|  | /* | 
|  | * Generic pidhash and scalable, time-bounded PID allocator | 
|  | * | 
|  | * (C) 2002-2003 William Irwin, IBM | 
|  | * (C) 2004 William Irwin, Oracle | 
|  | * (C) 2002-2004 Ingo Molnar, Red Hat | 
|  | * | 
|  | * pid-structures are backing objects for tasks sharing a given ID to chain | 
|  | * against. There is very little to them aside from hashing them and | 
|  | * parking tasks using given ID's on a list. | 
|  | * | 
|  | * The hash is always changed with the tasklist_lock write-acquired, | 
|  | * and the hash is only accessed with the tasklist_lock at least | 
|  | * read-acquired, so there's no additional SMP locking needed here. | 
|  | * | 
|  | * We have a list of bitmap pages, which bitmaps represent the PID space. | 
|  | * Allocating and freeing PIDs is completely lockless. The worst-case | 
|  | * allocation scenario when all but one out of 1 million PIDs possible are | 
|  | * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | 
|  | * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/hash.h> | 
|  |  | 
|  | #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift) | 
|  | static struct hlist_head *pid_hash[PIDTYPE_MAX]; | 
|  | static int pidhash_shift; | 
|  |  | 
|  | int pid_max = PID_MAX_DEFAULT; | 
|  | int last_pid; | 
|  |  | 
|  | #define RESERVED_PIDS		300 | 
|  |  | 
|  | int pid_max_min = RESERVED_PIDS + 1; | 
|  | int pid_max_max = PID_MAX_LIMIT; | 
|  |  | 
|  | #define PIDMAP_ENTRIES		((PID_MAX_LIMIT + 8*PAGE_SIZE - 1)/PAGE_SIZE/8) | 
|  | #define BITS_PER_PAGE		(PAGE_SIZE*8) | 
|  | #define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1) | 
|  | #define mk_pid(map, off)	(((map) - pidmap_array)*BITS_PER_PAGE + (off)) | 
|  | #define find_next_offset(map, off)					\ | 
|  | find_next_zero_bit((map)->page, BITS_PER_PAGE, off) | 
|  |  | 
|  | /* | 
|  | * PID-map pages start out as NULL, they get allocated upon | 
|  | * first use and are never deallocated. This way a low pid_max | 
|  | * value does not cause lots of bitmaps to be allocated, but | 
|  | * the scheme scales to up to 4 million PIDs, runtime. | 
|  | */ | 
|  | typedef struct pidmap { | 
|  | atomic_t nr_free; | 
|  | void *page; | 
|  | } pidmap_t; | 
|  |  | 
|  | static pidmap_t pidmap_array[PIDMAP_ENTRIES] = | 
|  | { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } }; | 
|  |  | 
|  | static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); | 
|  |  | 
|  | fastcall void free_pidmap(int pid) | 
|  | { | 
|  | pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE; | 
|  | int offset = pid & BITS_PER_PAGE_MASK; | 
|  |  | 
|  | clear_bit(offset, map->page); | 
|  | atomic_inc(&map->nr_free); | 
|  | } | 
|  |  | 
|  | int alloc_pidmap(void) | 
|  | { | 
|  | int i, offset, max_scan, pid, last = last_pid; | 
|  | pidmap_t *map; | 
|  |  | 
|  | pid = last + 1; | 
|  | if (pid >= pid_max) | 
|  | pid = RESERVED_PIDS; | 
|  | offset = pid & BITS_PER_PAGE_MASK; | 
|  | map = &pidmap_array[pid/BITS_PER_PAGE]; | 
|  | max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; | 
|  | for (i = 0; i <= max_scan; ++i) { | 
|  | if (unlikely(!map->page)) { | 
|  | unsigned long page = get_zeroed_page(GFP_KERNEL); | 
|  | /* | 
|  | * Free the page if someone raced with us | 
|  | * installing it: | 
|  | */ | 
|  | spin_lock(&pidmap_lock); | 
|  | if (map->page) | 
|  | free_page(page); | 
|  | else | 
|  | map->page = (void *)page; | 
|  | spin_unlock(&pidmap_lock); | 
|  | if (unlikely(!map->page)) | 
|  | break; | 
|  | } | 
|  | if (likely(atomic_read(&map->nr_free))) { | 
|  | do { | 
|  | if (!test_and_set_bit(offset, map->page)) { | 
|  | atomic_dec(&map->nr_free); | 
|  | last_pid = pid; | 
|  | return pid; | 
|  | } | 
|  | offset = find_next_offset(map, offset); | 
|  | pid = mk_pid(map, offset); | 
|  | /* | 
|  | * find_next_offset() found a bit, the pid from it | 
|  | * is in-bounds, and if we fell back to the last | 
|  | * bitmap block and the final block was the same | 
|  | * as the starting point, pid is before last_pid. | 
|  | */ | 
|  | } while (offset < BITS_PER_PAGE && pid < pid_max && | 
|  | (i != max_scan || pid < last || | 
|  | !((last+1) & BITS_PER_PAGE_MASK))); | 
|  | } | 
|  | if (map < &pidmap_array[(pid_max-1)/BITS_PER_PAGE]) { | 
|  | ++map; | 
|  | offset = 0; | 
|  | } else { | 
|  | map = &pidmap_array[0]; | 
|  | offset = RESERVED_PIDS; | 
|  | if (unlikely(last == offset)) | 
|  | break; | 
|  | } | 
|  | pid = mk_pid(map, offset); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | struct pid * fastcall find_pid(enum pid_type type, int nr) | 
|  | { | 
|  | struct hlist_node *elem; | 
|  | struct pid *pid; | 
|  |  | 
|  | hlist_for_each_entry(pid, elem, | 
|  | &pid_hash[type][pid_hashfn(nr)], pid_chain) { | 
|  | if (pid->nr == nr) | 
|  | return pid; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int fastcall attach_pid(task_t *task, enum pid_type type, int nr) | 
|  | { | 
|  | struct pid *pid, *task_pid; | 
|  |  | 
|  | task_pid = &task->pids[type]; | 
|  | pid = find_pid(type, nr); | 
|  | if (pid == NULL) { | 
|  | hlist_add_head(&task_pid->pid_chain, | 
|  | &pid_hash[type][pid_hashfn(nr)]); | 
|  | INIT_LIST_HEAD(&task_pid->pid_list); | 
|  | } else { | 
|  | INIT_HLIST_NODE(&task_pid->pid_chain); | 
|  | list_add_tail(&task_pid->pid_list, &pid->pid_list); | 
|  | } | 
|  | task_pid->nr = nr; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static fastcall int __detach_pid(task_t *task, enum pid_type type) | 
|  | { | 
|  | struct pid *pid, *pid_next; | 
|  | int nr = 0; | 
|  |  | 
|  | pid = &task->pids[type]; | 
|  | if (!hlist_unhashed(&pid->pid_chain)) { | 
|  | hlist_del(&pid->pid_chain); | 
|  |  | 
|  | if (list_empty(&pid->pid_list)) | 
|  | nr = pid->nr; | 
|  | else { | 
|  | pid_next = list_entry(pid->pid_list.next, | 
|  | struct pid, pid_list); | 
|  | /* insert next pid from pid_list to hash */ | 
|  | hlist_add_head(&pid_next->pid_chain, | 
|  | &pid_hash[type][pid_hashfn(pid_next->nr)]); | 
|  | } | 
|  | } | 
|  |  | 
|  | list_del(&pid->pid_list); | 
|  | pid->nr = 0; | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | void fastcall detach_pid(task_t *task, enum pid_type type) | 
|  | { | 
|  | int tmp, nr; | 
|  |  | 
|  | nr = __detach_pid(task, type); | 
|  | if (!nr) | 
|  | return; | 
|  |  | 
|  | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) | 
|  | if (tmp != type && find_pid(tmp, nr)) | 
|  | return; | 
|  |  | 
|  | free_pidmap(nr); | 
|  | } | 
|  |  | 
|  | task_t *find_task_by_pid_type(int type, int nr) | 
|  | { | 
|  | struct pid *pid; | 
|  |  | 
|  | pid = find_pid(type, nr); | 
|  | if (!pid) | 
|  | return NULL; | 
|  |  | 
|  | return pid_task(&pid->pid_list, type); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(find_task_by_pid_type); | 
|  |  | 
|  | /* | 
|  | * This function switches the PIDs if a non-leader thread calls | 
|  | * sys_execve() - this must be done without releasing the PID. | 
|  | * (which a detach_pid() would eventually do.) | 
|  | */ | 
|  | void switch_exec_pids(task_t *leader, task_t *thread) | 
|  | { | 
|  | __detach_pid(leader, PIDTYPE_PID); | 
|  | __detach_pid(leader, PIDTYPE_TGID); | 
|  | __detach_pid(leader, PIDTYPE_PGID); | 
|  | __detach_pid(leader, PIDTYPE_SID); | 
|  |  | 
|  | __detach_pid(thread, PIDTYPE_PID); | 
|  | __detach_pid(thread, PIDTYPE_TGID); | 
|  |  | 
|  | leader->pid = leader->tgid = thread->pid; | 
|  | thread->pid = thread->tgid; | 
|  |  | 
|  | attach_pid(thread, PIDTYPE_PID, thread->pid); | 
|  | attach_pid(thread, PIDTYPE_TGID, thread->tgid); | 
|  | attach_pid(thread, PIDTYPE_PGID, thread->signal->pgrp); | 
|  | attach_pid(thread, PIDTYPE_SID, thread->signal->session); | 
|  | list_add_tail(&thread->tasks, &init_task.tasks); | 
|  |  | 
|  | attach_pid(leader, PIDTYPE_PID, leader->pid); | 
|  | attach_pid(leader, PIDTYPE_TGID, leader->tgid); | 
|  | attach_pid(leader, PIDTYPE_PGID, leader->signal->pgrp); | 
|  | attach_pid(leader, PIDTYPE_SID, leader->signal->session); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The pid hash table is scaled according to the amount of memory in the | 
|  | * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or | 
|  | * more. | 
|  | */ | 
|  | void __init pidhash_init(void) | 
|  | { | 
|  | int i, j, pidhash_size; | 
|  | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | 
|  |  | 
|  | pidhash_shift = max(4, fls(megabytes * 4)); | 
|  | pidhash_shift = min(12, pidhash_shift); | 
|  | pidhash_size = 1 << pidhash_shift; | 
|  |  | 
|  | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | 
|  | pidhash_size, pidhash_shift, | 
|  | PIDTYPE_MAX * pidhash_size * sizeof(struct hlist_head)); | 
|  |  | 
|  | for (i = 0; i < PIDTYPE_MAX; i++) { | 
|  | pid_hash[i] = alloc_bootmem(pidhash_size * | 
|  | sizeof(*(pid_hash[i]))); | 
|  | if (!pid_hash[i]) | 
|  | panic("Could not alloc pidhash!\n"); | 
|  | for (j = 0; j < pidhash_size; j++) | 
|  | INIT_HLIST_HEAD(&pid_hash[i][j]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init pidmap_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL); | 
|  | set_bit(0, pidmap_array->page); | 
|  | atomic_dec(&pidmap_array->nr_free); | 
|  |  | 
|  | /* | 
|  | * Allocate PID 0, and hash it via all PID types: | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < PIDTYPE_MAX; i++) | 
|  | attach_pid(current, i, 0); | 
|  | } |