| /* | 
 |  * ipmi_si.c | 
 |  * | 
 |  * The interface to the IPMI driver for the system interfaces (KCS, SMIC, | 
 |  * BT). | 
 |  * | 
 |  * Author: MontaVista Software, Inc. | 
 |  *         Corey Minyard <minyard@mvista.com> | 
 |  *         source@mvista.com | 
 |  * | 
 |  * Copyright 2002 MontaVista Software Inc. | 
 |  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or modify it | 
 |  *  under the terms of the GNU General Public License as published by the | 
 |  *  Free Software Foundation; either version 2 of the License, or (at your | 
 |  *  option) any later version. | 
 |  * | 
 |  * | 
 |  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | 
 |  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | 
 |  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. | 
 |  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, | 
 |  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | 
 |  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS | 
 |  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | 
 |  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR | 
 |  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | 
 |  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * | 
 |  *  You should have received a copy of the GNU General Public License along | 
 |  *  with this program; if not, write to the Free Software Foundation, Inc., | 
 |  *  675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file holds the "policy" for the interface to the SMI state | 
 |  * machine.  It does the configuration, handles timers and interrupts, | 
 |  * and drives the real SMI state machine. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <asm/system.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/list.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/kthread.h> | 
 | #include <asm/irq.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/ipmi_smi.h> | 
 | #include <asm/io.h> | 
 | #include "ipmi_si_sm.h" | 
 | #include <linux/init.h> | 
 | #include <linux/dmi.h> | 
 | #include <linux/string.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/pnp.h> | 
 |  | 
 | #ifdef CONFIG_PPC_OF | 
 | #include <linux/of_device.h> | 
 | #include <linux/of_platform.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/of_irq.h> | 
 | #endif | 
 |  | 
 | #define PFX "ipmi_si: " | 
 |  | 
 | /* Measure times between events in the driver. */ | 
 | #undef DEBUG_TIMING | 
 |  | 
 | /* Call every 10 ms. */ | 
 | #define SI_TIMEOUT_TIME_USEC	10000 | 
 | #define SI_USEC_PER_JIFFY	(1000000/HZ) | 
 | #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) | 
 | #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a | 
 | 				      short timeout */ | 
 |  | 
 | enum si_intf_state { | 
 | 	SI_NORMAL, | 
 | 	SI_GETTING_FLAGS, | 
 | 	SI_GETTING_EVENTS, | 
 | 	SI_CLEARING_FLAGS, | 
 | 	SI_CLEARING_FLAGS_THEN_SET_IRQ, | 
 | 	SI_GETTING_MESSAGES, | 
 | 	SI_ENABLE_INTERRUPTS1, | 
 | 	SI_ENABLE_INTERRUPTS2, | 
 | 	SI_DISABLE_INTERRUPTS1, | 
 | 	SI_DISABLE_INTERRUPTS2 | 
 | 	/* FIXME - add watchdog stuff. */ | 
 | }; | 
 |  | 
 | /* Some BT-specific defines we need here. */ | 
 | #define IPMI_BT_INTMASK_REG		2 | 
 | #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2 | 
 | #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1 | 
 |  | 
 | enum si_type { | 
 |     SI_KCS, SI_SMIC, SI_BT | 
 | }; | 
 | static char *si_to_str[] = { "kcs", "smic", "bt" }; | 
 |  | 
 | enum ipmi_addr_src { | 
 | 	SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS, | 
 | 	SI_PCI,	SI_DEVICETREE, SI_DEFAULT | 
 | }; | 
 | static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI", | 
 | 					"ACPI", "SMBIOS", "PCI", | 
 | 					"device-tree", "default" }; | 
 |  | 
 | #define DEVICE_NAME "ipmi_si" | 
 |  | 
 | static struct platform_driver ipmi_driver = { | 
 | 	.driver = { | 
 | 		.name = DEVICE_NAME, | 
 | 		.bus = &platform_bus_type | 
 | 	} | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * Indexes into stats[] in smi_info below. | 
 |  */ | 
 | enum si_stat_indexes { | 
 | 	/* | 
 | 	 * Number of times the driver requested a timer while an operation | 
 | 	 * was in progress. | 
 | 	 */ | 
 | 	SI_STAT_short_timeouts = 0, | 
 |  | 
 | 	/* | 
 | 	 * Number of times the driver requested a timer while nothing was in | 
 | 	 * progress. | 
 | 	 */ | 
 | 	SI_STAT_long_timeouts, | 
 |  | 
 | 	/* Number of times the interface was idle while being polled. */ | 
 | 	SI_STAT_idles, | 
 |  | 
 | 	/* Number of interrupts the driver handled. */ | 
 | 	SI_STAT_interrupts, | 
 |  | 
 | 	/* Number of time the driver got an ATTN from the hardware. */ | 
 | 	SI_STAT_attentions, | 
 |  | 
 | 	/* Number of times the driver requested flags from the hardware. */ | 
 | 	SI_STAT_flag_fetches, | 
 |  | 
 | 	/* Number of times the hardware didn't follow the state machine. */ | 
 | 	SI_STAT_hosed_count, | 
 |  | 
 | 	/* Number of completed messages. */ | 
 | 	SI_STAT_complete_transactions, | 
 |  | 
 | 	/* Number of IPMI events received from the hardware. */ | 
 | 	SI_STAT_events, | 
 |  | 
 | 	/* Number of watchdog pretimeouts. */ | 
 | 	SI_STAT_watchdog_pretimeouts, | 
 |  | 
 | 	/* Number of asyncronous messages received. */ | 
 | 	SI_STAT_incoming_messages, | 
 |  | 
 |  | 
 | 	/* This *must* remain last, add new values above this. */ | 
 | 	SI_NUM_STATS | 
 | }; | 
 |  | 
 | struct smi_info { | 
 | 	int                    intf_num; | 
 | 	ipmi_smi_t             intf; | 
 | 	struct si_sm_data      *si_sm; | 
 | 	struct si_sm_handlers  *handlers; | 
 | 	enum si_type           si_type; | 
 | 	spinlock_t             si_lock; | 
 | 	spinlock_t             msg_lock; | 
 | 	struct list_head       xmit_msgs; | 
 | 	struct list_head       hp_xmit_msgs; | 
 | 	struct ipmi_smi_msg    *curr_msg; | 
 | 	enum si_intf_state     si_state; | 
 |  | 
 | 	/* | 
 | 	 * Used to handle the various types of I/O that can occur with | 
 | 	 * IPMI | 
 | 	 */ | 
 | 	struct si_sm_io io; | 
 | 	int (*io_setup)(struct smi_info *info); | 
 | 	void (*io_cleanup)(struct smi_info *info); | 
 | 	int (*irq_setup)(struct smi_info *info); | 
 | 	void (*irq_cleanup)(struct smi_info *info); | 
 | 	unsigned int io_size; | 
 | 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ | 
 | 	void (*addr_source_cleanup)(struct smi_info *info); | 
 | 	void *addr_source_data; | 
 |  | 
 | 	/* | 
 | 	 * Per-OEM handler, called from handle_flags().  Returns 1 | 
 | 	 * when handle_flags() needs to be re-run or 0 indicating it | 
 | 	 * set si_state itself. | 
 | 	 */ | 
 | 	int (*oem_data_avail_handler)(struct smi_info *smi_info); | 
 |  | 
 | 	/* | 
 | 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN | 
 | 	 * is set to hold the flags until we are done handling everything | 
 | 	 * from the flags. | 
 | 	 */ | 
 | #define RECEIVE_MSG_AVAIL	0x01 | 
 | #define EVENT_MSG_BUFFER_FULL	0x02 | 
 | #define WDT_PRE_TIMEOUT_INT	0x08 | 
 | #define OEM0_DATA_AVAIL     0x20 | 
 | #define OEM1_DATA_AVAIL     0x40 | 
 | #define OEM2_DATA_AVAIL     0x80 | 
 | #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \ | 
 | 			     OEM1_DATA_AVAIL | \ | 
 | 			     OEM2_DATA_AVAIL) | 
 | 	unsigned char       msg_flags; | 
 |  | 
 | 	/* Does the BMC have an event buffer? */ | 
 | 	char		    has_event_buffer; | 
 |  | 
 | 	/* | 
 | 	 * If set to true, this will request events the next time the | 
 | 	 * state machine is idle. | 
 | 	 */ | 
 | 	atomic_t            req_events; | 
 |  | 
 | 	/* | 
 | 	 * If true, run the state machine to completion on every send | 
 | 	 * call.  Generally used after a panic to make sure stuff goes | 
 | 	 * out. | 
 | 	 */ | 
 | 	int                 run_to_completion; | 
 |  | 
 | 	/* The I/O port of an SI interface. */ | 
 | 	int                 port; | 
 |  | 
 | 	/* | 
 | 	 * The space between start addresses of the two ports.  For | 
 | 	 * instance, if the first port is 0xca2 and the spacing is 4, then | 
 | 	 * the second port is 0xca6. | 
 | 	 */ | 
 | 	unsigned int        spacing; | 
 |  | 
 | 	/* zero if no irq; */ | 
 | 	int                 irq; | 
 |  | 
 | 	/* The timer for this si. */ | 
 | 	struct timer_list   si_timer; | 
 |  | 
 | 	/* The time (in jiffies) the last timeout occurred at. */ | 
 | 	unsigned long       last_timeout_jiffies; | 
 |  | 
 | 	/* Used to gracefully stop the timer without race conditions. */ | 
 | 	atomic_t            stop_operation; | 
 |  | 
 | 	/* | 
 | 	 * The driver will disable interrupts when it gets into a | 
 | 	 * situation where it cannot handle messages due to lack of | 
 | 	 * memory.  Once that situation clears up, it will re-enable | 
 | 	 * interrupts. | 
 | 	 */ | 
 | 	int interrupt_disabled; | 
 |  | 
 | 	/* From the get device id response... */ | 
 | 	struct ipmi_device_id device_id; | 
 |  | 
 | 	/* Driver model stuff. */ | 
 | 	struct device *dev; | 
 | 	struct platform_device *pdev; | 
 |  | 
 | 	/* | 
 | 	 * True if we allocated the device, false if it came from | 
 | 	 * someplace else (like PCI). | 
 | 	 */ | 
 | 	int dev_registered; | 
 |  | 
 | 	/* Slave address, could be reported from DMI. */ | 
 | 	unsigned char slave_addr; | 
 |  | 
 | 	/* Counters and things for the proc filesystem. */ | 
 | 	atomic_t stats[SI_NUM_STATS]; | 
 |  | 
 | 	struct task_struct *thread; | 
 |  | 
 | 	struct list_head link; | 
 | }; | 
 |  | 
 | #define smi_inc_stat(smi, stat) \ | 
 | 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) | 
 | #define smi_get_stat(smi, stat) \ | 
 | 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) | 
 |  | 
 | #define SI_MAX_PARMS 4 | 
 |  | 
 | static int force_kipmid[SI_MAX_PARMS]; | 
 | static int num_force_kipmid; | 
 | #ifdef CONFIG_PCI | 
 | static int pci_registered; | 
 | #endif | 
 | #ifdef CONFIG_ACPI | 
 | static int pnp_registered; | 
 | #endif | 
 | #ifdef CONFIG_PPC_OF | 
 | static int of_registered; | 
 | #endif | 
 |  | 
 | static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; | 
 | static int num_max_busy_us; | 
 |  | 
 | static int unload_when_empty = 1; | 
 |  | 
 | static int add_smi(struct smi_info *smi); | 
 | static int try_smi_init(struct smi_info *smi); | 
 | static void cleanup_one_si(struct smi_info *to_clean); | 
 |  | 
 | static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); | 
 | static int register_xaction_notifier(struct notifier_block *nb) | 
 | { | 
 | 	return atomic_notifier_chain_register(&xaction_notifier_list, nb); | 
 | } | 
 |  | 
 | static void deliver_recv_msg(struct smi_info *smi_info, | 
 | 			     struct ipmi_smi_msg *msg) | 
 | { | 
 | 	/* Deliver the message to the upper layer with the lock | 
 | 	   released. */ | 
 |  | 
 | 	if (smi_info->run_to_completion) { | 
 | 		ipmi_smi_msg_received(smi_info->intf, msg); | 
 | 	} else { | 
 | 		spin_unlock(&(smi_info->si_lock)); | 
 | 		ipmi_smi_msg_received(smi_info->intf, msg); | 
 | 		spin_lock(&(smi_info->si_lock)); | 
 | 	} | 
 | } | 
 |  | 
 | static void return_hosed_msg(struct smi_info *smi_info, int cCode) | 
 | { | 
 | 	struct ipmi_smi_msg *msg = smi_info->curr_msg; | 
 |  | 
 | 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) | 
 | 		cCode = IPMI_ERR_UNSPECIFIED; | 
 | 	/* else use it as is */ | 
 |  | 
 | 	/* Make it a reponse */ | 
 | 	msg->rsp[0] = msg->data[0] | 4; | 
 | 	msg->rsp[1] = msg->data[1]; | 
 | 	msg->rsp[2] = cCode; | 
 | 	msg->rsp_size = 3; | 
 |  | 
 | 	smi_info->curr_msg = NULL; | 
 | 	deliver_recv_msg(smi_info, msg); | 
 | } | 
 |  | 
 | static enum si_sm_result start_next_msg(struct smi_info *smi_info) | 
 | { | 
 | 	int              rv; | 
 | 	struct list_head *entry = NULL; | 
 | #ifdef DEBUG_TIMING | 
 | 	struct timeval t; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * No need to save flags, we aleady have interrupts off and we | 
 | 	 * already hold the SMI lock. | 
 | 	 */ | 
 | 	if (!smi_info->run_to_completion) | 
 | 		spin_lock(&(smi_info->msg_lock)); | 
 |  | 
 | 	/* Pick the high priority queue first. */ | 
 | 	if (!list_empty(&(smi_info->hp_xmit_msgs))) { | 
 | 		entry = smi_info->hp_xmit_msgs.next; | 
 | 	} else if (!list_empty(&(smi_info->xmit_msgs))) { | 
 | 		entry = smi_info->xmit_msgs.next; | 
 | 	} | 
 |  | 
 | 	if (!entry) { | 
 | 		smi_info->curr_msg = NULL; | 
 | 		rv = SI_SM_IDLE; | 
 | 	} else { | 
 | 		int err; | 
 |  | 
 | 		list_del(entry); | 
 | 		smi_info->curr_msg = list_entry(entry, | 
 | 						struct ipmi_smi_msg, | 
 | 						link); | 
 | #ifdef DEBUG_TIMING | 
 | 		do_gettimeofday(&t); | 
 | 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); | 
 | #endif | 
 | 		err = atomic_notifier_call_chain(&xaction_notifier_list, | 
 | 				0, smi_info); | 
 | 		if (err & NOTIFY_STOP_MASK) { | 
 | 			rv = SI_SM_CALL_WITHOUT_DELAY; | 
 | 			goto out; | 
 | 		} | 
 | 		err = smi_info->handlers->start_transaction( | 
 | 			smi_info->si_sm, | 
 | 			smi_info->curr_msg->data, | 
 | 			smi_info->curr_msg->data_size); | 
 | 		if (err) | 
 | 			return_hosed_msg(smi_info, err); | 
 |  | 
 | 		rv = SI_SM_CALL_WITHOUT_DELAY; | 
 | 	} | 
 |  out: | 
 | 	if (!smi_info->run_to_completion) | 
 | 		spin_unlock(&(smi_info->msg_lock)); | 
 |  | 
 | 	return rv; | 
 | } | 
 |  | 
 | static void start_enable_irq(struct smi_info *smi_info) | 
 | { | 
 | 	unsigned char msg[2]; | 
 |  | 
 | 	/* | 
 | 	 * If we are enabling interrupts, we have to tell the | 
 | 	 * BMC to use them. | 
 | 	 */ | 
 | 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2); | 
 | 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; | 
 |  | 
 | 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); | 
 | 	smi_info->si_state = SI_ENABLE_INTERRUPTS1; | 
 | } | 
 |  | 
 | static void start_disable_irq(struct smi_info *smi_info) | 
 | { | 
 | 	unsigned char msg[2]; | 
 |  | 
 | 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2); | 
 | 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; | 
 |  | 
 | 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); | 
 | 	smi_info->si_state = SI_DISABLE_INTERRUPTS1; | 
 | } | 
 |  | 
 | static void start_clear_flags(struct smi_info *smi_info) | 
 | { | 
 | 	unsigned char msg[3]; | 
 |  | 
 | 	/* Make sure the watchdog pre-timeout flag is not set at startup. */ | 
 | 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2); | 
 | 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; | 
 | 	msg[2] = WDT_PRE_TIMEOUT_INT; | 
 |  | 
 | 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); | 
 | 	smi_info->si_state = SI_CLEARING_FLAGS; | 
 | } | 
 |  | 
 | /* | 
 |  * When we have a situtaion where we run out of memory and cannot | 
 |  * allocate messages, we just leave them in the BMC and run the system | 
 |  * polled until we can allocate some memory.  Once we have some | 
 |  * memory, we will re-enable the interrupt. | 
 |  */ | 
 | static inline void disable_si_irq(struct smi_info *smi_info) | 
 | { | 
 | 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { | 
 | 		start_disable_irq(smi_info); | 
 | 		smi_info->interrupt_disabled = 1; | 
 | 		if (!atomic_read(&smi_info->stop_operation)) | 
 | 			mod_timer(&smi_info->si_timer, | 
 | 				  jiffies + SI_TIMEOUT_JIFFIES); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void enable_si_irq(struct smi_info *smi_info) | 
 | { | 
 | 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) { | 
 | 		start_enable_irq(smi_info); | 
 | 		smi_info->interrupt_disabled = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void handle_flags(struct smi_info *smi_info) | 
 | { | 
 |  retry: | 
 | 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { | 
 | 		/* Watchdog pre-timeout */ | 
 | 		smi_inc_stat(smi_info, watchdog_pretimeouts); | 
 |  | 
 | 		start_clear_flags(smi_info); | 
 | 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; | 
 | 		spin_unlock(&(smi_info->si_lock)); | 
 | 		ipmi_smi_watchdog_pretimeout(smi_info->intf); | 
 | 		spin_lock(&(smi_info->si_lock)); | 
 | 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { | 
 | 		/* Messages available. */ | 
 | 		smi_info->curr_msg = ipmi_alloc_smi_msg(); | 
 | 		if (!smi_info->curr_msg) { | 
 | 			disable_si_irq(smi_info); | 
 | 			smi_info->si_state = SI_NORMAL; | 
 | 			return; | 
 | 		} | 
 | 		enable_si_irq(smi_info); | 
 |  | 
 | 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); | 
 | 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; | 
 | 		smi_info->curr_msg->data_size = 2; | 
 |  | 
 | 		smi_info->handlers->start_transaction( | 
 | 			smi_info->si_sm, | 
 | 			smi_info->curr_msg->data, | 
 | 			smi_info->curr_msg->data_size); | 
 | 		smi_info->si_state = SI_GETTING_MESSAGES; | 
 | 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { | 
 | 		/* Events available. */ | 
 | 		smi_info->curr_msg = ipmi_alloc_smi_msg(); | 
 | 		if (!smi_info->curr_msg) { | 
 | 			disable_si_irq(smi_info); | 
 | 			smi_info->si_state = SI_NORMAL; | 
 | 			return; | 
 | 		} | 
 | 		enable_si_irq(smi_info); | 
 |  | 
 | 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); | 
 | 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; | 
 | 		smi_info->curr_msg->data_size = 2; | 
 |  | 
 | 		smi_info->handlers->start_transaction( | 
 | 			smi_info->si_sm, | 
 | 			smi_info->curr_msg->data, | 
 | 			smi_info->curr_msg->data_size); | 
 | 		smi_info->si_state = SI_GETTING_EVENTS; | 
 | 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL && | 
 | 		   smi_info->oem_data_avail_handler) { | 
 | 		if (smi_info->oem_data_avail_handler(smi_info)) | 
 | 			goto retry; | 
 | 	} else | 
 | 		smi_info->si_state = SI_NORMAL; | 
 | } | 
 |  | 
 | static void handle_transaction_done(struct smi_info *smi_info) | 
 | { | 
 | 	struct ipmi_smi_msg *msg; | 
 | #ifdef DEBUG_TIMING | 
 | 	struct timeval t; | 
 |  | 
 | 	do_gettimeofday(&t); | 
 | 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); | 
 | #endif | 
 | 	switch (smi_info->si_state) { | 
 | 	case SI_NORMAL: | 
 | 		if (!smi_info->curr_msg) | 
 | 			break; | 
 |  | 
 | 		smi_info->curr_msg->rsp_size | 
 | 			= smi_info->handlers->get_result( | 
 | 				smi_info->si_sm, | 
 | 				smi_info->curr_msg->rsp, | 
 | 				IPMI_MAX_MSG_LENGTH); | 
 |  | 
 | 		/* | 
 | 		 * Do this here becase deliver_recv_msg() releases the | 
 | 		 * lock, and a new message can be put in during the | 
 | 		 * time the lock is released. | 
 | 		 */ | 
 | 		msg = smi_info->curr_msg; | 
 | 		smi_info->curr_msg = NULL; | 
 | 		deliver_recv_msg(smi_info, msg); | 
 | 		break; | 
 |  | 
 | 	case SI_GETTING_FLAGS: | 
 | 	{ | 
 | 		unsigned char msg[4]; | 
 | 		unsigned int  len; | 
 |  | 
 | 		/* We got the flags from the SMI, now handle them. */ | 
 | 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); | 
 | 		if (msg[2] != 0) { | 
 | 			/* Error fetching flags, just give up for now. */ | 
 | 			smi_info->si_state = SI_NORMAL; | 
 | 		} else if (len < 4) { | 
 | 			/* | 
 | 			 * Hmm, no flags.  That's technically illegal, but | 
 | 			 * don't use uninitialized data. | 
 | 			 */ | 
 | 			smi_info->si_state = SI_NORMAL; | 
 | 		} else { | 
 | 			smi_info->msg_flags = msg[3]; | 
 | 			handle_flags(smi_info); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	case SI_CLEARING_FLAGS: | 
 | 	case SI_CLEARING_FLAGS_THEN_SET_IRQ: | 
 | 	{ | 
 | 		unsigned char msg[3]; | 
 |  | 
 | 		/* We cleared the flags. */ | 
 | 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3); | 
 | 		if (msg[2] != 0) { | 
 | 			/* Error clearing flags */ | 
 | 			dev_warn(smi_info->dev, | 
 | 				 "Error clearing flags: %2.2x\n", msg[2]); | 
 | 		} | 
 | 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) | 
 | 			start_enable_irq(smi_info); | 
 | 		else | 
 | 			smi_info->si_state = SI_NORMAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	case SI_GETTING_EVENTS: | 
 | 	{ | 
 | 		smi_info->curr_msg->rsp_size | 
 | 			= smi_info->handlers->get_result( | 
 | 				smi_info->si_sm, | 
 | 				smi_info->curr_msg->rsp, | 
 | 				IPMI_MAX_MSG_LENGTH); | 
 |  | 
 | 		/* | 
 | 		 * Do this here becase deliver_recv_msg() releases the | 
 | 		 * lock, and a new message can be put in during the | 
 | 		 * time the lock is released. | 
 | 		 */ | 
 | 		msg = smi_info->curr_msg; | 
 | 		smi_info->curr_msg = NULL; | 
 | 		if (msg->rsp[2] != 0) { | 
 | 			/* Error getting event, probably done. */ | 
 | 			msg->done(msg); | 
 |  | 
 | 			/* Take off the event flag. */ | 
 | 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; | 
 | 			handle_flags(smi_info); | 
 | 		} else { | 
 | 			smi_inc_stat(smi_info, events); | 
 |  | 
 | 			/* | 
 | 			 * Do this before we deliver the message | 
 | 			 * because delivering the message releases the | 
 | 			 * lock and something else can mess with the | 
 | 			 * state. | 
 | 			 */ | 
 | 			handle_flags(smi_info); | 
 |  | 
 | 			deliver_recv_msg(smi_info, msg); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	case SI_GETTING_MESSAGES: | 
 | 	{ | 
 | 		smi_info->curr_msg->rsp_size | 
 | 			= smi_info->handlers->get_result( | 
 | 				smi_info->si_sm, | 
 | 				smi_info->curr_msg->rsp, | 
 | 				IPMI_MAX_MSG_LENGTH); | 
 |  | 
 | 		/* | 
 | 		 * Do this here becase deliver_recv_msg() releases the | 
 | 		 * lock, and a new message can be put in during the | 
 | 		 * time the lock is released. | 
 | 		 */ | 
 | 		msg = smi_info->curr_msg; | 
 | 		smi_info->curr_msg = NULL; | 
 | 		if (msg->rsp[2] != 0) { | 
 | 			/* Error getting event, probably done. */ | 
 | 			msg->done(msg); | 
 |  | 
 | 			/* Take off the msg flag. */ | 
 | 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; | 
 | 			handle_flags(smi_info); | 
 | 		} else { | 
 | 			smi_inc_stat(smi_info, incoming_messages); | 
 |  | 
 | 			/* | 
 | 			 * Do this before we deliver the message | 
 | 			 * because delivering the message releases the | 
 | 			 * lock and something else can mess with the | 
 | 			 * state. | 
 | 			 */ | 
 | 			handle_flags(smi_info); | 
 |  | 
 | 			deliver_recv_msg(smi_info, msg); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	case SI_ENABLE_INTERRUPTS1: | 
 | 	{ | 
 | 		unsigned char msg[4]; | 
 |  | 
 | 		/* We got the flags from the SMI, now handle them. */ | 
 | 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4); | 
 | 		if (msg[2] != 0) { | 
 | 			dev_warn(smi_info->dev, "Could not enable interrupts" | 
 | 				 ", failed get, using polled mode.\n"); | 
 | 			smi_info->si_state = SI_NORMAL; | 
 | 		} else { | 
 | 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2); | 
 | 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; | 
 | 			msg[2] = (msg[3] | | 
 | 				  IPMI_BMC_RCV_MSG_INTR | | 
 | 				  IPMI_BMC_EVT_MSG_INTR); | 
 | 			smi_info->handlers->start_transaction( | 
 | 				smi_info->si_sm, msg, 3); | 
 | 			smi_info->si_state = SI_ENABLE_INTERRUPTS2; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	case SI_ENABLE_INTERRUPTS2: | 
 | 	{ | 
 | 		unsigned char msg[4]; | 
 |  | 
 | 		/* We got the flags from the SMI, now handle them. */ | 
 | 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4); | 
 | 		if (msg[2] != 0) | 
 | 			dev_warn(smi_info->dev, "Could not enable interrupts" | 
 | 				 ", failed set, using polled mode.\n"); | 
 | 		else | 
 | 			smi_info->interrupt_disabled = 0; | 
 | 		smi_info->si_state = SI_NORMAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	case SI_DISABLE_INTERRUPTS1: | 
 | 	{ | 
 | 		unsigned char msg[4]; | 
 |  | 
 | 		/* We got the flags from the SMI, now handle them. */ | 
 | 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4); | 
 | 		if (msg[2] != 0) { | 
 | 			dev_warn(smi_info->dev, "Could not disable interrupts" | 
 | 				 ", failed get.\n"); | 
 | 			smi_info->si_state = SI_NORMAL; | 
 | 		} else { | 
 | 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2); | 
 | 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; | 
 | 			msg[2] = (msg[3] & | 
 | 				  ~(IPMI_BMC_RCV_MSG_INTR | | 
 | 				    IPMI_BMC_EVT_MSG_INTR)); | 
 | 			smi_info->handlers->start_transaction( | 
 | 				smi_info->si_sm, msg, 3); | 
 | 			smi_info->si_state = SI_DISABLE_INTERRUPTS2; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	case SI_DISABLE_INTERRUPTS2: | 
 | 	{ | 
 | 		unsigned char msg[4]; | 
 |  | 
 | 		/* We got the flags from the SMI, now handle them. */ | 
 | 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4); | 
 | 		if (msg[2] != 0) { | 
 | 			dev_warn(smi_info->dev, "Could not disable interrupts" | 
 | 				 ", failed set.\n"); | 
 | 		} | 
 | 		smi_info->si_state = SI_NORMAL; | 
 | 		break; | 
 | 	} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called on timeouts and events.  Timeouts should pass the elapsed | 
 |  * time, interrupts should pass in zero.  Must be called with | 
 |  * si_lock held and interrupts disabled. | 
 |  */ | 
 | static enum si_sm_result smi_event_handler(struct smi_info *smi_info, | 
 | 					   int time) | 
 | { | 
 | 	enum si_sm_result si_sm_result; | 
 |  | 
 |  restart: | 
 | 	/* | 
 | 	 * There used to be a loop here that waited a little while | 
 | 	 * (around 25us) before giving up.  That turned out to be | 
 | 	 * pointless, the minimum delays I was seeing were in the 300us | 
 | 	 * range, which is far too long to wait in an interrupt.  So | 
 | 	 * we just run until the state machine tells us something | 
 | 	 * happened or it needs a delay. | 
 | 	 */ | 
 | 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); | 
 | 	time = 0; | 
 | 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) | 
 | 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); | 
 |  | 
 | 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { | 
 | 		smi_inc_stat(smi_info, complete_transactions); | 
 |  | 
 | 		handle_transaction_done(smi_info); | 
 | 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); | 
 | 	} else if (si_sm_result == SI_SM_HOSED) { | 
 | 		smi_inc_stat(smi_info, hosed_count); | 
 |  | 
 | 		/* | 
 | 		 * Do the before return_hosed_msg, because that | 
 | 		 * releases the lock. | 
 | 		 */ | 
 | 		smi_info->si_state = SI_NORMAL; | 
 | 		if (smi_info->curr_msg != NULL) { | 
 | 			/* | 
 | 			 * If we were handling a user message, format | 
 | 			 * a response to send to the upper layer to | 
 | 			 * tell it about the error. | 
 | 			 */ | 
 | 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); | 
 | 		} | 
 | 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We prefer handling attn over new messages.  But don't do | 
 | 	 * this if there is not yet an upper layer to handle anything. | 
 | 	 */ | 
 | 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { | 
 | 		unsigned char msg[2]; | 
 |  | 
 | 		smi_inc_stat(smi_info, attentions); | 
 |  | 
 | 		/* | 
 | 		 * Got a attn, send down a get message flags to see | 
 | 		 * what's causing it.  It would be better to handle | 
 | 		 * this in the upper layer, but due to the way | 
 | 		 * interrupts work with the SMI, that's not really | 
 | 		 * possible. | 
 | 		 */ | 
 | 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2); | 
 | 		msg[1] = IPMI_GET_MSG_FLAGS_CMD; | 
 |  | 
 | 		smi_info->handlers->start_transaction( | 
 | 			smi_info->si_sm, msg, 2); | 
 | 		smi_info->si_state = SI_GETTING_FLAGS; | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	/* If we are currently idle, try to start the next message. */ | 
 | 	if (si_sm_result == SI_SM_IDLE) { | 
 | 		smi_inc_stat(smi_info, idles); | 
 |  | 
 | 		si_sm_result = start_next_msg(smi_info); | 
 | 		if (si_sm_result != SI_SM_IDLE) | 
 | 			goto restart; | 
 | 	} | 
 |  | 
 | 	if ((si_sm_result == SI_SM_IDLE) | 
 | 	    && (atomic_read(&smi_info->req_events))) { | 
 | 		/* | 
 | 		 * We are idle and the upper layer requested that I fetch | 
 | 		 * events, so do so. | 
 | 		 */ | 
 | 		atomic_set(&smi_info->req_events, 0); | 
 |  | 
 | 		smi_info->curr_msg = ipmi_alloc_smi_msg(); | 
 | 		if (!smi_info->curr_msg) | 
 | 			goto out; | 
 |  | 
 | 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); | 
 | 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; | 
 | 		smi_info->curr_msg->data_size = 2; | 
 |  | 
 | 		smi_info->handlers->start_transaction( | 
 | 			smi_info->si_sm, | 
 | 			smi_info->curr_msg->data, | 
 | 			smi_info->curr_msg->data_size); | 
 | 		smi_info->si_state = SI_GETTING_EVENTS; | 
 | 		goto restart; | 
 | 	} | 
 |  out: | 
 | 	return si_sm_result; | 
 | } | 
 |  | 
 | static void sender(void                *send_info, | 
 | 		   struct ipmi_smi_msg *msg, | 
 | 		   int                 priority) | 
 | { | 
 | 	struct smi_info   *smi_info = send_info; | 
 | 	enum si_sm_result result; | 
 | 	unsigned long     flags; | 
 | #ifdef DEBUG_TIMING | 
 | 	struct timeval    t; | 
 | #endif | 
 |  | 
 | 	if (atomic_read(&smi_info->stop_operation)) { | 
 | 		msg->rsp[0] = msg->data[0] | 4; | 
 | 		msg->rsp[1] = msg->data[1]; | 
 | 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED; | 
 | 		msg->rsp_size = 3; | 
 | 		deliver_recv_msg(smi_info, msg); | 
 | 		return; | 
 | 	} | 
 |  | 
 | #ifdef DEBUG_TIMING | 
 | 	do_gettimeofday(&t); | 
 | 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); | 
 | #endif | 
 |  | 
 | 	mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES); | 
 |  | 
 | 	if (smi_info->thread) | 
 | 		wake_up_process(smi_info->thread); | 
 |  | 
 | 	if (smi_info->run_to_completion) { | 
 | 		/* | 
 | 		 * If we are running to completion, then throw it in | 
 | 		 * the list and run transactions until everything is | 
 | 		 * clear.  Priority doesn't matter here. | 
 | 		 */ | 
 |  | 
 | 		/* | 
 | 		 * Run to completion means we are single-threaded, no | 
 | 		 * need for locks. | 
 | 		 */ | 
 | 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); | 
 |  | 
 | 		result = smi_event_handler(smi_info, 0); | 
 | 		while (result != SI_SM_IDLE) { | 
 | 			udelay(SI_SHORT_TIMEOUT_USEC); | 
 | 			result = smi_event_handler(smi_info, | 
 | 						   SI_SHORT_TIMEOUT_USEC); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&smi_info->msg_lock, flags); | 
 | 	if (priority > 0) | 
 | 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); | 
 | 	else | 
 | 		list_add_tail(&msg->link, &smi_info->xmit_msgs); | 
 | 	spin_unlock_irqrestore(&smi_info->msg_lock, flags); | 
 |  | 
 | 	spin_lock_irqsave(&smi_info->si_lock, flags); | 
 | 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) | 
 | 		start_next_msg(smi_info); | 
 | 	spin_unlock_irqrestore(&smi_info->si_lock, flags); | 
 | } | 
 |  | 
 | static void set_run_to_completion(void *send_info, int i_run_to_completion) | 
 | { | 
 | 	struct smi_info   *smi_info = send_info; | 
 | 	enum si_sm_result result; | 
 |  | 
 | 	smi_info->run_to_completion = i_run_to_completion; | 
 | 	if (i_run_to_completion) { | 
 | 		result = smi_event_handler(smi_info, 0); | 
 | 		while (result != SI_SM_IDLE) { | 
 | 			udelay(SI_SHORT_TIMEOUT_USEC); | 
 | 			result = smi_event_handler(smi_info, | 
 | 						   SI_SHORT_TIMEOUT_USEC); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Use -1 in the nsec value of the busy waiting timespec to tell that | 
 |  * we are spinning in kipmid looking for something and not delaying | 
 |  * between checks | 
 |  */ | 
 | static inline void ipmi_si_set_not_busy(struct timespec *ts) | 
 | { | 
 | 	ts->tv_nsec = -1; | 
 | } | 
 | static inline int ipmi_si_is_busy(struct timespec *ts) | 
 | { | 
 | 	return ts->tv_nsec != -1; | 
 | } | 
 |  | 
 | static int ipmi_thread_busy_wait(enum si_sm_result smi_result, | 
 | 				 const struct smi_info *smi_info, | 
 | 				 struct timespec *busy_until) | 
 | { | 
 | 	unsigned int max_busy_us = 0; | 
 |  | 
 | 	if (smi_info->intf_num < num_max_busy_us) | 
 | 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; | 
 | 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) | 
 | 		ipmi_si_set_not_busy(busy_until); | 
 | 	else if (!ipmi_si_is_busy(busy_until)) { | 
 | 		getnstimeofday(busy_until); | 
 | 		timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); | 
 | 	} else { | 
 | 		struct timespec now; | 
 | 		getnstimeofday(&now); | 
 | 		if (unlikely(timespec_compare(&now, busy_until) > 0)) { | 
 | 			ipmi_si_set_not_busy(busy_until); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * A busy-waiting loop for speeding up IPMI operation. | 
 |  * | 
 |  * Lousy hardware makes this hard.  This is only enabled for systems | 
 |  * that are not BT and do not have interrupts.  It starts spinning | 
 |  * when an operation is complete or until max_busy tells it to stop | 
 |  * (if that is enabled).  See the paragraph on kimid_max_busy_us in | 
 |  * Documentation/IPMI.txt for details. | 
 |  */ | 
 | static int ipmi_thread(void *data) | 
 | { | 
 | 	struct smi_info *smi_info = data; | 
 | 	unsigned long flags; | 
 | 	enum si_sm_result smi_result; | 
 | 	struct timespec busy_until; | 
 |  | 
 | 	ipmi_si_set_not_busy(&busy_until); | 
 | 	set_user_nice(current, 19); | 
 | 	while (!kthread_should_stop()) { | 
 | 		int busy_wait; | 
 |  | 
 | 		spin_lock_irqsave(&(smi_info->si_lock), flags); | 
 | 		smi_result = smi_event_handler(smi_info, 0); | 
 | 		spin_unlock_irqrestore(&(smi_info->si_lock), flags); | 
 | 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, | 
 | 						  &busy_until); | 
 | 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY) | 
 | 			; /* do nothing */ | 
 | 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) | 
 | 			schedule(); | 
 | 		else if (smi_result == SI_SM_IDLE) | 
 | 			schedule_timeout_interruptible(100); | 
 | 		else | 
 | 			schedule_timeout_interruptible(1); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void poll(void *send_info) | 
 | { | 
 | 	struct smi_info *smi_info = send_info; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Make sure there is some delay in the poll loop so we can | 
 | 	 * drive time forward and timeout things. | 
 | 	 */ | 
 | 	udelay(10); | 
 | 	spin_lock_irqsave(&smi_info->si_lock, flags); | 
 | 	smi_event_handler(smi_info, 10); | 
 | 	spin_unlock_irqrestore(&smi_info->si_lock, flags); | 
 | } | 
 |  | 
 | static void request_events(void *send_info) | 
 | { | 
 | 	struct smi_info *smi_info = send_info; | 
 |  | 
 | 	if (atomic_read(&smi_info->stop_operation) || | 
 | 				!smi_info->has_event_buffer) | 
 | 		return; | 
 |  | 
 | 	atomic_set(&smi_info->req_events, 1); | 
 | } | 
 |  | 
 | static int initialized; | 
 |  | 
 | static void smi_timeout(unsigned long data) | 
 | { | 
 | 	struct smi_info   *smi_info = (struct smi_info *) data; | 
 | 	enum si_sm_result smi_result; | 
 | 	unsigned long     flags; | 
 | 	unsigned long     jiffies_now; | 
 | 	long              time_diff; | 
 | 	long		  timeout; | 
 | #ifdef DEBUG_TIMING | 
 | 	struct timeval    t; | 
 | #endif | 
 |  | 
 | 	spin_lock_irqsave(&(smi_info->si_lock), flags); | 
 | #ifdef DEBUG_TIMING | 
 | 	do_gettimeofday(&t); | 
 | 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); | 
 | #endif | 
 | 	jiffies_now = jiffies; | 
 | 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) | 
 | 		     * SI_USEC_PER_JIFFY); | 
 | 	smi_result = smi_event_handler(smi_info, time_diff); | 
 |  | 
 | 	spin_unlock_irqrestore(&(smi_info->si_lock), flags); | 
 |  | 
 | 	smi_info->last_timeout_jiffies = jiffies_now; | 
 |  | 
 | 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { | 
 | 		/* Running with interrupts, only do long timeouts. */ | 
 | 		timeout = jiffies + SI_TIMEOUT_JIFFIES; | 
 | 		smi_inc_stat(smi_info, long_timeouts); | 
 | 		goto do_mod_timer; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the state machine asks for a short delay, then shorten | 
 | 	 * the timer timeout. | 
 | 	 */ | 
 | 	if (smi_result == SI_SM_CALL_WITH_DELAY) { | 
 | 		smi_inc_stat(smi_info, short_timeouts); | 
 | 		timeout = jiffies + 1; | 
 | 	} else { | 
 | 		smi_inc_stat(smi_info, long_timeouts); | 
 | 		timeout = jiffies + SI_TIMEOUT_JIFFIES; | 
 | 	} | 
 |  | 
 |  do_mod_timer: | 
 | 	if (smi_result != SI_SM_IDLE) | 
 | 		mod_timer(&(smi_info->si_timer), timeout); | 
 | } | 
 |  | 
 | static irqreturn_t si_irq_handler(int irq, void *data) | 
 | { | 
 | 	struct smi_info *smi_info = data; | 
 | 	unsigned long   flags; | 
 | #ifdef DEBUG_TIMING | 
 | 	struct timeval  t; | 
 | #endif | 
 |  | 
 | 	spin_lock_irqsave(&(smi_info->si_lock), flags); | 
 |  | 
 | 	smi_inc_stat(smi_info, interrupts); | 
 |  | 
 | #ifdef DEBUG_TIMING | 
 | 	do_gettimeofday(&t); | 
 | 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); | 
 | #endif | 
 | 	smi_event_handler(smi_info, 0); | 
 | 	spin_unlock_irqrestore(&(smi_info->si_lock), flags); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static irqreturn_t si_bt_irq_handler(int irq, void *data) | 
 | { | 
 | 	struct smi_info *smi_info = data; | 
 | 	/* We need to clear the IRQ flag for the BT interface. */ | 
 | 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, | 
 | 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT | 
 | 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); | 
 | 	return si_irq_handler(irq, data); | 
 | } | 
 |  | 
 | static int smi_start_processing(void       *send_info, | 
 | 				ipmi_smi_t intf) | 
 | { | 
 | 	struct smi_info *new_smi = send_info; | 
 | 	int             enable = 0; | 
 |  | 
 | 	new_smi->intf = intf; | 
 |  | 
 | 	/* Try to claim any interrupts. */ | 
 | 	if (new_smi->irq_setup) | 
 | 		new_smi->irq_setup(new_smi); | 
 |  | 
 | 	/* Set up the timer that drives the interface. */ | 
 | 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); | 
 | 	new_smi->last_timeout_jiffies = jiffies; | 
 | 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); | 
 |  | 
 | 	/* | 
 | 	 * Check if the user forcefully enabled the daemon. | 
 | 	 */ | 
 | 	if (new_smi->intf_num < num_force_kipmid) | 
 | 		enable = force_kipmid[new_smi->intf_num]; | 
 | 	/* | 
 | 	 * The BT interface is efficient enough to not need a thread, | 
 | 	 * and there is no need for a thread if we have interrupts. | 
 | 	 */ | 
 | 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) | 
 | 		enable = 1; | 
 |  | 
 | 	if (enable) { | 
 | 		new_smi->thread = kthread_run(ipmi_thread, new_smi, | 
 | 					      "kipmi%d", new_smi->intf_num); | 
 | 		if (IS_ERR(new_smi->thread)) { | 
 | 			dev_notice(new_smi->dev, "Could not start" | 
 | 				   " kernel thread due to error %ld, only using" | 
 | 				   " timers to drive the interface\n", | 
 | 				   PTR_ERR(new_smi->thread)); | 
 | 			new_smi->thread = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void set_maintenance_mode(void *send_info, int enable) | 
 | { | 
 | 	struct smi_info   *smi_info = send_info; | 
 |  | 
 | 	if (!enable) | 
 | 		atomic_set(&smi_info->req_events, 0); | 
 | } | 
 |  | 
 | static struct ipmi_smi_handlers handlers = { | 
 | 	.owner                  = THIS_MODULE, | 
 | 	.start_processing       = smi_start_processing, | 
 | 	.sender			= sender, | 
 | 	.request_events		= request_events, | 
 | 	.set_maintenance_mode   = set_maintenance_mode, | 
 | 	.set_run_to_completion  = set_run_to_completion, | 
 | 	.poll			= poll, | 
 | }; | 
 |  | 
 | /* | 
 |  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, | 
 |  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS. | 
 |  */ | 
 |  | 
 | static LIST_HEAD(smi_infos); | 
 | static DEFINE_MUTEX(smi_infos_lock); | 
 | static int smi_num; /* Used to sequence the SMIs */ | 
 |  | 
 | #define DEFAULT_REGSPACING	1 | 
 | #define DEFAULT_REGSIZE		1 | 
 |  | 
 | static int           si_trydefaults = 1; | 
 | static char          *si_type[SI_MAX_PARMS]; | 
 | #define MAX_SI_TYPE_STR 30 | 
 | static char          si_type_str[MAX_SI_TYPE_STR]; | 
 | static unsigned long addrs[SI_MAX_PARMS]; | 
 | static unsigned int num_addrs; | 
 | static unsigned int  ports[SI_MAX_PARMS]; | 
 | static unsigned int num_ports; | 
 | static int           irqs[SI_MAX_PARMS]; | 
 | static unsigned int num_irqs; | 
 | static int           regspacings[SI_MAX_PARMS]; | 
 | static unsigned int num_regspacings; | 
 | static int           regsizes[SI_MAX_PARMS]; | 
 | static unsigned int num_regsizes; | 
 | static int           regshifts[SI_MAX_PARMS]; | 
 | static unsigned int num_regshifts; | 
 | static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ | 
 | static unsigned int num_slave_addrs; | 
 |  | 
 | #define IPMI_IO_ADDR_SPACE  0 | 
 | #define IPMI_MEM_ADDR_SPACE 1 | 
 | static char *addr_space_to_str[] = { "i/o", "mem" }; | 
 |  | 
 | static int hotmod_handler(const char *val, struct kernel_param *kp); | 
 |  | 
 | module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); | 
 | MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See" | 
 | 		 " Documentation/IPMI.txt in the kernel sources for the" | 
 | 		 " gory details."); | 
 |  | 
 | module_param_named(trydefaults, si_trydefaults, bool, 0); | 
 | MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" | 
 | 		 " default scan of the KCS and SMIC interface at the standard" | 
 | 		 " address"); | 
 | module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); | 
 | MODULE_PARM_DESC(type, "Defines the type of each interface, each" | 
 | 		 " interface separated by commas.  The types are 'kcs'," | 
 | 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set" | 
 | 		 " the first interface to kcs and the second to bt"); | 
 | module_param_array(addrs, ulong, &num_addrs, 0); | 
 | MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" | 
 | 		 " addresses separated by commas.  Only use if an interface" | 
 | 		 " is in memory.  Otherwise, set it to zero or leave" | 
 | 		 " it blank."); | 
 | module_param_array(ports, uint, &num_ports, 0); | 
 | MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" | 
 | 		 " addresses separated by commas.  Only use if an interface" | 
 | 		 " is a port.  Otherwise, set it to zero or leave" | 
 | 		 " it blank."); | 
 | module_param_array(irqs, int, &num_irqs, 0); | 
 | MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" | 
 | 		 " addresses separated by commas.  Only use if an interface" | 
 | 		 " has an interrupt.  Otherwise, set it to zero or leave" | 
 | 		 " it blank."); | 
 | module_param_array(regspacings, int, &num_regspacings, 0); | 
 | MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" | 
 | 		 " and each successive register used by the interface.  For" | 
 | 		 " instance, if the start address is 0xca2 and the spacing" | 
 | 		 " is 2, then the second address is at 0xca4.  Defaults" | 
 | 		 " to 1."); | 
 | module_param_array(regsizes, int, &num_regsizes, 0); | 
 | MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." | 
 | 		 " This should generally be 1, 2, 4, or 8 for an 8-bit," | 
 | 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you" | 
 | 		 " the 8-bit IPMI register has to be read from a larger" | 
 | 		 " register."); | 
 | module_param_array(regshifts, int, &num_regshifts, 0); | 
 | MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." | 
 | 		 " IPMI register, in bits.  For instance, if the data" | 
 | 		 " is read from a 32-bit word and the IPMI data is in" | 
 | 		 " bit 8-15, then the shift would be 8"); | 
 | module_param_array(slave_addrs, int, &num_slave_addrs, 0); | 
 | MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" | 
 | 		 " the controller.  Normally this is 0x20, but can be" | 
 | 		 " overridden by this parm.  This is an array indexed" | 
 | 		 " by interface number."); | 
 | module_param_array(force_kipmid, int, &num_force_kipmid, 0); | 
 | MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" | 
 | 		 " disabled(0).  Normally the IPMI driver auto-detects" | 
 | 		 " this, but the value may be overridden by this parm."); | 
 | module_param(unload_when_empty, int, 0); | 
 | MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" | 
 | 		 " specified or found, default is 1.  Setting to 0" | 
 | 		 " is useful for hot add of devices using hotmod."); | 
 | module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); | 
 | MODULE_PARM_DESC(kipmid_max_busy_us, | 
 | 		 "Max time (in microseconds) to busy-wait for IPMI data before" | 
 | 		 " sleeping. 0 (default) means to wait forever. Set to 100-500" | 
 | 		 " if kipmid is using up a lot of CPU time."); | 
 |  | 
 |  | 
 | static void std_irq_cleanup(struct smi_info *info) | 
 | { | 
 | 	if (info->si_type == SI_BT) | 
 | 		/* Disable the interrupt in the BT interface. */ | 
 | 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); | 
 | 	free_irq(info->irq, info); | 
 | } | 
 |  | 
 | static int std_irq_setup(struct smi_info *info) | 
 | { | 
 | 	int rv; | 
 |  | 
 | 	if (!info->irq) | 
 | 		return 0; | 
 |  | 
 | 	if (info->si_type == SI_BT) { | 
 | 		rv = request_irq(info->irq, | 
 | 				 si_bt_irq_handler, | 
 | 				 IRQF_SHARED | IRQF_DISABLED, | 
 | 				 DEVICE_NAME, | 
 | 				 info); | 
 | 		if (!rv) | 
 | 			/* Enable the interrupt in the BT interface. */ | 
 | 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, | 
 | 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); | 
 | 	} else | 
 | 		rv = request_irq(info->irq, | 
 | 				 si_irq_handler, | 
 | 				 IRQF_SHARED | IRQF_DISABLED, | 
 | 				 DEVICE_NAME, | 
 | 				 info); | 
 | 	if (rv) { | 
 | 		dev_warn(info->dev, "%s unable to claim interrupt %d," | 
 | 			 " running polled\n", | 
 | 			 DEVICE_NAME, info->irq); | 
 | 		info->irq = 0; | 
 | 	} else { | 
 | 		info->irq_cleanup = std_irq_cleanup; | 
 | 		dev_info(info->dev, "Using irq %d\n", info->irq); | 
 | 	} | 
 |  | 
 | 	return rv; | 
 | } | 
 |  | 
 | static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) | 
 | { | 
 | 	unsigned int addr = io->addr_data; | 
 |  | 
 | 	return inb(addr + (offset * io->regspacing)); | 
 | } | 
 |  | 
 | static void port_outb(struct si_sm_io *io, unsigned int offset, | 
 | 		      unsigned char b) | 
 | { | 
 | 	unsigned int addr = io->addr_data; | 
 |  | 
 | 	outb(b, addr + (offset * io->regspacing)); | 
 | } | 
 |  | 
 | static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) | 
 | { | 
 | 	unsigned int addr = io->addr_data; | 
 |  | 
 | 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; | 
 | } | 
 |  | 
 | static void port_outw(struct si_sm_io *io, unsigned int offset, | 
 | 		      unsigned char b) | 
 | { | 
 | 	unsigned int addr = io->addr_data; | 
 |  | 
 | 	outw(b << io->regshift, addr + (offset * io->regspacing)); | 
 | } | 
 |  | 
 | static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) | 
 | { | 
 | 	unsigned int addr = io->addr_data; | 
 |  | 
 | 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; | 
 | } | 
 |  | 
 | static void port_outl(struct si_sm_io *io, unsigned int offset, | 
 | 		      unsigned char b) | 
 | { | 
 | 	unsigned int addr = io->addr_data; | 
 |  | 
 | 	outl(b << io->regshift, addr+(offset * io->regspacing)); | 
 | } | 
 |  | 
 | static void port_cleanup(struct smi_info *info) | 
 | { | 
 | 	unsigned int addr = info->io.addr_data; | 
 | 	int          idx; | 
 |  | 
 | 	if (addr) { | 
 | 		for (idx = 0; idx < info->io_size; idx++) | 
 | 			release_region(addr + idx * info->io.regspacing, | 
 | 				       info->io.regsize); | 
 | 	} | 
 | } | 
 |  | 
 | static int port_setup(struct smi_info *info) | 
 | { | 
 | 	unsigned int addr = info->io.addr_data; | 
 | 	int          idx; | 
 |  | 
 | 	if (!addr) | 
 | 		return -ENODEV; | 
 |  | 
 | 	info->io_cleanup = port_cleanup; | 
 |  | 
 | 	/* | 
 | 	 * Figure out the actual inb/inw/inl/etc routine to use based | 
 | 	 * upon the register size. | 
 | 	 */ | 
 | 	switch (info->io.regsize) { | 
 | 	case 1: | 
 | 		info->io.inputb = port_inb; | 
 | 		info->io.outputb = port_outb; | 
 | 		break; | 
 | 	case 2: | 
 | 		info->io.inputb = port_inw; | 
 | 		info->io.outputb = port_outw; | 
 | 		break; | 
 | 	case 4: | 
 | 		info->io.inputb = port_inl; | 
 | 		info->io.outputb = port_outl; | 
 | 		break; | 
 | 	default: | 
 | 		dev_warn(info->dev, "Invalid register size: %d\n", | 
 | 			 info->io.regsize); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Some BIOSes reserve disjoint I/O regions in their ACPI | 
 | 	 * tables.  This causes problems when trying to register the | 
 | 	 * entire I/O region.  Therefore we must register each I/O | 
 | 	 * port separately. | 
 | 	 */ | 
 | 	for (idx = 0; idx < info->io_size; idx++) { | 
 | 		if (request_region(addr + idx * info->io.regspacing, | 
 | 				   info->io.regsize, DEVICE_NAME) == NULL) { | 
 | 			/* Undo allocations */ | 
 | 			while (idx--) { | 
 | 				release_region(addr + idx * info->io.regspacing, | 
 | 					       info->io.regsize); | 
 | 			} | 
 | 			return -EIO; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) | 
 | { | 
 | 	return readb((io->addr)+(offset * io->regspacing)); | 
 | } | 
 |  | 
 | static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, | 
 | 		     unsigned char b) | 
 | { | 
 | 	writeb(b, (io->addr)+(offset * io->regspacing)); | 
 | } | 
 |  | 
 | static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) | 
 | { | 
 | 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) | 
 | 		& 0xff; | 
 | } | 
 |  | 
 | static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, | 
 | 		     unsigned char b) | 
 | { | 
 | 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); | 
 | } | 
 |  | 
 | static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) | 
 | { | 
 | 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) | 
 | 		& 0xff; | 
 | } | 
 |  | 
 | static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, | 
 | 		     unsigned char b) | 
 | { | 
 | 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); | 
 | } | 
 |  | 
 | #ifdef readq | 
 | static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) | 
 | { | 
 | 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) | 
 | 		& 0xff; | 
 | } | 
 |  | 
 | static void mem_outq(struct si_sm_io *io, unsigned int offset, | 
 | 		     unsigned char b) | 
 | { | 
 | 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); | 
 | } | 
 | #endif | 
 |  | 
 | static void mem_cleanup(struct smi_info *info) | 
 | { | 
 | 	unsigned long addr = info->io.addr_data; | 
 | 	int           mapsize; | 
 |  | 
 | 	if (info->io.addr) { | 
 | 		iounmap(info->io.addr); | 
 |  | 
 | 		mapsize = ((info->io_size * info->io.regspacing) | 
 | 			   - (info->io.regspacing - info->io.regsize)); | 
 |  | 
 | 		release_mem_region(addr, mapsize); | 
 | 	} | 
 | } | 
 |  | 
 | static int mem_setup(struct smi_info *info) | 
 | { | 
 | 	unsigned long addr = info->io.addr_data; | 
 | 	int           mapsize; | 
 |  | 
 | 	if (!addr) | 
 | 		return -ENODEV; | 
 |  | 
 | 	info->io_cleanup = mem_cleanup; | 
 |  | 
 | 	/* | 
 | 	 * Figure out the actual readb/readw/readl/etc routine to use based | 
 | 	 * upon the register size. | 
 | 	 */ | 
 | 	switch (info->io.regsize) { | 
 | 	case 1: | 
 | 		info->io.inputb = intf_mem_inb; | 
 | 		info->io.outputb = intf_mem_outb; | 
 | 		break; | 
 | 	case 2: | 
 | 		info->io.inputb = intf_mem_inw; | 
 | 		info->io.outputb = intf_mem_outw; | 
 | 		break; | 
 | 	case 4: | 
 | 		info->io.inputb = intf_mem_inl; | 
 | 		info->io.outputb = intf_mem_outl; | 
 | 		break; | 
 | #ifdef readq | 
 | 	case 8: | 
 | 		info->io.inputb = mem_inq; | 
 | 		info->io.outputb = mem_outq; | 
 | 		break; | 
 | #endif | 
 | 	default: | 
 | 		dev_warn(info->dev, "Invalid register size: %d\n", | 
 | 			 info->io.regsize); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate the total amount of memory to claim.  This is an | 
 | 	 * unusual looking calculation, but it avoids claiming any | 
 | 	 * more memory than it has to.  It will claim everything | 
 | 	 * between the first address to the end of the last full | 
 | 	 * register. | 
 | 	 */ | 
 | 	mapsize = ((info->io_size * info->io.regspacing) | 
 | 		   - (info->io.regspacing - info->io.regsize)); | 
 |  | 
 | 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) | 
 | 		return -EIO; | 
 |  | 
 | 	info->io.addr = ioremap(addr, mapsize); | 
 | 	if (info->io.addr == NULL) { | 
 | 		release_mem_region(addr, mapsize); | 
 | 		return -EIO; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Parms come in as <op1>[:op2[:op3...]].  ops are: | 
 |  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] | 
 |  * Options are: | 
 |  *   rsp=<regspacing> | 
 |  *   rsi=<regsize> | 
 |  *   rsh=<regshift> | 
 |  *   irq=<irq> | 
 |  *   ipmb=<ipmb addr> | 
 |  */ | 
 | enum hotmod_op { HM_ADD, HM_REMOVE }; | 
 | struct hotmod_vals { | 
 | 	char *name; | 
 | 	int  val; | 
 | }; | 
 | static struct hotmod_vals hotmod_ops[] = { | 
 | 	{ "add",	HM_ADD }, | 
 | 	{ "remove",	HM_REMOVE }, | 
 | 	{ NULL } | 
 | }; | 
 | static struct hotmod_vals hotmod_si[] = { | 
 | 	{ "kcs",	SI_KCS }, | 
 | 	{ "smic",	SI_SMIC }, | 
 | 	{ "bt",		SI_BT }, | 
 | 	{ NULL } | 
 | }; | 
 | static struct hotmod_vals hotmod_as[] = { | 
 | 	{ "mem",	IPMI_MEM_ADDR_SPACE }, | 
 | 	{ "i/o",	IPMI_IO_ADDR_SPACE }, | 
 | 	{ NULL } | 
 | }; | 
 |  | 
 | static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) | 
 | { | 
 | 	char *s; | 
 | 	int  i; | 
 |  | 
 | 	s = strchr(*curr, ','); | 
 | 	if (!s) { | 
 | 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	*s = '\0'; | 
 | 	s++; | 
 | 	for (i = 0; hotmod_ops[i].name; i++) { | 
 | 		if (strcmp(*curr, v[i].name) == 0) { | 
 | 			*val = v[i].val; | 
 | 			*curr = s; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int check_hotmod_int_op(const char *curr, const char *option, | 
 | 			       const char *name, int *val) | 
 | { | 
 | 	char *n; | 
 |  | 
 | 	if (strcmp(curr, name) == 0) { | 
 | 		if (!option) { | 
 | 			printk(KERN_WARNING PFX | 
 | 			       "No option given for '%s'\n", | 
 | 			       curr); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		*val = simple_strtoul(option, &n, 0); | 
 | 		if ((*n != '\0') || (*option == '\0')) { | 
 | 			printk(KERN_WARNING PFX | 
 | 			       "Bad option given for '%s'\n", | 
 | 			       curr); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct smi_info *smi_info_alloc(void) | 
 | { | 
 | 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); | 
 |  | 
 | 	if (info) { | 
 | 		spin_lock_init(&info->si_lock); | 
 | 		spin_lock_init(&info->msg_lock); | 
 | 	} | 
 | 	return info; | 
 | } | 
 |  | 
 | static int hotmod_handler(const char *val, struct kernel_param *kp) | 
 | { | 
 | 	char *str = kstrdup(val, GFP_KERNEL); | 
 | 	int  rv; | 
 | 	char *next, *curr, *s, *n, *o; | 
 | 	enum hotmod_op op; | 
 | 	enum si_type si_type; | 
 | 	int  addr_space; | 
 | 	unsigned long addr; | 
 | 	int regspacing; | 
 | 	int regsize; | 
 | 	int regshift; | 
 | 	int irq; | 
 | 	int ipmb; | 
 | 	int ival; | 
 | 	int len; | 
 | 	struct smi_info *info; | 
 |  | 
 | 	if (!str) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Kill any trailing spaces, as we can get a "\n" from echo. */ | 
 | 	len = strlen(str); | 
 | 	ival = len - 1; | 
 | 	while ((ival >= 0) && isspace(str[ival])) { | 
 | 		str[ival] = '\0'; | 
 | 		ival--; | 
 | 	} | 
 |  | 
 | 	for (curr = str; curr; curr = next) { | 
 | 		regspacing = 1; | 
 | 		regsize = 1; | 
 | 		regshift = 0; | 
 | 		irq = 0; | 
 | 		ipmb = 0; /* Choose the default if not specified */ | 
 |  | 
 | 		next = strchr(curr, ':'); | 
 | 		if (next) { | 
 | 			*next = '\0'; | 
 | 			next++; | 
 | 		} | 
 |  | 
 | 		rv = parse_str(hotmod_ops, &ival, "operation", &curr); | 
 | 		if (rv) | 
 | 			break; | 
 | 		op = ival; | 
 |  | 
 | 		rv = parse_str(hotmod_si, &ival, "interface type", &curr); | 
 | 		if (rv) | 
 | 			break; | 
 | 		si_type = ival; | 
 |  | 
 | 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr); | 
 | 		if (rv) | 
 | 			break; | 
 |  | 
 | 		s = strchr(curr, ','); | 
 | 		if (s) { | 
 | 			*s = '\0'; | 
 | 			s++; | 
 | 		} | 
 | 		addr = simple_strtoul(curr, &n, 0); | 
 | 		if ((*n != '\0') || (*curr == '\0')) { | 
 | 			printk(KERN_WARNING PFX "Invalid hotmod address" | 
 | 			       " '%s'\n", curr); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		while (s) { | 
 | 			curr = s; | 
 | 			s = strchr(curr, ','); | 
 | 			if (s) { | 
 | 				*s = '\0'; | 
 | 				s++; | 
 | 			} | 
 | 			o = strchr(curr, '='); | 
 | 			if (o) { | 
 | 				*o = '\0'; | 
 | 				o++; | 
 | 			} | 
 | 			rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); | 
 | 			if (rv < 0) | 
 | 				goto out; | 
 | 			else if (rv) | 
 | 				continue; | 
 | 			rv = check_hotmod_int_op(curr, o, "rsi", ®size); | 
 | 			if (rv < 0) | 
 | 				goto out; | 
 | 			else if (rv) | 
 | 				continue; | 
 | 			rv = check_hotmod_int_op(curr, o, "rsh", ®shift); | 
 | 			if (rv < 0) | 
 | 				goto out; | 
 | 			else if (rv) | 
 | 				continue; | 
 | 			rv = check_hotmod_int_op(curr, o, "irq", &irq); | 
 | 			if (rv < 0) | 
 | 				goto out; | 
 | 			else if (rv) | 
 | 				continue; | 
 | 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); | 
 | 			if (rv < 0) | 
 | 				goto out; | 
 | 			else if (rv) | 
 | 				continue; | 
 |  | 
 | 			rv = -EINVAL; | 
 | 			printk(KERN_WARNING PFX | 
 | 			       "Invalid hotmod option '%s'\n", | 
 | 			       curr); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (op == HM_ADD) { | 
 | 			info = smi_info_alloc(); | 
 | 			if (!info) { | 
 | 				rv = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			info->addr_source = SI_HOTMOD; | 
 | 			info->si_type = si_type; | 
 | 			info->io.addr_data = addr; | 
 | 			info->io.addr_type = addr_space; | 
 | 			if (addr_space == IPMI_MEM_ADDR_SPACE) | 
 | 				info->io_setup = mem_setup; | 
 | 			else | 
 | 				info->io_setup = port_setup; | 
 |  | 
 | 			info->io.addr = NULL; | 
 | 			info->io.regspacing = regspacing; | 
 | 			if (!info->io.regspacing) | 
 | 				info->io.regspacing = DEFAULT_REGSPACING; | 
 | 			info->io.regsize = regsize; | 
 | 			if (!info->io.regsize) | 
 | 				info->io.regsize = DEFAULT_REGSPACING; | 
 | 			info->io.regshift = regshift; | 
 | 			info->irq = irq; | 
 | 			if (info->irq) | 
 | 				info->irq_setup = std_irq_setup; | 
 | 			info->slave_addr = ipmb; | 
 |  | 
 | 			if (!add_smi(info)) { | 
 | 				if (try_smi_init(info)) | 
 | 					cleanup_one_si(info); | 
 | 			} else { | 
 | 				kfree(info); | 
 | 			} | 
 | 		} else { | 
 | 			/* remove */ | 
 | 			struct smi_info *e, *tmp_e; | 
 |  | 
 | 			mutex_lock(&smi_infos_lock); | 
 | 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { | 
 | 				if (e->io.addr_type != addr_space) | 
 | 					continue; | 
 | 				if (e->si_type != si_type) | 
 | 					continue; | 
 | 				if (e->io.addr_data == addr) | 
 | 					cleanup_one_si(e); | 
 | 			} | 
 | 			mutex_unlock(&smi_infos_lock); | 
 | 		} | 
 | 	} | 
 | 	rv = len; | 
 |  out: | 
 | 	kfree(str); | 
 | 	return rv; | 
 | } | 
 |  | 
 | static void __devinit hardcode_find_bmc(void) | 
 | { | 
 | 	int             i; | 
 | 	struct smi_info *info; | 
 |  | 
 | 	for (i = 0; i < SI_MAX_PARMS; i++) { | 
 | 		if (!ports[i] && !addrs[i]) | 
 | 			continue; | 
 |  | 
 | 		info = smi_info_alloc(); | 
 | 		if (!info) | 
 | 			return; | 
 |  | 
 | 		info->addr_source = SI_HARDCODED; | 
 | 		printk(KERN_INFO PFX "probing via hardcoded address\n"); | 
 |  | 
 | 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { | 
 | 			info->si_type = SI_KCS; | 
 | 		} else if (strcmp(si_type[i], "smic") == 0) { | 
 | 			info->si_type = SI_SMIC; | 
 | 		} else if (strcmp(si_type[i], "bt") == 0) { | 
 | 			info->si_type = SI_BT; | 
 | 		} else { | 
 | 			printk(KERN_WARNING PFX "Interface type specified " | 
 | 			       "for interface %d, was invalid: %s\n", | 
 | 			       i, si_type[i]); | 
 | 			kfree(info); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (ports[i]) { | 
 | 			/* An I/O port */ | 
 | 			info->io_setup = port_setup; | 
 | 			info->io.addr_data = ports[i]; | 
 | 			info->io.addr_type = IPMI_IO_ADDR_SPACE; | 
 | 		} else if (addrs[i]) { | 
 | 			/* A memory port */ | 
 | 			info->io_setup = mem_setup; | 
 | 			info->io.addr_data = addrs[i]; | 
 | 			info->io.addr_type = IPMI_MEM_ADDR_SPACE; | 
 | 		} else { | 
 | 			printk(KERN_WARNING PFX "Interface type specified " | 
 | 			       "for interface %d, but port and address were " | 
 | 			       "not set or set to zero.\n", i); | 
 | 			kfree(info); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		info->io.addr = NULL; | 
 | 		info->io.regspacing = regspacings[i]; | 
 | 		if (!info->io.regspacing) | 
 | 			info->io.regspacing = DEFAULT_REGSPACING; | 
 | 		info->io.regsize = regsizes[i]; | 
 | 		if (!info->io.regsize) | 
 | 			info->io.regsize = DEFAULT_REGSPACING; | 
 | 		info->io.regshift = regshifts[i]; | 
 | 		info->irq = irqs[i]; | 
 | 		if (info->irq) | 
 | 			info->irq_setup = std_irq_setup; | 
 | 		info->slave_addr = slave_addrs[i]; | 
 |  | 
 | 		if (!add_smi(info)) { | 
 | 			if (try_smi_init(info)) | 
 | 				cleanup_one_si(info); | 
 | 		} else { | 
 | 			kfree(info); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 |  | 
 | #include <linux/acpi.h> | 
 |  | 
 | /* | 
 |  * Once we get an ACPI failure, we don't try any more, because we go | 
 |  * through the tables sequentially.  Once we don't find a table, there | 
 |  * are no more. | 
 |  */ | 
 | static int acpi_failure; | 
 |  | 
 | /* For GPE-type interrupts. */ | 
 | static u32 ipmi_acpi_gpe(void *context) | 
 | { | 
 | 	struct smi_info *smi_info = context; | 
 | 	unsigned long   flags; | 
 | #ifdef DEBUG_TIMING | 
 | 	struct timeval t; | 
 | #endif | 
 |  | 
 | 	spin_lock_irqsave(&(smi_info->si_lock), flags); | 
 |  | 
 | 	smi_inc_stat(smi_info, interrupts); | 
 |  | 
 | #ifdef DEBUG_TIMING | 
 | 	do_gettimeofday(&t); | 
 | 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); | 
 | #endif | 
 | 	smi_event_handler(smi_info, 0); | 
 | 	spin_unlock_irqrestore(&(smi_info->si_lock), flags); | 
 |  | 
 | 	return ACPI_INTERRUPT_HANDLED; | 
 | } | 
 |  | 
 | static void acpi_gpe_irq_cleanup(struct smi_info *info) | 
 | { | 
 | 	if (!info->irq) | 
 | 		return; | 
 |  | 
 | 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); | 
 | } | 
 |  | 
 | static int acpi_gpe_irq_setup(struct smi_info *info) | 
 | { | 
 | 	acpi_status status; | 
 |  | 
 | 	if (!info->irq) | 
 | 		return 0; | 
 |  | 
 | 	/* FIXME - is level triggered right? */ | 
 | 	status = acpi_install_gpe_handler(NULL, | 
 | 					  info->irq, | 
 | 					  ACPI_GPE_LEVEL_TRIGGERED, | 
 | 					  &ipmi_acpi_gpe, | 
 | 					  info); | 
 | 	if (status != AE_OK) { | 
 | 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d," | 
 | 			 " running polled\n", DEVICE_NAME, info->irq); | 
 | 		info->irq = 0; | 
 | 		return -EINVAL; | 
 | 	} else { | 
 | 		info->irq_cleanup = acpi_gpe_irq_cleanup; | 
 | 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Defined at | 
 |  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf | 
 |  */ | 
 | struct SPMITable { | 
 | 	s8	Signature[4]; | 
 | 	u32	Length; | 
 | 	u8	Revision; | 
 | 	u8	Checksum; | 
 | 	s8	OEMID[6]; | 
 | 	s8	OEMTableID[8]; | 
 | 	s8	OEMRevision[4]; | 
 | 	s8	CreatorID[4]; | 
 | 	s8	CreatorRevision[4]; | 
 | 	u8	InterfaceType; | 
 | 	u8	IPMIlegacy; | 
 | 	s16	SpecificationRevision; | 
 |  | 
 | 	/* | 
 | 	 * Bit 0 - SCI interrupt supported | 
 | 	 * Bit 1 - I/O APIC/SAPIC | 
 | 	 */ | 
 | 	u8	InterruptType; | 
 |  | 
 | 	/* | 
 | 	 * If bit 0 of InterruptType is set, then this is the SCI | 
 | 	 * interrupt in the GPEx_STS register. | 
 | 	 */ | 
 | 	u8	GPE; | 
 |  | 
 | 	s16	Reserved; | 
 |  | 
 | 	/* | 
 | 	 * If bit 1 of InterruptType is set, then this is the I/O | 
 | 	 * APIC/SAPIC interrupt. | 
 | 	 */ | 
 | 	u32	GlobalSystemInterrupt; | 
 |  | 
 | 	/* The actual register address. */ | 
 | 	struct acpi_generic_address addr; | 
 |  | 
 | 	u8	UID[4]; | 
 |  | 
 | 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */ | 
 | }; | 
 |  | 
 | static int __devinit try_init_spmi(struct SPMITable *spmi) | 
 | { | 
 | 	struct smi_info  *info; | 
 |  | 
 | 	if (spmi->IPMIlegacy != 1) { | 
 | 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	info = smi_info_alloc(); | 
 | 	if (!info) { | 
 | 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	info->addr_source = SI_SPMI; | 
 | 	printk(KERN_INFO PFX "probing via SPMI\n"); | 
 |  | 
 | 	/* Figure out the interface type. */ | 
 | 	switch (spmi->InterfaceType) { | 
 | 	case 1:	/* KCS */ | 
 | 		info->si_type = SI_KCS; | 
 | 		break; | 
 | 	case 2:	/* SMIC */ | 
 | 		info->si_type = SI_SMIC; | 
 | 		break; | 
 | 	case 3:	/* BT */ | 
 | 		info->si_type = SI_BT; | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", | 
 | 		       spmi->InterfaceType); | 
 | 		kfree(info); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (spmi->InterruptType & 1) { | 
 | 		/* We've got a GPE interrupt. */ | 
 | 		info->irq = spmi->GPE; | 
 | 		info->irq_setup = acpi_gpe_irq_setup; | 
 | 	} else if (spmi->InterruptType & 2) { | 
 | 		/* We've got an APIC/SAPIC interrupt. */ | 
 | 		info->irq = spmi->GlobalSystemInterrupt; | 
 | 		info->irq_setup = std_irq_setup; | 
 | 	} else { | 
 | 		/* Use the default interrupt setting. */ | 
 | 		info->irq = 0; | 
 | 		info->irq_setup = NULL; | 
 | 	} | 
 |  | 
 | 	if (spmi->addr.bit_width) { | 
 | 		/* A (hopefully) properly formed register bit width. */ | 
 | 		info->io.regspacing = spmi->addr.bit_width / 8; | 
 | 	} else { | 
 | 		info->io.regspacing = DEFAULT_REGSPACING; | 
 | 	} | 
 | 	info->io.regsize = info->io.regspacing; | 
 | 	info->io.regshift = spmi->addr.bit_offset; | 
 |  | 
 | 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { | 
 | 		info->io_setup = mem_setup; | 
 | 		info->io.addr_type = IPMI_MEM_ADDR_SPACE; | 
 | 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { | 
 | 		info->io_setup = port_setup; | 
 | 		info->io.addr_type = IPMI_IO_ADDR_SPACE; | 
 | 	} else { | 
 | 		kfree(info); | 
 | 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); | 
 | 		return -EIO; | 
 | 	} | 
 | 	info->io.addr_data = spmi->addr.address; | 
 |  | 
 | 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", | 
 | 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", | 
 | 		 info->io.addr_data, info->io.regsize, info->io.regspacing, | 
 | 		 info->irq); | 
 |  | 
 | 	if (add_smi(info)) | 
 | 		kfree(info); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __devinit spmi_find_bmc(void) | 
 | { | 
 | 	acpi_status      status; | 
 | 	struct SPMITable *spmi; | 
 | 	int              i; | 
 |  | 
 | 	if (acpi_disabled) | 
 | 		return; | 
 |  | 
 | 	if (acpi_failure) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; ; i++) { | 
 | 		status = acpi_get_table(ACPI_SIG_SPMI, i+1, | 
 | 					(struct acpi_table_header **)&spmi); | 
 | 		if (status != AE_OK) | 
 | 			return; | 
 |  | 
 | 		try_init_spmi(spmi); | 
 | 	} | 
 | } | 
 |  | 
 | static int __devinit ipmi_pnp_probe(struct pnp_dev *dev, | 
 | 				    const struct pnp_device_id *dev_id) | 
 | { | 
 | 	struct acpi_device *acpi_dev; | 
 | 	struct smi_info *info; | 
 | 	struct resource *res, *res_second; | 
 | 	acpi_handle handle; | 
 | 	acpi_status status; | 
 | 	unsigned long long tmp; | 
 |  | 
 | 	acpi_dev = pnp_acpi_device(dev); | 
 | 	if (!acpi_dev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	info = smi_info_alloc(); | 
 | 	if (!info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	info->addr_source = SI_ACPI; | 
 | 	printk(KERN_INFO PFX "probing via ACPI\n"); | 
 |  | 
 | 	handle = acpi_dev->handle; | 
 |  | 
 | 	/* _IFT tells us the interface type: KCS, BT, etc */ | 
 | 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); | 
 | 	if (ACPI_FAILURE(status)) | 
 | 		goto err_free; | 
 |  | 
 | 	switch (tmp) { | 
 | 	case 1: | 
 | 		info->si_type = SI_KCS; | 
 | 		break; | 
 | 	case 2: | 
 | 		info->si_type = SI_SMIC; | 
 | 		break; | 
 | 	case 3: | 
 | 		info->si_type = SI_BT; | 
 | 		break; | 
 | 	default: | 
 | 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); | 
 | 		goto err_free; | 
 | 	} | 
 |  | 
 | 	res = pnp_get_resource(dev, IORESOURCE_IO, 0); | 
 | 	if (res) { | 
 | 		info->io_setup = port_setup; | 
 | 		info->io.addr_type = IPMI_IO_ADDR_SPACE; | 
 | 	} else { | 
 | 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0); | 
 | 		if (res) { | 
 | 			info->io_setup = mem_setup; | 
 | 			info->io.addr_type = IPMI_MEM_ADDR_SPACE; | 
 | 		} | 
 | 	} | 
 | 	if (!res) { | 
 | 		dev_err(&dev->dev, "no I/O or memory address\n"); | 
 | 		goto err_free; | 
 | 	} | 
 | 	info->io.addr_data = res->start; | 
 |  | 
 | 	info->io.regspacing = DEFAULT_REGSPACING; | 
 | 	res_second = pnp_get_resource(dev, | 
 | 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? | 
 | 					IORESOURCE_IO : IORESOURCE_MEM, | 
 | 			       1); | 
 | 	if (res_second) { | 
 | 		if (res_second->start > info->io.addr_data) | 
 | 			info->io.regspacing = res_second->start - info->io.addr_data; | 
 | 	} | 
 | 	info->io.regsize = DEFAULT_REGSPACING; | 
 | 	info->io.regshift = 0; | 
 |  | 
 | 	/* If _GPE exists, use it; otherwise use standard interrupts */ | 
 | 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); | 
 | 	if (ACPI_SUCCESS(status)) { | 
 | 		info->irq = tmp; | 
 | 		info->irq_setup = acpi_gpe_irq_setup; | 
 | 	} else if (pnp_irq_valid(dev, 0)) { | 
 | 		info->irq = pnp_irq(dev, 0); | 
 | 		info->irq_setup = std_irq_setup; | 
 | 	} | 
 |  | 
 | 	info->dev = &dev->dev; | 
 | 	pnp_set_drvdata(dev, info); | 
 |  | 
 | 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", | 
 | 		 res, info->io.regsize, info->io.regspacing, | 
 | 		 info->irq); | 
 |  | 
 | 	if (add_smi(info)) | 
 | 		goto err_free; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_free: | 
 | 	kfree(info); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static void __devexit ipmi_pnp_remove(struct pnp_dev *dev) | 
 | { | 
 | 	struct smi_info *info = pnp_get_drvdata(dev); | 
 |  | 
 | 	cleanup_one_si(info); | 
 | } | 
 |  | 
 | static const struct pnp_device_id pnp_dev_table[] = { | 
 | 	{"IPI0001", 0}, | 
 | 	{"", 0}, | 
 | }; | 
 |  | 
 | static struct pnp_driver ipmi_pnp_driver = { | 
 | 	.name		= DEVICE_NAME, | 
 | 	.probe		= ipmi_pnp_probe, | 
 | 	.remove		= __devexit_p(ipmi_pnp_remove), | 
 | 	.id_table	= pnp_dev_table, | 
 | }; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_DMI | 
 | struct dmi_ipmi_data { | 
 | 	u8   		type; | 
 | 	u8   		addr_space; | 
 | 	unsigned long	base_addr; | 
 | 	u8   		irq; | 
 | 	u8              offset; | 
 | 	u8              slave_addr; | 
 | }; | 
 |  | 
 | static int __devinit decode_dmi(const struct dmi_header *dm, | 
 | 				struct dmi_ipmi_data *dmi) | 
 | { | 
 | 	const u8	*data = (const u8 *)dm; | 
 | 	unsigned long  	base_addr; | 
 | 	u8		reg_spacing; | 
 | 	u8              len = dm->length; | 
 |  | 
 | 	dmi->type = data[4]; | 
 |  | 
 | 	memcpy(&base_addr, data+8, sizeof(unsigned long)); | 
 | 	if (len >= 0x11) { | 
 | 		if (base_addr & 1) { | 
 | 			/* I/O */ | 
 | 			base_addr &= 0xFFFE; | 
 | 			dmi->addr_space = IPMI_IO_ADDR_SPACE; | 
 | 		} else | 
 | 			/* Memory */ | 
 | 			dmi->addr_space = IPMI_MEM_ADDR_SPACE; | 
 |  | 
 | 		/* If bit 4 of byte 0x10 is set, then the lsb for the address | 
 | 		   is odd. */ | 
 | 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); | 
 |  | 
 | 		dmi->irq = data[0x11]; | 
 |  | 
 | 		/* The top two bits of byte 0x10 hold the register spacing. */ | 
 | 		reg_spacing = (data[0x10] & 0xC0) >> 6; | 
 | 		switch (reg_spacing) { | 
 | 		case 0x00: /* Byte boundaries */ | 
 | 		    dmi->offset = 1; | 
 | 		    break; | 
 | 		case 0x01: /* 32-bit boundaries */ | 
 | 		    dmi->offset = 4; | 
 | 		    break; | 
 | 		case 0x02: /* 16-byte boundaries */ | 
 | 		    dmi->offset = 16; | 
 | 		    break; | 
 | 		default: | 
 | 		    /* Some other interface, just ignore it. */ | 
 | 		    return -EIO; | 
 | 		} | 
 | 	} else { | 
 | 		/* Old DMI spec. */ | 
 | 		/* | 
 | 		 * Note that technically, the lower bit of the base | 
 | 		 * address should be 1 if the address is I/O and 0 if | 
 | 		 * the address is in memory.  So many systems get that | 
 | 		 * wrong (and all that I have seen are I/O) so we just | 
 | 		 * ignore that bit and assume I/O.  Systems that use | 
 | 		 * memory should use the newer spec, anyway. | 
 | 		 */ | 
 | 		dmi->base_addr = base_addr & 0xfffe; | 
 | 		dmi->addr_space = IPMI_IO_ADDR_SPACE; | 
 | 		dmi->offset = 1; | 
 | 	} | 
 |  | 
 | 	dmi->slave_addr = data[6]; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data) | 
 | { | 
 | 	struct smi_info *info; | 
 |  | 
 | 	info = smi_info_alloc(); | 
 | 	if (!info) { | 
 | 		printk(KERN_ERR PFX "Could not allocate SI data\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	info->addr_source = SI_SMBIOS; | 
 | 	printk(KERN_INFO PFX "probing via SMBIOS\n"); | 
 |  | 
 | 	switch (ipmi_data->type) { | 
 | 	case 0x01: /* KCS */ | 
 | 		info->si_type = SI_KCS; | 
 | 		break; | 
 | 	case 0x02: /* SMIC */ | 
 | 		info->si_type = SI_SMIC; | 
 | 		break; | 
 | 	case 0x03: /* BT */ | 
 | 		info->si_type = SI_BT; | 
 | 		break; | 
 | 	default: | 
 | 		kfree(info); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	switch (ipmi_data->addr_space) { | 
 | 	case IPMI_MEM_ADDR_SPACE: | 
 | 		info->io_setup = mem_setup; | 
 | 		info->io.addr_type = IPMI_MEM_ADDR_SPACE; | 
 | 		break; | 
 |  | 
 | 	case IPMI_IO_ADDR_SPACE: | 
 | 		info->io_setup = port_setup; | 
 | 		info->io.addr_type = IPMI_IO_ADDR_SPACE; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		kfree(info); | 
 | 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", | 
 | 		       ipmi_data->addr_space); | 
 | 		return; | 
 | 	} | 
 | 	info->io.addr_data = ipmi_data->base_addr; | 
 |  | 
 | 	info->io.regspacing = ipmi_data->offset; | 
 | 	if (!info->io.regspacing) | 
 | 		info->io.regspacing = DEFAULT_REGSPACING; | 
 | 	info->io.regsize = DEFAULT_REGSPACING; | 
 | 	info->io.regshift = 0; | 
 |  | 
 | 	info->slave_addr = ipmi_data->slave_addr; | 
 |  | 
 | 	info->irq = ipmi_data->irq; | 
 | 	if (info->irq) | 
 | 		info->irq_setup = std_irq_setup; | 
 |  | 
 | 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", | 
 | 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", | 
 | 		 info->io.addr_data, info->io.regsize, info->io.regspacing, | 
 | 		 info->irq); | 
 |  | 
 | 	if (add_smi(info)) | 
 | 		kfree(info); | 
 | } | 
 |  | 
 | static void __devinit dmi_find_bmc(void) | 
 | { | 
 | 	const struct dmi_device *dev = NULL; | 
 | 	struct dmi_ipmi_data data; | 
 | 	int                  rv; | 
 |  | 
 | 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { | 
 | 		memset(&data, 0, sizeof(data)); | 
 | 		rv = decode_dmi((const struct dmi_header *) dev->device_data, | 
 | 				&data); | 
 | 		if (!rv) | 
 | 			try_init_dmi(&data); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_DMI */ | 
 |  | 
 | #ifdef CONFIG_PCI | 
 |  | 
 | #define PCI_ERMC_CLASSCODE		0x0C0700 | 
 | #define PCI_ERMC_CLASSCODE_MASK		0xffffff00 | 
 | #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff | 
 | #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00 | 
 | #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01 | 
 | #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02 | 
 |  | 
 | #define PCI_HP_VENDOR_ID    0x103C | 
 | #define PCI_MMC_DEVICE_ID   0x121A | 
 | #define PCI_MMC_ADDR_CW     0x10 | 
 |  | 
 | static void ipmi_pci_cleanup(struct smi_info *info) | 
 | { | 
 | 	struct pci_dev *pdev = info->addr_source_data; | 
 |  | 
 | 	pci_disable_device(pdev); | 
 | } | 
 |  | 
 | static int __devinit ipmi_pci_probe(struct pci_dev *pdev, | 
 | 				    const struct pci_device_id *ent) | 
 | { | 
 | 	int rv; | 
 | 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; | 
 | 	struct smi_info *info; | 
 |  | 
 | 	info = smi_info_alloc(); | 
 | 	if (!info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	info->addr_source = SI_PCI; | 
 | 	dev_info(&pdev->dev, "probing via PCI"); | 
 |  | 
 | 	switch (class_type) { | 
 | 	case PCI_ERMC_CLASSCODE_TYPE_SMIC: | 
 | 		info->si_type = SI_SMIC; | 
 | 		break; | 
 |  | 
 | 	case PCI_ERMC_CLASSCODE_TYPE_KCS: | 
 | 		info->si_type = SI_KCS; | 
 | 		break; | 
 |  | 
 | 	case PCI_ERMC_CLASSCODE_TYPE_BT: | 
 | 		info->si_type = SI_BT; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		kfree(info); | 
 | 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	rv = pci_enable_device(pdev); | 
 | 	if (rv) { | 
 | 		dev_err(&pdev->dev, "couldn't enable PCI device\n"); | 
 | 		kfree(info); | 
 | 		return rv; | 
 | 	} | 
 |  | 
 | 	info->addr_source_cleanup = ipmi_pci_cleanup; | 
 | 	info->addr_source_data = pdev; | 
 |  | 
 | 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { | 
 | 		info->io_setup = port_setup; | 
 | 		info->io.addr_type = IPMI_IO_ADDR_SPACE; | 
 | 	} else { | 
 | 		info->io_setup = mem_setup; | 
 | 		info->io.addr_type = IPMI_MEM_ADDR_SPACE; | 
 | 	} | 
 | 	info->io.addr_data = pci_resource_start(pdev, 0); | 
 |  | 
 | 	info->io.regspacing = DEFAULT_REGSPACING; | 
 | 	info->io.regsize = DEFAULT_REGSPACING; | 
 | 	info->io.regshift = 0; | 
 |  | 
 | 	info->irq = pdev->irq; | 
 | 	if (info->irq) | 
 | 		info->irq_setup = std_irq_setup; | 
 |  | 
 | 	info->dev = &pdev->dev; | 
 | 	pci_set_drvdata(pdev, info); | 
 |  | 
 | 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", | 
 | 		&pdev->resource[0], info->io.regsize, info->io.regspacing, | 
 | 		info->irq); | 
 |  | 
 | 	if (add_smi(info)) | 
 | 		kfree(info); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __devexit ipmi_pci_remove(struct pci_dev *pdev) | 
 | { | 
 | 	struct smi_info *info = pci_get_drvdata(pdev); | 
 | 	cleanup_one_si(info); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 | static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ipmi_pci_resume(struct pci_dev *pdev) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static struct pci_device_id ipmi_pci_devices[] = { | 
 | 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, | 
 | 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, | 
 | 	{ 0, } | 
 | }; | 
 | MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); | 
 |  | 
 | static struct pci_driver ipmi_pci_driver = { | 
 | 	.name =         DEVICE_NAME, | 
 | 	.id_table =     ipmi_pci_devices, | 
 | 	.probe =        ipmi_pci_probe, | 
 | 	.remove =       __devexit_p(ipmi_pci_remove), | 
 | #ifdef CONFIG_PM | 
 | 	.suspend =      ipmi_pci_suspend, | 
 | 	.resume =       ipmi_pci_resume, | 
 | #endif | 
 | }; | 
 | #endif /* CONFIG_PCI */ | 
 |  | 
 |  | 
 | #ifdef CONFIG_PPC_OF | 
 | static int __devinit ipmi_of_probe(struct platform_device *dev, | 
 | 			 const struct of_device_id *match) | 
 | { | 
 | 	struct smi_info *info; | 
 | 	struct resource resource; | 
 | 	const __be32 *regsize, *regspacing, *regshift; | 
 | 	struct device_node *np = dev->dev.of_node; | 
 | 	int ret; | 
 | 	int proplen; | 
 |  | 
 | 	dev_info(&dev->dev, "probing via device tree\n"); | 
 |  | 
 | 	ret = of_address_to_resource(np, 0, &resource); | 
 | 	if (ret) { | 
 | 		dev_warn(&dev->dev, PFX "invalid address from OF\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	regsize = of_get_property(np, "reg-size", &proplen); | 
 | 	if (regsize && proplen != 4) { | 
 | 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	regspacing = of_get_property(np, "reg-spacing", &proplen); | 
 | 	if (regspacing && proplen != 4) { | 
 | 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	regshift = of_get_property(np, "reg-shift", &proplen); | 
 | 	if (regshift && proplen != 4) { | 
 | 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	info = smi_info_alloc(); | 
 |  | 
 | 	if (!info) { | 
 | 		dev_err(&dev->dev, | 
 | 			"could not allocate memory for OF probe\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	info->si_type		= (enum si_type) match->data; | 
 | 	info->addr_source	= SI_DEVICETREE; | 
 | 	info->irq_setup		= std_irq_setup; | 
 |  | 
 | 	if (resource.flags & IORESOURCE_IO) { | 
 | 		info->io_setup		= port_setup; | 
 | 		info->io.addr_type	= IPMI_IO_ADDR_SPACE; | 
 | 	} else { | 
 | 		info->io_setup		= mem_setup; | 
 | 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE; | 
 | 	} | 
 |  | 
 | 	info->io.addr_data	= resource.start; | 
 |  | 
 | 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; | 
 | 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; | 
 | 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0; | 
 |  | 
 | 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0); | 
 | 	info->dev		= &dev->dev; | 
 |  | 
 | 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", | 
 | 		info->io.addr_data, info->io.regsize, info->io.regspacing, | 
 | 		info->irq); | 
 |  | 
 | 	dev_set_drvdata(&dev->dev, info); | 
 |  | 
 | 	if (add_smi(info)) { | 
 | 		kfree(info); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __devexit ipmi_of_remove(struct platform_device *dev) | 
 | { | 
 | 	cleanup_one_si(dev_get_drvdata(&dev->dev)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct of_device_id ipmi_match[] = | 
 | { | 
 | 	{ .type = "ipmi", .compatible = "ipmi-kcs", | 
 | 	  .data = (void *)(unsigned long) SI_KCS }, | 
 | 	{ .type = "ipmi", .compatible = "ipmi-smic", | 
 | 	  .data = (void *)(unsigned long) SI_SMIC }, | 
 | 	{ .type = "ipmi", .compatible = "ipmi-bt", | 
 | 	  .data = (void *)(unsigned long) SI_BT }, | 
 | 	{}, | 
 | }; | 
 |  | 
 | static struct of_platform_driver ipmi_of_platform_driver = { | 
 | 	.driver = { | 
 | 		.name = "ipmi", | 
 | 		.owner = THIS_MODULE, | 
 | 		.of_match_table = ipmi_match, | 
 | 	}, | 
 | 	.probe		= ipmi_of_probe, | 
 | 	.remove		= __devexit_p(ipmi_of_remove), | 
 | }; | 
 | #endif /* CONFIG_PPC_OF */ | 
 |  | 
 | static int wait_for_msg_done(struct smi_info *smi_info) | 
 | { | 
 | 	enum si_sm_result     smi_result; | 
 |  | 
 | 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0); | 
 | 	for (;;) { | 
 | 		if (smi_result == SI_SM_CALL_WITH_DELAY || | 
 | 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) { | 
 | 			schedule_timeout_uninterruptible(1); | 
 | 			smi_result = smi_info->handlers->event( | 
 | 				smi_info->si_sm, 100); | 
 | 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { | 
 | 			smi_result = smi_info->handlers->event( | 
 | 				smi_info->si_sm, 0); | 
 | 		} else | 
 | 			break; | 
 | 	} | 
 | 	if (smi_result == SI_SM_HOSED) | 
 | 		/* | 
 | 		 * We couldn't get the state machine to run, so whatever's at | 
 | 		 * the port is probably not an IPMI SMI interface. | 
 | 		 */ | 
 | 		return -ENODEV; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int try_get_dev_id(struct smi_info *smi_info) | 
 | { | 
 | 	unsigned char         msg[2]; | 
 | 	unsigned char         *resp; | 
 | 	unsigned long         resp_len; | 
 | 	int                   rv = 0; | 
 |  | 
 | 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); | 
 | 	if (!resp) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Do a Get Device ID command, since it comes back with some | 
 | 	 * useful info. | 
 | 	 */ | 
 | 	msg[0] = IPMI_NETFN_APP_REQUEST << 2; | 
 | 	msg[1] = IPMI_GET_DEVICE_ID_CMD; | 
 | 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); | 
 |  | 
 | 	rv = wait_for_msg_done(smi_info); | 
 | 	if (rv) | 
 | 		goto out; | 
 |  | 
 | 	resp_len = smi_info->handlers->get_result(smi_info->si_sm, | 
 | 						  resp, IPMI_MAX_MSG_LENGTH); | 
 |  | 
 | 	/* Check and record info from the get device id, in case we need it. */ | 
 | 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); | 
 |  | 
 |  out: | 
 | 	kfree(resp); | 
 | 	return rv; | 
 | } | 
 |  | 
 | static int try_enable_event_buffer(struct smi_info *smi_info) | 
 | { | 
 | 	unsigned char         msg[3]; | 
 | 	unsigned char         *resp; | 
 | 	unsigned long         resp_len; | 
 | 	int                   rv = 0; | 
 |  | 
 | 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); | 
 | 	if (!resp) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	msg[0] = IPMI_NETFN_APP_REQUEST << 2; | 
 | 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; | 
 | 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); | 
 |  | 
 | 	rv = wait_for_msg_done(smi_info); | 
 | 	if (rv) { | 
 | 		printk(KERN_WARNING PFX "Error getting response from get" | 
 | 		       " global enables command, the event buffer is not" | 
 | 		       " enabled.\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	resp_len = smi_info->handlers->get_result(smi_info->si_sm, | 
 | 						  resp, IPMI_MAX_MSG_LENGTH); | 
 |  | 
 | 	if (resp_len < 4 || | 
 | 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || | 
 | 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   || | 
 | 			resp[2] != 0) { | 
 | 		printk(KERN_WARNING PFX "Invalid return from get global" | 
 | 		       " enables command, cannot enable the event buffer.\n"); | 
 | 		rv = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) | 
 | 		/* buffer is already enabled, nothing to do. */ | 
 | 		goto out; | 
 |  | 
 | 	msg[0] = IPMI_NETFN_APP_REQUEST << 2; | 
 | 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; | 
 | 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; | 
 | 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); | 
 |  | 
 | 	rv = wait_for_msg_done(smi_info); | 
 | 	if (rv) { | 
 | 		printk(KERN_WARNING PFX "Error getting response from set" | 
 | 		       " global, enables command, the event buffer is not" | 
 | 		       " enabled.\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	resp_len = smi_info->handlers->get_result(smi_info->si_sm, | 
 | 						  resp, IPMI_MAX_MSG_LENGTH); | 
 |  | 
 | 	if (resp_len < 3 || | 
 | 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || | 
 | 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { | 
 | 		printk(KERN_WARNING PFX "Invalid return from get global," | 
 | 		       "enables command, not enable the event buffer.\n"); | 
 | 		rv = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (resp[2] != 0) | 
 | 		/* | 
 | 		 * An error when setting the event buffer bit means | 
 | 		 * that the event buffer is not supported. | 
 | 		 */ | 
 | 		rv = -ENOENT; | 
 |  out: | 
 | 	kfree(resp); | 
 | 	return rv; | 
 | } | 
 |  | 
 | static int type_file_read_proc(char *page, char **start, off_t off, | 
 | 			       int count, int *eof, void *data) | 
 | { | 
 | 	struct smi_info *smi = data; | 
 |  | 
 | 	return sprintf(page, "%s\n", si_to_str[smi->si_type]); | 
 | } | 
 |  | 
 | static int stat_file_read_proc(char *page, char **start, off_t off, | 
 | 			       int count, int *eof, void *data) | 
 | { | 
 | 	char            *out = (char *) page; | 
 | 	struct smi_info *smi = data; | 
 |  | 
 | 	out += sprintf(out, "interrupts_enabled:    %d\n", | 
 | 		       smi->irq && !smi->interrupt_disabled); | 
 | 	out += sprintf(out, "short_timeouts:        %u\n", | 
 | 		       smi_get_stat(smi, short_timeouts)); | 
 | 	out += sprintf(out, "long_timeouts:         %u\n", | 
 | 		       smi_get_stat(smi, long_timeouts)); | 
 | 	out += sprintf(out, "idles:                 %u\n", | 
 | 		       smi_get_stat(smi, idles)); | 
 | 	out += sprintf(out, "interrupts:            %u\n", | 
 | 		       smi_get_stat(smi, interrupts)); | 
 | 	out += sprintf(out, "attentions:            %u\n", | 
 | 		       smi_get_stat(smi, attentions)); | 
 | 	out += sprintf(out, "flag_fetches:          %u\n", | 
 | 		       smi_get_stat(smi, flag_fetches)); | 
 | 	out += sprintf(out, "hosed_count:           %u\n", | 
 | 		       smi_get_stat(smi, hosed_count)); | 
 | 	out += sprintf(out, "complete_transactions: %u\n", | 
 | 		       smi_get_stat(smi, complete_transactions)); | 
 | 	out += sprintf(out, "events:                %u\n", | 
 | 		       smi_get_stat(smi, events)); | 
 | 	out += sprintf(out, "watchdog_pretimeouts:  %u\n", | 
 | 		       smi_get_stat(smi, watchdog_pretimeouts)); | 
 | 	out += sprintf(out, "incoming_messages:     %u\n", | 
 | 		       smi_get_stat(smi, incoming_messages)); | 
 |  | 
 | 	return out - page; | 
 | } | 
 |  | 
 | static int param_read_proc(char *page, char **start, off_t off, | 
 | 			   int count, int *eof, void *data) | 
 | { | 
 | 	struct smi_info *smi = data; | 
 |  | 
 | 	return sprintf(page, | 
 | 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", | 
 | 		       si_to_str[smi->si_type], | 
 | 		       addr_space_to_str[smi->io.addr_type], | 
 | 		       smi->io.addr_data, | 
 | 		       smi->io.regspacing, | 
 | 		       smi->io.regsize, | 
 | 		       smi->io.regshift, | 
 | 		       smi->irq, | 
 | 		       smi->slave_addr); | 
 | } | 
 |  | 
 | /* | 
 |  * oem_data_avail_to_receive_msg_avail | 
 |  * @info - smi_info structure with msg_flags set | 
 |  * | 
 |  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL | 
 |  * Returns 1 indicating need to re-run handle_flags(). | 
 |  */ | 
 | static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) | 
 | { | 
 | 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | | 
 | 			       RECEIVE_MSG_AVAIL); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * setup_dell_poweredge_oem_data_handler | 
 |  * @info - smi_info.device_id must be populated | 
 |  * | 
 |  * Systems that match, but have firmware version < 1.40 may assert | 
 |  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that | 
 |  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL | 
 |  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags | 
 |  * as RECEIVE_MSG_AVAIL instead. | 
 |  * | 
 |  * As Dell has no plans to release IPMI 1.5 firmware that *ever* | 
 |  * assert the OEM[012] bits, and if it did, the driver would have to | 
 |  * change to handle that properly, we don't actually check for the | 
 |  * firmware version. | 
 |  * Device ID = 0x20                BMC on PowerEdge 8G servers | 
 |  * Device Revision = 0x80 | 
 |  * Firmware Revision1 = 0x01       BMC version 1.40 | 
 |  * Firmware Revision2 = 0x40       BCD encoded | 
 |  * IPMI Version = 0x51             IPMI 1.5 | 
 |  * Manufacturer ID = A2 02 00      Dell IANA | 
 |  * | 
 |  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert | 
 |  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. | 
 |  * | 
 |  */ | 
 | #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20 | 
 | #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 | 
 | #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 | 
 | #define DELL_IANA_MFR_ID 0x0002a2 | 
 | static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) | 
 | { | 
 | 	struct ipmi_device_id *id = &smi_info->device_id; | 
 | 	if (id->manufacturer_id == DELL_IANA_MFR_ID) { | 
 | 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  && | 
 | 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && | 
 | 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { | 
 | 			smi_info->oem_data_avail_handler = | 
 | 				oem_data_avail_to_receive_msg_avail; | 
 | 		} else if (ipmi_version_major(id) < 1 || | 
 | 			   (ipmi_version_major(id) == 1 && | 
 | 			    ipmi_version_minor(id) < 5)) { | 
 | 			smi_info->oem_data_avail_handler = | 
 | 				oem_data_avail_to_receive_msg_avail; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA | 
 | static void return_hosed_msg_badsize(struct smi_info *smi_info) | 
 | { | 
 | 	struct ipmi_smi_msg *msg = smi_info->curr_msg; | 
 |  | 
 | 	/* Make it a reponse */ | 
 | 	msg->rsp[0] = msg->data[0] | 4; | 
 | 	msg->rsp[1] = msg->data[1]; | 
 | 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; | 
 | 	msg->rsp_size = 3; | 
 | 	smi_info->curr_msg = NULL; | 
 | 	deliver_recv_msg(smi_info, msg); | 
 | } | 
 |  | 
 | /* | 
 |  * dell_poweredge_bt_xaction_handler | 
 |  * @info - smi_info.device_id must be populated | 
 |  * | 
 |  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will | 
 |  * not respond to a Get SDR command if the length of the data | 
 |  * requested is exactly 0x3A, which leads to command timeouts and no | 
 |  * data returned.  This intercepts such commands, and causes userspace | 
 |  * callers to try again with a different-sized buffer, which succeeds. | 
 |  */ | 
 |  | 
 | #define STORAGE_NETFN 0x0A | 
 | #define STORAGE_CMD_GET_SDR 0x23 | 
 | static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, | 
 | 					     unsigned long unused, | 
 | 					     void *in) | 
 | { | 
 | 	struct smi_info *smi_info = in; | 
 | 	unsigned char *data = smi_info->curr_msg->data; | 
 | 	unsigned int size   = smi_info->curr_msg->data_size; | 
 | 	if (size >= 8 && | 
 | 	    (data[0]>>2) == STORAGE_NETFN && | 
 | 	    data[1] == STORAGE_CMD_GET_SDR && | 
 | 	    data[7] == 0x3A) { | 
 | 		return_hosed_msg_badsize(smi_info); | 
 | 		return NOTIFY_STOP; | 
 | 	} | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | static struct notifier_block dell_poweredge_bt_xaction_notifier = { | 
 | 	.notifier_call	= dell_poweredge_bt_xaction_handler, | 
 | }; | 
 |  | 
 | /* | 
 |  * setup_dell_poweredge_bt_xaction_handler | 
 |  * @info - smi_info.device_id must be filled in already | 
 |  * | 
 |  * Fills in smi_info.device_id.start_transaction_pre_hook | 
 |  * when we know what function to use there. | 
 |  */ | 
 | static void | 
 | setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) | 
 | { | 
 | 	struct ipmi_device_id *id = &smi_info->device_id; | 
 | 	if (id->manufacturer_id == DELL_IANA_MFR_ID && | 
 | 	    smi_info->si_type == SI_BT) | 
 | 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); | 
 | } | 
 |  | 
 | /* | 
 |  * setup_oem_data_handler | 
 |  * @info - smi_info.device_id must be filled in already | 
 |  * | 
 |  * Fills in smi_info.device_id.oem_data_available_handler | 
 |  * when we know what function to use there. | 
 |  */ | 
 |  | 
 | static void setup_oem_data_handler(struct smi_info *smi_info) | 
 | { | 
 | 	setup_dell_poweredge_oem_data_handler(smi_info); | 
 | } | 
 |  | 
 | static void setup_xaction_handlers(struct smi_info *smi_info) | 
 | { | 
 | 	setup_dell_poweredge_bt_xaction_handler(smi_info); | 
 | } | 
 |  | 
 | static inline void wait_for_timer_and_thread(struct smi_info *smi_info) | 
 | { | 
 | 	if (smi_info->intf) { | 
 | 		/* | 
 | 		 * The timer and thread are only running if the | 
 | 		 * interface has been started up and registered. | 
 | 		 */ | 
 | 		if (smi_info->thread != NULL) | 
 | 			kthread_stop(smi_info->thread); | 
 | 		del_timer_sync(&smi_info->si_timer); | 
 | 	} | 
 | } | 
 |  | 
 | static __devinitdata struct ipmi_default_vals | 
 | { | 
 | 	int type; | 
 | 	int port; | 
 | } ipmi_defaults[] = | 
 | { | 
 | 	{ .type = SI_KCS, .port = 0xca2 }, | 
 | 	{ .type = SI_SMIC, .port = 0xca9 }, | 
 | 	{ .type = SI_BT, .port = 0xe4 }, | 
 | 	{ .port = 0 } | 
 | }; | 
 |  | 
 | static void __devinit default_find_bmc(void) | 
 | { | 
 | 	struct smi_info *info; | 
 | 	int             i; | 
 |  | 
 | 	for (i = 0; ; i++) { | 
 | 		if (!ipmi_defaults[i].port) | 
 | 			break; | 
 | #ifdef CONFIG_PPC | 
 | 		if (check_legacy_ioport(ipmi_defaults[i].port)) | 
 | 			continue; | 
 | #endif | 
 | 		info = smi_info_alloc(); | 
 | 		if (!info) | 
 | 			return; | 
 |  | 
 | 		info->addr_source = SI_DEFAULT; | 
 |  | 
 | 		info->si_type = ipmi_defaults[i].type; | 
 | 		info->io_setup = port_setup; | 
 | 		info->io.addr_data = ipmi_defaults[i].port; | 
 | 		info->io.addr_type = IPMI_IO_ADDR_SPACE; | 
 |  | 
 | 		info->io.addr = NULL; | 
 | 		info->io.regspacing = DEFAULT_REGSPACING; | 
 | 		info->io.regsize = DEFAULT_REGSPACING; | 
 | 		info->io.regshift = 0; | 
 |  | 
 | 		if (add_smi(info) == 0) { | 
 | 			if ((try_smi_init(info)) == 0) { | 
 | 				/* Found one... */ | 
 | 				printk(KERN_INFO PFX "Found default %s" | 
 | 				" state machine at %s address 0x%lx\n", | 
 | 				si_to_str[info->si_type], | 
 | 				addr_space_to_str[info->io.addr_type], | 
 | 				info->io.addr_data); | 
 | 			} else | 
 | 				cleanup_one_si(info); | 
 | 		} else { | 
 | 			kfree(info); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int is_new_interface(struct smi_info *info) | 
 | { | 
 | 	struct smi_info *e; | 
 |  | 
 | 	list_for_each_entry(e, &smi_infos, link) { | 
 | 		if (e->io.addr_type != info->io.addr_type) | 
 | 			continue; | 
 | 		if (e->io.addr_data == info->io.addr_data) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int add_smi(struct smi_info *new_smi) | 
 | { | 
 | 	int rv = 0; | 
 |  | 
 | 	printk(KERN_INFO PFX "Adding %s-specified %s state machine", | 
 | 			ipmi_addr_src_to_str[new_smi->addr_source], | 
 | 			si_to_str[new_smi->si_type]); | 
 | 	mutex_lock(&smi_infos_lock); | 
 | 	if (!is_new_interface(new_smi)) { | 
 | 		printk(KERN_CONT " duplicate interface\n"); | 
 | 		rv = -EBUSY; | 
 | 		goto out_err; | 
 | 	} | 
 |  | 
 | 	printk(KERN_CONT "\n"); | 
 |  | 
 | 	/* So we know not to free it unless we have allocated one. */ | 
 | 	new_smi->intf = NULL; | 
 | 	new_smi->si_sm = NULL; | 
 | 	new_smi->handlers = NULL; | 
 |  | 
 | 	list_add_tail(&new_smi->link, &smi_infos); | 
 |  | 
 | out_err: | 
 | 	mutex_unlock(&smi_infos_lock); | 
 | 	return rv; | 
 | } | 
 |  | 
 | static int try_smi_init(struct smi_info *new_smi) | 
 | { | 
 | 	int rv = 0; | 
 | 	int i; | 
 |  | 
 | 	printk(KERN_INFO PFX "Trying %s-specified %s state" | 
 | 	       " machine at %s address 0x%lx, slave address 0x%x," | 
 | 	       " irq %d\n", | 
 | 	       ipmi_addr_src_to_str[new_smi->addr_source], | 
 | 	       si_to_str[new_smi->si_type], | 
 | 	       addr_space_to_str[new_smi->io.addr_type], | 
 | 	       new_smi->io.addr_data, | 
 | 	       new_smi->slave_addr, new_smi->irq); | 
 |  | 
 | 	switch (new_smi->si_type) { | 
 | 	case SI_KCS: | 
 | 		new_smi->handlers = &kcs_smi_handlers; | 
 | 		break; | 
 |  | 
 | 	case SI_SMIC: | 
 | 		new_smi->handlers = &smic_smi_handlers; | 
 | 		break; | 
 |  | 
 | 	case SI_BT: | 
 | 		new_smi->handlers = &bt_smi_handlers; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		/* No support for anything else yet. */ | 
 | 		rv = -EIO; | 
 | 		goto out_err; | 
 | 	} | 
 |  | 
 | 	/* Allocate the state machine's data and initialize it. */ | 
 | 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); | 
 | 	if (!new_smi->si_sm) { | 
 | 		printk(KERN_ERR PFX | 
 | 		       "Could not allocate state machine memory\n"); | 
 | 		rv = -ENOMEM; | 
 | 		goto out_err; | 
 | 	} | 
 | 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, | 
 | 							&new_smi->io); | 
 |  | 
 | 	/* Now that we know the I/O size, we can set up the I/O. */ | 
 | 	rv = new_smi->io_setup(new_smi); | 
 | 	if (rv) { | 
 | 		printk(KERN_ERR PFX "Could not set up I/O space\n"); | 
 | 		goto out_err; | 
 | 	} | 
 |  | 
 | 	/* Do low-level detection first. */ | 
 | 	if (new_smi->handlers->detect(new_smi->si_sm)) { | 
 | 		if (new_smi->addr_source) | 
 | 			printk(KERN_INFO PFX "Interface detection failed\n"); | 
 | 		rv = -ENODEV; | 
 | 		goto out_err; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Attempt a get device id command.  If it fails, we probably | 
 | 	 * don't have a BMC here. | 
 | 	 */ | 
 | 	rv = try_get_dev_id(new_smi); | 
 | 	if (rv) { | 
 | 		if (new_smi->addr_source) | 
 | 			printk(KERN_INFO PFX "There appears to be no BMC" | 
 | 			       " at this location\n"); | 
 | 		goto out_err; | 
 | 	} | 
 |  | 
 | 	setup_oem_data_handler(new_smi); | 
 | 	setup_xaction_handlers(new_smi); | 
 |  | 
 | 	INIT_LIST_HEAD(&(new_smi->xmit_msgs)); | 
 | 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); | 
 | 	new_smi->curr_msg = NULL; | 
 | 	atomic_set(&new_smi->req_events, 0); | 
 | 	new_smi->run_to_completion = 0; | 
 | 	for (i = 0; i < SI_NUM_STATS; i++) | 
 | 		atomic_set(&new_smi->stats[i], 0); | 
 |  | 
 | 	new_smi->interrupt_disabled = 1; | 
 | 	atomic_set(&new_smi->stop_operation, 0); | 
 | 	new_smi->intf_num = smi_num; | 
 | 	smi_num++; | 
 |  | 
 | 	rv = try_enable_event_buffer(new_smi); | 
 | 	if (rv == 0) | 
 | 		new_smi->has_event_buffer = 1; | 
 |  | 
 | 	/* | 
 | 	 * Start clearing the flags before we enable interrupts or the | 
 | 	 * timer to avoid racing with the timer. | 
 | 	 */ | 
 | 	start_clear_flags(new_smi); | 
 | 	/* IRQ is defined to be set when non-zero. */ | 
 | 	if (new_smi->irq) | 
 | 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; | 
 |  | 
 | 	if (!new_smi->dev) { | 
 | 		/* | 
 | 		 * If we don't already have a device from something | 
 | 		 * else (like PCI), then register a new one. | 
 | 		 */ | 
 | 		new_smi->pdev = platform_device_alloc("ipmi_si", | 
 | 						      new_smi->intf_num); | 
 | 		if (!new_smi->pdev) { | 
 | 			printk(KERN_ERR PFX | 
 | 			       "Unable to allocate platform device\n"); | 
 | 			goto out_err; | 
 | 		} | 
 | 		new_smi->dev = &new_smi->pdev->dev; | 
 | 		new_smi->dev->driver = &ipmi_driver.driver; | 
 |  | 
 | 		rv = platform_device_add(new_smi->pdev); | 
 | 		if (rv) { | 
 | 			printk(KERN_ERR PFX | 
 | 			       "Unable to register system interface device:" | 
 | 			       " %d\n", | 
 | 			       rv); | 
 | 			goto out_err; | 
 | 		} | 
 | 		new_smi->dev_registered = 1; | 
 | 	} | 
 |  | 
 | 	rv = ipmi_register_smi(&handlers, | 
 | 			       new_smi, | 
 | 			       &new_smi->device_id, | 
 | 			       new_smi->dev, | 
 | 			       "bmc", | 
 | 			       new_smi->slave_addr); | 
 | 	if (rv) { | 
 | 		dev_err(new_smi->dev, "Unable to register device: error %d\n", | 
 | 			rv); | 
 | 		goto out_err_stop_timer; | 
 | 	} | 
 |  | 
 | 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", | 
 | 				     type_file_read_proc, | 
 | 				     new_smi); | 
 | 	if (rv) { | 
 | 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); | 
 | 		goto out_err_stop_timer; | 
 | 	} | 
 |  | 
 | 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", | 
 | 				     stat_file_read_proc, | 
 | 				     new_smi); | 
 | 	if (rv) { | 
 | 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); | 
 | 		goto out_err_stop_timer; | 
 | 	} | 
 |  | 
 | 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", | 
 | 				     param_read_proc, | 
 | 				     new_smi); | 
 | 	if (rv) { | 
 | 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); | 
 | 		goto out_err_stop_timer; | 
 | 	} | 
 |  | 
 | 	dev_info(new_smi->dev, "IPMI %s interface initialized\n", | 
 | 		 si_to_str[new_smi->si_type]); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_err_stop_timer: | 
 | 	atomic_inc(&new_smi->stop_operation); | 
 | 	wait_for_timer_and_thread(new_smi); | 
 |  | 
 |  out_err: | 
 | 	new_smi->interrupt_disabled = 1; | 
 |  | 
 | 	if (new_smi->intf) { | 
 | 		ipmi_unregister_smi(new_smi->intf); | 
 | 		new_smi->intf = NULL; | 
 | 	} | 
 |  | 
 | 	if (new_smi->irq_cleanup) { | 
 | 		new_smi->irq_cleanup(new_smi); | 
 | 		new_smi->irq_cleanup = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Wait until we know that we are out of any interrupt | 
 | 	 * handlers might have been running before we freed the | 
 | 	 * interrupt. | 
 | 	 */ | 
 | 	synchronize_sched(); | 
 |  | 
 | 	if (new_smi->si_sm) { | 
 | 		if (new_smi->handlers) | 
 | 			new_smi->handlers->cleanup(new_smi->si_sm); | 
 | 		kfree(new_smi->si_sm); | 
 | 		new_smi->si_sm = NULL; | 
 | 	} | 
 | 	if (new_smi->addr_source_cleanup) { | 
 | 		new_smi->addr_source_cleanup(new_smi); | 
 | 		new_smi->addr_source_cleanup = NULL; | 
 | 	} | 
 | 	if (new_smi->io_cleanup) { | 
 | 		new_smi->io_cleanup(new_smi); | 
 | 		new_smi->io_cleanup = NULL; | 
 | 	} | 
 |  | 
 | 	if (new_smi->dev_registered) { | 
 | 		platform_device_unregister(new_smi->pdev); | 
 | 		new_smi->dev_registered = 0; | 
 | 	} | 
 |  | 
 | 	return rv; | 
 | } | 
 |  | 
 | static int __devinit init_ipmi_si(void) | 
 | { | 
 | 	int  i; | 
 | 	char *str; | 
 | 	int  rv; | 
 | 	struct smi_info *e; | 
 | 	enum ipmi_addr_src type = SI_INVALID; | 
 |  | 
 | 	if (initialized) | 
 | 		return 0; | 
 | 	initialized = 1; | 
 |  | 
 | 	/* Register the device drivers. */ | 
 | 	rv = driver_register(&ipmi_driver.driver); | 
 | 	if (rv) { | 
 | 		printk(KERN_ERR PFX "Unable to register driver: %d\n", rv); | 
 | 		return rv; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* Parse out the si_type string into its components. */ | 
 | 	str = si_type_str; | 
 | 	if (*str != '\0') { | 
 | 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { | 
 | 			si_type[i] = str; | 
 | 			str = strchr(str, ','); | 
 | 			if (str) { | 
 | 				*str = '\0'; | 
 | 				str++; | 
 | 			} else { | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	printk(KERN_INFO "IPMI System Interface driver.\n"); | 
 |  | 
 | 	hardcode_find_bmc(); | 
 |  | 
 | 	/* If the user gave us a device, they presumably want us to use it */ | 
 | 	mutex_lock(&smi_infos_lock); | 
 | 	if (!list_empty(&smi_infos)) { | 
 | 		mutex_unlock(&smi_infos_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	mutex_unlock(&smi_infos_lock); | 
 |  | 
 | #ifdef CONFIG_PCI | 
 | 	rv = pci_register_driver(&ipmi_pci_driver); | 
 | 	if (rv) | 
 | 		printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv); | 
 | 	else | 
 | 		pci_registered = 1; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | 	pnp_register_driver(&ipmi_pnp_driver); | 
 | 	pnp_registered = 1; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_DMI | 
 | 	dmi_find_bmc(); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | 	spmi_find_bmc(); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PPC_OF | 
 | 	of_register_platform_driver(&ipmi_of_platform_driver); | 
 | 	of_registered = 1; | 
 | #endif | 
 |  | 
 | 	/* We prefer devices with interrupts, but in the case of a machine | 
 | 	   with multiple BMCs we assume that there will be several instances | 
 | 	   of a given type so if we succeed in registering a type then also | 
 | 	   try to register everything else of the same type */ | 
 |  | 
 | 	mutex_lock(&smi_infos_lock); | 
 | 	list_for_each_entry(e, &smi_infos, link) { | 
 | 		/* Try to register a device if it has an IRQ and we either | 
 | 		   haven't successfully registered a device yet or this | 
 | 		   device has the same type as one we successfully registered */ | 
 | 		if (e->irq && (!type || e->addr_source == type)) { | 
 | 			if (!try_smi_init(e)) { | 
 | 				type = e->addr_source; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* type will only have been set if we successfully registered an si */ | 
 | 	if (type) { | 
 | 		mutex_unlock(&smi_infos_lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Fall back to the preferred device */ | 
 |  | 
 | 	list_for_each_entry(e, &smi_infos, link) { | 
 | 		if (!e->irq && (!type || e->addr_source == type)) { | 
 | 			if (!try_smi_init(e)) { | 
 | 				type = e->addr_source; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&smi_infos_lock); | 
 |  | 
 | 	if (type) | 
 | 		return 0; | 
 |  | 
 | 	if (si_trydefaults) { | 
 | 		mutex_lock(&smi_infos_lock); | 
 | 		if (list_empty(&smi_infos)) { | 
 | 			/* No BMC was found, try defaults. */ | 
 | 			mutex_unlock(&smi_infos_lock); | 
 | 			default_find_bmc(); | 
 | 		} else | 
 | 			mutex_unlock(&smi_infos_lock); | 
 | 	} | 
 |  | 
 | 	mutex_lock(&smi_infos_lock); | 
 | 	if (unload_when_empty && list_empty(&smi_infos)) { | 
 | 		mutex_unlock(&smi_infos_lock); | 
 | #ifdef CONFIG_PCI | 
 | 		if (pci_registered) | 
 | 			pci_unregister_driver(&ipmi_pci_driver); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PPC_OF | 
 | 		if (of_registered) | 
 | 			of_unregister_platform_driver(&ipmi_of_platform_driver); | 
 | #endif | 
 | 		driver_unregister(&ipmi_driver.driver); | 
 | 		printk(KERN_WARNING PFX | 
 | 		       "Unable to find any System Interface(s)\n"); | 
 | 		return -ENODEV; | 
 | 	} else { | 
 | 		mutex_unlock(&smi_infos_lock); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 | module_init(init_ipmi_si); | 
 |  | 
 | static void cleanup_one_si(struct smi_info *to_clean) | 
 | { | 
 | 	int           rv = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!to_clean) | 
 | 		return; | 
 |  | 
 | 	list_del(&to_clean->link); | 
 |  | 
 | 	/* Tell the driver that we are shutting down. */ | 
 | 	atomic_inc(&to_clean->stop_operation); | 
 |  | 
 | 	/* | 
 | 	 * Make sure the timer and thread are stopped and will not run | 
 | 	 * again. | 
 | 	 */ | 
 | 	wait_for_timer_and_thread(to_clean); | 
 |  | 
 | 	/* | 
 | 	 * Timeouts are stopped, now make sure the interrupts are off | 
 | 	 * for the device.  A little tricky with locks to make sure | 
 | 	 * there are no races. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&to_clean->si_lock, flags); | 
 | 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { | 
 | 		spin_unlock_irqrestore(&to_clean->si_lock, flags); | 
 | 		poll(to_clean); | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 		spin_lock_irqsave(&to_clean->si_lock, flags); | 
 | 	} | 
 | 	disable_si_irq(to_clean); | 
 | 	spin_unlock_irqrestore(&to_clean->si_lock, flags); | 
 | 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { | 
 | 		poll(to_clean); | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 	} | 
 |  | 
 | 	/* Clean up interrupts and make sure that everything is done. */ | 
 | 	if (to_clean->irq_cleanup) | 
 | 		to_clean->irq_cleanup(to_clean); | 
 | 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { | 
 | 		poll(to_clean); | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 	} | 
 |  | 
 | 	if (to_clean->intf) | 
 | 		rv = ipmi_unregister_smi(to_clean->intf); | 
 |  | 
 | 	if (rv) { | 
 | 		printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n", | 
 | 		       rv); | 
 | 	} | 
 |  | 
 | 	if (to_clean->handlers) | 
 | 		to_clean->handlers->cleanup(to_clean->si_sm); | 
 |  | 
 | 	kfree(to_clean->si_sm); | 
 |  | 
 | 	if (to_clean->addr_source_cleanup) | 
 | 		to_clean->addr_source_cleanup(to_clean); | 
 | 	if (to_clean->io_cleanup) | 
 | 		to_clean->io_cleanup(to_clean); | 
 |  | 
 | 	if (to_clean->dev_registered) | 
 | 		platform_device_unregister(to_clean->pdev); | 
 |  | 
 | 	kfree(to_clean); | 
 | } | 
 |  | 
 | static void __exit cleanup_ipmi_si(void) | 
 | { | 
 | 	struct smi_info *e, *tmp_e; | 
 |  | 
 | 	if (!initialized) | 
 | 		return; | 
 |  | 
 | #ifdef CONFIG_PCI | 
 | 	if (pci_registered) | 
 | 		pci_unregister_driver(&ipmi_pci_driver); | 
 | #endif | 
 | #ifdef CONFIG_ACPI | 
 | 	if (pnp_registered) | 
 | 		pnp_unregister_driver(&ipmi_pnp_driver); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PPC_OF | 
 | 	if (of_registered) | 
 | 		of_unregister_platform_driver(&ipmi_of_platform_driver); | 
 | #endif | 
 |  | 
 | 	mutex_lock(&smi_infos_lock); | 
 | 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link) | 
 | 		cleanup_one_si(e); | 
 | 	mutex_unlock(&smi_infos_lock); | 
 |  | 
 | 	driver_unregister(&ipmi_driver.driver); | 
 | } | 
 | module_exit(cleanup_ipmi_si); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); | 
 | MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" | 
 | 		   " system interfaces."); |