blob: fc7c74d725955794141093e7a41217bd3964dd06 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
Linus Torvalds1da177e2005-04-16 15:20:36 -070029#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/workqueue.h>
34#include <linux/proc_fs.h>
35#include <linux/pci.h>
Greg Kroah-Hartman7a54f252006-10-13 20:05:19 -070036#include <linux/pci_hotplug.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include "../pci.h"
38#include "cpqphp.h"
39#include "cpqphp_nvram.h"
40#include "../../../arch/i386/pci/pci.h" /* horrible hack showing how processor dependent we are... */
41
42
43u8 cpqhp_nic_irq;
44u8 cpqhp_disk_irq;
45
46static u16 unused_IRQ;
47
48/*
49 * detect_HRT_floating_pointer
50 *
51 * find the Hot Plug Resource Table in the specified region of memory.
52 *
53 */
54static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
55{
56 void __iomem *fp;
57 void __iomem *endp;
58 u8 temp1, temp2, temp3, temp4;
59 int status = 0;
60
61 endp = (end - sizeof(struct hrt) + 1);
62
63 for (fp = begin; fp <= endp; fp += 16) {
64 temp1 = readb(fp + SIG0);
65 temp2 = readb(fp + SIG1);
66 temp3 = readb(fp + SIG2);
67 temp4 = readb(fp + SIG3);
68 if (temp1 == '$' &&
69 temp2 == 'H' &&
70 temp3 == 'R' &&
71 temp4 == 'T') {
72 status = 1;
73 break;
74 }
75 }
76
77 if (!status)
78 fp = NULL;
79
80 dbg("Discovered Hotplug Resource Table at %p\n", fp);
81 return fp;
82}
83
84
85int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
86{
87 unsigned char bus;
88 struct pci_bus *child;
89 int num;
90
91 if (func->pci_dev == NULL)
92 func->pci_dev = pci_find_slot(func->bus, PCI_DEVFN(func->device, func->function));
93
94 /* No pci device, we need to create it then */
95 if (func->pci_dev == NULL) {
96 dbg("INFO: pci_dev still null\n");
97
98 num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
99 if (num)
100 pci_bus_add_devices(ctrl->pci_dev->bus);
101
102 func->pci_dev = pci_find_slot(func->bus, PCI_DEVFN(func->device, func->function));
103 if (func->pci_dev == NULL) {
104 dbg("ERROR: pci_dev still null\n");
105 return 0;
106 }
107 }
108
109 if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
110 pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
111 child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
112 pci_do_scan_bus(child);
113 }
114
115 return 0;
116}
117
118
119int cpqhp_unconfigure_device(struct pci_func* func)
120{
121 int j;
122
123 dbg("%s: bus/dev/func = %x/%x/%x\n", __FUNCTION__, func->bus, func->device, func->function);
124
125 for (j=0; j<8 ; j++) {
126 struct pci_dev* temp = pci_find_slot(func->bus, PCI_DEVFN(func->device, j));
127 if (temp)
128 pci_remove_bus_device(temp);
129 }
130 return 0;
131}
132
133static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
134{
135 u32 vendID = 0;
136
137 if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
138 return -1;
139 if (vendID == 0xffffffff)
140 return -1;
141 return pci_bus_read_config_dword (bus, devfn, offset, value);
142}
143
144
145/*
146 * cpqhp_set_irq
147 *
148 * @bus_num: bus number of PCI device
149 * @dev_num: device number of PCI device
150 * @slot: pointer to u8 where slot number will be returned
151 */
152int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
153{
154 int rc = 0;
155
156 if (cpqhp_legacy_mode) {
157 struct pci_dev *fakedev;
158 struct pci_bus *fakebus;
159 u16 temp_word;
160
161 fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
162 fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
163 if (!fakedev || !fakebus) {
164 kfree(fakedev);
165 kfree(fakebus);
166 return -ENOMEM;
167 }
168
169 fakedev->devfn = dev_num << 3;
170 fakedev->bus = fakebus;
171 fakebus->number = bus_num;
172 dbg("%s: dev %d, bus %d, pin %d, num %d\n",
173 __FUNCTION__, dev_num, bus_num, int_pin, irq_num);
174 rc = pcibios_set_irq_routing(fakedev, int_pin - 0x0a, irq_num);
175 kfree(fakedev);
176 kfree(fakebus);
177 dbg("%s: rc %d\n", __FUNCTION__, rc);
178 if (!rc)
179 return !rc;
180
181 // set the Edge Level Control Register (ELCR)
182 temp_word = inb(0x4d0);
183 temp_word |= inb(0x4d1) << 8;
184
185 temp_word |= 0x01 << irq_num;
186
187 // This should only be for x86 as it sets the Edge Level Control Register
188 outb((u8) (temp_word & 0xFF), 0x4d0);
189 outb((u8) ((temp_word & 0xFF00) >> 8), 0x4d1);
190 rc = 0;
191 }
192
193 return rc;
194}
195
196
197/*
198 * WTF??? This function isn't in the code, yet a function calls it, but the
199 * compiler optimizes it away? strange. Here as a placeholder to keep the
200 * compiler happy.
201 */
202static int PCI_ScanBusNonBridge (u8 bus, u8 device)
203{
204 return 0;
205}
206
207static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
208{
209 u16 tdevice;
210 u32 work;
211 u8 tbus;
212
213 ctrl->pci_bus->number = bus_num;
214
215 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
216 //Scan for access first
217 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
218 continue;
219 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
220 //Yep we got one. Not a bridge ?
221 if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
222 *dev_num = tdevice;
223 dbg("found it !\n");
224 return 0;
225 }
226 }
227 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
228 //Scan for access first
229 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
230 continue;
231 dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
232 //Yep we got one. bridge ?
233 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
234 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
235 dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
236 if (PCI_ScanBusNonBridge(tbus, tdevice) == 0)
237 return 0;
238 }
239 }
240
241 return -1;
242}
243
244
245static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
246{
247 struct irq_routing_table *PCIIRQRoutingInfoLength;
248 long len;
249 long loop;
250 u32 work;
251
252 u8 tbus, tdevice, tslot;
253
254 PCIIRQRoutingInfoLength = pcibios_get_irq_routing_table();
255 if (!PCIIRQRoutingInfoLength)
256 return -1;
257
258 len = (PCIIRQRoutingInfoLength->size -
259 sizeof(struct irq_routing_table)) / sizeof(struct irq_info);
260 // Make sure I got at least one entry
261 if (len == 0) {
Jesper Juhl6044ec82005-11-07 01:01:32 -0800262 kfree(PCIIRQRoutingInfoLength );
Linus Torvalds1da177e2005-04-16 15:20:36 -0700263 return -1;
264 }
265
266 for (loop = 0; loop < len; ++loop) {
267 tbus = PCIIRQRoutingInfoLength->slots[loop].bus;
268 tdevice = PCIIRQRoutingInfoLength->slots[loop].devfn;
269 tslot = PCIIRQRoutingInfoLength->slots[loop].slot;
270
271 if (tslot == slot) {
272 *bus_num = tbus;
273 *dev_num = tdevice;
274 ctrl->pci_bus->number = tbus;
275 pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
276 if (!nobridge || (work == 0xffffffff)) {
Jesper Juhl6044ec82005-11-07 01:01:32 -0800277 kfree(PCIIRQRoutingInfoLength );
Linus Torvalds1da177e2005-04-16 15:20:36 -0700278 return 0;
279 }
280
281 dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
282 pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
283 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
284
285 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
286 pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
287 dbg("Scan bus for Non Bridge: bus %d\n", tbus);
288 if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
289 *bus_num = tbus;
Jesper Juhl6044ec82005-11-07 01:01:32 -0800290 kfree(PCIIRQRoutingInfoLength );
Linus Torvalds1da177e2005-04-16 15:20:36 -0700291 return 0;
292 }
293 } else {
Jesper Juhl6044ec82005-11-07 01:01:32 -0800294 kfree(PCIIRQRoutingInfoLength );
Linus Torvalds1da177e2005-04-16 15:20:36 -0700295 return 0;
296 }
297
298 }
299 }
Jesper Juhl6044ec82005-11-07 01:01:32 -0800300 kfree(PCIIRQRoutingInfoLength );
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301 return -1;
302}
303
304
305int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
306{
307 return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0); //plain (bridges allowed)
308}
309
310
311/* More PCI configuration routines; this time centered around hotplug controller */
312
313
314/*
315 * cpqhp_save_config
316 *
317 * Reads configuration for all slots in a PCI bus and saves info.
318 *
319 * Note: For non-hot plug busses, the slot # saved is the device #
320 *
321 * returns 0 if success
322 */
323int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
324{
325 long rc;
326 u8 class_code;
327 u8 header_type;
328 u32 ID;
329 u8 secondary_bus;
330 struct pci_func *new_slot;
331 int sub_bus;
332 int FirstSupported;
333 int LastSupported;
334 int max_functions;
335 int function;
336 u8 DevError;
337 int device = 0;
338 int cloop = 0;
339 int stop_it;
340 int index;
341
342 // Decide which slots are supported
343
344 if (is_hot_plug) {
345 //*********************************
346 // is_hot_plug is the slot mask
347 //*********************************
348 FirstSupported = is_hot_plug >> 4;
349 LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
350 } else {
351 FirstSupported = 0;
352 LastSupported = 0x1F;
353 }
354
355 // Save PCI configuration space for all devices in supported slots
356 ctrl->pci_bus->number = busnumber;
357 for (device = FirstSupported; device <= LastSupported; device++) {
358 ID = 0xFFFFFFFF;
359 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
360
361 if (ID != 0xFFFFFFFF) { // device in slot
362 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
363 if (rc)
364 return rc;
365
366 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
367 if (rc)
368 return rc;
369
370 // If multi-function device, set max_functions to 8
371 if (header_type & 0x80)
372 max_functions = 8;
373 else
374 max_functions = 1;
375
376 function = 0;
377
378 do {
379 DevError = 0;
380
381 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // P-P Bridge
382 // Recurse the subordinate bus
383 // get the subordinate bus number
384 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
385 if (rc) {
386 return rc;
387 } else {
388 sub_bus = (int) secondary_bus;
389
390 // Save secondary bus cfg spc
391 // with this recursive call.
392 rc = cpqhp_save_config(ctrl, sub_bus, 0);
393 if (rc)
394 return rc;
395 ctrl->pci_bus->number = busnumber;
396 }
397 }
398
399 index = 0;
400 new_slot = cpqhp_slot_find(busnumber, device, index++);
401 while (new_slot &&
402 (new_slot->function != (u8) function))
403 new_slot = cpqhp_slot_find(busnumber, device, index++);
404
405 if (!new_slot) {
406 // Setup slot structure.
407 new_slot = cpqhp_slot_create(busnumber);
408
409 if (new_slot == NULL)
410 return(1);
411 }
412
413 new_slot->bus = (u8) busnumber;
414 new_slot->device = (u8) device;
415 new_slot->function = (u8) function;
416 new_slot->is_a_board = 1;
417 new_slot->switch_save = 0x10;
418 // In case of unsupported board
419 new_slot->status = DevError;
420 new_slot->pci_dev = pci_find_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
421
422 for (cloop = 0; cloop < 0x20; cloop++) {
423 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
424 if (rc)
425 return rc;
426 }
427
428 function++;
429
430 stop_it = 0;
431
432 // this loop skips to the next present function
433 // reading in Class Code and Header type.
434
435 while ((function < max_functions)&&(!stop_it)) {
436 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
437 if (ID == 0xFFFFFFFF) { // nothing there.
438 function++;
439 } else { // Something there
440 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
441 if (rc)
442 return rc;
443
444 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
445 if (rc)
446 return rc;
447
448 stop_it++;
449 }
450 }
451
452 } while (function < max_functions);
453 } // End of IF (device in slot?)
454 else if (is_hot_plug) {
455 // Setup slot structure with entry for empty slot
456 new_slot = cpqhp_slot_create(busnumber);
457
458 if (new_slot == NULL) {
459 return(1);
460 }
461
462 new_slot->bus = (u8) busnumber;
463 new_slot->device = (u8) device;
464 new_slot->function = 0;
465 new_slot->is_a_board = 0;
466 new_slot->presence_save = 0;
467 new_slot->switch_save = 0;
468 }
469 } // End of FOR loop
470
471 return(0);
472}
473
474
475/*
476 * cpqhp_save_slot_config
477 *
478 * Saves configuration info for all PCI devices in a given slot
479 * including subordinate busses.
480 *
481 * returns 0 if success
482 */
483int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
484{
485 long rc;
486 u8 class_code;
487 u8 header_type;
488 u32 ID;
489 u8 secondary_bus;
490 int sub_bus;
491 int max_functions;
492 int function;
493 int cloop = 0;
494 int stop_it;
495
496 ID = 0xFFFFFFFF;
497
498 ctrl->pci_bus->number = new_slot->bus;
499 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
500
501 if (ID != 0xFFFFFFFF) { // device in slot
502 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
503 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
504
505 if (header_type & 0x80) // Multi-function device
506 max_functions = 8;
507 else
508 max_functions = 1;
509
510 function = 0;
511
512 do {
513 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
514 // Recurse the subordinate bus
515 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
516
517 sub_bus = (int) secondary_bus;
518
519 // Save the config headers for the secondary bus.
520 rc = cpqhp_save_config(ctrl, sub_bus, 0);
521 if (rc)
522 return(rc);
523 ctrl->pci_bus->number = new_slot->bus;
524
525 } // End of IF
526
527 new_slot->status = 0;
528
529 for (cloop = 0; cloop < 0x20; cloop++) {
530 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
531 }
532
533 function++;
534
535 stop_it = 0;
536
537 // this loop skips to the next present function
538 // reading in the Class Code and the Header type.
539
540 while ((function < max_functions) && (!stop_it)) {
541 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
542
543 if (ID == 0xFFFFFFFF) { // nothing there.
544 function++;
545 } else { // Something there
546 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
547
548 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
549
550 stop_it++;
551 }
552 }
553
554 } while (function < max_functions);
555 } // End of IF (device in slot?)
556 else {
557 return 2;
558 }
559
560 return 0;
561}
562
563
564/*
565 * cpqhp_save_base_addr_length
566 *
567 * Saves the length of all base address registers for the
568 * specified slot. this is for hot plug REPLACE
569 *
570 * returns 0 if success
571 */
572int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
573{
574 u8 cloop;
575 u8 header_type;
576 u8 secondary_bus;
577 u8 type;
578 int sub_bus;
579 u32 temp_register;
580 u32 base;
581 u32 rc;
582 struct pci_func *next;
583 int index = 0;
584 struct pci_bus *pci_bus = ctrl->pci_bus;
585 unsigned int devfn;
586
587 func = cpqhp_slot_find(func->bus, func->device, index++);
588
589 while (func != NULL) {
590 pci_bus->number = func->bus;
591 devfn = PCI_DEVFN(func->device, func->function);
592
593 // Check for Bridge
594 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
595
596 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
597 // PCI-PCI Bridge
598 pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
599
600 sub_bus = (int) secondary_bus;
601
602 next = cpqhp_slot_list[sub_bus];
603
604 while (next != NULL) {
605 rc = cpqhp_save_base_addr_length(ctrl, next);
606 if (rc)
607 return rc;
608
609 next = next->next;
610 }
611 pci_bus->number = func->bus;
612
613 //FIXME: this loop is duplicated in the non-bridge case. The two could be rolled together
614 // Figure out IO and memory base lengths
615 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
616 temp_register = 0xFFFFFFFF;
617 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
618 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
619
620 if (base) { // If this register is implemented
621 if (base & 0x01L) {
622 // IO base
623 // set base = amount of IO space requested
624 base = base & 0xFFFFFFFE;
625 base = (~base) + 1;
626
627 type = 1;
628 } else {
629 // memory base
630 base = base & 0xFFFFFFF0;
631 base = (~base) + 1;
632
633 type = 0;
634 }
635 } else {
636 base = 0x0L;
637 type = 0;
638 }
639
640 // Save information in slot structure
641 func->base_length[(cloop - 0x10) >> 2] =
642 base;
643 func->base_type[(cloop - 0x10) >> 2] = type;
644
645 } // End of base register loop
646
647
648 } else if ((header_type & 0x7F) == 0x00) { // PCI-PCI Bridge
649 // Figure out IO and memory base lengths
650 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
651 temp_register = 0xFFFFFFFF;
652 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
653 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
654
655 if (base) { // If this register is implemented
656 if (base & 0x01L) {
657 // IO base
658 // base = amount of IO space requested
659 base = base & 0xFFFFFFFE;
660 base = (~base) + 1;
661
662 type = 1;
663 } else {
664 // memory base
665 // base = amount of memory space requested
666 base = base & 0xFFFFFFF0;
667 base = (~base) + 1;
668
669 type = 0;
670 }
671 } else {
672 base = 0x0L;
673 type = 0;
674 }
675
676 // Save information in slot structure
677 func->base_length[(cloop - 0x10) >> 2] = base;
678 func->base_type[(cloop - 0x10) >> 2] = type;
679
680 } // End of base register loop
681
682 } else { // Some other unknown header type
683 }
684
685 // find the next device in this slot
686 func = cpqhp_slot_find(func->bus, func->device, index++);
687 }
688
689 return(0);
690}
691
692
693/*
694 * cpqhp_save_used_resources
695 *
696 * Stores used resource information for existing boards. this is
697 * for boards that were in the system when this driver was loaded.
698 * this function is for hot plug ADD
699 *
700 * returns 0 if success
701 */
702int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
703{
704 u8 cloop;
705 u8 header_type;
706 u8 secondary_bus;
707 u8 temp_byte;
708 u8 b_base;
709 u8 b_length;
710 u16 command;
711 u16 save_command;
712 u16 w_base;
713 u16 w_length;
714 u32 temp_register;
715 u32 save_base;
716 u32 base;
717 int index = 0;
718 struct pci_resource *mem_node;
719 struct pci_resource *p_mem_node;
720 struct pci_resource *io_node;
721 struct pci_resource *bus_node;
722 struct pci_bus *pci_bus = ctrl->pci_bus;
723 unsigned int devfn;
724
725 func = cpqhp_slot_find(func->bus, func->device, index++);
726
727 while ((func != NULL) && func->is_a_board) {
728 pci_bus->number = func->bus;
729 devfn = PCI_DEVFN(func->device, func->function);
730
731 // Save the command register
732 pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
733
734 // disable card
735 command = 0x00;
736 pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
737
738 // Check for Bridge
739 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
740
741 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
742 // Clear Bridge Control Register
743 command = 0x00;
744 pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
745 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
746 pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
747
748 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
749 if (!bus_node)
750 return -ENOMEM;
751
752 bus_node->base = secondary_bus;
753 bus_node->length = temp_byte - secondary_bus + 1;
754
755 bus_node->next = func->bus_head;
756 func->bus_head = bus_node;
757
758 // Save IO base and Limit registers
759 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
760 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
761
762 if ((b_base <= b_length) && (save_command & 0x01)) {
763 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
764 if (!io_node)
765 return -ENOMEM;
766
767 io_node->base = (b_base & 0xF0) << 8;
768 io_node->length = (b_length - b_base + 0x10) << 8;
769
770 io_node->next = func->io_head;
771 func->io_head = io_node;
772 }
773
774 // Save memory base and Limit registers
775 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
776 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
777
778 if ((w_base <= w_length) && (save_command & 0x02)) {
779 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
780 if (!mem_node)
781 return -ENOMEM;
782
783 mem_node->base = w_base << 16;
784 mem_node->length = (w_length - w_base + 0x10) << 16;
785
786 mem_node->next = func->mem_head;
787 func->mem_head = mem_node;
788 }
789
790 // Save prefetchable memory base and Limit registers
791 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
792 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
793
794 if ((w_base <= w_length) && (save_command & 0x02)) {
795 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
796 if (!p_mem_node)
797 return -ENOMEM;
798
799 p_mem_node->base = w_base << 16;
800 p_mem_node->length = (w_length - w_base + 0x10) << 16;
801
802 p_mem_node->next = func->p_mem_head;
803 func->p_mem_head = p_mem_node;
804 }
805 // Figure out IO and memory base lengths
806 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
807 pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
808
809 temp_register = 0xFFFFFFFF;
810 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
811 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
812
813 temp_register = base;
814
815 if (base) { // If this register is implemented
816 if (((base & 0x03L) == 0x01)
817 && (save_command & 0x01)) {
818 // IO base
819 // set temp_register = amount of IO space requested
820 temp_register = base & 0xFFFFFFFE;
821 temp_register = (~temp_register) + 1;
822
823 io_node = kmalloc(sizeof(*io_node),
824 GFP_KERNEL);
825 if (!io_node)
826 return -ENOMEM;
827
828 io_node->base =
829 save_base & (~0x03L);
830 io_node->length = temp_register;
831
832 io_node->next = func->io_head;
833 func->io_head = io_node;
834 } else
835 if (((base & 0x0BL) == 0x08)
836 && (save_command & 0x02)) {
837 // prefetchable memory base
838 temp_register = base & 0xFFFFFFF0;
839 temp_register = (~temp_register) + 1;
840
841 p_mem_node = kmalloc(sizeof(*p_mem_node),
842 GFP_KERNEL);
843 if (!p_mem_node)
844 return -ENOMEM;
845
846 p_mem_node->base = save_base & (~0x0FL);
847 p_mem_node->length = temp_register;
848
849 p_mem_node->next = func->p_mem_head;
850 func->p_mem_head = p_mem_node;
851 } else
852 if (((base & 0x0BL) == 0x00)
853 && (save_command & 0x02)) {
854 // prefetchable memory base
855 temp_register = base & 0xFFFFFFF0;
856 temp_register = (~temp_register) + 1;
857
858 mem_node = kmalloc(sizeof(*mem_node),
859 GFP_KERNEL);
860 if (!mem_node)
861 return -ENOMEM;
862
863 mem_node->base = save_base & (~0x0FL);
864 mem_node->length = temp_register;
865
866 mem_node->next = func->mem_head;
867 func->mem_head = mem_node;
868 } else
869 return(1);
870 }
871 } // End of base register loop
872 } else if ((header_type & 0x7F) == 0x00) { // Standard header
873 // Figure out IO and memory base lengths
874 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
875 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
876
877 temp_register = 0xFFFFFFFF;
878 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
879 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
880
881 temp_register = base;
882
883 if (base) { // If this register is implemented
884 if (((base & 0x03L) == 0x01)
885 && (save_command & 0x01)) {
886 // IO base
887 // set temp_register = amount of IO space requested
888 temp_register = base & 0xFFFFFFFE;
889 temp_register = (~temp_register) + 1;
890
891 io_node = kmalloc(sizeof(*io_node),
892 GFP_KERNEL);
893 if (!io_node)
894 return -ENOMEM;
895
896 io_node->base = save_base & (~0x01L);
897 io_node->length = temp_register;
898
899 io_node->next = func->io_head;
900 func->io_head = io_node;
901 } else
902 if (((base & 0x0BL) == 0x08)
903 && (save_command & 0x02)) {
904 // prefetchable memory base
905 temp_register = base & 0xFFFFFFF0;
906 temp_register = (~temp_register) + 1;
907
908 p_mem_node = kmalloc(sizeof(*p_mem_node),
909 GFP_KERNEL);
910 if (!p_mem_node)
911 return -ENOMEM;
912
913 p_mem_node->base = save_base & (~0x0FL);
914 p_mem_node->length = temp_register;
915
916 p_mem_node->next = func->p_mem_head;
917 func->p_mem_head = p_mem_node;
918 } else
919 if (((base & 0x0BL) == 0x00)
920 && (save_command & 0x02)) {
921 // prefetchable memory base
922 temp_register = base & 0xFFFFFFF0;
923 temp_register = (~temp_register) + 1;
924
925 mem_node = kmalloc(sizeof(*mem_node),
926 GFP_KERNEL);
927 if (!mem_node)
928 return -ENOMEM;
929
930 mem_node->base = save_base & (~0x0FL);
931 mem_node->length = temp_register;
932
933 mem_node->next = func->mem_head;
934 func->mem_head = mem_node;
935 } else
936 return(1);
937 }
938 } // End of base register loop
939 } else { // Some other unknown header type
940 }
941
942 // find the next device in this slot
943 func = cpqhp_slot_find(func->bus, func->device, index++);
944 }
945
946 return(0);
947}
948
949
950/*
951 * cpqhp_configure_board
952 *
953 * Copies saved configuration information to one slot.
954 * this is called recursively for bridge devices.
955 * this is for hot plug REPLACE!
956 *
957 * returns 0 if success
958 */
959int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
960{
961 int cloop;
962 u8 header_type;
963 u8 secondary_bus;
964 int sub_bus;
965 struct pci_func *next;
966 u32 temp;
967 u32 rc;
968 int index = 0;
969 struct pci_bus *pci_bus = ctrl->pci_bus;
970 unsigned int devfn;
971
972 func = cpqhp_slot_find(func->bus, func->device, index++);
973
974 while (func != NULL) {
975 pci_bus->number = func->bus;
976 devfn = PCI_DEVFN(func->device, func->function);
977
978 // Start at the top of config space so that the control
979 // registers are programmed last
980 for (cloop = 0x3C; cloop > 0; cloop -= 4) {
981 pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
982 }
983
984 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
985
986 // If this is a bridge device, restore subordinate devices
987 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
988 pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
989
990 sub_bus = (int) secondary_bus;
991
992 next = cpqhp_slot_list[sub_bus];
993
994 while (next != NULL) {
995 rc = cpqhp_configure_board(ctrl, next);
996 if (rc)
997 return rc;
998
999 next = next->next;
1000 }
1001 } else {
1002
1003 // Check all the base Address Registers to make sure
1004 // they are the same. If not, the board is different.
1005
1006 for (cloop = 16; cloop < 40; cloop += 4) {
1007 pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
1008
1009 if (temp != func->config_space[cloop >> 2]) {
1010 dbg("Config space compare failure!!! offset = %x\n", cloop);
1011 dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1012 dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1013 return 1;
1014 }
1015 }
1016 }
1017
1018 func->configured = 1;
1019
1020 func = cpqhp_slot_find(func->bus, func->device, index++);
1021 }
1022
1023 return 0;
1024}
1025
1026
1027/*
1028 * cpqhp_valid_replace
1029 *
1030 * this function checks to see if a board is the same as the
1031 * one it is replacing. this check will detect if the device's
1032 * vendor or device id's are the same
1033 *
1034 * returns 0 if the board is the same nonzero otherwise
1035 */
1036int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
1037{
1038 u8 cloop;
1039 u8 header_type;
1040 u8 secondary_bus;
1041 u8 type;
1042 u32 temp_register = 0;
1043 u32 base;
1044 u32 rc;
1045 struct pci_func *next;
1046 int index = 0;
1047 struct pci_bus *pci_bus = ctrl->pci_bus;
1048 unsigned int devfn;
1049
1050 if (!func->is_a_board)
1051 return(ADD_NOT_SUPPORTED);
1052
1053 func = cpqhp_slot_find(func->bus, func->device, index++);
1054
1055 while (func != NULL) {
1056 pci_bus->number = func->bus;
1057 devfn = PCI_DEVFN(func->device, func->function);
1058
1059 pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1060
1061 // No adapter present
1062 if (temp_register == 0xFFFFFFFF)
1063 return(NO_ADAPTER_PRESENT);
1064
1065 if (temp_register != func->config_space[0])
1066 return(ADAPTER_NOT_SAME);
1067
1068 // Check for same revision number and class code
1069 pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1070
1071 // Adapter not the same
1072 if (temp_register != func->config_space[0x08 >> 2])
1073 return(ADAPTER_NOT_SAME);
1074
1075 // Check for Bridge
1076 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1077
1078 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
1079 // In order to continue checking, we must program the
1080 // bus registers in the bridge to respond to accesses
1081 // for it's subordinate bus(es)
1082
1083 temp_register = func->config_space[0x18 >> 2];
1084 pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1085
1086 secondary_bus = (temp_register >> 8) & 0xFF;
1087
1088 next = cpqhp_slot_list[secondary_bus];
1089
1090 while (next != NULL) {
1091 rc = cpqhp_valid_replace(ctrl, next);
1092 if (rc)
1093 return rc;
1094
1095 next = next->next;
1096 }
1097
1098 }
1099 // Check to see if it is a standard config header
1100 else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1101 // Check subsystem vendor and ID
1102 pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1103
1104 if (temp_register != func->config_space[0x2C >> 2]) {
1105 // If it's a SMART-2 and the register isn't filled
1106 // in, ignore the difference because
1107 // they just have an old rev of the firmware
1108
1109 if (!((func->config_space[0] == 0xAE100E11)
1110 && (temp_register == 0x00L)))
1111 return(ADAPTER_NOT_SAME);
1112 }
1113 // Figure out IO and memory base lengths
1114 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1115 temp_register = 0xFFFFFFFF;
1116 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1117 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1118 if (base) { // If this register is implemented
1119 if (base & 0x01L) {
1120 // IO base
1121 // set base = amount of IO space requested
1122 base = base & 0xFFFFFFFE;
1123 base = (~base) + 1;
1124
1125 type = 1;
1126 } else {
1127 // memory base
1128 base = base & 0xFFFFFFF0;
1129 base = (~base) + 1;
1130
1131 type = 0;
1132 }
1133 } else {
1134 base = 0x0L;
1135 type = 0;
1136 }
1137
1138 // Check information in slot structure
1139 if (func->base_length[(cloop - 0x10) >> 2] != base)
1140 return(ADAPTER_NOT_SAME);
1141
1142 if (func->base_type[(cloop - 0x10) >> 2] != type)
1143 return(ADAPTER_NOT_SAME);
1144
1145 } // End of base register loop
1146
1147 } // End of (type 0 config space) else
1148 else {
1149 // this is not a type 0 or 1 config space header so
1150 // we don't know how to do it
1151 return(DEVICE_TYPE_NOT_SUPPORTED);
1152 }
1153
1154 // Get the next function
1155 func = cpqhp_slot_find(func->bus, func->device, index++);
1156 }
1157
1158
1159 return 0;
1160}
1161
1162
1163/*
1164 * cpqhp_find_available_resources
1165 *
1166 * Finds available memory, IO, and IRQ resources for programming
1167 * devices which may be added to the system
1168 * this function is for hot plug ADD!
1169 *
1170 * returns 0 if success
1171 */
1172int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1173{
1174 u8 temp;
1175 u8 populated_slot;
1176 u8 bridged_slot;
1177 void __iomem *one_slot;
1178 void __iomem *rom_resource_table;
1179 struct pci_func *func = NULL;
1180 int i = 10, index;
1181 u32 temp_dword, rc;
1182 struct pci_resource *mem_node;
1183 struct pci_resource *p_mem_node;
1184 struct pci_resource *io_node;
1185 struct pci_resource *bus_node;
1186
1187 rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1188 dbg("rom_resource_table = %p\n", rom_resource_table);
1189
1190 if (rom_resource_table == NULL) {
1191 return -ENODEV;
1192 }
1193 // Sum all resources and setup resource maps
1194 unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1195 dbg("unused_IRQ = %x\n", unused_IRQ);
1196
1197 temp = 0;
1198 while (unused_IRQ) {
1199 if (unused_IRQ & 1) {
1200 cpqhp_disk_irq = temp;
1201 break;
1202 }
1203 unused_IRQ = unused_IRQ >> 1;
1204 temp++;
1205 }
1206
1207 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1208 unused_IRQ = unused_IRQ >> 1;
1209 temp++;
1210
1211 while (unused_IRQ) {
1212 if (unused_IRQ & 1) {
1213 cpqhp_nic_irq = temp;
1214 break;
1215 }
1216 unused_IRQ = unused_IRQ >> 1;
1217 temp++;
1218 }
1219
1220 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1221 unused_IRQ = readl(rom_resource_table + PCIIRQ);
1222
1223 temp = 0;
1224
1225 if (!cpqhp_nic_irq) {
1226 cpqhp_nic_irq = ctrl->cfgspc_irq;
1227 }
1228
1229 if (!cpqhp_disk_irq) {
1230 cpqhp_disk_irq = ctrl->cfgspc_irq;
1231 }
1232
1233 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1234
1235 rc = compaq_nvram_load(rom_start, ctrl);
1236 if (rc)
1237 return rc;
1238
1239 one_slot = rom_resource_table + sizeof (struct hrt);
1240
1241 i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1242 dbg("number_of_entries = %d\n", i);
1243
1244 if (!readb(one_slot + SECONDARY_BUS))
1245 return 1;
1246
1247 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1248
1249 while (i && readb(one_slot + SECONDARY_BUS)) {
1250 u8 dev_func = readb(one_slot + DEV_FUNC);
1251 u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1252 u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1253 u8 max_bus = readb(one_slot + MAX_BUS);
1254 u16 io_base = readw(one_slot + IO_BASE);
1255 u16 io_length = readw(one_slot + IO_LENGTH);
1256 u16 mem_base = readw(one_slot + MEM_BASE);
1257 u16 mem_length = readw(one_slot + MEM_LENGTH);
1258 u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1259 u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1260
1261 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
1262 dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1263 primary_bus, secondary_bus, max_bus);
1264
1265 // If this entry isn't for our controller's bus, ignore it
1266 if (primary_bus != ctrl->bus) {
1267 i--;
1268 one_slot += sizeof (struct slot_rt);
1269 continue;
1270 }
1271 // find out if this entry is for an occupied slot
1272 ctrl->pci_bus->number = primary_bus;
1273 pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1274 dbg("temp_D_word = %x\n", temp_dword);
1275
1276 if (temp_dword != 0xFFFFFFFF) {
1277 index = 0;
1278 func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1279
1280 while (func && (func->function != (dev_func & 0x07))) {
1281 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1282 func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1283 }
1284
1285 // If we can't find a match, skip this table entry
1286 if (!func) {
1287 i--;
1288 one_slot += sizeof (struct slot_rt);
1289 continue;
1290 }
1291 // this may not work and shouldn't be used
1292 if (secondary_bus != primary_bus)
1293 bridged_slot = 1;
1294 else
1295 bridged_slot = 0;
1296
1297 populated_slot = 1;
1298 } else {
1299 populated_slot = 0;
1300 bridged_slot = 0;
1301 }
1302
1303
1304 // If we've got a valid IO base, use it
1305
1306 temp_dword = io_base + io_length;
1307
1308 if ((io_base) && (temp_dword < 0x10000)) {
1309 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1310 if (!io_node)
1311 return -ENOMEM;
1312
1313 io_node->base = io_base;
1314 io_node->length = io_length;
1315
1316 dbg("found io_node(base, length) = %x, %x\n",
1317 io_node->base, io_node->length);
1318 dbg("populated slot =%d \n", populated_slot);
1319 if (!populated_slot) {
1320 io_node->next = ctrl->io_head;
1321 ctrl->io_head = io_node;
1322 } else {
1323 io_node->next = func->io_head;
1324 func->io_head = io_node;
1325 }
1326 }
1327
1328 // If we've got a valid memory base, use it
1329 temp_dword = mem_base + mem_length;
1330 if ((mem_base) && (temp_dword < 0x10000)) {
1331 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1332 if (!mem_node)
1333 return -ENOMEM;
1334
1335 mem_node->base = mem_base << 16;
1336
1337 mem_node->length = mem_length << 16;
1338
1339 dbg("found mem_node(base, length) = %x, %x\n",
1340 mem_node->base, mem_node->length);
1341 dbg("populated slot =%d \n", populated_slot);
1342 if (!populated_slot) {
1343 mem_node->next = ctrl->mem_head;
1344 ctrl->mem_head = mem_node;
1345 } else {
1346 mem_node->next = func->mem_head;
1347 func->mem_head = mem_node;
1348 }
1349 }
1350
1351 // If we've got a valid prefetchable memory base, and
1352 // the base + length isn't greater than 0xFFFF
1353 temp_dword = pre_mem_base + pre_mem_length;
1354 if ((pre_mem_base) && (temp_dword < 0x10000)) {
1355 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1356 if (!p_mem_node)
1357 return -ENOMEM;
1358
1359 p_mem_node->base = pre_mem_base << 16;
1360
1361 p_mem_node->length = pre_mem_length << 16;
1362 dbg("found p_mem_node(base, length) = %x, %x\n",
1363 p_mem_node->base, p_mem_node->length);
1364 dbg("populated slot =%d \n", populated_slot);
1365
1366 if (!populated_slot) {
1367 p_mem_node->next = ctrl->p_mem_head;
1368 ctrl->p_mem_head = p_mem_node;
1369 } else {
1370 p_mem_node->next = func->p_mem_head;
1371 func->p_mem_head = p_mem_node;
1372 }
1373 }
1374
1375 // If we've got a valid bus number, use it
1376 // The second condition is to ignore bus numbers on
1377 // populated slots that don't have PCI-PCI bridges
1378 if (secondary_bus && (secondary_bus != primary_bus)) {
1379 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1380 if (!bus_node)
1381 return -ENOMEM;
1382
1383 bus_node->base = secondary_bus;
1384 bus_node->length = max_bus - secondary_bus + 1;
1385 dbg("found bus_node(base, length) = %x, %x\n",
1386 bus_node->base, bus_node->length);
1387 dbg("populated slot =%d \n", populated_slot);
1388 if (!populated_slot) {
1389 bus_node->next = ctrl->bus_head;
1390 ctrl->bus_head = bus_node;
1391 } else {
1392 bus_node->next = func->bus_head;
1393 func->bus_head = bus_node;
1394 }
1395 }
1396
1397 i--;
1398 one_slot += sizeof (struct slot_rt);
1399 }
1400
1401 // If all of the following fail, we don't have any resources for
1402 // hot plug add
1403 rc = 1;
1404 rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1405 rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1406 rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1407 rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1408
1409 return rc;
1410}
1411
1412
1413/*
1414 * cpqhp_return_board_resources
1415 *
1416 * this routine returns all resources allocated to a board to
1417 * the available pool.
1418 *
1419 * returns 0 if success
1420 */
1421int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
1422{
1423 int rc = 0;
1424 struct pci_resource *node;
1425 struct pci_resource *t_node;
1426 dbg("%s\n", __FUNCTION__);
1427
1428 if (!func)
1429 return 1;
1430
1431 node = func->io_head;
1432 func->io_head = NULL;
1433 while (node) {
1434 t_node = node->next;
1435 return_resource(&(resources->io_head), node);
1436 node = t_node;
1437 }
1438
1439 node = func->mem_head;
1440 func->mem_head = NULL;
1441 while (node) {
1442 t_node = node->next;
1443 return_resource(&(resources->mem_head), node);
1444 node = t_node;
1445 }
1446
1447 node = func->p_mem_head;
1448 func->p_mem_head = NULL;
1449 while (node) {
1450 t_node = node->next;
1451 return_resource(&(resources->p_mem_head), node);
1452 node = t_node;
1453 }
1454
1455 node = func->bus_head;
1456 func->bus_head = NULL;
1457 while (node) {
1458 t_node = node->next;
1459 return_resource(&(resources->bus_head), node);
1460 node = t_node;
1461 }
1462
1463 rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1464 rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1465 rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1466 rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1467
1468 return rc;
1469}
1470
1471
1472/*
1473 * cpqhp_destroy_resource_list
1474 *
1475 * Puts node back in the resource list pointed to by head
1476 */
1477void cpqhp_destroy_resource_list (struct resource_lists * resources)
1478{
1479 struct pci_resource *res, *tres;
1480
1481 res = resources->io_head;
1482 resources->io_head = NULL;
1483
1484 while (res) {
1485 tres = res;
1486 res = res->next;
1487 kfree(tres);
1488 }
1489
1490 res = resources->mem_head;
1491 resources->mem_head = NULL;
1492
1493 while (res) {
1494 tres = res;
1495 res = res->next;
1496 kfree(tres);
1497 }
1498
1499 res = resources->p_mem_head;
1500 resources->p_mem_head = NULL;
1501
1502 while (res) {
1503 tres = res;
1504 res = res->next;
1505 kfree(tres);
1506 }
1507
1508 res = resources->bus_head;
1509 resources->bus_head = NULL;
1510
1511 while (res) {
1512 tres = res;
1513 res = res->next;
1514 kfree(tres);
1515 }
1516}
1517
1518
1519/*
1520 * cpqhp_destroy_board_resources
1521 *
1522 * Puts node back in the resource list pointed to by head
1523 */
1524void cpqhp_destroy_board_resources (struct pci_func * func)
1525{
1526 struct pci_resource *res, *tres;
1527
1528 res = func->io_head;
1529 func->io_head = NULL;
1530
1531 while (res) {
1532 tres = res;
1533 res = res->next;
1534 kfree(tres);
1535 }
1536
1537 res = func->mem_head;
1538 func->mem_head = NULL;
1539
1540 while (res) {
1541 tres = res;
1542 res = res->next;
1543 kfree(tres);
1544 }
1545
1546 res = func->p_mem_head;
1547 func->p_mem_head = NULL;
1548
1549 while (res) {
1550 tres = res;
1551 res = res->next;
1552 kfree(tres);
1553 }
1554
1555 res = func->bus_head;
1556 func->bus_head = NULL;
1557
1558 while (res) {
1559 tres = res;
1560 res = res->next;
1561 kfree(tres);
1562 }
1563}
1564