| /* |
| * |
| * Common boot and setup code. |
| * |
| * Copyright (C) 2001 PPC64 Team, IBM Corp |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/module.h> |
| #include <linux/string.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/reboot.h> |
| #include <linux/delay.h> |
| #include <linux/initrd.h> |
| #include <linux/ide.h> |
| #include <linux/seq_file.h> |
| #include <linux/ioport.h> |
| #include <linux/console.h> |
| #include <linux/utsname.h> |
| #include <linux/tty.h> |
| #include <linux/root_dev.h> |
| #include <linux/notifier.h> |
| #include <linux/cpu.h> |
| #include <linux/unistd.h> |
| #include <linux/serial.h> |
| #include <linux/serial_8250.h> |
| #include <linux/bootmem.h> |
| #include <asm/io.h> |
| #include <asm/kdump.h> |
| #include <asm/prom.h> |
| #include <asm/processor.h> |
| #include <asm/pgtable.h> |
| #include <asm/smp.h> |
| #include <asm/elf.h> |
| #include <asm/machdep.h> |
| #include <asm/paca.h> |
| #include <asm/time.h> |
| #include <asm/cputable.h> |
| #include <asm/sections.h> |
| #include <asm/btext.h> |
| #include <asm/nvram.h> |
| #include <asm/setup.h> |
| #include <asm/system.h> |
| #include <asm/rtas.h> |
| #include <asm/iommu.h> |
| #include <asm/serial.h> |
| #include <asm/cache.h> |
| #include <asm/page.h> |
| #include <asm/mmu.h> |
| #include <asm/lmb.h> |
| #include <asm/firmware.h> |
| #include <asm/xmon.h> |
| #include <asm/udbg.h> |
| #include <asm/kexec.h> |
| |
| #include "setup.h" |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| int have_of = 1; |
| int boot_cpuid = 0; |
| dev_t boot_dev; |
| u64 ppc64_pft_size; |
| |
| /* Pick defaults since we might want to patch instructions |
| * before we've read this from the device tree. |
| */ |
| struct ppc64_caches ppc64_caches = { |
| .dline_size = 0x40, |
| .log_dline_size = 6, |
| .iline_size = 0x40, |
| .log_iline_size = 6 |
| }; |
| EXPORT_SYMBOL_GPL(ppc64_caches); |
| |
| /* |
| * These are used in binfmt_elf.c to put aux entries on the stack |
| * for each elf executable being started. |
| */ |
| int dcache_bsize; |
| int icache_bsize; |
| int ucache_bsize; |
| |
| #ifdef CONFIG_MAGIC_SYSRQ |
| unsigned long SYSRQ_KEY; |
| #endif /* CONFIG_MAGIC_SYSRQ */ |
| |
| |
| #ifdef CONFIG_SMP |
| |
| static int smt_enabled_cmdline; |
| |
| /* Look for ibm,smt-enabled OF option */ |
| static void check_smt_enabled(void) |
| { |
| struct device_node *dn; |
| const char *smt_option; |
| |
| /* Allow the command line to overrule the OF option */ |
| if (smt_enabled_cmdline) |
| return; |
| |
| dn = of_find_node_by_path("/options"); |
| |
| if (dn) { |
| smt_option = get_property(dn, "ibm,smt-enabled", NULL); |
| |
| if (smt_option) { |
| if (!strcmp(smt_option, "on")) |
| smt_enabled_at_boot = 1; |
| else if (!strcmp(smt_option, "off")) |
| smt_enabled_at_boot = 0; |
| } |
| } |
| } |
| |
| /* Look for smt-enabled= cmdline option */ |
| static int __init early_smt_enabled(char *p) |
| { |
| smt_enabled_cmdline = 1; |
| |
| if (!p) |
| return 0; |
| |
| if (!strcmp(p, "on") || !strcmp(p, "1")) |
| smt_enabled_at_boot = 1; |
| else if (!strcmp(p, "off") || !strcmp(p, "0")) |
| smt_enabled_at_boot = 0; |
| |
| return 0; |
| } |
| early_param("smt-enabled", early_smt_enabled); |
| |
| #else |
| #define check_smt_enabled() |
| #endif /* CONFIG_SMP */ |
| |
| /* Put the paca pointer into r13 and SPRG3 */ |
| void __init setup_paca(int cpu) |
| { |
| local_paca = &paca[cpu]; |
| mtspr(SPRN_SPRG3, local_paca); |
| } |
| |
| /* |
| * Early initialization entry point. This is called by head.S |
| * with MMU translation disabled. We rely on the "feature" of |
| * the CPU that ignores the top 2 bits of the address in real |
| * mode so we can access kernel globals normally provided we |
| * only toy with things in the RMO region. From here, we do |
| * some early parsing of the device-tree to setup out LMB |
| * data structures, and allocate & initialize the hash table |
| * and segment tables so we can start running with translation |
| * enabled. |
| * |
| * It is this function which will call the probe() callback of |
| * the various platform types and copy the matching one to the |
| * global ppc_md structure. Your platform can eventually do |
| * some very early initializations from the probe() routine, but |
| * this is not recommended, be very careful as, for example, the |
| * device-tree is not accessible via normal means at this point. |
| */ |
| |
| void __init early_setup(unsigned long dt_ptr) |
| { |
| /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ |
| setup_paca(0); |
| |
| /* Enable early debugging if any specified (see udbg.h) */ |
| udbg_early_init(); |
| |
| DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); |
| |
| /* |
| * Do early initializations using the flattened device |
| * tree, like retreiving the physical memory map or |
| * calculating/retreiving the hash table size |
| */ |
| early_init_devtree(__va(dt_ptr)); |
| |
| /* Now we know the logical id of our boot cpu, setup the paca. */ |
| setup_paca(boot_cpuid); |
| |
| /* Fix up paca fields required for the boot cpu */ |
| get_paca()->cpu_start = 1; |
| get_paca()->stab_real = __pa((u64)&initial_stab); |
| get_paca()->stab_addr = (u64)&initial_stab; |
| |
| /* Probe the machine type */ |
| probe_machine(); |
| |
| setup_kdump_trampoline(); |
| |
| DBG("Found, Initializing memory management...\n"); |
| |
| /* |
| * Initialize the MMU Hash table and create the linear mapping |
| * of memory. Has to be done before stab/slb initialization as |
| * this is currently where the page size encoding is obtained |
| */ |
| htab_initialize(); |
| |
| /* |
| * Initialize stab / SLB management except on iSeries |
| */ |
| if (cpu_has_feature(CPU_FTR_SLB)) |
| slb_initialize(); |
| else if (!firmware_has_feature(FW_FEATURE_ISERIES)) |
| stab_initialize(get_paca()->stab_real); |
| |
| DBG(" <- early_setup()\n"); |
| } |
| |
| #ifdef CONFIG_SMP |
| void early_setup_secondary(void) |
| { |
| struct paca_struct *lpaca = get_paca(); |
| |
| /* Mark enabled in PACA */ |
| lpaca->proc_enabled = 0; |
| |
| /* Initialize hash table for that CPU */ |
| htab_initialize_secondary(); |
| |
| /* Initialize STAB/SLB. We use a virtual address as it works |
| * in real mode on pSeries and we want a virutal address on |
| * iSeries anyway |
| */ |
| if (cpu_has_feature(CPU_FTR_SLB)) |
| slb_initialize(); |
| else |
| stab_initialize(lpaca->stab_addr); |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC) |
| void smp_release_cpus(void) |
| { |
| extern unsigned long __secondary_hold_spinloop; |
| unsigned long *ptr; |
| |
| DBG(" -> smp_release_cpus()\n"); |
| |
| /* All secondary cpus are spinning on a common spinloop, release them |
| * all now so they can start to spin on their individual paca |
| * spinloops. For non SMP kernels, the secondary cpus never get out |
| * of the common spinloop. |
| * This is useless but harmless on iSeries, secondaries are already |
| * waiting on their paca spinloops. */ |
| |
| ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop |
| - PHYSICAL_START); |
| *ptr = 1; |
| mb(); |
| |
| DBG(" <- smp_release_cpus()\n"); |
| } |
| #endif /* CONFIG_SMP || CONFIG_KEXEC */ |
| |
| /* |
| * Initialize some remaining members of the ppc64_caches and systemcfg |
| * structures |
| * (at least until we get rid of them completely). This is mostly some |
| * cache informations about the CPU that will be used by cache flush |
| * routines and/or provided to userland |
| */ |
| static void __init initialize_cache_info(void) |
| { |
| struct device_node *np; |
| unsigned long num_cpus = 0; |
| |
| DBG(" -> initialize_cache_info()\n"); |
| |
| for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) { |
| num_cpus += 1; |
| |
| /* We're assuming *all* of the CPUs have the same |
| * d-cache and i-cache sizes... -Peter |
| */ |
| |
| if ( num_cpus == 1 ) { |
| const u32 *sizep, *lsizep; |
| u32 size, lsize; |
| const char *dc, *ic; |
| |
| /* Then read cache informations */ |
| if (machine_is(powermac)) { |
| dc = "d-cache-block-size"; |
| ic = "i-cache-block-size"; |
| } else { |
| dc = "d-cache-line-size"; |
| ic = "i-cache-line-size"; |
| } |
| |
| size = 0; |
| lsize = cur_cpu_spec->dcache_bsize; |
| sizep = get_property(np, "d-cache-size", NULL); |
| if (sizep != NULL) |
| size = *sizep; |
| lsizep = get_property(np, dc, NULL); |
| if (lsizep != NULL) |
| lsize = *lsizep; |
| if (sizep == 0 || lsizep == 0) |
| DBG("Argh, can't find dcache properties ! " |
| "sizep: %p, lsizep: %p\n", sizep, lsizep); |
| |
| ppc64_caches.dsize = size; |
| ppc64_caches.dline_size = lsize; |
| ppc64_caches.log_dline_size = __ilog2(lsize); |
| ppc64_caches.dlines_per_page = PAGE_SIZE / lsize; |
| |
| size = 0; |
| lsize = cur_cpu_spec->icache_bsize; |
| sizep = get_property(np, "i-cache-size", NULL); |
| if (sizep != NULL) |
| size = *sizep; |
| lsizep = get_property(np, ic, NULL); |
| if (lsizep != NULL) |
| lsize = *lsizep; |
| if (sizep == 0 || lsizep == 0) |
| DBG("Argh, can't find icache properties ! " |
| "sizep: %p, lsizep: %p\n", sizep, lsizep); |
| |
| ppc64_caches.isize = size; |
| ppc64_caches.iline_size = lsize; |
| ppc64_caches.log_iline_size = __ilog2(lsize); |
| ppc64_caches.ilines_per_page = PAGE_SIZE / lsize; |
| } |
| } |
| |
| DBG(" <- initialize_cache_info()\n"); |
| } |
| |
| |
| /* |
| * Do some initial setup of the system. The parameters are those which |
| * were passed in from the bootloader. |
| */ |
| void __init setup_system(void) |
| { |
| DBG(" -> setup_system()\n"); |
| |
| /* |
| * Unflatten the device-tree passed by prom_init or kexec |
| */ |
| unflatten_device_tree(); |
| |
| /* |
| * Fill the ppc64_caches & systemcfg structures with informations |
| * retrieved from the device-tree. |
| */ |
| initialize_cache_info(); |
| |
| /* |
| * Initialize irq remapping subsystem |
| */ |
| irq_early_init(); |
| |
| #ifdef CONFIG_PPC_RTAS |
| /* |
| * Initialize RTAS if available |
| */ |
| rtas_initialize(); |
| #endif /* CONFIG_PPC_RTAS */ |
| |
| /* |
| * Check if we have an initrd provided via the device-tree |
| */ |
| check_for_initrd(); |
| |
| /* |
| * Do some platform specific early initializations, that includes |
| * setting up the hash table pointers. It also sets up some interrupt-mapping |
| * related options that will be used by finish_device_tree() |
| */ |
| ppc_md.init_early(); |
| |
| /* |
| * We can discover serial ports now since the above did setup the |
| * hash table management for us, thus ioremap works. We do that early |
| * so that further code can be debugged |
| */ |
| find_legacy_serial_ports(); |
| |
| /* |
| * Initialize xmon |
| */ |
| #ifdef CONFIG_XMON_DEFAULT |
| xmon_init(1); |
| #endif |
| /* |
| * Register early console |
| */ |
| register_early_udbg_console(); |
| |
| if (do_early_xmon) |
| debugger(NULL); |
| |
| check_smt_enabled(); |
| smp_setup_cpu_maps(); |
| |
| #ifdef CONFIG_SMP |
| /* Release secondary cpus out of their spinloops at 0x60 now that |
| * we can map physical -> logical CPU ids |
| */ |
| smp_release_cpus(); |
| #endif |
| |
| printk("Starting Linux PPC64 %s\n", system_utsname.version); |
| |
| printk("-----------------------------------------------------\n"); |
| printk("ppc64_pft_size = 0x%lx\n", ppc64_pft_size); |
| printk("physicalMemorySize = 0x%lx\n", lmb_phys_mem_size()); |
| printk("ppc64_caches.dcache_line_size = 0x%x\n", |
| ppc64_caches.dline_size); |
| printk("ppc64_caches.icache_line_size = 0x%x\n", |
| ppc64_caches.iline_size); |
| printk("htab_address = 0x%p\n", htab_address); |
| printk("htab_hash_mask = 0x%lx\n", htab_hash_mask); |
| #if PHYSICAL_START > 0 |
| printk("physical_start = 0x%x\n", PHYSICAL_START); |
| #endif |
| printk("-----------------------------------------------------\n"); |
| |
| DBG(" <- setup_system()\n"); |
| } |
| |
| #ifdef CONFIG_IRQSTACKS |
| static void __init irqstack_early_init(void) |
| { |
| unsigned int i; |
| |
| /* |
| * interrupt stacks must be under 256MB, we cannot afford to take |
| * SLB misses on them. |
| */ |
| for_each_possible_cpu(i) { |
| softirq_ctx[i] = (struct thread_info *) |
| __va(lmb_alloc_base(THREAD_SIZE, |
| THREAD_SIZE, 0x10000000)); |
| hardirq_ctx[i] = (struct thread_info *) |
| __va(lmb_alloc_base(THREAD_SIZE, |
| THREAD_SIZE, 0x10000000)); |
| } |
| } |
| #else |
| #define irqstack_early_init() |
| #endif |
| |
| /* |
| * Stack space used when we detect a bad kernel stack pointer, and |
| * early in SMP boots before relocation is enabled. |
| */ |
| static void __init emergency_stack_init(void) |
| { |
| unsigned long limit; |
| unsigned int i; |
| |
| /* |
| * Emergency stacks must be under 256MB, we cannot afford to take |
| * SLB misses on them. The ABI also requires them to be 128-byte |
| * aligned. |
| * |
| * Since we use these as temporary stacks during secondary CPU |
| * bringup, we need to get at them in real mode. This means they |
| * must also be within the RMO region. |
| */ |
| limit = min(0x10000000UL, lmb.rmo_size); |
| |
| for_each_possible_cpu(i) |
| paca[i].emergency_sp = |
| __va(lmb_alloc_base(HW_PAGE_SIZE, 128, limit)) + HW_PAGE_SIZE; |
| } |
| |
| /* |
| * Called into from start_kernel, after lock_kernel has been called. |
| * Initializes bootmem, which is unsed to manage page allocation until |
| * mem_init is called. |
| */ |
| void __init setup_arch(char **cmdline_p) |
| { |
| ppc64_boot_msg(0x12, "Setup Arch"); |
| |
| *cmdline_p = cmd_line; |
| |
| /* |
| * Set cache line size based on type of cpu as a default. |
| * Systems with OF can look in the properties on the cpu node(s) |
| * for a possibly more accurate value. |
| */ |
| dcache_bsize = ppc64_caches.dline_size; |
| icache_bsize = ppc64_caches.iline_size; |
| |
| /* reboot on panic */ |
| panic_timeout = 180; |
| |
| if (ppc_md.panic) |
| setup_panic(); |
| |
| init_mm.start_code = PAGE_OFFSET; |
| init_mm.end_code = (unsigned long) _etext; |
| init_mm.end_data = (unsigned long) _edata; |
| init_mm.brk = klimit; |
| |
| irqstack_early_init(); |
| emergency_stack_init(); |
| |
| stabs_alloc(); |
| |
| /* set up the bootmem stuff with available memory */ |
| do_init_bootmem(); |
| sparse_init(); |
| |
| #ifdef CONFIG_DUMMY_CONSOLE |
| conswitchp = &dummy_con; |
| #endif |
| |
| ppc_md.setup_arch(); |
| |
| paging_init(); |
| ppc64_boot_msg(0x15, "Setup Done"); |
| } |
| |
| |
| /* ToDo: do something useful if ppc_md is not yet setup. */ |
| #define PPC64_LINUX_FUNCTION 0x0f000000 |
| #define PPC64_IPL_MESSAGE 0xc0000000 |
| #define PPC64_TERM_MESSAGE 0xb0000000 |
| |
| static void ppc64_do_msg(unsigned int src, const char *msg) |
| { |
| if (ppc_md.progress) { |
| char buf[128]; |
| |
| sprintf(buf, "%08X\n", src); |
| ppc_md.progress(buf, 0); |
| snprintf(buf, 128, "%s", msg); |
| ppc_md.progress(buf, 0); |
| } |
| } |
| |
| /* Print a boot progress message. */ |
| void ppc64_boot_msg(unsigned int src, const char *msg) |
| { |
| ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg); |
| printk("[boot]%04x %s\n", src, msg); |
| } |
| |
| /* Print a termination message (print only -- does not stop the kernel) */ |
| void ppc64_terminate_msg(unsigned int src, const char *msg) |
| { |
| ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg); |
| printk("[terminate]%04x %s\n", src, msg); |
| } |
| |
| void cpu_die(void) |
| { |
| if (ppc_md.cpu_die) |
| ppc_md.cpu_die(); |
| } |
| |
| #ifdef CONFIG_SMP |
| void __init setup_per_cpu_areas(void) |
| { |
| int i; |
| unsigned long size; |
| char *ptr; |
| |
| /* Copy section for each CPU (we discard the original) */ |
| size = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES); |
| #ifdef CONFIG_MODULES |
| if (size < PERCPU_ENOUGH_ROOM) |
| size = PERCPU_ENOUGH_ROOM; |
| #endif |
| |
| for_each_possible_cpu(i) { |
| ptr = alloc_bootmem_node(NODE_DATA(cpu_to_node(i)), size); |
| if (!ptr) |
| panic("Cannot allocate cpu data for CPU %d\n", i); |
| |
| paca[i].data_offset = ptr - __per_cpu_start; |
| memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start); |
| } |
| } |
| #endif |