| /* |
| * Copyright 2006 Andi Kleen, SUSE Labs. |
| * Subject to the GNU Public License, v.2 |
| * |
| * Fast user context implementation of clock_gettime, gettimeofday, and time. |
| * |
| * 32 Bit compat layer by Stefani Seibold <stefani@seibold.net> |
| * sponsored by Rohde & Schwarz GmbH & Co. KG Munich/Germany |
| * |
| * The code should have no internal unresolved relocations. |
| * Check with readelf after changing. |
| */ |
| |
| /* Disable profiling for userspace code: */ |
| #define DISABLE_BRANCH_PROFILING |
| |
| #include <uapi/linux/time.h> |
| #include <asm/vgtod.h> |
| #include <asm/hpet.h> |
| #include <asm/vvar.h> |
| #include <asm/unistd.h> |
| #include <asm/msr.h> |
| #include <linux/math64.h> |
| #include <linux/time.h> |
| |
| #define gtod (&VVAR(vsyscall_gtod_data)) |
| |
| extern int __vdso_clock_gettime(clockid_t clock, struct timespec *ts); |
| extern int __vdso_gettimeofday(struct timeval *tv, struct timezone *tz); |
| extern time_t __vdso_time(time_t *t); |
| |
| #ifdef CONFIG_HPET_TIMER |
| extern u8 hpet_page |
| __attribute__((visibility("hidden"))); |
| |
| static notrace cycle_t vread_hpet(void) |
| { |
| return *(const volatile u32 *)(&hpet_page + HPET_COUNTER); |
| } |
| #endif |
| |
| #ifndef BUILD_VDSO32 |
| |
| #include <linux/kernel.h> |
| #include <asm/vsyscall.h> |
| #include <asm/fixmap.h> |
| #include <asm/pvclock.h> |
| |
| notrace static long vdso_fallback_gettime(long clock, struct timespec *ts) |
| { |
| long ret; |
| asm("syscall" : "=a" (ret) : |
| "0" (__NR_clock_gettime), "D" (clock), "S" (ts) : "memory"); |
| return ret; |
| } |
| |
| notrace static long vdso_fallback_gtod(struct timeval *tv, struct timezone *tz) |
| { |
| long ret; |
| |
| asm("syscall" : "=a" (ret) : |
| "0" (__NR_gettimeofday), "D" (tv), "S" (tz) : "memory"); |
| return ret; |
| } |
| |
| #ifdef CONFIG_PARAVIRT_CLOCK |
| |
| static notrace const struct pvclock_vsyscall_time_info *get_pvti(int cpu) |
| { |
| const struct pvclock_vsyscall_time_info *pvti_base; |
| int idx = cpu / (PAGE_SIZE/PVTI_SIZE); |
| int offset = cpu % (PAGE_SIZE/PVTI_SIZE); |
| |
| BUG_ON(PVCLOCK_FIXMAP_BEGIN + idx > PVCLOCK_FIXMAP_END); |
| |
| pvti_base = (struct pvclock_vsyscall_time_info *) |
| __fix_to_virt(PVCLOCK_FIXMAP_BEGIN+idx); |
| |
| return &pvti_base[offset]; |
| } |
| |
| static notrace cycle_t vread_pvclock(int *mode) |
| { |
| const struct pvclock_vsyscall_time_info *pvti; |
| cycle_t ret; |
| u64 last; |
| u32 version; |
| u8 flags; |
| unsigned cpu, cpu1; |
| |
| |
| /* |
| * Note: hypervisor must guarantee that: |
| * 1. cpu ID number maps 1:1 to per-CPU pvclock time info. |
| * 2. that per-CPU pvclock time info is updated if the |
| * underlying CPU changes. |
| * 3. that version is increased whenever underlying CPU |
| * changes. |
| * |
| */ |
| do { |
| cpu = __getcpu() & VGETCPU_CPU_MASK; |
| /* TODO: We can put vcpu id into higher bits of pvti.version. |
| * This will save a couple of cycles by getting rid of |
| * __getcpu() calls (Gleb). |
| */ |
| |
| pvti = get_pvti(cpu); |
| |
| version = __pvclock_read_cycles(&pvti->pvti, &ret, &flags); |
| |
| /* |
| * Test we're still on the cpu as well as the version. |
| * We could have been migrated just after the first |
| * vgetcpu but before fetching the version, so we |
| * wouldn't notice a version change. |
| */ |
| cpu1 = __getcpu() & VGETCPU_CPU_MASK; |
| } while (unlikely(cpu != cpu1 || |
| (pvti->pvti.version & 1) || |
| pvti->pvti.version != version)); |
| |
| if (unlikely(!(flags & PVCLOCK_TSC_STABLE_BIT))) |
| *mode = VCLOCK_NONE; |
| |
| /* refer to tsc.c read_tsc() comment for rationale */ |
| last = gtod->cycle_last; |
| |
| if (likely(ret >= last)) |
| return ret; |
| |
| return last; |
| } |
| #endif |
| |
| #else |
| |
| notrace static long vdso_fallback_gettime(long clock, struct timespec *ts) |
| { |
| long ret; |
| |
| asm( |
| "mov %%ebx, %%edx \n" |
| "mov %2, %%ebx \n" |
| "call __kernel_vsyscall \n" |
| "mov %%edx, %%ebx \n" |
| : "=a" (ret) |
| : "0" (__NR_clock_gettime), "g" (clock), "c" (ts) |
| : "memory", "edx"); |
| return ret; |
| } |
| |
| notrace static long vdso_fallback_gtod(struct timeval *tv, struct timezone *tz) |
| { |
| long ret; |
| |
| asm( |
| "mov %%ebx, %%edx \n" |
| "mov %2, %%ebx \n" |
| "call __kernel_vsyscall \n" |
| "mov %%edx, %%ebx \n" |
| : "=a" (ret) |
| : "0" (__NR_gettimeofday), "g" (tv), "c" (tz) |
| : "memory", "edx"); |
| return ret; |
| } |
| |
| #ifdef CONFIG_PARAVIRT_CLOCK |
| |
| static notrace cycle_t vread_pvclock(int *mode) |
| { |
| *mode = VCLOCK_NONE; |
| return 0; |
| } |
| #endif |
| |
| #endif |
| |
| notrace static cycle_t vread_tsc(void) |
| { |
| cycle_t ret; |
| u64 last; |
| |
| /* |
| * Empirically, a fence (of type that depends on the CPU) |
| * before rdtsc is enough to ensure that rdtsc is ordered |
| * with respect to loads. The various CPU manuals are unclear |
| * as to whether rdtsc can be reordered with later loads, |
| * but no one has ever seen it happen. |
| */ |
| rdtsc_barrier(); |
| ret = (cycle_t)__native_read_tsc(); |
| |
| last = gtod->cycle_last; |
| |
| if (likely(ret >= last)) |
| return ret; |
| |
| /* |
| * GCC likes to generate cmov here, but this branch is extremely |
| * predictable (it's just a funciton of time and the likely is |
| * very likely) and there's a data dependence, so force GCC |
| * to generate a branch instead. I don't barrier() because |
| * we don't actually need a barrier, and if this function |
| * ever gets inlined it will generate worse code. |
| */ |
| asm volatile (""); |
| return last; |
| } |
| |
| notrace static inline u64 vgetsns(int *mode) |
| { |
| u64 v; |
| cycles_t cycles; |
| |
| if (gtod->vclock_mode == VCLOCK_TSC) |
| cycles = vread_tsc(); |
| #ifdef CONFIG_HPET_TIMER |
| else if (gtod->vclock_mode == VCLOCK_HPET) |
| cycles = vread_hpet(); |
| #endif |
| #ifdef CONFIG_PARAVIRT_CLOCK |
| else if (gtod->vclock_mode == VCLOCK_PVCLOCK) |
| cycles = vread_pvclock(mode); |
| #endif |
| else |
| return 0; |
| v = (cycles - gtod->cycle_last) & gtod->mask; |
| return v * gtod->mult; |
| } |
| |
| /* Code size doesn't matter (vdso is 4k anyway) and this is faster. */ |
| notrace static int __always_inline do_realtime(struct timespec *ts) |
| { |
| unsigned long seq; |
| u64 ns; |
| int mode; |
| |
| do { |
| seq = gtod_read_begin(gtod); |
| mode = gtod->vclock_mode; |
| ts->tv_sec = gtod->wall_time_sec; |
| ns = gtod->wall_time_snsec; |
| ns += vgetsns(&mode); |
| ns >>= gtod->shift; |
| } while (unlikely(gtod_read_retry(gtod, seq))); |
| |
| ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); |
| ts->tv_nsec = ns; |
| |
| return mode; |
| } |
| |
| notrace static int __always_inline do_monotonic(struct timespec *ts) |
| { |
| unsigned long seq; |
| u64 ns; |
| int mode; |
| |
| do { |
| seq = gtod_read_begin(gtod); |
| mode = gtod->vclock_mode; |
| ts->tv_sec = gtod->monotonic_time_sec; |
| ns = gtod->monotonic_time_snsec; |
| ns += vgetsns(&mode); |
| ns >>= gtod->shift; |
| } while (unlikely(gtod_read_retry(gtod, seq))); |
| |
| ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); |
| ts->tv_nsec = ns; |
| |
| return mode; |
| } |
| |
| notrace static void do_realtime_coarse(struct timespec *ts) |
| { |
| unsigned long seq; |
| do { |
| seq = gtod_read_begin(gtod); |
| ts->tv_sec = gtod->wall_time_coarse_sec; |
| ts->tv_nsec = gtod->wall_time_coarse_nsec; |
| } while (unlikely(gtod_read_retry(gtod, seq))); |
| } |
| |
| notrace static void do_monotonic_coarse(struct timespec *ts) |
| { |
| unsigned long seq; |
| do { |
| seq = gtod_read_begin(gtod); |
| ts->tv_sec = gtod->monotonic_time_coarse_sec; |
| ts->tv_nsec = gtod->monotonic_time_coarse_nsec; |
| } while (unlikely(gtod_read_retry(gtod, seq))); |
| } |
| |
| notrace int __vdso_clock_gettime(clockid_t clock, struct timespec *ts) |
| { |
| switch (clock) { |
| case CLOCK_REALTIME: |
| if (do_realtime(ts) == VCLOCK_NONE) |
| goto fallback; |
| break; |
| case CLOCK_MONOTONIC: |
| if (do_monotonic(ts) == VCLOCK_NONE) |
| goto fallback; |
| break; |
| case CLOCK_REALTIME_COARSE: |
| do_realtime_coarse(ts); |
| break; |
| case CLOCK_MONOTONIC_COARSE: |
| do_monotonic_coarse(ts); |
| break; |
| default: |
| goto fallback; |
| } |
| |
| return 0; |
| fallback: |
| return vdso_fallback_gettime(clock, ts); |
| } |
| int clock_gettime(clockid_t, struct timespec *) |
| __attribute__((weak, alias("__vdso_clock_gettime"))); |
| |
| notrace int __vdso_gettimeofday(struct timeval *tv, struct timezone *tz) |
| { |
| if (likely(tv != NULL)) { |
| if (unlikely(do_realtime((struct timespec *)tv) == VCLOCK_NONE)) |
| return vdso_fallback_gtod(tv, tz); |
| tv->tv_usec /= 1000; |
| } |
| if (unlikely(tz != NULL)) { |
| tz->tz_minuteswest = gtod->tz_minuteswest; |
| tz->tz_dsttime = gtod->tz_dsttime; |
| } |
| |
| return 0; |
| } |
| int gettimeofday(struct timeval *, struct timezone *) |
| __attribute__((weak, alias("__vdso_gettimeofday"))); |
| |
| /* |
| * This will break when the xtime seconds get inaccurate, but that is |
| * unlikely |
| */ |
| notrace time_t __vdso_time(time_t *t) |
| { |
| /* This is atomic on x86 so we don't need any locks. */ |
| time_t result = ACCESS_ONCE(gtod->wall_time_sec); |
| |
| if (t) |
| *t = result; |
| return result; |
| } |
| int time(time_t *t) |
| __attribute__((weak, alias("__vdso_time"))); |