blob: 9f2012a3e7643544ebc08d83edbdcb7548fe9446 [file] [log] [blame]
/*
* NAND Flash Controller Device Driver
* Copyright © 2009-2010, Intel Corporation and its suppliers.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>
#include "denali.h"
MODULE_LICENSE("GPL");
/* We define a module parameter that allows the user to override
* the hardware and decide what timing mode should be used.
*/
#define NAND_DEFAULT_TIMINGS -1
static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
" -1 indicates use default timings");
#define DENALI_NAND_NAME "denali-nand"
/* We define a macro here that combines all interrupts this driver uses into
* a single constant value, for convenience. */
#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
INTR_STATUS__ECC_TRANSACTION_DONE | \
INTR_STATUS__ECC_ERR | \
INTR_STATUS__PROGRAM_FAIL | \
INTR_STATUS__LOAD_COMP | \
INTR_STATUS__PROGRAM_COMP | \
INTR_STATUS__TIME_OUT | \
INTR_STATUS__ERASE_FAIL | \
INTR_STATUS__RST_COMP | \
INTR_STATUS__ERASE_COMP)
/* indicates whether or not the internal value for the flash bank is
* valid or not */
#define CHIP_SELECT_INVALID -1
#define SUPPORT_8BITECC 1
/* This macro divides two integers and rounds fractional values up
* to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
/* this macro allows us to convert from an MTD structure to our own
* device context (denali) structure.
*/
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
/* These constants are defined by the driver to enable common driver
* configuration options. */
#define SPARE_ACCESS 0x41
#define MAIN_ACCESS 0x42
#define MAIN_SPARE_ACCESS 0x43
#define DENALI_READ 0
#define DENALI_WRITE 0x100
/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE 0
#define ADDR_CYCLE 1
#define STATUS_CYCLE 2
/* this is a helper macro that allows us to
* format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)
/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
static uint32_t wait_for_irq(struct denali_nand_info *denali,
uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
uint32_t int_mask);
static uint32_t read_interrupt_status(struct denali_nand_info *denali);
/* Certain operations for the denali NAND controller use
* an indexed mode to read/write data. The operation is
* performed by writing the address value of the command
* to the device memory followed by the data. This function
* abstracts this common operation.
*/
static void index_addr(struct denali_nand_info *denali,
uint32_t address, uint32_t data)
{
iowrite32(address, denali->flash_mem);
iowrite32(data, denali->flash_mem + 0x10);
}
/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
uint32_t address, uint32_t *pdata)
{
iowrite32(address, denali->flash_mem);
*pdata = ioread32(denali->flash_mem + 0x10);
}
/* We need to buffer some data for some of the NAND core routines.
* The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
denali->buf.head = denali->buf.tail = 0;
}
static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
denali->buf.buf[denali->buf.tail++] = byte;
}
/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
uint32_t cmd = 0x0;
/* initialize the data buffer to store status */
reset_buf(denali);
cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
if (cmd)
write_byte_to_buf(denali, NAND_STATUS_WP);
else
write_byte_to_buf(denali, 0);
}
/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__RST_COMP |
INTR_STATUS__TIME_OUT;
clear_interrupts(denali);
iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status & INTR_STATUS__TIME_OUT)
dev_err(denali->dev, "reset bank failed.\n");
}
/* Reset the flash controller */
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
{
uint32_t i;
dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
for (i = 0 ; i < denali->max_banks; i++)
iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
denali->flash_reg + INTR_STATUS(i));
for (i = 0 ; i < denali->max_banks; i++) {
iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
while (!(ioread32(denali->flash_reg +
INTR_STATUS(i)) &
(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
cpu_relax();
if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
INTR_STATUS__TIME_OUT)
dev_dbg(denali->dev,
"NAND Reset operation timed out on bank %d\n", i);
}
for (i = 0; i < denali->max_banks; i++)
iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
denali->flash_reg + INTR_STATUS(i));
return PASS;
}
/* this routine calculates the ONFI timing values for a given mode and
* programs the clocking register accordingly. The mode is determined by
* the get_onfi_nand_para routine.
*/
static void nand_onfi_timing_set(struct denali_nand_info *denali,
uint16_t mode)
{
uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
uint16_t TclsRising = 1;
uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
uint16_t dv_window = 0;
uint16_t en_lo, en_hi;
uint16_t acc_clks;
uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
en_lo = CEIL_DIV(Trp[mode], CLK_X);
en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
if ((en_hi * CLK_X) < (Treh[mode] + 2))
en_hi++;
#endif
if ((en_lo + en_hi) * CLK_X < Trc[mode])
en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
if ((en_lo + en_hi) < CLK_MULTI)
en_lo += CLK_MULTI - en_lo - en_hi;
while (dv_window < 8) {
data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
data_invalid =
data_invalid_rhoh <
data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
dv_window = data_invalid - Trea[mode];
if (dv_window < 8)
en_lo++;
}
acc_clks = CEIL_DIV(Trea[mode], CLK_X);
while (((acc_clks * CLK_X) - Trea[mode]) < 3)
acc_clks++;
if ((data_invalid - acc_clks * CLK_X) < 2)
dev_warn(denali->dev, "%s, Line %d: Warning!\n",
__FILE__, __LINE__);
addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
if (!TclsRising)
cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
if (cs_cnt == 0)
cs_cnt = 1;
if (Tcea[mode]) {
while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
cs_cnt++;
}
#if MODE5_WORKAROUND
if (mode == 5)
acc_clks = 5;
#endif
/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
acc_clks = 6;
iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
}
/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
int i;
/* we needn't to do a reset here because driver has already
* reset all the banks before
* */
if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
ONFI_TIMING_MODE__VALUE))
return FAIL;
for (i = 5; i > 0; i--) {
if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
(0x01 << i))
break;
}
nand_onfi_timing_set(denali, i);
/* By now, all the ONFI devices we know support the page cache */
/* rw feature. So here we enable the pipeline_rw_ahead feature */
/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
return PASS;
}
static void get_samsung_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
/* Set timing register values according to datasheet */
iowrite32(5, denali->flash_reg + ACC_CLKS);
iowrite32(20, denali->flash_reg + RE_2_WE);
iowrite32(12, denali->flash_reg + WE_2_RE);
iowrite32(14, denali->flash_reg + ADDR_2_DATA);
iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
}
}
static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
uint32_t tmp;
/* Workaround to fix a controller bug which reports a wrong */
/* spare area size for some kind of Toshiba NAND device */
if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(tmp,
denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
#if SUPPORT_15BITECC
iowrite32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
#endif
}
}
static void get_hynix_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
uint32_t main_size, spare_size;
switch (device_id) {
case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
main_size = 4096 *
ioread32(denali->flash_reg + DEVICES_CONNECTED);
spare_size = 224 *
ioread32(denali->flash_reg + DEVICES_CONNECTED);
iowrite32(main_size,
denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(spare_size,
denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
#if SUPPORT_15BITECC
iowrite32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
#endif
break;
default:
dev_warn(denali->dev,
"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n",
device_id);
}
}
/* determines how many NAND chips are connected to the controller. Note for
* Intel CE4100 devices we don't support more than one device.
*/
static void find_valid_banks(struct denali_nand_info *denali)
{
uint32_t id[denali->max_banks];
int i;
denali->total_used_banks = 1;
for (i = 0; i < denali->max_banks; i++) {
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
index_addr_read_data(denali,
(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
dev_dbg(denali->dev,
"Return 1st ID for bank[%d]: %x\n", i, id[i]);
if (i == 0) {
if (!(id[i] & 0x0ff))
break; /* WTF? */
} else {
if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
denali->total_used_banks++;
else
break;
}
}
if (denali->platform == INTEL_CE4100) {
/* Platform limitations of the CE4100 device limit
* users to a single chip solution for NAND.
* Multichip support is not enabled.
*/
if (denali->total_used_banks != 1) {
dev_err(denali->dev,
"Sorry, Intel CE4100 only supports "
"a single NAND device.\n");
BUG();
}
}
dev_dbg(denali->dev,
"denali->total_used_banks: %d\n", denali->total_used_banks);
}
/*
* Use the configuration feature register to determine the maximum number of
* banks that the hardware supports.
*/
static void detect_max_banks(struct denali_nand_info *denali)
{
uint32_t features = ioread32(denali->flash_reg + FEATURES);
denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}
static void detect_partition_feature(struct denali_nand_info *denali)
{
/* For MRST platform, denali->fwblks represent the
* number of blocks firmware is taken,
* FW is in protect partition and MTD driver has no
* permission to access it. So let driver know how many
* blocks it can't touch.
* */
if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
denali->fwblks =
((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
MIN_MAX_BANK__MIN_VALUE) *
denali->blksperchip)
+
(ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
MIN_BLK_ADDR__VALUE);
} else
denali->fwblks = SPECTRA_START_BLOCK;
} else
denali->fwblks = SPECTRA_START_BLOCK;
}
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
{
uint16_t status = PASS;
uint32_t id_bytes[5], addr;
uint8_t i, maf_id, device_id;
dev_dbg(denali->dev,
"%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
/* Use read id method to get device ID and other
* params. For some NAND chips, controller can't
* report the correct device ID by reading from
* DEVICE_ID register
* */
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
index_addr(denali, (uint32_t)addr | 0, 0x90);
index_addr(denali, (uint32_t)addr | 1, 0);
for (i = 0; i < 5; i++)
index_addr_read_data(denali, addr | 2, &id_bytes[i]);
maf_id = id_bytes[0];
device_id = id_bytes[1];
if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
if (FAIL == get_onfi_nand_para(denali))
return FAIL;
} else if (maf_id == 0xEC) { /* Samsung NAND */
get_samsung_nand_para(denali, device_id);
} else if (maf_id == 0x98) { /* Toshiba NAND */
get_toshiba_nand_para(denali);
} else if (maf_id == 0xAD) { /* Hynix NAND */
get_hynix_nand_para(denali, device_id);
}
dev_info(denali->dev,
"Dump timing register values:"
"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
ioread32(denali->flash_reg + ACC_CLKS),
ioread32(denali->flash_reg + RE_2_WE),
ioread32(denali->flash_reg + RE_2_RE),
ioread32(denali->flash_reg + WE_2_RE),
ioread32(denali->flash_reg + ADDR_2_DATA),
ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
ioread32(denali->flash_reg + CS_SETUP_CNT));
find_valid_banks(denali);
detect_partition_feature(denali);
/* If the user specified to override the default timings
* with a specific ONFI mode, we apply those changes here.
*/
if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
nand_onfi_timing_set(denali, onfi_timing_mode);
return status;
}
static void denali_set_intr_modes(struct denali_nand_info *denali,
uint16_t INT_ENABLE)
{
dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (INT_ENABLE)
iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
else
iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
}
/* validation function to verify that the controlling software is making
* a valid request
*/
static inline bool is_flash_bank_valid(int flash_bank)
{
return (flash_bank >= 0 && flash_bank < 4);
}
static void denali_irq_init(struct denali_nand_info *denali)
{
uint32_t int_mask = 0;
int i;
/* Disable global interrupts */
denali_set_intr_modes(denali, false);
int_mask = DENALI_IRQ_ALL;
/* Clear all status bits */
for (i = 0; i < denali->max_banks; ++i)
iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
denali_irq_enable(denali, int_mask);
}
static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
denali_set_intr_modes(denali, false);
free_irq(irqnum, denali);
}
static void denali_irq_enable(struct denali_nand_info *denali,
uint32_t int_mask)
{
int i;
for (i = 0; i < denali->max_banks; ++i)
iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
}
/* This function only returns when an interrupt that this driver cares about
* occurs. This is to reduce the overhead of servicing interrupts
*/
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
return read_interrupt_status(denali) & DENALI_IRQ_ALL;
}
/* Interrupts are cleared by writing a 1 to the appropriate status bit */
static inline void clear_interrupt(struct denali_nand_info *denali,
uint32_t irq_mask)
{
uint32_t intr_status_reg = 0;
intr_status_reg = INTR_STATUS(denali->flash_bank);
iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
}
static void clear_interrupts(struct denali_nand_info *denali)
{
uint32_t status = 0x0;
spin_lock_irq(&denali->irq_lock);
status = read_interrupt_status(denali);
clear_interrupt(denali, status);
denali->irq_status = 0x0;
spin_unlock_irq(&denali->irq_lock);
}
static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
uint32_t intr_status_reg = 0;
intr_status_reg = INTR_STATUS(denali->flash_bank);
return ioread32(denali->flash_reg + intr_status_reg);
}
/* This is the interrupt service routine. It handles all interrupts
* sent to this device. Note that on CE4100, this is a shared
* interrupt.
*/
static irqreturn_t denali_isr(int irq, void *dev_id)
{
struct denali_nand_info *denali = dev_id;
uint32_t irq_status = 0x0;
irqreturn_t result = IRQ_NONE;
spin_lock(&denali->irq_lock);
/* check to see if a valid NAND chip has
* been selected.
*/
if (is_flash_bank_valid(denali->flash_bank)) {
/* check to see if controller generated
* the interrupt, since this is a shared interrupt */
irq_status = denali_irq_detected(denali);
if (irq_status != 0) {
/* handle interrupt */
/* first acknowledge it */
clear_interrupt(denali, irq_status);
/* store the status in the device context for someone
to read */
denali->irq_status |= irq_status;
/* notify anyone who cares that it happened */
complete(&denali->complete);
/* tell the OS that we've handled this */
result = IRQ_HANDLED;
}
}
spin_unlock(&denali->irq_lock);
return result;
}
#define BANK(x) ((x) << 24)
static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
unsigned long comp_res = 0;
uint32_t intr_status = 0;
bool retry = false;
unsigned long timeout = msecs_to_jiffies(1000);
do {
comp_res =
wait_for_completion_timeout(&denali->complete, timeout);
spin_lock_irq(&denali->irq_lock);
intr_status = denali->irq_status;
if (intr_status & irq_mask) {
denali->irq_status &= ~irq_mask;
spin_unlock_irq(&denali->irq_lock);
/* our interrupt was detected */
break;
} else {
/* these are not the interrupts you are looking for -
* need to wait again */
spin_unlock_irq(&denali->irq_lock);
retry = true;
}
} while (comp_res != 0);
if (comp_res == 0) {
/* timeout */
pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
intr_status, irq_mask);
intr_status = 0;
}
return intr_status;
}
/* This helper function setups the registers for ECC and whether or not
* the spare area will be transferred. */
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
bool transfer_spare)
{
int ecc_en_flag = 0, transfer_spare_flag = 0;
/* set ECC, transfer spare bits if needed */
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
/* Enable spare area/ECC per user's request. */
iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
iowrite32(transfer_spare_flag,
denali->flash_reg + TRANSFER_SPARE_REG);
}
/* sends a pipeline command operation to the controller. See the Denali NAND
* controller's user guide for more information (section 4.2.3.6).
*/
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
bool ecc_en,
bool transfer_spare,
int access_type,
int op)
{
int status = PASS;
uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
irq_mask = 0;
if (op == DENALI_READ)
irq_mask = INTR_STATUS__LOAD_COMP;
else if (op == DENALI_WRITE)
irq_mask = 0;
else
BUG();
setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
/* clear interrupts */
clear_interrupts(denali);
addr = BANK(denali->flash_bank) | denali->page;
if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
cmd = MODE_01 | addr;
iowrite32(cmd, denali->flash_mem);
} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
/* read spare area */
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
cmd = MODE_01 | addr;
iowrite32(cmd, denali->flash_mem);
} else if (op == DENALI_READ) {
/* setup page read request for access type */
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
/* page 33 of the NAND controller spec indicates we should not
use the pipeline commands in Spare area only mode. So we
don't.
*/
if (access_type == SPARE_ACCESS) {
cmd = MODE_01 | addr;
iowrite32(cmd, denali->flash_mem);
} else {
index_addr(denali, (uint32_t)cmd,
0x2000 | op | page_count);
/* wait for command to be accepted
* can always use status0 bit as the
* mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
dev_err(denali->dev,
"cmd, page, addr on timeout "
"(0x%x, 0x%x, 0x%x)\n",
cmd, denali->page, addr);
status = FAIL;
} else {
cmd = MODE_01 | addr;
iowrite32(cmd, denali->flash_mem);
}
}
}
return status;
}
/* helper function that simply writes a buffer to the flash */
static int write_data_to_flash_mem(struct denali_nand_info *denali,
const uint8_t *buf,
int len)
{
uint32_t i = 0, *buf32;
/* verify that the len is a multiple of 4. see comment in
* read_data_from_flash_mem() */
BUG_ON((len % 4) != 0);
/* write the data to the flash memory */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
iowrite32(*buf32++, denali->flash_mem + 0x10);
return i*4; /* intent is to return the number of bytes read */
}
/* helper function that simply reads a buffer from the flash */
static int read_data_from_flash_mem(struct denali_nand_info *denali,
uint8_t *buf,
int len)
{
uint32_t i = 0, *buf32;
/* we assume that len will be a multiple of 4, if not
* it would be nice to know about it ASAP rather than
* have random failures...
* This assumption is based on the fact that this
* function is designed to be used to read flash pages,
* which are typically multiples of 4...
*/
BUG_ON((len % 4) != 0);
/* transfer the data from the flash */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
*buf32++ = ioread32(denali->flash_mem + 0x10);
return i*4; /* intent is to return the number of bytes read */
}
/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
INTR_STATUS__PROGRAM_FAIL;
int status = 0;
denali->page = page;
if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
DENALI_WRITE) == PASS) {
write_data_to_flash_mem(denali, buf, mtd->oobsize);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
dev_err(denali->dev, "OOB write failed\n");
status = -EIO;
}
} else {
dev_err(denali->dev, "unable to send pipeline command\n");
status = -EIO;
}
return status;
}
/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
irq_status = 0, addr = 0x0, cmd = 0x0;
denali->page = page;
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_READ) == PASS) {
read_data_from_flash_mem(denali, buf, mtd->oobsize);
/* wait for command to be accepted
* can always use status0 bit as the mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0)
dev_err(denali->dev, "page on OOB timeout %d\n",
denali->page);
/* We set the device back to MAIN_ACCESS here as I observed
* instability with the controller if you do a block erase
* and the last transaction was a SPARE_ACCESS. Block erase
* is reliable (according to the MTD test infrastructure)
* if you are in MAIN_ACCESS.
*/
addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
}
}
/* this function examines buffers to see if they contain data that
* indicate that the buffer is part of an erased region of flash.
*/
static bool is_erased(uint8_t *buf, int len)
{
int i = 0;
for (i = 0; i < len; i++)
if (buf[i] != 0xFF)
return false;
return true;
}
#define ECC_SECTOR_SIZE 512
#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
uint32_t irq_status, unsigned int *max_bitflips)
{
bool check_erased_page = false;
unsigned int bitflips = 0;
if (irq_status & INTR_STATUS__ECC_ERR) {
/* read the ECC errors. we'll ignore them for now */
uint32_t err_address = 0, err_correction_info = 0;
uint32_t err_byte = 0, err_sector = 0, err_device = 0;
uint32_t err_correction_value = 0;
denali_set_intr_modes(denali, false);
do {
err_address = ioread32(denali->flash_reg +
ECC_ERROR_ADDRESS);
err_sector = ECC_SECTOR(err_address);
err_byte = ECC_BYTE(err_address);
err_correction_info = ioread32(denali->flash_reg +
ERR_CORRECTION_INFO);
err_correction_value =
ECC_CORRECTION_VALUE(err_correction_info);
err_device = ECC_ERR_DEVICE(err_correction_info);
if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
/* If err_byte is larger than ECC_SECTOR_SIZE,
* means error happened in OOB, so we ignore
* it. It's no need for us to correct it
* err_device is represented the NAND error
* bits are happened in if there are more
* than one NAND connected.
* */
if (err_byte < ECC_SECTOR_SIZE) {
int offset;
offset = (err_sector *
ECC_SECTOR_SIZE +
err_byte) *
denali->devnum +
err_device;
/* correct the ECC error */
buf[offset] ^= err_correction_value;
denali->mtd.ecc_stats.corrected++;
bitflips++;
}
} else {
/* if the error is not correctable, need to
* look at the page to see if it is an erased
* page. if so, then it's not a real ECC error
* */
check_erased_page = true;
}
} while (!ECC_LAST_ERR(err_correction_info));
/* Once handle all ecc errors, controller will triger
* a ECC_TRANSACTION_DONE interrupt, so here just wait
* for a while for this interrupt
* */
while (!(read_interrupt_status(denali) &
INTR_STATUS__ECC_TRANSACTION_DONE))
cpu_relax();
clear_interrupts(denali);
denali_set_intr_modes(denali, true);
}
*max_bitflips = bitflips;
return check_erased_page;
}
/* programs the controller to either enable/disable DMA transfers */
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
{
uint32_t reg_val = 0x0;
if (en)
reg_val = DMA_ENABLE__FLAG;
iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
ioread32(denali->flash_reg + DMA_ENABLE);
}
/* setups the HW to perform the data DMA */
static void denali_setup_dma(struct denali_nand_info *denali, int op)
{
uint32_t mode = 0x0;
const int page_count = 1;
dma_addr_t addr = denali->buf.dma_buf;
mode = MODE_10 | BANK(denali->flash_bank);
/* DMA is a four step process */
/* 1. setup transfer type and # of pages */
index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
/* 2. set memory high address bits 23:8 */
index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
/* 3. set memory low address bits 23:8 */
index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
/* 4. interrupt when complete, burst len = 64 bytes*/
index_addr(denali, mode | 0x14000, 0x2400);
}
/* writes a page. user specifies type, and this function handles the
* configuration details. */
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, bool raw_xfer)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
INTR_STATUS__PROGRAM_FAIL;
/* if it is a raw xfer, we want to disable ecc, and send
* the spare area.
* !raw_xfer - enable ecc
* raw_xfer - transfer spare
*/
setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
/* copy buffer into DMA buffer */
memcpy(denali->buf.buf, buf, mtd->writesize);
if (raw_xfer) {
/* transfer the data to the spare area */
memcpy(denali->buf.buf + mtd->writesize,
chip->oob_poi,
mtd->oobsize);
}
dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
clear_interrupts(denali);
denali_enable_dma(denali, true);
denali_setup_dma(denali, DENALI_WRITE);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
dev_err(denali->dev,
"timeout on write_page (type = %d)\n",
raw_xfer);
denali->status =
(irq_status & INTR_STATUS__PROGRAM_FAIL) ?
NAND_STATUS_FAIL : PASS;
}
denali_enable_dma(denali, false);
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
return 0;
}
/* NAND core entry points */
/* this is the callback that the NAND core calls to write a page. Since
* writing a page with ECC or without is similar, all the work is done
* by write_page above.
* */
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
/* for regular page writes, we let HW handle all the ECC
* data written to the device. */
return write_page(mtd, chip, buf, false);
}
/* This is the callback that the NAND core calls to write a page without ECC.
* raw access is similar to ECC page writes, so all the work is done in the
* write_page() function above.
*/
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
/* for raw page writes, we want to disable ECC and simply write
whatever data is in the buffer. */
return write_page(mtd, chip, buf, true);
}
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
return write_oob_data(mtd, chip->oob_poi, page);
}
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
read_oob_data(mtd, chip->oob_poi, page);
return 0;
}
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
unsigned int max_bitflips;
struct denali_nand_info *denali = mtd_to_denali(mtd);
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
INTR_STATUS__ECC_ERR;
bool check_erased_page = false;
if (page != denali->page) {
dev_err(denali->dev, "IN %s: page %d is not"
" equal to denali->page %d, investigate!!",
__func__, page, denali->page);
BUG();
}
setup_ecc_for_xfer(denali, true, false);
denali_enable_dma(denali, true);
dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
clear_interrupts(denali);
denali_setup_dma(denali, DENALI_READ);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
memcpy(buf, denali->buf.buf, mtd->writesize);
check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
denali_enable_dma(denali, false);
if (check_erased_page) {
read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
/* check ECC failures that may have occurred on erased pages */
if (check_erased_page) {
if (!is_erased(buf, denali->mtd.writesize))
denali->mtd.ecc_stats.failed++;
if (!is_erased(buf, denali->mtd.oobsize))
denali->mtd.ecc_stats.failed++;
}
}
return max_bitflips;
}
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
if (page != denali->page) {
dev_err(denali->dev, "IN %s: page %d is not"
" equal to denali->page %d, investigate!!",
__func__, page, denali->page);
BUG();
}
setup_ecc_for_xfer(denali, false, true);
denali_enable_dma(denali, true);
dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
clear_interrupts(denali);
denali_setup_dma(denali, DENALI_READ);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
denali_enable_dma(denali, false);
memcpy(buf, denali->buf.buf, mtd->writesize);
memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
return 0;
}
static uint8_t denali_read_byte(struct mtd_info *mtd)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint8_t result = 0xff;
if (denali->buf.head < denali->buf.tail)
result = denali->buf.buf[denali->buf.head++];
return result;
}
static void denali_select_chip(struct mtd_info *mtd, int chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
spin_lock_irq(&denali->irq_lock);
denali->flash_bank = chip;
spin_unlock_irq(&denali->irq_lock);
}
static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
int status = denali->status;
denali->status = 0;
return status;
}
static int denali_erase(struct mtd_info *mtd, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t cmd = 0x0, irq_status = 0;
/* clear interrupts */
clear_interrupts(denali);
/* setup page read request for access type */
cmd = MODE_10 | BANK(denali->flash_bank) | page;
index_addr(denali, (uint32_t)cmd, 0x1);
/* wait for erase to complete or failure to occur */
irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
INTR_STATUS__ERASE_FAIL);
return (irq_status & INTR_STATUS__ERASE_FAIL) ? NAND_STATUS_FAIL : PASS;
}
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t addr, id;
int i;
switch (cmd) {
case NAND_CMD_PAGEPROG:
break;
case NAND_CMD_STATUS:
read_status(denali);
break;
case NAND_CMD_READID:
case NAND_CMD_PARAM:
reset_buf(denali);
/*sometimes ManufactureId read from register is not right
* e.g. some of Micron MT29F32G08QAA MLC NAND chips
* So here we send READID cmd to NAND insteand
* */
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
index_addr(denali, (uint32_t)addr | 0, 0x90);
index_addr(denali, (uint32_t)addr | 1, 0);
for (i = 0; i < 5; i++) {
index_addr_read_data(denali,
(uint32_t)addr | 2,
&id);
write_byte_to_buf(denali, id);
}
break;
case NAND_CMD_READ0:
case NAND_CMD_SEQIN:
denali->page = page;
break;
case NAND_CMD_RESET:
reset_bank(denali);
break;
case NAND_CMD_READOOB:
/* TODO: Read OOB data */
break;
default:
pr_err(": unsupported command received 0x%x\n", cmd);
break;
}
}
/* stubs for ECC functions not used by the NAND core */
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc_code)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dev_err(denali->dev,
"denali_ecc_calculate called unexpectedly\n");
BUG();
return -EIO;
}
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dev_err(denali->dev,
"denali_ecc_correct called unexpectedly\n");
BUG();
return -EIO;
}
static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dev_err(denali->dev,
"denali_ecc_hwctl called unexpectedly\n");
BUG();
}
/* end NAND core entry points */
/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
/* tell driver how many bit controller will skip before
* writing ECC code in OOB, this register may be already
* set by firmware. So we read this value out.
* if this value is 0, just let it be.
* */
denali->bbtskipbytes = ioread32(denali->flash_reg +
SPARE_AREA_SKIP_BYTES);
detect_max_banks(denali);
denali_nand_reset(denali);
iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
iowrite32(CHIP_EN_DONT_CARE__FLAG,
denali->flash_reg + CHIP_ENABLE_DONT_CARE);
iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
/* Should set value for these registers when init */
iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
iowrite32(1, denali->flash_reg + ECC_ENABLE);
denali_nand_timing_set(denali);
denali_irq_init(denali);
}
/* Althogh controller spec said SLC ECC is forceb to be 4bit,
* but denali controller in MRST only support 15bit and 8bit ECC
* correction
* */
#define ECC_8BITS 14
static struct nand_ecclayout nand_8bit_oob = {
.eccbytes = 14,
};
#define ECC_15BITS 26
static struct nand_ecclayout nand_15bit_oob = {
.eccbytes = 26,
};
static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 8,
.len = 4,
.veroffs = 12,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 8,
.len = 4,
.veroffs = 12,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/* initialize driver data structures */
static void denali_drv_init(struct denali_nand_info *denali)
{
denali->idx = 0;
/* setup interrupt handler */
/* the completion object will be used to notify
* the callee that the interrupt is done */
init_completion(&denali->complete);
/* the spinlock will be used to synchronize the ISR
* with any element that might be access shared
* data (interrupt status) */
spin_lock_init(&denali->irq_lock);
/* indicate that MTD has not selected a valid bank yet */
denali->flash_bank = CHIP_SELECT_INVALID;
/* initialize our irq_status variable to indicate no interrupts */
denali->irq_status = 0;
}
int denali_init(struct denali_nand_info *denali)
{
int ret;
if (denali->platform == INTEL_CE4100) {
/* Due to a silicon limitation, we can only support
* ONFI timing mode 1 and below.
*/
if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
return -EINVAL;
}
}
/* allocate a temporary buffer for nand_scan_ident() */
denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
GFP_DMA | GFP_KERNEL);
if (!denali->buf.buf)
return -ENOMEM;
denali->mtd.dev.parent = denali->dev;
denali_hw_init(denali);
denali_drv_init(denali);
/* denali_isr register is done after all the hardware
* initilization is finished*/
if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
DENALI_NAND_NAME, denali)) {
pr_err("Spectra: Unable to allocate IRQ\n");
return -ENODEV;
}
/* now that our ISR is registered, we can enable interrupts */
denali_set_intr_modes(denali, true);
denali->mtd.name = "denali-nand";
denali->mtd.owner = THIS_MODULE;
denali->mtd.priv = &denali->nand;
/* register the driver with the NAND core subsystem */
denali->nand.select_chip = denali_select_chip;
denali->nand.cmdfunc = denali_cmdfunc;
denali->nand.read_byte = denali_read_byte;
denali->nand.waitfunc = denali_waitfunc;
/* scan for NAND devices attached to the controller
* this is the first stage in a two step process to register
* with the nand subsystem */
if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
ret = -ENXIO;
goto failed_req_irq;
}
/* allocate the right size buffer now */
devm_kfree(denali->dev, denali->buf.buf);
denali->buf.buf = devm_kzalloc(denali->dev,
denali->mtd.writesize + denali->mtd.oobsize,
GFP_KERNEL);
if (!denali->buf.buf) {
ret = -ENOMEM;
goto failed_req_irq;
}
/* Is 32-bit DMA supported? */
ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
if (ret) {
pr_err("Spectra: no usable DMA configuration\n");
goto failed_req_irq;
}
denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
denali->mtd.writesize + denali->mtd.oobsize,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
ret = -EIO;
goto failed_req_irq;
}
/* support for multi nand
* MTD known nothing about multi nand,
* so we should tell it the real pagesize
* and anything necessery
*/
denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
denali->nand.chipsize <<= (denali->devnum - 1);
denali->nand.page_shift += (denali->devnum - 1);
denali->nand.pagemask = (denali->nand.chipsize >>
denali->nand.page_shift) - 1;
denali->nand.bbt_erase_shift += (denali->devnum - 1);
denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
denali->nand.chip_shift += (denali->devnum - 1);
denali->mtd.writesize <<= (denali->devnum - 1);
denali->mtd.oobsize <<= (denali->devnum - 1);
denali->mtd.erasesize <<= (denali->devnum - 1);
denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
denali->bbtskipbytes *= denali->devnum;
/* second stage of the NAND scan
* this stage requires information regarding ECC and
* bad block management. */
/* Bad block management */
denali->nand.bbt_td = &bbt_main_descr;
denali->nand.bbt_md = &bbt_mirror_descr;
/* skip the scan for now until we have OOB read and write support */
denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
denali->nand.options |= NAND_SKIP_BBTSCAN;
denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
/* Denali Controller only support 15bit and 8bit ECC in MRST,
* so just let controller do 15bit ECC for MLC and 8bit ECC for
* SLC if possible.
* */
if (!nand_is_slc(&denali->nand) &&
(denali->mtd.oobsize > (denali->bbtskipbytes +
ECC_15BITS * (denali->mtd.writesize /
ECC_SECTOR_SIZE)))) {
/* if MLC OOB size is large enough, use 15bit ECC*/
denali->nand.ecc.strength = 15;
denali->nand.ecc.layout = &nand_15bit_oob;
denali->nand.ecc.bytes = ECC_15BITS;
iowrite32(15, denali->flash_reg + ECC_CORRECTION);
} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
ECC_8BITS * (denali->mtd.writesize /
ECC_SECTOR_SIZE))) {
pr_err("Your NAND chip OOB is not large enough to \
contain 8bit ECC correction codes");
goto failed_req_irq;
} else {
denali->nand.ecc.strength = 8;
denali->nand.ecc.layout = &nand_8bit_oob;
denali->nand.ecc.bytes = ECC_8BITS;
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
}
denali->nand.ecc.bytes *= denali->devnum;
denali->nand.ecc.strength *= denali->devnum;
denali->nand.ecc.layout->eccbytes *=
denali->mtd.writesize / ECC_SECTOR_SIZE;
denali->nand.ecc.layout->oobfree[0].offset =
denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
denali->nand.ecc.layout->oobfree[0].length =
denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
denali->bbtskipbytes;
/* Let driver know the total blocks number and
* how many blocks contained by each nand chip.
* blksperchip will help driver to know how many
* blocks is taken by FW.
* */
denali->totalblks = denali->mtd.size >>
denali->nand.phys_erase_shift;
denali->blksperchip = denali->totalblks / denali->nand.numchips;
/* These functions are required by the NAND core framework, otherwise,
* the NAND core will assert. However, we don't need them, so we'll stub
* them out. */
denali->nand.ecc.calculate = denali_ecc_calculate;
denali->nand.ecc.correct = denali_ecc_correct;
denali->nand.ecc.hwctl = denali_ecc_hwctl;
/* override the default read operations */
denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
denali->nand.ecc.read_page = denali_read_page;
denali->nand.ecc.read_page_raw = denali_read_page_raw;
denali->nand.ecc.write_page = denali_write_page;
denali->nand.ecc.write_page_raw = denali_write_page_raw;
denali->nand.ecc.read_oob = denali_read_oob;
denali->nand.ecc.write_oob = denali_write_oob;
denali->nand.erase = denali_erase;
if (nand_scan_tail(&denali->mtd)) {
ret = -ENXIO;
goto failed_req_irq;
}
ret = mtd_device_register(&denali->mtd, NULL, 0);
if (ret) {
dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
ret);
goto failed_req_irq;
}
return 0;
failed_req_irq:
denali_irq_cleanup(denali->irq, denali);
return ret;
}
EXPORT_SYMBOL(denali_init);
/* driver exit point */
void denali_remove(struct denali_nand_info *denali)
{
denali_irq_cleanup(denali->irq, denali);
dma_unmap_single(denali->dev, denali->buf.dma_buf,
denali->mtd.writesize + denali->mtd.oobsize,
DMA_BIDIRECTIONAL);
}
EXPORT_SYMBOL(denali_remove);