case RSN_AKM_PSK:
brcmf_dbg(TRACE, "RSN_AKM_PSK\n");
is_rsn_ie ? (wpa_auth |= WPA2_AUTH_PSK) :
(wpa_auth |= WPA_AUTH_PSK);
break;
default:
brcmf_err("Ivalid key mgmt info\n");
}
offset++;
}
if (is_rsn_ie) {
wme_bss_disable = 1;
if ((offset + RSN_CAP_LEN) <= len) {
rsn_cap = data[offset] + (data[offset + 1] << 8);
if (rsn_cap & RSN_CAP_PTK_REPLAY_CNTR_MASK)
wme_bss_disable = 0;
}
/* set wme_bss_disable to sync RSN Capabilities */
err = brcmf_fil_bsscfg_int_set(ifp, "wme_bss_disable",
wme_bss_disable);
if (err < 0) {
brcmf_err("wme_bss_disable error %d\n", err);
goto exit;
}
}
/* FOR WPS , set SES_OW_ENABLED */
wsec = (pval | gval | SES_OW_ENABLED);
/* set auth */
err = brcmf_fil_bsscfg_int_set(ifp, "auth", auth);
if (err < 0) {
brcmf_err("auth error %d\n", err);
goto exit;
}
/* set wsec */
err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec);
if (err < 0) {
brcmf_err("wsec error %d\n", err);
goto exit;
}
/* set upper-layer auth */
err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", wpa_auth);
if (err < 0) {
brcmf_err("wpa_auth error %d\n", err);
goto exit;
}
exit:
return err;
}
static s32
brcmf_parse_vndr_ies(const u8 *vndr_ie_buf, u32 vndr_ie_len,
struct parsed_vndr_ies *vndr_ies)
{
s32 err = 0;
struct brcmf_vs_tlv *vndrie;
struct brcmf_tlv *ie;
struct parsed_vndr_ie_info *parsed_info;
s32 remaining_len;
remaining_len = (s32)vndr_ie_len;
memset(vndr_ies, 0, sizeof(*vndr_ies));
ie = (struct brcmf_tlv *)vndr_ie_buf;
while (ie) {
if (ie->id != WLAN_EID_VENDOR_SPECIFIC)
goto next;
vndrie = (struct brcmf_vs_tlv *)ie;
/* len should be bigger than OUI length + one */
if (vndrie->len < (VS_IE_FIXED_HDR_LEN - TLV_HDR_LEN + 1)) {
brcmf_err("invalid vndr ie. length is too small %d\n",
vndrie->len);
goto next;
}
/* if wpa or wme ie, do not add ie */
if (!memcmp(vndrie->oui, (u8 *)WPA_OUI, TLV_OUI_LEN) &&
((vndrie->oui_type == WPA_OUI_TYPE) ||
(vndrie->oui_type == WME_OUI_TYPE))) {
brcmf_dbg(TRACE, "Found WPA/WME oui. Do not add it\n");
goto next;
}
parsed_info = &vndr_ies->ie_info[vndr_ies->count];
/* save vndr ie information */
parsed_info->ie_ptr = (char *)vndrie;
parsed_info->ie_len = vndrie->len + TLV_HDR_LEN;
memcpy(&parsed_info->vndrie, vndrie, sizeof(*vndrie));
vndr_ies->count++;
brcmf_dbg(TRACE, "** OUI %02x %02x %02x, type 0x%02x\n",
parsed_info->vndrie.oui[0],
parsed_info->vndrie.oui[1],
parsed_info->vndrie.oui[2],
parsed_info->vndrie.oui_type);
if (vndr_ies->count >= VNDR_IE_PARSE_LIMIT)
break;
next:
remaining_len -= (ie->len + TLV_HDR_LEN);
if (remaining_len <= TLV_HDR_LEN)
ie = NULL;
else
ie = (struct brcmf_tlv *)(((u8 *)ie) + ie->len +
TLV_HDR_LEN);
}
return err;
}
static u32
brcmf_vndr_ie(u8 *iebuf, s32 pktflag, u8 *ie_ptr, u32 ie_len, s8 *add_del_cmd)
{
__le32 iecount_le;
__le32 pktflag_le;
strncpy(iebuf, add_del_cmd, VNDR_IE_CMD_LEN - 1);
iebuf[VNDR_IE_CMD_LEN - 1] = '\0';
iecount_le = cpu_to_le32(1);
memcpy(&iebuf[VNDR_IE_COUNT_OFFSET], &iecount_le, sizeof(iecount_le));
pktflag_le = cpu_to_le32(pktflag);
memcpy(&iebuf[VNDR_IE_PKTFLAG_OFFSET], &pktflag_le, sizeof(pktflag_le));
memcpy(&iebuf[VNDR_IE_VSIE_OFFSET], ie_ptr, ie_len);
return ie_len + VNDR_IE_HDR_SIZE;
}
s32 brcmf_vif_set_mgmt_ie(struct brcmf_cfg80211_vif *vif, s32 pktflag,
const u8 *vndr_ie_buf, u32 vndr_ie_len)
{
struct brcmf_if *ifp;
struct vif_saved_ie *saved_ie;
s32 err = 0;
u8 *iovar_ie_buf;
u8 *curr_ie_buf;
u8 *mgmt_ie_buf = NULL;
int mgmt_ie_buf_len;
u32 *mgmt_ie_len;
u32 del_add_ie_buf_len = 0;
u32 total_ie_buf_len = 0;
u32 parsed_ie_buf_len = 0;
struct parsed_vndr_ies old_vndr_ies;
struct parsed_vndr_ies new_vndr_ies;
struct parsed_vndr_ie_info *vndrie_info;
s32 i;
u8 *ptr;
int remained_buf_len;
if (!vif)
return -ENODEV;
ifp = vif->ifp;
saved_ie = &vif->saved_ie;
brcmf_dbg(TRACE, "bssidx %d, pktflag : 0x%02X\n", ifp->bssidx, pktflag);
iovar_ie_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL);
if (!iovar_ie_buf)
return -ENOMEM;
curr_ie_buf = iovar_ie_buf;
switch (pktflag) {
case BRCMF_VNDR_IE_PRBREQ_FLAG:
mgmt_ie_buf = saved_ie->probe_req_ie;
mgmt_ie_len = &saved_ie->probe_req_ie_len;
mgmt_ie_buf_len = sizeof(saved_ie->probe_req_ie);
break;
case BRCMF_VNDR_IE_PRBRSP_FLAG:
mgmt_ie_buf = saved_ie->probe_res_ie;
mgmt_ie_len = &saved_ie->probe_res_ie_len;
mgmt_ie_buf_len = sizeof(saved_ie->probe_res_ie);
break;
case BRCMF_VNDR_IE_BEACON_FLAG:
mgmt_ie_buf = saved_ie->beacon_ie;
mgmt_ie_len = &saved_ie->beacon_ie_len;
mgmt_ie_buf_len = sizeof(saved_ie->beacon_ie);
break;
case BRCMF_VNDR_IE_ASSOCREQ_FLAG:
mgmt_ie_buf = saved_ie->assoc_req_ie;
mgmt_ie_len = &saved_ie->assoc_req_ie_len;
mgmt_ie_buf_len = sizeof(saved_ie->assoc_req_ie);
break;
default:
err = -EPERM;
brcmf_err("not suitable type\n");
goto exit;
}
if (vndr_ie_len > mgmt_ie_buf_len) {
err = -ENOMEM;
brcmf_err("extra IE size too big\n");
goto exit;
}
/* parse and save new vndr_ie in curr_ie_buff before comparing it */
if (vndr_ie_buf && vndr_ie_len && curr_ie_buf) {
ptr = curr_ie_buf;
brcmf_parse_vndr_ies(vndr_ie_buf, vndr_ie_len, &new_vndr_ies);
for (i = 0; i < new_vndr_ies.count; i++) {
vndrie_info = &new_vndr_ies.ie_info[i];
memcpy(ptr + parsed_ie_buf_len, vndrie_info->ie_ptr,
vndrie_info->ie_len);
parsed_ie_buf_len += vndrie_info->ie_len;
}
}
if (mgmt_ie_buf && *mgmt_ie_len) {
if (parsed_ie_buf_len && (parsed_ie_buf_len == *mgmt_ie_len) &&
(memcmp(mgmt_ie_buf, curr_ie_buf,
parsed_ie_buf_len) == 0)) {
brcmf_dbg(TRACE, "Previous mgmt IE equals to current IE\n");
goto exit;
}
/* parse old vndr_ie */
brcmf_parse_vndr_ies(mgmt_ie_buf, *mgmt_ie_len, &old_vndr_ies);
/* make a command to delete old ie */
for (i = 0; i < old_vndr_ies.count; i++) {
vndrie_info = &old_vndr_ies.ie_info[i];
brcmf_dbg(TRACE, "DEL ID : %d, Len: %d , OUI:%02x:%02x:%02x\n",
vndrie_info->vndrie.id,
vndrie_info->vndrie.len,
vndrie_info->vndrie.oui[0],
vndrie_info->vndrie.oui[1],
vndrie_info->vndrie.oui[2]);
del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag,
vndrie_info->ie_ptr,
vndrie_info->ie_len,
"del");
curr_ie_buf += del_add_ie_buf_len;
total_ie_buf_len += del_add_ie_buf_len;
}
}
*mgmt_ie_len = 0;
/* Add if there is any extra IE */
if (mgmt_ie_buf && parsed_ie_buf_len) {
ptr = mgmt_ie_buf;
remained_buf_len = mgmt_ie_buf_len;
/* make a command to add new ie */
for (i = 0; i < new_vndr_ies.count; i++) {
vndrie_info = &new_vndr_ies.ie_info[i];
/* verify remained buf size before copy data */
if (remained_buf_len < (vndrie_info->vndrie.len +
VNDR_IE_VSIE_OFFSET)) {
brcmf_err("no space in mgmt_ie_buf: len left %d",
remained_buf_len);
break;
}
remained_buf_len -= (vndrie_info->ie_len +
VNDR_IE_VSIE_OFFSET);
brcmf_dbg(TRACE, "ADDED ID : %d, Len: %d, OUI:%02x:%02x:%02x\n",
vndrie_info->vndrie.id,
vndrie_info->vndrie.len,
vndrie_info->vndrie.oui[0],
vndrie_info->vndrie.oui[1],
vndrie_info->vndrie.oui[2]);
del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag,
vndrie_info->ie_ptr,
vndrie_info->ie_len,
"add");
/* save the parsed IE in wl struct */
memcpy(ptr + (*mgmt_ie_len), vndrie_info->ie_ptr,
vndrie_info->ie_len);
*mgmt_ie_len += vndrie_info->ie_len;
curr_ie_buf += del_add_ie_buf_len;
total_ie_buf_len += del_add_ie_buf_len;
}
}
if (total_ie_buf_len) {
err = brcmf_fil_bsscfg_data_set(ifp, "vndr_ie", iovar_ie_buf,
total_ie_buf_len);
if (err)
brcmf_err("vndr ie set error : %d\n", err);
}
exit:
kfree(iovar_ie_buf);
return err;
}
s32 brcmf_vif_clear_mgmt_ies(struct brcmf_cfg80211_vif *vif)
{
s32 pktflags[] = {
BRCMF_VNDR_IE_PRBREQ_FLAG,
BRCMF_VNDR_IE_PRBRSP_FLAG,
BRCMF_VNDR_IE_BEACON_FLAG
};
int i;
for (i = 0; i < ARRAY_SIZE(pktflags); i++)
brcmf_vif_set_mgmt_ie(vif, pktflags[i], NULL, 0);
memset(&vif->saved_ie, 0, sizeof(vif->saved_ie));
return 0;
}
static s32
brcmf_config_ap_mgmt_ie(struct brcmf_cfg80211_vif *vif,
struct cfg80211_beacon_data *beacon)
{
s32 err;
/* Set Beacon IEs to FW */
err = brcmf_vif_set_mgmt_ie(vif, BRCMF_VNDR_IE_BEACON_FLAG,
beacon->tail, beacon->tail_len);
if (err) {
brcmf_err("Set Beacon IE Failed\n");
return err;
}
brcmf_dbg(TRACE, "Applied Vndr IEs for Beacon\n");
/* Set Probe Response IEs to FW */
err = brcmf_vif_set_mgmt_ie(vif, BRCMF_VNDR_IE_PRBRSP_FLAG,
beacon->proberesp_ies,
beacon->proberesp_ies_len);
if (err)
brcmf_err("Set Probe Resp IE Failed\n");
else
brcmf_dbg(TRACE, "Applied Vndr IEs for Probe Resp\n");
return err;
}
static s32
brcmf_cfg80211_start_ap(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_ap_settings *settings)
{
s32 ie_offset;
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct brcmf_if *ifp = netdev_priv(ndev);
const struct brcmf_tlv *ssid_ie;
struct brcmf_ssid_le ssid_le;
s32 err = -EPERM;
const struct brcmf_tlv *rsn_ie;
const struct brcmf_vs_tlv *wpa_ie;
struct brcmf_join_params join_params;
enum nl80211_iftype dev_role;
struct brcmf_fil_bss_enable_le bss_enable;
u16 chanspec;
brcmf_dbg(TRACE, "ctrlchn=%d, center=%d, bw=%d, beacon_interval=%d, dtim_period=%d,\n",
settings->chandef.chan->hw_value,
settings->chandef.center_freq1, settings->chandef.width,
settings->beacon_interval, settings->dtim_period);
brcmf_dbg(TRACE, "ssid=%s(%zu), auth_type=%d, inactivity_timeout=%d\n",
settings->ssid, settings->ssid_len, settings->auth_type,
settings->inactivity_timeout);
dev_role = ifp->vif->wdev.iftype;
memset(&ssid_le, 0, sizeof(ssid_le));
if (settings->ssid == NULL || settings->ssid_len == 0) {
ie_offset = DOT11_MGMT_HDR_LEN + DOT11_BCN_PRB_FIXED_LEN;
ssid_ie = brcmf_parse_tlvs(
(u8 *)&settings->beacon.head[ie_offset],
settings->beacon.head_len - ie_offset,
WLAN_EID_SSID);
if (!ssid_ie)
return -EINVAL;
memcpy(ssid_le.SSID, ssid_ie->data, ssid_ie->len);
ssid_le.SSID_len = cpu_to_le32(ssid_ie->len);
brcmf_dbg(TRACE, "SSID is (%s) in Head\n", ssid_le.SSID);
} else {
memcpy(ssid_le.SSID, settings->ssid, settings->ssid_len);
ssid_le.SSID_len = cpu_to_le32((u32)settings->ssid_len);
}
brcmf_set_mpc(ifp, 0);
brcmf_configure_arp_offload(ifp, false);
/* find the RSN_IE */
rsn_ie = brcmf_parse_tlvs((u8 *)settings->beacon.tail,
settings->beacon.tail_len, WLAN_EID_RSN);
/* find the WPA_IE */
wpa_ie = brcmf_find_wpaie((u8 *)settings->beacon.tail,
settings->beacon.tail_len);
if ((wpa_ie != NULL || rsn_ie != NULL)) {
brcmf_dbg(TRACE, "WPA(2) IE is found\n");
if (wpa_ie != NULL) {
/* WPA IE */
err = brcmf_configure_wpaie(ndev, wpa_ie, false);
if (err < 0)
goto exit;
} else {
/* RSN IE */
err = brcmf_configure_wpaie(ndev,
(struct brcmf_vs_tlv *)rsn_ie, true);
if (err < 0)
goto exit;
}
} else {
brcmf_dbg(TRACE, "No WPA(2) IEs found\n");
brcmf_configure_opensecurity(ifp);
}
brcmf_config_ap_mgmt_ie(ifp->vif, &settings->beacon);
chanspec = chandef_to_chanspec(&cfg->d11inf, &settings->chandef);
err = brcmf_fil_iovar_int_set(ifp, "chanspec", chanspec);
if (err < 0) {
brcmf_err("Set Channel failed: chspec=%d, %d\n", chanspec, err);
goto exit;
}
if (settings->beacon_interval) {
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_BCNPRD,
settings->beacon_interval);
if (err < 0) {
brcmf_err("Beacon Interval Set Error, %d\n", err);
goto exit;
}
}
if (settings->dtim_period) {
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_DTIMPRD,
settings->dtim_period);
if (err < 0) {
brcmf_err("DTIM Interval Set Error, %d\n", err);
goto exit;
}
}
if (dev_role == NL80211_IFTYPE_AP) {
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_DOWN, 1);
if (err < 0) {
brcmf_err("BRCMF_C_DOWN error %d\n", err);
goto exit;
}
brcmf_fil_iovar_int_set(ifp, "apsta", 0);
}
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, 1);
if (err < 0) {
brcmf_err("SET INFRA error %d\n", err);
goto exit;
}
if (dev_role == NL80211_IFTYPE_AP) {
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_AP, 1);
if (err < 0) {
brcmf_err("setting AP mode failed %d\n", err);
goto exit;
}
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 1);
if (err < 0) {
brcmf_err("BRCMF_C_UP error (%d)\n", err);
goto exit;
}
memset(&join_params, 0, sizeof(join_params));
/* join parameters starts with ssid */
memcpy(&join_params.ssid_le, &ssid_le, sizeof(ssid_le));
/* create softap */
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID,
&join_params, sizeof(join_params));
if (err < 0) {
brcmf_err("SET SSID error (%d)\n", err);
goto exit;
}
brcmf_dbg(TRACE, "AP mode configuration complete\n");
} else {
err = brcmf_fil_bsscfg_data_set(ifp, "ssid", &ssid_le,
sizeof(ssid_le));
if (err < 0) {
brcmf_err("setting ssid failed %d\n", err);
goto exit;
}
bss_enable.bsscfg_idx = cpu_to_le32(ifp->bssidx);
bss_enable.enable = cpu_to_le32(1);
err = brcmf_fil_iovar_data_set(ifp, "bss", &bss_enable,
sizeof(bss_enable));
if (err < 0) {
brcmf_err("bss_enable config failed %d\n", err);
goto exit;
}
brcmf_dbg(TRACE, "GO mode configuration complete\n");
}
clear_bit(BRCMF_VIF_STATUS_AP_CREATING, &ifp->vif->sme_state);
set_bit(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state);
exit:
if (err) {
brcmf_set_mpc(ifp, 1);
brcmf_configure_arp_offload(ifp, true);
}
return err;
}
static int brcmf_cfg80211_stop_ap(struct wiphy *wiphy, struct net_device *ndev)
{
struct brcmf_if *ifp = netdev_priv(ndev);
s32 err;
struct brcmf_fil_bss_enable_le bss_enable;
struct brcmf_join_params join_params;
brcmf_dbg(TRACE, "Enter\n");
if (ifp->vif->wdev.iftype == NL80211_IFTYPE_AP) {
/* Due to most likely deauths outstanding we sleep */
/* first to make sure they get processed by fw. */
msleep(400);
memset(&join_params, 0, sizeof(join_params));
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID,
&join_params, sizeof(join_params));
if (err < 0)
brcmf_err("SET SSID error (%d)\n", err);
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 0);
if (err < 0)
brcmf_err("BRCMF_C_UP error %d\n", err);
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_AP, 0);
if (err < 0)
brcmf_err("setting AP mode failed %d\n", err);
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, 0);
if (err < 0)
brcmf_err("setting INFRA mode failed %d\n", err);
} else {
bss_enable.bsscfg_idx = cpu_to_le32(ifp->bssidx);
bss_enable.enable = cpu_to_le32(0);
err = brcmf_fil_iovar_data_set(ifp, "bss", &bss_enable,
sizeof(bss_enable));
if (err < 0)
brcmf_err("bss_enable config failed %d\n", err);
}
brcmf_set_mpc(ifp, 1);
brcmf_configure_arp_offload(ifp, true);
set_bit(BRCMF_VIF_STATUS_AP_CREATING, &ifp->vif->sme_state);
clear_bit(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state);
return err;
}
static s32
brcmf_cfg80211_change_beacon(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_beacon_data *info)
{
struct brcmf_if *ifp = netdev_priv(ndev);
s32 err;
brcmf_dbg(TRACE, "Enter\n");
err = brcmf_config_ap_mgmt_ie(ifp->vif, info);
return err;
}
static int
brcmf_cfg80211_del_station(struct wiphy *wiphy, struct net_device *ndev,
const u8 *mac)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct brcmf_scb_val_le scbval;
struct brcmf_if *ifp = netdev_priv(ndev);
s32 err;
if (!mac)
return -EFAULT;
brcmf_dbg(TRACE, "Enter %pM\n", mac);
if (ifp->vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif)
ifp = cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif->ifp;
if (!check_vif_up(ifp->vif))
return -EIO;
memcpy(&scbval.ea, mac, ETH_ALEN);
scbval.val = cpu_to_le32(WLAN_REASON_DEAUTH_LEAVING);
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCB_DEAUTHENTICATE_FOR_REASON,
&scbval, sizeof(scbval));
if (err)
brcmf_err("SCB_DEAUTHENTICATE_FOR_REASON failed %d\n", err);
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static void
brcmf_cfg80211_mgmt_frame_register(struct wiphy *wiphy,
struct wireless_dev *wdev,
u16 frame_type, bool reg)
{
struct brcmf_cfg80211_vif *vif;
u16 mgmt_type;
brcmf_dbg(TRACE, "Enter, frame_type %04x, reg=%d\n", frame_type, reg);
mgmt_type = (frame_type & IEEE80211_FCTL_STYPE) >> 4;
vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev);
if (reg)
vif->mgmt_rx_reg |= BIT(mgmt_type);
else
vif->mgmt_rx_reg &= ~BIT(mgmt_type);
}
static int
brcmf_cfg80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev,
struct cfg80211_mgmt_tx_params *params, u64 *cookie)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct ieee80211_channel *chan = params->chan;
const u8 *buf = params->buf;
size_t len = params->len;
const struct ieee80211_mgmt *mgmt;
struct brcmf_cfg80211_vif *vif;
s32 err = 0;
s32 ie_offset;
s32 ie_len;
struct brcmf_fil_action_frame_le *action_frame;
struct brcmf_fil_af_params_le *af_params;
bool ack;
s32 chan_nr;
u32 freq;
brcmf_dbg(TRACE, "Enter\n");
*cookie = 0;
mgmt = (const struct ieee80211_mgmt *)buf;
if (!ieee80211_is_mgmt(mgmt->frame_control)) {
brcmf_err("Driver only allows MGMT packet type\n");
return -EPERM;
}
vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev);
if (ieee80211_is_probe_resp(mgmt->frame_control)) {
/* Right now the only reason to get a probe response */
/* is for p2p listen response or for p2p GO from */
/* wpa_supplicant. Unfortunately the probe is send */
/* on primary ndev, while dongle wants it on the p2p */
/* vif. Since this is only reason for a probe */
/* response to be sent, the vif is taken from cfg. */
/* If ever desired to send proberesp for non p2p */
/* response then data should be checked for */
/* "DIRECT-". Note in future supplicant will take */
/* dedicated p2p wdev to do this and then this 'hack'*/
/* is not needed anymore. */
ie_offset = DOT11_MGMT_HDR_LEN +
DOT11_BCN_PRB_FIXED_LEN;
ie_len = len - ie_offset;
if (vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif)
vif = cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif;
err = brcmf_vif_set_mgmt_ie(vif,
BRCMF_VNDR_IE_PRBRSP_FLAG,
&buf[ie_offset],
ie_len);
cfg80211_mgmt_tx_status(wdev, *cookie, buf, len, true,
GFP_KERNEL);
} else if (ieee80211_is_action(mgmt->frame_control)) {
af_params = kzalloc(sizeof(*af_params), GFP_KERNEL);
if (af_params == NULL) {
brcmf_err("unable to allocate frame\n");
err = -ENOMEM;
goto exit;
}
action_frame = &af_params->action_frame;
/* Add the packet Id */
action_frame->packet_id = cpu_to_le32(*cookie);
/* Add BSSID */
memcpy(&action_frame->da[0], &mgmt->da[0], ETH_ALEN);
memcpy(&af_params->bssid[0], &mgmt->bssid[0], ETH_ALEN);
/* Add the length exepted for 802.11 header */
action_frame->len = cpu_to_le16(len - DOT11_MGMT_HDR_LEN);
/* Add the channel. Use the one specified as parameter if any or
* the current one (got from the firmware) otherwise
*/
if (chan)
freq = chan->center_freq;
else
brcmf_fil_cmd_int_get(vif->ifp, BRCMF_C_GET_CHANNEL,
&freq);
chan_nr = ieee80211_frequency_to_channel(freq);
af_params->channel = cpu_to_le32(chan_nr);
memcpy(action_frame->data, &buf[DOT11_MGMT_HDR_LEN],
le16_to_cpu(action_frame->len));
brcmf_dbg(TRACE, "Action frame, cookie=%lld, len=%d, freq=%d\n",
*cookie, le16_to_cpu(action_frame->len), freq);
ack = brcmf_p2p_send_action_frame(cfg, cfg_to_ndev(cfg),
af_params);
cfg80211_mgmt_tx_status(wdev, *cookie, buf, len, ack,
GFP_KERNEL);
kfree(af_params);
} else {
brcmf_dbg(TRACE, "Unhandled, fc=%04x!!\n", mgmt->frame_control);
brcmf_dbg_hex_dump(true, buf, len, "payload, len=%Zu\n", len);
}
exit:
return err;
}
static int
brcmf_cfg80211_cancel_remain_on_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
u64 cookie)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct brcmf_cfg80211_vif *vif;
int err = 0;
brcmf_dbg(TRACE, "Enter p2p listen cancel\n");
vif = cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif;
if (vif == NULL) {
brcmf_err("No p2p device available for probe response\n");
err = -ENODEV;
goto exit;
}
brcmf_p2p_cancel_remain_on_channel(vif->ifp);
exit:
return err;
}
static int brcmf_cfg80211_crit_proto_start(struct wiphy *wiphy,
struct wireless_dev *wdev,
enum nl80211_crit_proto_id proto,
u16 duration)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct brcmf_cfg80211_vif *vif;
vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev);
/* only DHCP support for now */
if (proto != NL80211_CRIT_PROTO_DHCP)
return -EINVAL;
/* suppress and abort scanning */
set_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status);
brcmf_abort_scanning(cfg);
return brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_DISABLED, duration);
}
static void brcmf_cfg80211_crit_proto_stop(struct wiphy *wiphy,
struct wireless_dev *wdev)
{
struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy);
struct brcmf_cfg80211_vif *vif;
vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev);
brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_ENABLED, 0);
clear_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status);
}
static int brcmf_convert_nl80211_tdls_oper(enum nl80211_tdls_operation oper)
{
int ret;
switch (oper) {
case NL80211_TDLS_DISCOVERY_REQ:
ret = BRCMF_TDLS_MANUAL_EP_DISCOVERY;
break;
case NL80211_TDLS_SETUP:
ret = BRCMF_TDLS_MANUAL_EP_CREATE;
break;
case NL80211_TDLS_TEARDOWN:
ret = BRCMF_TDLS_MANUAL_EP_DELETE;
break;
default:
brcmf_err("unsupported operation: %d\n", oper);
ret = -EOPNOTSUPP;
}
return ret;
}
static int brcmf_cfg80211_tdls_oper(struct wiphy *wiphy,
struct net_device *ndev, const u8 *peer,
enum nl80211_tdls_operation oper)
{
struct brcmf_if *ifp;
struct brcmf_tdls_iovar_le info;
int ret = 0;
ret = brcmf_convert_nl80211_tdls_oper(oper);
if (ret < 0)
return ret;
ifp = netdev_priv(ndev);
memset(&info, 0, sizeof(info));
info.mode = (u8)ret;
if (peer)
memcpy(info.ea, peer, ETH_ALEN);
ret = brcmf_fil_iovar_data_set(ifp, "tdls_endpoint",
&info, sizeof(info));
if (ret < 0)
brcmf_err("tdls_endpoint iovar failed: ret=%d\n", ret);
return ret;
}
static struct cfg80211_ops wl_cfg80211_ops = {
.add_virtual_intf = brcmf_cfg80211_add_iface,
.del_virtual_intf = brcmf_cfg80211_del_iface,
.change_virtual_intf = brcmf_cfg80211_change_iface,
.scan = brcmf_cfg80211_scan,
.set_wiphy_params = brcmf_cfg80211_set_wiphy_params,
.join_ibss = brcmf_cfg80211_join_ibss,
.leave_ibss = brcmf_cfg80211_leave_ibss,
.get_station = brcmf_cfg80211_get_station,
.set_tx_power = brcmf_cfg80211_set_tx_power,
.get_tx_power = brcmf_cfg80211_get_tx_power,
.add_key = brcmf_cfg80211_add_key,
.del_key = brcmf_cfg80211_del_key,
.get_key = brcmf_cfg80211_get_key,
.set_default_key = brcmf_cfg80211_config_default_key,
.set_default_mgmt_key = brcmf_cfg80211_config_default_mgmt_key,
.set_power_mgmt = brcmf_cfg80211_set_power_mgmt,
.connect = brcmf_cfg80211_connect,
.disconnect = brcmf_cfg80211_disconnect,
.suspend = brcmf_cfg80211_suspend,
.resume = brcmf_cfg80211_resume,
.set_pmksa = brcmf_cfg80211_set_pmksa,
.del_pmksa = brcmf_cfg80211_del_pmksa,
.flush_pmksa = brcmf_cfg80211_flush_pmksa,
.start_ap = brcmf_cfg80211_start_ap,
.stop_ap = brcmf_cfg80211_stop_ap,
.change_beacon = brcmf_cfg80211_change_beacon,
.del_station = brcmf_cfg80211_del_station,
.sched_scan_start = brcmf_cfg80211_sched_scan_start,
.sched_scan_stop = brcmf_cfg80211_sched_scan_stop,
.mgmt_frame_register = brcmf_cfg80211_mgmt_frame_register,
.mgmt_tx = brcmf_cfg80211_mgmt_tx,
.remain_on_channel = brcmf_p2p_remain_on_channel,
.cancel_remain_on_channel = brcmf_cfg80211_cancel_remain_on_channel,
.start_p2p_device = brcmf_p2p_start_device,
.stop_p2p_device = brcmf_p2p_stop_device,
.crit_proto_start = brcmf_cfg80211_crit_proto_start,
.crit_proto_stop = brcmf_cfg80211_crit_proto_stop,
.tdls_oper = brcmf_cfg80211_tdls_oper,
CFG80211_TESTMODE_CMD(brcmf_cfg80211_testmode)
};
static void brcmf_wiphy_pno_params(struct wiphy *wiphy)
{
/* scheduled scan settings */
wiphy->max_sched_scan_ssids = BRCMF_PNO_MAX_PFN_COUNT;
wiphy->max_match_sets = BRCMF_PNO_MAX_PFN_COUNT;
wiphy->max_sched_scan_ie_len = BRCMF_SCAN_IE_LEN_MAX;
wiphy->flags |= WIPHY_FLAG_SUPPORTS_SCHED_SCAN;
}
static const struct ieee80211_iface_limit brcmf_iface_limits[] = {
{
.max = 2,
.types = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_AP)
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO)
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_P2P_DEVICE)
}
};
static const struct ieee80211_iface_combination brcmf_iface_combos[] = {
{
.max_interfaces = BRCMF_IFACE_MAX_CNT,
.num_different_channels = 2,
.n_limits = ARRAY_SIZE(brcmf_iface_limits),
.limits = brcmf_iface_limits
}
};
static const struct ieee80211_txrx_stypes
brcmf_txrx_stypes[NUM_NL80211_IFTYPES] = {
[NL80211_IFTYPE_STATION] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
},
[NL80211_IFTYPE_P2P_CLIENT] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
},
[NL80211_IFTYPE_P2P_GO] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4) |
BIT(IEEE80211_STYPE_DISASSOC >> 4) |
BIT(IEEE80211_STYPE_AUTH >> 4) |
BIT(IEEE80211_STYPE_DEAUTH >> 4) |
BIT(IEEE80211_STYPE_ACTION >> 4)
},
[NL80211_IFTYPE_P2P_DEVICE] = {
.tx = 0xffff,
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
}
};
static struct wiphy *brcmf_setup_wiphy(struct device *phydev)
{
struct wiphy *wiphy;
s32 err = 0;
wiphy = wiphy_new(&wl_cfg80211_ops, sizeof(struct brcmf_cfg80211_info));
if (!wiphy) {
brcmf_err("Could not allocate wiphy device\n");
return ERR_PTR(-ENOMEM);
}
set_wiphy_dev(wiphy, phydev);
wiphy->max_scan_ssids = WL_NUM_SCAN_MAX;
wiphy->max_scan_ie_len = BRCMF_SCAN_IE_LEN_MAX;
wiphy->max_num_pmkids = WL_NUM_PMKIDS_MAX;
wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO) |
BIT(NL80211_IFTYPE_P2P_DEVICE);
wiphy->iface_combinations = brcmf_iface_combos;
wiphy->n_iface_combinations = ARRAY_SIZE(brcmf_iface_combos);
wiphy->bands[IEEE80211_BAND_2GHZ] = &__wl_band_2ghz;
wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
wiphy->cipher_suites = __wl_cipher_suites;
wiphy->n_cipher_suites = ARRAY_SIZE(__wl_cipher_suites);
wiphy->flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT |
WIPHY_FLAG_OFFCHAN_TX |
WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL |
WIPHY_FLAG_SUPPORTS_TDLS;
if (!brcmf_roamoff)
wiphy->flags |= WIPHY_FLAG_SUPPORTS_FW_ROAM;
wiphy->mgmt_stypes = brcmf_txrx_stypes;
wiphy->max_remain_on_channel_duration = 5000;
brcmf_wiphy_pno_params(wiphy);
brcmf_dbg(INFO, "Registering custom regulatory\n");
wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
wiphy_apply_custom_regulatory(wiphy, &brcmf_regdom);
err = wiphy_register(wiphy);
if (err < 0) {
brcmf_err("Could not register wiphy device (%d)\n", err);
wiphy_free(wiphy);
return ERR_PTR(err);
}
return wiphy;
}
struct brcmf_cfg80211_vif *brcmf_alloc_vif(struct brcmf_cfg80211_info *cfg,
enum nl80211_iftype type,
bool pm_block)
{
struct brcmf_cfg80211_vif *vif;
brcmf_dbg(TRACE, "allocating virtual interface (size=%zu)\n",
sizeof(*vif));
vif = kzalloc(sizeof(*vif), GFP_KERNEL);
if (!vif)
return ERR_PTR(-ENOMEM);
vif->wdev.wiphy = cfg->wiphy;
vif->wdev.iftype = type;
vif->pm_block = pm_block;
vif->roam_off = -1;
brcmf_init_prof(&vif->profile);
list_add_tail(&vif->list, &cfg->vif_list);
return vif;
}
void brcmf_free_vif(struct brcmf_cfg80211_vif *vif)
{
list_del(&vif->list);
kfree(vif);
}
void brcmf_cfg80211_free_netdev(struct net_device *ndev)
{
struct brcmf_cfg80211_vif *vif;
struct brcmf_if *ifp;
ifp = netdev_priv(ndev);
vif = ifp->vif;
brcmf_free_vif(vif);
free_netdev(ndev);
}
static bool brcmf_is_linkup(const struct brcmf_event_msg *e)
{
u32 event = e->event_code;
u32 status = e->status;
if (event == BRCMF_E_SET_SSID && status == BRCMF_E_STATUS_SUCCESS) {
brcmf_dbg(CONN, "Processing set ssid\n");
return true;
}
return false;
}
static bool brcmf_is_linkdown(const struct brcmf_event_msg *e)
{
u32 event = e->event_code;
u16 flags = e->flags;
if ((event == BRCMF_E_DEAUTH) || (event == BRCMF_E_DEAUTH_IND) ||
(event == BRCMF_E_DISASSOC_IND) ||
((event == BRCMF_E_LINK) && (!(flags & BRCMF_EVENT_MSG_LINK)))) {
brcmf_dbg(CONN, "Processing link down\n");
return true;
}
return false;
}
static bool brcmf_is_nonetwork(struct brcmf_cfg80211_info *cfg,
const struct brcmf_event_msg *e)
{
u32 event = e->event_code;
u32 status = e->status;
if (event == BRCMF_E_LINK && status == BRCMF_E_STATUS_NO_NETWORKS) {
brcmf_dbg(CONN, "Processing Link %s & no network found\n",
e->flags & BRCMF_EVENT_MSG_LINK ? "up" : "down");
return true;
}
if (event == BRCMF_E_SET_SSID && status != BRCMF_E_STATUS_SUCCESS) {
brcmf_dbg(CONN, "Processing connecting & no network found\n");
return true;
}
return false;
}
static void brcmf_clear_assoc_ies(struct brcmf_cfg80211_info *cfg)
{
struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg);
kfree(conn_info->req_ie);
conn_info->req_ie = NULL;
conn_info->req_ie_len = 0;
kfree(conn_info->resp_ie);
conn_info->resp_ie = NULL;
conn_info->resp_ie_len = 0;
}
static s32 brcmf_get_assoc_ies(struct brcmf_cfg80211_info *cfg,
struct brcmf_if *ifp)
{
struct brcmf_cfg80211_assoc_ielen_le *assoc_info;
struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg);
u32 req_len;
u32 resp_len;
s32 err = 0;
brcmf_clear_assoc_ies(cfg);
err = brcmf_fil_iovar_data_get(ifp, "assoc_info",
cfg->extra_buf, WL_ASSOC_INFO_MAX);
if (err) {
brcmf_err("could not get assoc info (%d)\n", err);
return err;
}
assoc_info =
(struct brcmf_cfg80211_assoc_ielen_le *)cfg->extra_buf;
req_len = le32_to_cpu(assoc_info->req_len);
resp_len = le32_to_cpu(assoc_info->resp_len);
if (req_len) {
err = brcmf_fil_iovar_data_get(ifp, "assoc_req_ies",
cfg->extra_buf,
WL_ASSOC_INFO_MAX);
if (err) {
brcmf_err("could not get assoc req (%d)\n", err);
return err;
}
conn_info->req_ie_len = req_len;
conn_info->req_ie =
kmemdup(cfg->extra_buf, conn_info->req_ie_len,
GFP_KERNEL);
} else {
conn_info->req_ie_len = 0;
conn_info->req_ie = NULL;
}
if (resp_len) {
err = brcmf_fil_iovar_data_get(ifp, "assoc_resp_ies",
cfg->extra_buf,
WL_ASSOC_INFO_MAX);
if (err) {
brcmf_err("could not get assoc resp (%d)\n", err);
return err;
}
conn_info->resp_ie_len = resp_len;
conn_info->resp_ie =
kmemdup(cfg->extra_buf, conn_info->resp_ie_len,
GFP_KERNEL);
} else {
conn_info->resp_ie_len = 0;
conn_info->resp_ie = NULL;
}
brcmf_dbg(CONN, "req len (%d) resp len (%d)\n",
conn_info->req_ie_len, conn_info->resp_ie_len);
return err;
}
static s32
brcmf_bss_roaming_done(struct brcmf_cfg80211_info *cfg,
struct net_device *ndev,
const struct brcmf_event_msg *e)
{
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg);
struct wiphy *wiphy = cfg_to_wiphy(cfg);
struct ieee80211_channel *notify_channel = NULL;
struct ieee80211_supported_band *band;
struct brcmf_bss_info_le *bi;
struct brcmu_chan ch;
u32 freq;
s32 err = 0;
u8 *buf;
brcmf_dbg(TRACE, "Enter\n");
brcmf_get_assoc_ies(cfg, ifp);
memcpy(profile->bssid, e->addr, ETH_ALEN);
brcmf_update_bss_info(cfg, ifp);
buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL);
if (buf == NULL) {
err = -ENOMEM;
goto done;
}
/* data sent to dongle has to be little endian */
*(__le32 *)buf = cpu_to_le32(WL_BSS_INFO_MAX);
err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BSS_INFO,
buf, WL_BSS_INFO_MAX);
if (err)
goto done;
bi = (struct brcmf_bss_info_le *)(buf + 4);
ch.chspec = le16_to_cpu(bi->chanspec);
cfg->d11inf.decchspec(&ch);
if (ch.band == BRCMU_CHAN_BAND_2G)
band = wiphy->bands[IEEE80211_BAND_2GHZ];
else
band = wiphy->bands[IEEE80211_BAND_5GHZ];
freq = ieee80211_channel_to_frequency(ch.chnum, band->band);
notify_channel = ieee80211_get_channel(wiphy, freq);
done:
kfree(buf);
cfg80211_roamed(ndev, notify_channel, (u8 *)profile->bssid,
conn_info->req_ie, conn_info->req_ie_len,
conn_info->resp_ie, conn_info->resp_ie_len, GFP_KERNEL);
brcmf_dbg(CONN, "Report roaming result\n");
set_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state);
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_bss_connect_done(struct brcmf_cfg80211_info *cfg,
struct net_device *ndev, const struct brcmf_event_msg *e,
bool completed)
{
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg);
s32 err = 0;
brcmf_dbg(TRACE, "Enter\n");
if (test_and_clear_bit(BRCMF_VIF_STATUS_CONNECTING,
&ifp->vif->sme_state)) {
if (completed) {
brcmf_get_assoc_ies(cfg, ifp);
memcpy(profile->bssid, e->addr, ETH_ALEN);
brcmf_update_bss_info(cfg, ifp);
set_bit(BRCMF_VIF_STATUS_CONNECTED,
&ifp->vif->sme_state);
}
cfg80211_connect_result(ndev,
(u8 *)profile->bssid,
conn_info->req_ie,
conn_info->req_ie_len,
conn_info->resp_ie,
conn_info->resp_ie_len,
completed ? WLAN_STATUS_SUCCESS :
WLAN_STATUS_AUTH_TIMEOUT,
GFP_KERNEL);
brcmf_dbg(CONN, "Report connect result - connection %s\n",
completed ? "succeeded" : "failed");
}
brcmf_dbg(TRACE, "Exit\n");
return err;
}
static s32
brcmf_notify_connect_status_ap(struct brcmf_cfg80211_info *cfg,
struct net_device *ndev,
const struct brcmf_event_msg *e, void *data)
{
static int generation;
u32 event = e->event_code;
u32 reason = e->reason;
struct station_info sinfo;
brcmf_dbg(CONN, "event %d, reason %d\n", event, reason);
if (event == BRCMF_E_LINK && reason == BRCMF_E_REASON_LINK_BSSCFG_DIS &&
ndev != cfg_to_ndev(cfg)) {
brcmf_dbg(CONN, "AP mode link down\n");
complete(&cfg->vif_disabled);
return 0;
}
if (((event == BRCMF_E_ASSOC_IND) || (event == BRCMF_E_REASSOC_IND)) &&
(reason == BRCMF_E_STATUS_SUCCESS)) {
memset(&sinfo, 0, sizeof(sinfo));
sinfo.filled = STATION_INFO_ASSOC_REQ_IES;
if (!data) {
brcmf_err("No IEs present in ASSOC/REASSOC_IND");
return -EINVAL;
}
sinfo.assoc_req_ies = data;
sinfo.assoc_req_ies_len = e->datalen;
generation++;
sinfo.generation = generation;
cfg80211_new_sta(ndev, e->addr, &sinfo, GFP_KERNEL);
} else if ((event == BRCMF_E_DISASSOC_IND) ||
(event == BRCMF_E_DEAUTH_IND) ||
(event == BRCMF_E_DEAUTH)) {
cfg80211_del_sta(ndev, e->addr, GFP_KERNEL);
}
return 0;
}
static s32
brcmf_notify_connect_status(struct brcmf_if *ifp,
const struct brcmf_event_msg *e, void *data)
{
struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
struct net_device *ndev = ifp->ndev;
struct brcmf_cfg80211_profile *profile = &ifp->vif->profile;
struct ieee80211_channel *chan;
s32 err = 0;
if (brcmf_is_apmode(ifp->vif)) {
err = brcmf_notify_connect_status_ap(cfg, ndev, e, data);
} else if (brcmf_is_linkup(e)) {
brcmf_dbg(CONN, "Linkup\n");
if (brcmf_is_ibssmode(ifp->vif)) {
chan = ieee80211_get_channel(cfg->wiphy, cfg->channel);
memcpy(profile->bssid, e->addr, ETH_ALEN);
wl_inform_ibss(cfg, ndev, e->addr);
cfg80211_ibss_joined(ndev, e->addr, chan, GFP_KERNEL);
clear_bit(BRCMF_VIF_STATUS_CONNECTING,
&ifp->vif->sme_state);
set_bit(BRCMF_VIF_STATUS_CONNECTED,
&ifp->vif->sme_state);
} else
brcmf_bss_connect_done(cfg, ndev, e, true);
} else if (brcmf_is_linkdown(e)) {
brcmf_dbg(CONN, "Linkdown\n");
if (!brcmf_is_ibssmode(ifp->vif)) {
brcmf_bss_connect_done(cfg, ndev, e, false);
}
brcmf_link_down(ifp->vif);
brcmf_init_prof(ndev_to_prof(ndev));
if (ndev != cfg_to_ndev(cfg))
complete(&cfg->vif_disabled);
} else if (brcmf_is_nonetwork(cfg, e)) {
if (brcmf_is_ibssmode(ifp->vif))
clear_bit(BRCMF_VIF_STATUS_CONNECTING,
&ifp->vif->sme_state);
else
brcmf_bss_connect_done(cfg, ndev, e, false);
}
return err;
}
static s32
brcmf_notify_roaming_status(struct brcmf_if *ifp,
const struct brcmf_event_msg *e, void *data)
{
struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
s32 err = 0;
u32 event = e->event_code;
u32 status = e->status;
if (event == BRCMF_E_ROAM && status == BRCMF_E_STATUS_SUCCESS) {
if (test_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state))
brcmf_bss_roaming_done(cfg, ifp->ndev, e);
else
brcmf_bss_connect_done(cfg, ifp->ndev, e, true);
}
return err;
}
static s32
brcmf_notify_mic_status(struct brcmf_if *ifp,
const struct brcmf_event_msg *e, void *data)
{
u16 flags = e->flags;
enum nl80211_key_type key_type;
if (flags & BRCMF_EVENT_MSG_GROUP)
key_type = NL80211_KEYTYPE_GROUP;
else
key_type = NL80211_KEYTYPE_PAIRWISE;
cfg80211_michael_mic_failure(ifp->ndev, (u8 *)&e->addr, key_type, -1,
NULL, GFP_KERNEL);
return 0;
}
static s32 brcmf_notify_vif_event(struct brcmf_if *ifp,
const struct brcmf_event_msg *e, void *data)
{
struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
struct brcmf_if_event *ifevent = (struct brcmf_if_event *)data;
struct brcmf_cfg80211_vif_event *event = &cfg->vif_event;
struct brcmf_cfg80211_vif *vif;
brcmf_dbg(TRACE, "Enter: action %u flags %u ifidx %u bsscfg %u\n",
ifevent->action, ifevent->flags, ifevent->ifidx,
ifevent->bssidx);
mutex_lock(&event->vif_event_lock);
event->action = ifevent->action;
vif = event->vif;
switch (ifevent->action) {
case BRCMF_E_IF_ADD:
/* waiting process may have timed out */
if (!cfg->vif_event.vif) {
mutex_unlock(&event->vif_event_lock);
return -EBADF;
}
ifp->vif = vif;
vif->ifp = ifp;
if (ifp->ndev) {
vif->wdev.netdev = ifp->ndev;
ifp->ndev->ieee80211_ptr = &vif->wdev;
SET_NETDEV_DEV(ifp->ndev, wiphy_dev(cfg->wiphy));
}
mutex_unlock(&event->vif_event_lock);
wake_up(&event->vif_wq);
return 0;
case BRCMF_E_IF_DEL:
mutex_unlock(&event->vif_event_lock);
/* event may not be upon user request */
if (brcmf_cfg80211_vif_event_armed(cfg))
wake_up(&event->vif_wq);
return 0;
case BRCMF_E_IF_CHANGE:
mutex_unlock(&event->vif_event_lock);
wake_up(&event->vif_wq);
return 0;
default:
mutex_unlock(&event->vif_event_lock);
break;
}
return -EINVAL;
}
static void brcmf_init_conf(struct brcmf_cfg80211_conf *conf)
{
conf->frag_threshold = (u32)-1;
conf->rts_threshold = (u32)-1;
conf->retry_short = (u32)-1;
conf->retry_long = (u32)-1;
conf->tx_power = -1;
}
static void brcmf_register_event_handlers(struct brcmf_cfg80211_info *cfg)
{
brcmf_fweh_register(cfg->pub, BRCMF_E_LINK,
brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_DEAUTH_IND,
brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_DEAUTH,
brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_DISASSOC_IND,
brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_ASSOC_IND,
brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_REASSOC_IND,
brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_ROAM,
brcmf_notify_roaming_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_MIC_ERROR,
brcmf_notify_mic_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_SET_SSID,
brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_PFN_NET_FOUND,
brcmf_notify_sched_scan_results);
brcmf_fweh_register(cfg->pub, BRCMF_E_IF,
brcmf_notify_vif_event);
brcmf_fweh_register(cfg->pub, BRCMF_E_P2P_PROBEREQ_MSG,
brcmf_p2p_notify_rx_mgmt_p2p_probereq);
brcmf_fweh_register(cfg->pub, BRCMF_E_P2P_DISC_LISTEN_COMPLETE,
brcmf_p2p_notify_listen_complete);
brcmf_fweh_register(cfg->pub, BRCMF_E_ACTION_FRAME_RX,
brcmf_p2p_notify_action_frame_rx);
brcmf_fweh_register(cfg->pub, BRCMF_E_ACTION_FRAME_COMPLETE,
brcmf_p2p_notify_action_tx_complete);
brcmf_fweh_register(cfg->pub, BRCMF_E_ACTION_FRAME_OFF_CHAN_COMPLETE,
brcmf_p2p_notify_action_tx_complete);
}
static void brcmf_deinit_priv_mem(struct brcmf_cfg80211_info *cfg)
{
kfree(cfg->conf);
cfg->conf = NULL;
kfree(cfg->escan_ioctl_buf);
cfg->escan_ioctl_buf = NULL;
kfree(cfg->extra_buf);
cfg->extra_buf = NULL;
kfree(cfg->pmk_list);
cfg->pmk_list = NULL;
}
static s32 brcmf_init_priv_mem(struct brcmf_cfg80211_info *cfg)
{
cfg->conf = kzalloc(sizeof(*cfg->conf), GFP_KERNEL);
if (!cfg->conf)
goto init_priv_mem_out;
cfg->escan_ioctl_buf = kzalloc(BRCMF_DCMD_MEDLEN, GFP_KERNEL);
if (!cfg->escan_ioctl_buf)
goto init_priv_mem_out;
cfg->extra_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL);
if (!cfg->extra_buf)
goto init_priv_mem_out;
cfg->pmk_list = kzalloc(sizeof(*cfg->pmk_list), GFP_KERNEL);
if (!cfg->pmk_list)
goto init_priv_mem_out;
return 0;
init_priv_mem_out:
brcmf_deinit_priv_mem(cfg);
return -ENOMEM;
}
static s32 wl_init_priv(struct brcmf_cfg80211_info *cfg)
{
s32 err = 0;
cfg->scan_request = NULL;
cfg->pwr_save = true;
cfg->active_scan = true; /* we do active scan per default */
cfg->dongle_up = false; /* dongle is not up yet */
err = brcmf_init_priv_mem(cfg);
if (err)
return err;
brcmf_register_event_handlers(cfg);
mutex_init(&cfg->usr_sync);
brcmf_init_escan(cfg);
brcmf_init_conf(cfg->conf);
init_completion(&cfg->vif_disabled);
return err;
}
static void wl_deinit_priv(struct brcmf_cfg80211_info *cfg)
{
cfg->dongle_up = false; /* dongle down */
brcmf_abort_scanning(cfg);
brcmf_deinit_priv_mem(cfg);
}
static void init_vif_event(struct brcmf_cfg80211_vif_event *event)
{
init_waitqueue_head(&event->vif_wq);
mutex_init(&event->vif_event_lock);
}
static int brcmf_enable_bw40_2g(struct brcmf_if *ifp)
{
struct brcmf_fil_bwcap_le band_bwcap;
u32 val;
int err;
/* verify support for bw_cap command */
val = WLC_BAND_5G;
err = brcmf_fil_iovar_int_get(ifp, "bw_cap", &val);
if (!err) {
/* only set 2G bandwidth using bw_cap command */
band_bwcap.band = cpu_to_le32(WLC_BAND_2G);
band_bwcap.bw_cap = cpu_to_le32(WLC_BW_CAP_40MHZ);
err = brcmf_fil_iovar_data_set(ifp, "bw_cap", &band_bwcap,
sizeof(band_bwcap));
} else {
brcmf_dbg(INFO, "fallback to mimo_bw_cap\n");
val = WLC_N_BW_40ALL;
err = brcmf_fil_iovar_int_set(ifp, "mimo_bw_cap", val);
}
return err;
}
struct brcmf_cfg80211_info *brcmf_cfg80211_attach(struct brcmf_pub *drvr,
struct device *busdev)
{
struct net_device *ndev = drvr->iflist[0]->ndev;
struct brcmf_cfg80211_info *cfg;
struct wiphy *wiphy;
struct brcmf_cfg80211_vif *vif;
struct brcmf_if *ifp;
s32 err = 0;
s32 io_type;
if (!ndev) {
brcmf_err("ndev is invalid\n");
return NULL;
}
ifp = netdev_priv(ndev);
wiphy = brcmf_setup_wiphy(busdev);
if (IS_ERR(wiphy))
return NULL;
cfg = wiphy_priv(wiphy);
cfg->wiphy = wiphy;
cfg->pub = drvr;
init_vif_event(&cfg->vif_event);
INIT_LIST_HEAD(&cfg->vif_list);
vif = brcmf_alloc_vif(cfg, NL80211_IFTYPE_STATION, false);
if (IS_ERR(vif)) {
wiphy_free(wiphy);
return NULL;
}
vif->ifp = ifp;
vif->wdev.netdev = ndev;
ndev->ieee80211_ptr = &vif->wdev;
SET_NETDEV_DEV(ndev, wiphy_dev(cfg->wiphy));
err = wl_init_priv(cfg);
if (err) {
brcmf_err("Failed to init iwm_priv (%d)\n", err);
goto cfg80211_attach_out;
}
ifp->vif = vif;
err = brcmf_p2p_attach(cfg);
if (err) {
brcmf_err("P2P initilisation failed (%d)\n", err);
goto cfg80211_p2p_attach_out;
}
err = brcmf_btcoex_attach(cfg);
if (err) {
brcmf_err("BT-coex initialisation failed (%d)\n", err);
brcmf_p2p_detach(&cfg->p2p);
goto cfg80211_p2p_attach_out;
}
/* If cfg80211 didn't disable 40MHz HT CAP in wiphy_register(),
* setup 40MHz in 2GHz band and enable OBSS scanning.
*/
if (wiphy->bands[IEEE80211_BAND_2GHZ]->ht_cap.cap &
IEEE80211_HT_CAP_SUP_WIDTH_20_40) {
err = brcmf_enable_bw40_2g(ifp);
if (!err)
err = brcmf_fil_iovar_int_set(ifp, "obss_coex",
BRCMF_OBSS_COEX_AUTO);
}
err = brcmf_fil_iovar_int_set(ifp, "tdls_enable", 1);
if (err) {
brcmf_dbg(INFO, "TDLS not enabled (%d)\n", err);
wiphy->flags &= ~WIPHY_FLAG_SUPPORTS_TDLS;
}
err = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_VERSION,
&io_type);
if (err) {
brcmf_err("Failed to get D11 version (%d)\n", err);
goto cfg80211_p2p_attach_out;
}
cfg->d11inf.io_type = (u8)io_type;
brcmu_d11_attach(&cfg->d11inf);
return cfg;
cfg80211_p2p_attach_out:
wl_deinit_priv(cfg);
cfg80211_attach_out:
brcmf_free_vif(vif);
return NULL;
}
void brcmf_cfg80211_detach(struct brcmf_cfg80211_info *cfg)
{
if (!cfg)
return;
WARN_ON(!list_empty(&cfg->vif_list));
wiphy_unregister(cfg->wiphy);
brcmf_btcoex_detach(cfg);
wl_deinit_priv(cfg);
wiphy_free(cfg->wiphy);
}
static s32
brcmf_dongle_roam(struct brcmf_if *ifp, u32 bcn_timeout)
{
s32 err = 0;
__le32 roamtrigger[2];
__le32 roam_delta[2];
/*
* Setup timeout if Beacons are lost and roam is
* off to report link down
*/
if (brcmf_roamoff) {
err = brcmf_fil_iovar_int_set(ifp, "bcn_timeout", bcn_timeout);
if (err) {
brcmf_err("bcn_timeout error (%d)\n", err);
goto dongle_rom_out;
}
}
/*
* Enable/Disable built-in roaming to allow supplicant
* to take care of roaming
*/
brcmf_dbg(INFO, "Internal Roaming = %s\n",
brcmf_roamoff ? "Off" : "On");
err = brcmf_fil_iovar_int_set(ifp, "roam_off", !!(brcmf_roamoff));
if (err) {
brcmf_err("roam_off error (%d)\n", err);
goto dongle_rom_out;
}
roamtrigger[0] = cpu_to_le32(WL_ROAM_TRIGGER_LEVEL);
roamtrigger[1] = cpu_to_le32(BRCM_BAND_ALL);
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_ROAM_TRIGGER,
(void *)roamtrigger, sizeof(roamtrigger));
if (err) {
brcmf_err("WLC_SET_ROAM_TRIGGER error (%d)\n", err);
goto dongle_rom_out;
}
roam_delta[0] = cpu_to_le32(WL_ROAM_DELTA);
roam_delta[1] = cpu_to_le32(BRCM_BAND_ALL);
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_ROAM_DELTA,
(void *)roam_delta, sizeof(roam_delta));
if (err) {
brcmf_err("WLC_SET_ROAM_DELTA error (%d)\n", err);
goto dongle_rom_out;
}
dongle_rom_out:
return err;
}
static s32
brcmf_dongle_scantime(struct brcmf_if *ifp, s32 scan_assoc_time,
s32 scan_unassoc_time, s32 scan_passive_time)
{
s32 err = 0;
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_CHANNEL_TIME,
scan_assoc_time);
if (err) {
if (err == -EOPNOTSUPP)
brcmf_dbg(INFO, "Scan assoc time is not supported\n");
else
brcmf_err("Scan assoc time error (%d)\n", err);
goto dongle_scantime_out;
}
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_UNASSOC_TIME,
scan_unassoc_time);
if (err) {
if (err == -EOPNOTSUPP)
brcmf_dbg(INFO, "Scan unassoc time is not supported\n");
else
brcmf_err("Scan unassoc time error (%d)\n", err);
goto dongle_scantime_out;
}
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_PASSIVE_TIME,
scan_passive_time);
if (err) {
if (err == -EOPNOTSUPP)
brcmf_dbg(INFO, "Scan passive time is not supported\n");
else
brcmf_err("Scan passive time error (%d)\n", err);
goto dongle_scantime_out;
}
dongle_scantime_out:
return err;
}
static s32 brcmf_construct_reginfo(struct brcmf_cfg80211_info *cfg,
u32 bw_cap[])
{
struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg));
struct ieee80211_channel *band_chan_arr;
struct brcmf_chanspec_list *list;
struct brcmu_chan ch;
s32 err;
u8 *pbuf;
u32 i, j;
u32 total;
enum ieee80211_band band;
u32 channel;
u32 *n_cnt;
u32 index;
u32 ht40_flag;
bool update;
u32 array_size;
pbuf = kzalloc(BRCMF_DCMD_MEDLEN, GFP_KERNEL);
if (pbuf == NULL)
return -ENOMEM;
list = (struct brcmf_chanspec_list *)pbuf;
err = brcmf_fil_iovar_data_get(ifp, "chanspecs", pbuf,
BRCMF_DCMD_MEDLEN);
if (err) {
brcmf_err("get chanspecs error (%d)\n", err);
goto exit;
}
__wl_band_2ghz.n_channels = 0;
__wl_band_5ghz_a.n_channels = 0;
total = le32_to_cpu(list->count);
for (i = 0; i < total; i++) {
ch.chspec = (u16)le32_to_cpu(list->element[i]);
cfg->d11inf.decchspec(&ch);
if (ch.band == BRCMU_CHAN_BAND_2G) {
band_chan_arr = __wl_2ghz_channels;
array_size = ARRAY_SIZE(__wl_2ghz_channels);
n_cnt = &__wl_band_2ghz.n_channels;
band = IEEE80211_BAND_2GHZ;
} else if (ch.band == BRCMU_CHAN_BAND_5G) {
band_chan_arr = __wl_5ghz_a_channels;
array_size = ARRAY_SIZE(__wl_5ghz_a_channels);
n_cnt = &__wl_band_5ghz_a.n_channels;
band = IEEE80211_BAND_5GHZ;
} else {
brcmf_err("Invalid channel Spec. 0x%x.\n", ch.chspec);
continue;
}
if (!(bw_cap[band] & WLC_BW_40MHZ_BIT) &&
ch.bw == BRCMU_CHAN_BW_40)
continue;
if (!(bw_cap[band] & WLC_BW_80MHZ_BIT) &&
ch.bw == BRCMU_CHAN_BW_80)
continue;
update = false;
for (j = 0; (j < *n_cnt && (*n_cnt < array_size)); j++) {
if (band_chan_arr[j].hw_value == ch.chnum) {
update = true;
break;
}
}
if (update)
index = j;
else
index = *n_cnt;
if (index < array_size) {
band_chan_arr[index].center_freq =
ieee80211_channel_to_frequency(ch.chnum, band);
band_chan_arr[index].hw_value = ch.chnum;
/* assuming the chanspecs order is HT20,
* HT40 upper, HT40 lower, and VHT80.
*/
if (ch.bw == BRCMU_CHAN_BW_80) {
band_chan_arr[index].flags &=
~IEEE80211_CHAN_NO_80MHZ;
} else if (ch.bw == BRCMU_CHAN_BW_40) {
ht40_flag = band_chan_arr[index].flags &
IEEE80211_CHAN_NO_HT40;
if (ch.sb == BRCMU_CHAN_SB_U) {
if (ht40_flag == IEEE80211_CHAN_NO_HT40)
band_chan_arr[index].flags &=
~IEEE80211_CHAN_NO_HT40;
band_chan_arr[index].flags |=
IEEE80211_CHAN_NO_HT40PLUS;
} else {
/* It should be one of
* IEEE80211_CHAN_NO_HT40 or
* IEEE80211_CHAN_NO_HT40PLUS
*/
band_chan_arr[index].flags &=
~IEEE80211_CHAN_NO_HT40;
if (ht40_flag == IEEE80211_CHAN_NO_HT40)
band_chan_arr[index].flags |=
IEEE80211_CHAN_NO_HT40MINUS;
}
} else {
/* disable other bandwidths for now as mentioned
* order assure they are enabled for subsequent
* chanspecs.
*/
band_chan_arr[index].flags =
IEEE80211_CHAN_NO_HT40 |
IEEE80211_CHAN_NO_80MHZ;
ch.bw = BRCMU_CHAN_BW_20;
cfg->d11inf.encchspec(&ch);
channel = ch.chspec;
err = brcmf_fil_bsscfg_int_get(ifp,
"per_chan_info",
&channel);
if (!err) {
if (channel & WL_CHAN_RADAR)
band_chan_arr[index].flags |=
(IEEE80211_CHAN_RADAR |
IEEE80211_CHAN_NO_IR);
if (channel & WL_CHAN_PASSIVE)
band_chan_arr[index].flags |=
IEEE80211_CHAN_NO_IR;
}
}
if (!update)
(*n_cnt)++;
}
}
exit:
kfree(pbuf);
return err;
}
static void brcmf_get_bwcap(struct brcmf_if *ifp, u32 bw_cap[])
{
u32 band, mimo_bwcap;
int err;
band = WLC_BAND_2G;
err = brcmf_fil_iovar_int_get(ifp, "bw_cap", &band);
if (!err) {
bw_cap[IEEE80211_BAND_2GHZ] = band;
band = WLC_BAND_5G;
err = brcmf_fil_iovar_int_get(ifp, "bw_cap", &band);
if (!err) {
bw_cap[IEEE80211_BAND_5GHZ] = band;
return;
}
WARN_ON(1);
return;
}
brcmf_dbg(INFO, "fallback to mimo_bw_cap info\n");
mimo_bwcap = 0;
err = brcmf_fil_iovar_int_get(ifp, "mimo_bw_cap", &mimo_bwcap);
if (err)
/* assume 20MHz if firmware does not give a clue */
mimo_bwcap = WLC_N_BW_20ALL;
switch (mimo_bwcap) {
case WLC_N_BW_40ALL:
bw_cap[IEEE80211_BAND_2GHZ] |= WLC_BW_40MHZ_BIT;
/* fall-thru */
case WLC_N_BW_20IN2G_40IN5G:
bw_cap[IEEE80211_BAND_5GHZ] |= WLC_BW_40MHZ_BIT;
/* fall-thru */
case WLC_N_BW_20ALL:
bw_cap[IEEE80211_BAND_2GHZ] |= WLC_BW_20MHZ_BIT;
bw_cap[IEEE80211_BAND_5GHZ] |= WLC_BW_20MHZ_BIT;
break;
default:
brcmf_err("invalid mimo_bw_cap value\n");
}
}
static void brcmf_update_ht_cap(struct ieee80211_supported_band *band,
u32 bw_cap[2], u32 nchain)
{
band->ht_cap.ht_supported = true;
if (bw_cap[band->band] & WLC_BW_40MHZ_BIT) {
band->ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
band->ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
}
band->ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
band->ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40;
band->ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
band->ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
memset(band->ht_cap.mcs.rx_mask, 0xff, nchain);
band->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
}
static __le16 brcmf_get_mcs_map(u32 nchain, enum ieee80211_vht_mcs_support supp)
{
u16 mcs_map;
int i;
for (i = 0, mcs_map = 0xFFFF; i < nchain; i++)
mcs_map = (mcs_map << 2) | supp;
return cpu_to_le16(mcs_map);
}
static void brcmf_update_vht_cap(struct ieee80211_supported_band *band,
u32 bw_cap[2], u32 nchain)
{
__le16 mcs_map;
/* not allowed in 2.4G band */
if (band->band == IEEE80211_BAND_2GHZ)
return;
band->vht_cap.vht_supported = true;
/* 80MHz is mandatory */
band->vht_cap.cap |= IEEE80211_VHT_CAP_SHORT_GI_80;
if (bw_cap[band->band] & WLC_BW_160MHZ_BIT) {
band->vht_cap.cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ;
band->vht_cap.cap |= IEEE80211_VHT_CAP_SHORT_GI_160;
}
/* all support 256-QAM */
mcs_map = brcmf_get_mcs_map(nchain, IEEE80211_VHT_MCS_SUPPORT_0_9);
band->vht_cap.vht_mcs.rx_mcs_map = mcs_map;
band->vht_cap.vht_mcs.tx_mcs_map = mcs_map;
}
static s32 brcmf_update_wiphybands(struct brcmf_cfg80211_info *cfg)
{
struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg));
struct wiphy *wiphy;
s32 phy_list;
u32 band_list[3];
u32 nmode = 0;
u32 vhtmode = 0;
u32 bw_cap[2] = { 0, 0 };
u32 rxchain;
u32 nchain;
s8 phy;
s32 err;
u32 nband;
s32 i;
struct ieee80211_supported_band *bands[2] = { NULL, NULL };
struct ieee80211_supported_band *band;
err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_PHYLIST,
&phy_list, sizeof(phy_list));
if (err) {
brcmf_err("BRCMF_C_GET_PHYLIST error (%d)\n", err);
return err;
}
phy = ((char *)&phy_list)[0];
brcmf_dbg(INFO, "BRCMF_C_GET_PHYLIST reported: %c phy\n", phy);
err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BANDLIST,
&band_list, sizeof(band_list));
if (err) {
brcmf_err("BRCMF_C_GET_BANDLIST error (%d)\n", err);
return err;
}
brcmf_dbg(INFO, "BRCMF_C_GET_BANDLIST reported: 0x%08x 0x%08x 0x%08x phy\n",
band_list[0], band_list[1], band_list[2]);
(void)brcmf_fil_iovar_int_get(ifp, "vhtmode", &vhtmode);
err = brcmf_fil_iovar_int_get(ifp, "nmode", &nmode);
if (err) {
brcmf_err("nmode error (%d)\n", err);
} else {
brcmf_get_bwcap(ifp, bw_cap);
}
brcmf_dbg(INFO, "nmode=%d, vhtmode=%d, bw_cap=(%d, %d)\n",
nmode, vhtmode, bw_cap[IEEE80211_BAND_2GHZ],
bw_cap[IEEE80211_BAND_5GHZ]);
err = brcmf_fil_iovar_int_get(ifp, "rxchain", &rxchain);
if (err) {
brcmf_err("rxchain error (%d)\n", err);
nchain = 1;
} else {
for (nchain = 0; rxchain; nchain++)
rxchain = rxchain & (rxchain - 1);
}
brcmf_dbg(INFO, "nchain=%d\n", nchain);
err = brcmf_construct_reginfo(cfg, bw_cap);
if (err) {
brcmf_err("brcmf_construct_reginfo failed (%d)\n", err);
return err;
}
nband = band_list[0];
for (i = 1; i <= nband && i < ARRAY_SIZE(band_list); i++) {
band = NULL;
if ((band_list[i] == WLC_BAND_5G) &&
(__wl_band_5ghz_a.n_channels > 0))
band = &__wl_band_5ghz_a;
else if ((band_list[i] == WLC_BAND_2G) &&
(__wl_band_2ghz.n_channels > 0))
band = &__wl_band_2ghz;
else
continue;
if (nmode)
brcmf_update_ht_cap(band, bw_cap, nchain);
if (vhtmode)
brcmf_update_vht_cap(band, bw_cap, nchain);
bands[band->band] = band;
}
wiphy = cfg_to_wiphy(cfg);
wiphy->bands[IEEE80211_BAND_2GHZ] = bands[IEEE80211_BAND_2GHZ];
wiphy->bands[IEEE80211_BAND_5GHZ] = bands[IEEE80211_BAND_5GHZ];
wiphy_apply_custom_regulatory(wiphy, &brcmf_regdom);
return err;
}
static s32 brcmf_dongle_probecap(struct brcmf_cfg80211_info *cfg)
{
return brcmf_update_wiphybands(cfg);
}
static s32 brcmf_config_dongle(struct brcmf_cfg80211_info *cfg)
{
struct net_device *ndev;
struct wireless_dev *wdev;
struct brcmf_if *ifp;
s32 power_mode;
s32 err = 0;
if (cfg->dongle_up)
return err;
ndev = cfg_to_ndev(cfg);
wdev = ndev->ieee80211_ptr;
ifp = netdev_priv(ndev);
/* make sure RF is ready for work */
brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 0);
brcmf_dongle_scantime(ifp, WL_SCAN_CHANNEL_TIME,
WL_SCAN_UNASSOC_TIME, WL_SCAN_PASSIVE_TIME);
power_mode = cfg->pwr_save ? PM_FAST : PM_OFF;
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, power_mode);
if (err)
goto default_conf_out;
brcmf_dbg(INFO, "power save set to %s\n",
(power_mode ? "enabled" : "disabled"));
err = brcmf_dongle_roam(ifp, WL_BEACON_TIMEOUT);
if (err)
goto default_conf_out;
err = brcmf_cfg80211_change_iface(wdev->wiphy, ndev, wdev->iftype,
NULL, NULL);
if (err)
goto default_conf_out;
err = brcmf_dongle_probecap(cfg);
if (err)
goto default_conf_out;
brcmf_configure_arp_offload(ifp, true);
cfg->dongle_up = true;
default_conf_out:
return err;
}
static s32 __brcmf_cfg80211_up(struct brcmf_if *ifp)
{
set_bit(BRCMF_VIF_STATUS_READY, &ifp->vif->sme_state);
return brcmf_config_dongle(ifp->drvr->config);
}
static s32 __brcmf_cfg80211_down(struct brcmf_if *ifp)
{
struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
/*
* While going down, if associated with AP disassociate
* from AP to save power
*/
if (check_vif_up(ifp->vif)) {
brcmf_link_down(ifp->vif);
/* Make sure WPA_Supplicant receives all the event
generated due to DISASSOC call to the fw to keep
the state fw and WPA_Supplicant state consistent
*/
brcmf_delay(500);
}
brcmf_abort_scanning(cfg);
clear_bit(BRCMF_VIF_STATUS_READY, &ifp->vif->sme_state);
return 0;
}
s32 brcmf_cfg80211_up(struct net_device *ndev)
{
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
s32 err = 0;
mutex_lock(&cfg->usr_sync);
err = __brcmf_cfg80211_up(ifp);
mutex_unlock(&cfg->usr_sync);
return err;
}
s32 brcmf_cfg80211_down(struct net_device *ndev)
{
struct brcmf_if *ifp = netdev_priv(ndev);
struct brcmf_cfg80211_info *cfg = ifp->drvr->config;
s32 err = 0;
mutex_lock(&cfg->usr_sync);
err = __brcmf_cfg80211_down(ifp);
mutex_unlock(&cfg->usr_sync);
return err;
}
enum nl80211_iftype brcmf_cfg80211_get_iftype(struct brcmf_if *ifp)
{
struct wireless_dev *wdev = &ifp->vif->wdev;
return wdev->iftype;
}
u32 wl_get_vif_state_all(struct brcmf_cfg80211_info *cfg, unsigned long state)
{
struct brcmf_cfg80211_vif *vif;
bool result = 0;
list_for_each_entry(vif, &cfg->vif_list, list) {
if (test_bit(state, &vif->sme_state))
result++;
}
return result;
}
static inline bool vif_event_equals(struct brcmf_cfg80211_vif_event *event,
u8 action)
{
u8 evt_action;
mutex_lock(&event->vif_event_lock);
evt_action = event->action;
mutex_unlock(&event->vif_event_lock);
return evt_action == action;
}
void brcmf_cfg80211_arm_vif_event(struct brcmf_cfg80211_info *cfg,
struct brcmf_cfg80211_vif *vif)
{
struct brcmf_cfg80211_vif_event *event = &cfg->vif_event;
mutex_lock(&event->vif_event_lock);
event->vif = vif;
event->action = 0;
mutex_unlock(&event->vif_event_lock);
}
bool brcmf_cfg80211_vif_event_armed(struct brcmf_cfg80211_info *cfg)
{
struct brcmf_cfg80211_vif_event *event = &cfg->vif_event;
bool armed;
mutex_lock(&event->vif_event_lock);
armed = event->vif != NULL;
mutex_unlock(&event->vif_event_lock);
return armed;
}
int brcmf_cfg80211_wait_vif_event_timeout(struct brcmf_cfg80211_info *cfg,
u8 action, ulong timeout)
{
struct brcmf_cfg80211_vif_event *event = &cfg->vif_event;
return wait_event_timeout(event->vif_wq,
vif_event_equals(event, action), timeout);
}