|  | /* | 
|  | * Copyright (C) 2011 Fujitsu.  All rights reserved. | 
|  | * Written by Miao Xie <miaox@cn.fujitsu.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include "delayed-inode.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  |  | 
|  | #define BTRFS_DELAYED_WRITEBACK		512 | 
|  | #define BTRFS_DELAYED_BACKGROUND	128 | 
|  | #define BTRFS_DELAYED_BATCH		16 | 
|  |  | 
|  | static struct kmem_cache *delayed_node_cache; | 
|  |  | 
|  | int __init btrfs_delayed_inode_init(void) | 
|  | { | 
|  | delayed_node_cache = kmem_cache_create("btrfs_delayed_node", | 
|  | sizeof(struct btrfs_delayed_node), | 
|  | 0, | 
|  | SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, | 
|  | NULL); | 
|  | if (!delayed_node_cache) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_delayed_inode_exit(void) | 
|  | { | 
|  | if (delayed_node_cache) | 
|  | kmem_cache_destroy(delayed_node_cache); | 
|  | } | 
|  |  | 
|  | static inline void btrfs_init_delayed_node( | 
|  | struct btrfs_delayed_node *delayed_node, | 
|  | struct btrfs_root *root, u64 inode_id) | 
|  | { | 
|  | delayed_node->root = root; | 
|  | delayed_node->inode_id = inode_id; | 
|  | atomic_set(&delayed_node->refs, 0); | 
|  | delayed_node->count = 0; | 
|  | delayed_node->in_list = 0; | 
|  | delayed_node->inode_dirty = 0; | 
|  | delayed_node->ins_root = RB_ROOT; | 
|  | delayed_node->del_root = RB_ROOT; | 
|  | mutex_init(&delayed_node->mutex); | 
|  | delayed_node->index_cnt = 0; | 
|  | INIT_LIST_HEAD(&delayed_node->n_list); | 
|  | INIT_LIST_HEAD(&delayed_node->p_list); | 
|  | delayed_node->bytes_reserved = 0; | 
|  | memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item)); | 
|  | } | 
|  |  | 
|  | static inline int btrfs_is_continuous_delayed_item( | 
|  | struct btrfs_delayed_item *item1, | 
|  | struct btrfs_delayed_item *item2) | 
|  | { | 
|  | if (item1->key.type == BTRFS_DIR_INDEX_KEY && | 
|  | item1->key.objectid == item2->key.objectid && | 
|  | item1->key.type == item2->key.type && | 
|  | item1->key.offset + 1 == item2->key.offset) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline struct btrfs_delayed_root *btrfs_get_delayed_root( | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | return root->fs_info->delayed_root; | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode) | 
|  | { | 
|  | struct btrfs_inode *btrfs_inode = BTRFS_I(inode); | 
|  | struct btrfs_root *root = btrfs_inode->root; | 
|  | u64 ino = btrfs_ino(inode); | 
|  | struct btrfs_delayed_node *node; | 
|  |  | 
|  | node = ACCESS_ONCE(btrfs_inode->delayed_node); | 
|  | if (node) { | 
|  | atomic_inc(&node->refs); | 
|  | return node; | 
|  | } | 
|  |  | 
|  | spin_lock(&root->inode_lock); | 
|  | node = radix_tree_lookup(&root->delayed_nodes_tree, ino); | 
|  | if (node) { | 
|  | if (btrfs_inode->delayed_node) { | 
|  | atomic_inc(&node->refs);	/* can be accessed */ | 
|  | BUG_ON(btrfs_inode->delayed_node != node); | 
|  | spin_unlock(&root->inode_lock); | 
|  | return node; | 
|  | } | 
|  | btrfs_inode->delayed_node = node; | 
|  | atomic_inc(&node->refs);	/* can be accessed */ | 
|  | atomic_inc(&node->refs);	/* cached in the inode */ | 
|  | spin_unlock(&root->inode_lock); | 
|  | return node; | 
|  | } | 
|  | spin_unlock(&root->inode_lock); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Will return either the node or PTR_ERR(-ENOMEM) */ | 
|  | static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( | 
|  | struct inode *inode) | 
|  | { | 
|  | struct btrfs_delayed_node *node; | 
|  | struct btrfs_inode *btrfs_inode = BTRFS_I(inode); | 
|  | struct btrfs_root *root = btrfs_inode->root; | 
|  | u64 ino = btrfs_ino(inode); | 
|  | int ret; | 
|  |  | 
|  | again: | 
|  | node = btrfs_get_delayed_node(inode); | 
|  | if (node) | 
|  | return node; | 
|  |  | 
|  | node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS); | 
|  | if (!node) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | btrfs_init_delayed_node(node, root, ino); | 
|  |  | 
|  | atomic_inc(&node->refs);	/* cached in the btrfs inode */ | 
|  | atomic_inc(&node->refs);	/* can be accessed */ | 
|  |  | 
|  | ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); | 
|  | if (ret) { | 
|  | kmem_cache_free(delayed_node_cache, node); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | spin_lock(&root->inode_lock); | 
|  | ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); | 
|  | if (ret == -EEXIST) { | 
|  | kmem_cache_free(delayed_node_cache, node); | 
|  | spin_unlock(&root->inode_lock); | 
|  | radix_tree_preload_end(); | 
|  | goto again; | 
|  | } | 
|  | btrfs_inode->delayed_node = node; | 
|  | spin_unlock(&root->inode_lock); | 
|  | radix_tree_preload_end(); | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call it when holding delayed_node->mutex | 
|  | * | 
|  | * If mod = 1, add this node into the prepared list. | 
|  | */ | 
|  | static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, | 
|  | struct btrfs_delayed_node *node, | 
|  | int mod) | 
|  | { | 
|  | spin_lock(&root->lock); | 
|  | if (node->in_list) { | 
|  | if (!list_empty(&node->p_list)) | 
|  | list_move_tail(&node->p_list, &root->prepare_list); | 
|  | else if (mod) | 
|  | list_add_tail(&node->p_list, &root->prepare_list); | 
|  | } else { | 
|  | list_add_tail(&node->n_list, &root->node_list); | 
|  | list_add_tail(&node->p_list, &root->prepare_list); | 
|  | atomic_inc(&node->refs);	/* inserted into list */ | 
|  | root->nodes++; | 
|  | node->in_list = 1; | 
|  | } | 
|  | spin_unlock(&root->lock); | 
|  | } | 
|  |  | 
|  | /* Call it when holding delayed_node->mutex */ | 
|  | static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | spin_lock(&root->lock); | 
|  | if (node->in_list) { | 
|  | root->nodes--; | 
|  | atomic_dec(&node->refs);	/* not in the list */ | 
|  | list_del_init(&node->n_list); | 
|  | if (!list_empty(&node->p_list)) | 
|  | list_del_init(&node->p_list); | 
|  | node->in_list = 0; | 
|  | } | 
|  | spin_unlock(&root->lock); | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_node *btrfs_first_delayed_node( | 
|  | struct btrfs_delayed_root *delayed_root) | 
|  | { | 
|  | struct list_head *p; | 
|  | struct btrfs_delayed_node *node = NULL; | 
|  |  | 
|  | spin_lock(&delayed_root->lock); | 
|  | if (list_empty(&delayed_root->node_list)) | 
|  | goto out; | 
|  |  | 
|  | p = delayed_root->node_list.next; | 
|  | node = list_entry(p, struct btrfs_delayed_node, n_list); | 
|  | atomic_inc(&node->refs); | 
|  | out: | 
|  | spin_unlock(&delayed_root->lock); | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_node *btrfs_next_delayed_node( | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  | struct list_head *p; | 
|  | struct btrfs_delayed_node *next = NULL; | 
|  |  | 
|  | delayed_root = node->root->fs_info->delayed_root; | 
|  | spin_lock(&delayed_root->lock); | 
|  | if (!node->in_list) {	/* not in the list */ | 
|  | if (list_empty(&delayed_root->node_list)) | 
|  | goto out; | 
|  | p = delayed_root->node_list.next; | 
|  | } else if (list_is_last(&node->n_list, &delayed_root->node_list)) | 
|  | goto out; | 
|  | else | 
|  | p = node->n_list.next; | 
|  |  | 
|  | next = list_entry(p, struct btrfs_delayed_node, n_list); | 
|  | atomic_inc(&next->refs); | 
|  | out: | 
|  | spin_unlock(&delayed_root->lock); | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static void __btrfs_release_delayed_node( | 
|  | struct btrfs_delayed_node *delayed_node, | 
|  | int mod) | 
|  | { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  |  | 
|  | if (!delayed_node) | 
|  | return; | 
|  |  | 
|  | delayed_root = delayed_node->root->fs_info->delayed_root; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (delayed_node->count) | 
|  | btrfs_queue_delayed_node(delayed_root, delayed_node, mod); | 
|  | else | 
|  | btrfs_dequeue_delayed_node(delayed_root, delayed_node); | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  |  | 
|  | if (atomic_dec_and_test(&delayed_node->refs)) { | 
|  | struct btrfs_root *root = delayed_node->root; | 
|  | spin_lock(&root->inode_lock); | 
|  | if (atomic_read(&delayed_node->refs) == 0) { | 
|  | radix_tree_delete(&root->delayed_nodes_tree, | 
|  | delayed_node->inode_id); | 
|  | kmem_cache_free(delayed_node_cache, delayed_node); | 
|  | } | 
|  | spin_unlock(&root->inode_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) | 
|  | { | 
|  | __btrfs_release_delayed_node(node, 0); | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( | 
|  | struct btrfs_delayed_root *delayed_root) | 
|  | { | 
|  | struct list_head *p; | 
|  | struct btrfs_delayed_node *node = NULL; | 
|  |  | 
|  | spin_lock(&delayed_root->lock); | 
|  | if (list_empty(&delayed_root->prepare_list)) | 
|  | goto out; | 
|  |  | 
|  | p = delayed_root->prepare_list.next; | 
|  | list_del_init(p); | 
|  | node = list_entry(p, struct btrfs_delayed_node, p_list); | 
|  | atomic_inc(&node->refs); | 
|  | out: | 
|  | spin_unlock(&delayed_root->lock); | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | static inline void btrfs_release_prepared_delayed_node( | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | __btrfs_release_delayed_node(node, 1); | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) | 
|  | { | 
|  | struct btrfs_delayed_item *item; | 
|  | item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); | 
|  | if (item) { | 
|  | item->data_len = data_len; | 
|  | item->ins_or_del = 0; | 
|  | item->bytes_reserved = 0; | 
|  | item->delayed_node = NULL; | 
|  | atomic_set(&item->refs, 1); | 
|  | } | 
|  | return item; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __btrfs_lookup_delayed_item - look up the delayed item by key | 
|  | * @delayed_node: pointer to the delayed node | 
|  | * @key:	  the key to look up | 
|  | * @prev:	  used to store the prev item if the right item isn't found | 
|  | * @next:	  used to store the next item if the right item isn't found | 
|  | * | 
|  | * Note: if we don't find the right item, we will return the prev item and | 
|  | * the next item. | 
|  | */ | 
|  | static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( | 
|  | struct rb_root *root, | 
|  | struct btrfs_key *key, | 
|  | struct btrfs_delayed_item **prev, | 
|  | struct btrfs_delayed_item **next) | 
|  | { | 
|  | struct rb_node *node, *prev_node = NULL; | 
|  | struct btrfs_delayed_item *delayed_item = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | node = root->rb_node; | 
|  |  | 
|  | while (node) { | 
|  | delayed_item = rb_entry(node, struct btrfs_delayed_item, | 
|  | rb_node); | 
|  | prev_node = node; | 
|  | ret = btrfs_comp_cpu_keys(&delayed_item->key, key); | 
|  | if (ret < 0) | 
|  | node = node->rb_right; | 
|  | else if (ret > 0) | 
|  | node = node->rb_left; | 
|  | else | 
|  | return delayed_item; | 
|  | } | 
|  |  | 
|  | if (prev) { | 
|  | if (!prev_node) | 
|  | *prev = NULL; | 
|  | else if (ret < 0) | 
|  | *prev = delayed_item; | 
|  | else if ((node = rb_prev(prev_node)) != NULL) { | 
|  | *prev = rb_entry(node, struct btrfs_delayed_item, | 
|  | rb_node); | 
|  | } else | 
|  | *prev = NULL; | 
|  | } | 
|  |  | 
|  | if (next) { | 
|  | if (!prev_node) | 
|  | *next = NULL; | 
|  | else if (ret > 0) | 
|  | *next = delayed_item; | 
|  | else if ((node = rb_next(prev_node)) != NULL) { | 
|  | *next = rb_entry(node, struct btrfs_delayed_item, | 
|  | rb_node); | 
|  | } else | 
|  | *next = NULL; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( | 
|  | struct btrfs_delayed_node *delayed_node, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct btrfs_delayed_item *item; | 
|  |  | 
|  | item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, | 
|  | NULL, NULL); | 
|  | return item; | 
|  | } | 
|  |  | 
|  | static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, | 
|  | struct btrfs_delayed_item *ins, | 
|  | int action) | 
|  | { | 
|  | struct rb_node **p, *node; | 
|  | struct rb_node *parent_node = NULL; | 
|  | struct rb_root *root; | 
|  | struct btrfs_delayed_item *item; | 
|  | int cmp; | 
|  |  | 
|  | if (action == BTRFS_DELAYED_INSERTION_ITEM) | 
|  | root = &delayed_node->ins_root; | 
|  | else if (action == BTRFS_DELAYED_DELETION_ITEM) | 
|  | root = &delayed_node->del_root; | 
|  | else | 
|  | BUG(); | 
|  | p = &root->rb_node; | 
|  | node = &ins->rb_node; | 
|  |  | 
|  | while (*p) { | 
|  | parent_node = *p; | 
|  | item = rb_entry(parent_node, struct btrfs_delayed_item, | 
|  | rb_node); | 
|  |  | 
|  | cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); | 
|  | if (cmp < 0) | 
|  | p = &(*p)->rb_right; | 
|  | else if (cmp > 0) | 
|  | p = &(*p)->rb_left; | 
|  | else | 
|  | return -EEXIST; | 
|  | } | 
|  |  | 
|  | rb_link_node(node, parent_node, p); | 
|  | rb_insert_color(node, root); | 
|  | ins->delayed_node = delayed_node; | 
|  | ins->ins_or_del = action; | 
|  |  | 
|  | if (ins->key.type == BTRFS_DIR_INDEX_KEY && | 
|  | action == BTRFS_DELAYED_INSERTION_ITEM && | 
|  | ins->key.offset >= delayed_node->index_cnt) | 
|  | delayed_node->index_cnt = ins->key.offset + 1; | 
|  |  | 
|  | delayed_node->count++; | 
|  | atomic_inc(&delayed_node->root->fs_info->delayed_root->items); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, | 
|  | struct btrfs_delayed_item *item) | 
|  | { | 
|  | return __btrfs_add_delayed_item(node, item, | 
|  | BTRFS_DELAYED_INSERTION_ITEM); | 
|  | } | 
|  |  | 
|  | static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, | 
|  | struct btrfs_delayed_item *item) | 
|  | { | 
|  | return __btrfs_add_delayed_item(node, item, | 
|  | BTRFS_DELAYED_DELETION_ITEM); | 
|  | } | 
|  |  | 
|  | static void finish_one_item(struct btrfs_delayed_root *delayed_root) | 
|  | { | 
|  | int seq = atomic_inc_return(&delayed_root->items_seq); | 
|  | if ((atomic_dec_return(&delayed_root->items) < | 
|  | BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) && | 
|  | waitqueue_active(&delayed_root->wait)) | 
|  | wake_up(&delayed_root->wait); | 
|  | } | 
|  |  | 
|  | static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) | 
|  | { | 
|  | struct rb_root *root; | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  |  | 
|  | delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; | 
|  |  | 
|  | BUG_ON(!delayed_root); | 
|  | BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && | 
|  | delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); | 
|  |  | 
|  | if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) | 
|  | root = &delayed_item->delayed_node->ins_root; | 
|  | else | 
|  | root = &delayed_item->delayed_node->del_root; | 
|  |  | 
|  | rb_erase(&delayed_item->rb_node, root); | 
|  | delayed_item->delayed_node->count--; | 
|  |  | 
|  | finish_one_item(delayed_root); | 
|  | } | 
|  |  | 
|  | static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) | 
|  | { | 
|  | if (item) { | 
|  | __btrfs_remove_delayed_item(item); | 
|  | if (atomic_dec_and_test(&item->refs)) | 
|  | kfree(item); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( | 
|  | struct btrfs_delayed_node *delayed_node) | 
|  | { | 
|  | struct rb_node *p; | 
|  | struct btrfs_delayed_item *item = NULL; | 
|  |  | 
|  | p = rb_first(&delayed_node->ins_root); | 
|  | if (p) | 
|  | item = rb_entry(p, struct btrfs_delayed_item, rb_node); | 
|  |  | 
|  | return item; | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( | 
|  | struct btrfs_delayed_node *delayed_node) | 
|  | { | 
|  | struct rb_node *p; | 
|  | struct btrfs_delayed_item *item = NULL; | 
|  |  | 
|  | p = rb_first(&delayed_node->del_root); | 
|  | if (p) | 
|  | item = rb_entry(p, struct btrfs_delayed_item, rb_node); | 
|  |  | 
|  | return item; | 
|  | } | 
|  |  | 
|  | static struct btrfs_delayed_item *__btrfs_next_delayed_item( | 
|  | struct btrfs_delayed_item *item) | 
|  | { | 
|  | struct rb_node *p; | 
|  | struct btrfs_delayed_item *next = NULL; | 
|  |  | 
|  | p = rb_next(&item->rb_node); | 
|  | if (p) | 
|  | next = rb_entry(p, struct btrfs_delayed_item, rb_node); | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root, | 
|  | u64 root_id) | 
|  | { | 
|  | struct btrfs_key root_key; | 
|  |  | 
|  | if (root->objectid == root_id) | 
|  | return root; | 
|  |  | 
|  | root_key.objectid = root_id; | 
|  | root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | root_key.offset = (u64)-1; | 
|  | return btrfs_read_fs_root_no_name(root->fs_info, &root_key); | 
|  | } | 
|  |  | 
|  | static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_item *item) | 
|  | { | 
|  | struct btrfs_block_rsv *src_rsv; | 
|  | struct btrfs_block_rsv *dst_rsv; | 
|  | u64 num_bytes; | 
|  | int ret; | 
|  |  | 
|  | if (!trans->bytes_reserved) | 
|  | return 0; | 
|  |  | 
|  | src_rsv = trans->block_rsv; | 
|  | dst_rsv = &root->fs_info->delayed_block_rsv; | 
|  |  | 
|  | num_bytes = btrfs_calc_trans_metadata_size(root, 1); | 
|  | ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); | 
|  | if (!ret) { | 
|  | trace_btrfs_space_reservation(root->fs_info, "delayed_item", | 
|  | item->key.objectid, | 
|  | num_bytes, 1); | 
|  | item->bytes_reserved = num_bytes; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, | 
|  | struct btrfs_delayed_item *item) | 
|  | { | 
|  | struct btrfs_block_rsv *rsv; | 
|  |  | 
|  | if (!item->bytes_reserved) | 
|  | return; | 
|  |  | 
|  | rsv = &root->fs_info->delayed_block_rsv; | 
|  | trace_btrfs_space_reservation(root->fs_info, "delayed_item", | 
|  | item->key.objectid, item->bytes_reserved, | 
|  | 0); | 
|  | btrfs_block_rsv_release(root, rsv, | 
|  | item->bytes_reserved); | 
|  | } | 
|  |  | 
|  | static int btrfs_delayed_inode_reserve_metadata( | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct inode *inode, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | struct btrfs_block_rsv *src_rsv; | 
|  | struct btrfs_block_rsv *dst_rsv; | 
|  | u64 num_bytes; | 
|  | int ret; | 
|  | bool release = false; | 
|  |  | 
|  | src_rsv = trans->block_rsv; | 
|  | dst_rsv = &root->fs_info->delayed_block_rsv; | 
|  |  | 
|  | num_bytes = btrfs_calc_trans_metadata_size(root, 1); | 
|  |  | 
|  | /* | 
|  | * btrfs_dirty_inode will update the inode under btrfs_join_transaction | 
|  | * which doesn't reserve space for speed.  This is a problem since we | 
|  | * still need to reserve space for this update, so try to reserve the | 
|  | * space. | 
|  | * | 
|  | * Now if src_rsv == delalloc_block_rsv we'll let it just steal since | 
|  | * we're accounted for. | 
|  | */ | 
|  | if (!src_rsv || (!trans->bytes_reserved && | 
|  | src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { | 
|  | ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, | 
|  | BTRFS_RESERVE_NO_FLUSH); | 
|  | /* | 
|  | * Since we're under a transaction reserve_metadata_bytes could | 
|  | * try to commit the transaction which will make it return | 
|  | * EAGAIN to make us stop the transaction we have, so return | 
|  | * ENOSPC instead so that btrfs_dirty_inode knows what to do. | 
|  | */ | 
|  | if (ret == -EAGAIN) | 
|  | ret = -ENOSPC; | 
|  | if (!ret) { | 
|  | node->bytes_reserved = num_bytes; | 
|  | trace_btrfs_space_reservation(root->fs_info, | 
|  | "delayed_inode", | 
|  | btrfs_ino(inode), | 
|  | num_bytes, 1); | 
|  | } | 
|  | return ret; | 
|  | } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) { | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, | 
|  | &BTRFS_I(inode)->runtime_flags)) { | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  | release = true; | 
|  | goto migrate; | 
|  | } | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  |  | 
|  | /* Ok we didn't have space pre-reserved.  This shouldn't happen | 
|  | * too often but it can happen if we do delalloc to an existing | 
|  | * inode which gets dirtied because of the time update, and then | 
|  | * isn't touched again until after the transaction commits and | 
|  | * then we try to write out the data.  First try to be nice and | 
|  | * reserve something strictly for us.  If not be a pain and try | 
|  | * to steal from the delalloc block rsv. | 
|  | */ | 
|  | ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, | 
|  | BTRFS_RESERVE_NO_FLUSH); | 
|  | if (!ret) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); | 
|  | if (!ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Ok this is a problem, let's just steal from the global rsv | 
|  | * since this really shouldn't happen that often. | 
|  | */ | 
|  | WARN_ON(1); | 
|  | ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv, | 
|  | dst_rsv, num_bytes); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | migrate: | 
|  | ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); | 
|  |  | 
|  | out: | 
|  | /* | 
|  | * Migrate only takes a reservation, it doesn't touch the size of the | 
|  | * block_rsv.  This is to simplify people who don't normally have things | 
|  | * migrated from their block rsv.  If they go to release their | 
|  | * reservation, that will decrease the size as well, so if migrate | 
|  | * reduced size we'd end up with a negative size.  But for the | 
|  | * delalloc_meta_reserved stuff we will only know to drop 1 reservation, | 
|  | * but we could in fact do this reserve/migrate dance several times | 
|  | * between the time we did the original reservation and we'd clean it | 
|  | * up.  So to take care of this, release the space for the meta | 
|  | * reservation here.  I think it may be time for a documentation page on | 
|  | * how block rsvs. work. | 
|  | */ | 
|  | if (!ret) { | 
|  | trace_btrfs_space_reservation(root->fs_info, "delayed_inode", | 
|  | btrfs_ino(inode), num_bytes, 1); | 
|  | node->bytes_reserved = num_bytes; | 
|  | } | 
|  |  | 
|  | if (release) { | 
|  | trace_btrfs_space_reservation(root->fs_info, "delalloc", | 
|  | btrfs_ino(inode), num_bytes, 0); | 
|  | btrfs_block_rsv_release(root, src_rsv, num_bytes); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | struct btrfs_block_rsv *rsv; | 
|  |  | 
|  | if (!node->bytes_reserved) | 
|  | return; | 
|  |  | 
|  | rsv = &root->fs_info->delayed_block_rsv; | 
|  | trace_btrfs_space_reservation(root->fs_info, "delayed_inode", | 
|  | node->inode_id, node->bytes_reserved, 0); | 
|  | btrfs_block_rsv_release(root, rsv, | 
|  | node->bytes_reserved); | 
|  | node->bytes_reserved = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This helper will insert some continuous items into the same leaf according | 
|  | * to the free space of the leaf. | 
|  | */ | 
|  | static int btrfs_batch_insert_items(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_item *item) | 
|  | { | 
|  | struct btrfs_delayed_item *curr, *next; | 
|  | int free_space; | 
|  | int total_data_size = 0, total_size = 0; | 
|  | struct extent_buffer *leaf; | 
|  | char *data_ptr; | 
|  | struct btrfs_key *keys; | 
|  | u32 *data_size; | 
|  | struct list_head head; | 
|  | int slot; | 
|  | int nitems; | 
|  | int i; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!path->nodes[0]); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | free_space = btrfs_leaf_free_space(root, leaf); | 
|  | INIT_LIST_HEAD(&head); | 
|  |  | 
|  | next = item; | 
|  | nitems = 0; | 
|  |  | 
|  | /* | 
|  | * count the number of the continuous items that we can insert in batch | 
|  | */ | 
|  | while (total_size + next->data_len + sizeof(struct btrfs_item) <= | 
|  | free_space) { | 
|  | total_data_size += next->data_len; | 
|  | total_size += next->data_len + sizeof(struct btrfs_item); | 
|  | list_add_tail(&next->tree_list, &head); | 
|  | nitems++; | 
|  |  | 
|  | curr = next; | 
|  | next = __btrfs_next_delayed_item(curr); | 
|  | if (!next) | 
|  | break; | 
|  |  | 
|  | if (!btrfs_is_continuous_delayed_item(curr, next)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!nitems) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we need allocate some memory space, but it might cause the task | 
|  | * to sleep, so we set all locked nodes in the path to blocking locks | 
|  | * first. | 
|  | */ | 
|  | btrfs_set_path_blocking(path); | 
|  |  | 
|  | keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS); | 
|  | if (!keys) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS); | 
|  | if (!data_size) { | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* get keys of all the delayed items */ | 
|  | i = 0; | 
|  | list_for_each_entry(next, &head, tree_list) { | 
|  | keys[i] = next->key; | 
|  | data_size[i] = next->data_len; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | /* reset all the locked nodes in the patch to spinning locks. */ | 
|  | btrfs_clear_path_blocking(path, NULL, 0); | 
|  |  | 
|  | /* insert the keys of the items */ | 
|  | setup_items_for_insert(root, path, keys, data_size, | 
|  | total_data_size, total_size, nitems); | 
|  |  | 
|  | /* insert the dir index items */ | 
|  | slot = path->slots[0]; | 
|  | list_for_each_entry_safe(curr, next, &head, tree_list) { | 
|  | data_ptr = btrfs_item_ptr(leaf, slot, char); | 
|  | write_extent_buffer(leaf, &curr->data, | 
|  | (unsigned long)data_ptr, | 
|  | curr->data_len); | 
|  | slot++; | 
|  |  | 
|  | btrfs_delayed_item_release_metadata(root, curr); | 
|  |  | 
|  | list_del(&curr->tree_list); | 
|  | btrfs_release_delayed_item(curr); | 
|  | } | 
|  |  | 
|  | error: | 
|  | kfree(data_size); | 
|  | kfree(keys); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This helper can just do simple insertion that needn't extend item for new | 
|  | * data, such as directory name index insertion, inode insertion. | 
|  | */ | 
|  | static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_item *delayed_item) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | char *ptr; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, | 
|  | delayed_item->data_len); | 
|  | if (ret < 0 && ret != -EEXIST) | 
|  | return ret; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  |  | 
|  | ptr = btrfs_item_ptr(leaf, path->slots[0], char); | 
|  |  | 
|  | write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, | 
|  | delayed_item->data_len); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | btrfs_delayed_item_release_metadata(root, delayed_item); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we insert an item first, then if there are some continuous items, we try | 
|  | * to insert those items into the same leaf. | 
|  | */ | 
|  | static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | struct btrfs_delayed_item *curr, *prev; | 
|  | int ret = 0; | 
|  |  | 
|  | do_again: | 
|  | mutex_lock(&node->mutex); | 
|  | curr = __btrfs_first_delayed_insertion_item(node); | 
|  | if (!curr) | 
|  | goto insert_end; | 
|  |  | 
|  | ret = btrfs_insert_delayed_item(trans, root, path, curr); | 
|  | if (ret < 0) { | 
|  | btrfs_release_path(path); | 
|  | goto insert_end; | 
|  | } | 
|  |  | 
|  | prev = curr; | 
|  | curr = __btrfs_next_delayed_item(prev); | 
|  | if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { | 
|  | /* insert the continuous items into the same leaf */ | 
|  | path->slots[0]++; | 
|  | btrfs_batch_insert_items(root, path, curr); | 
|  | } | 
|  | btrfs_release_delayed_item(prev); | 
|  | btrfs_mark_buffer_dirty(path->nodes[0]); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | mutex_unlock(&node->mutex); | 
|  | goto do_again; | 
|  |  | 
|  | insert_end: | 
|  | mutex_unlock(&node->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_item *item) | 
|  | { | 
|  | struct btrfs_delayed_item *curr, *next; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | struct list_head head; | 
|  | int nitems, i, last_item; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!path->nodes[0]); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  |  | 
|  | i = path->slots[0]; | 
|  | last_item = btrfs_header_nritems(leaf) - 1; | 
|  | if (i > last_item) | 
|  | return -ENOENT;	/* FIXME: Is errno suitable? */ | 
|  |  | 
|  | next = item; | 
|  | INIT_LIST_HEAD(&head); | 
|  | btrfs_item_key_to_cpu(leaf, &key, i); | 
|  | nitems = 0; | 
|  | /* | 
|  | * count the number of the dir index items that we can delete in batch | 
|  | */ | 
|  | while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { | 
|  | list_add_tail(&next->tree_list, &head); | 
|  | nitems++; | 
|  |  | 
|  | curr = next; | 
|  | next = __btrfs_next_delayed_item(curr); | 
|  | if (!next) | 
|  | break; | 
|  |  | 
|  | if (!btrfs_is_continuous_delayed_item(curr, next)) | 
|  | break; | 
|  |  | 
|  | i++; | 
|  | if (i > last_item) | 
|  | break; | 
|  | btrfs_item_key_to_cpu(leaf, &key, i); | 
|  | } | 
|  |  | 
|  | if (!nitems) | 
|  | return 0; | 
|  |  | 
|  | ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry_safe(curr, next, &head, tree_list) { | 
|  | btrfs_delayed_item_release_metadata(root, curr); | 
|  | list_del(&curr->tree_list); | 
|  | btrfs_release_delayed_item(curr); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | struct btrfs_delayed_item *curr, *prev; | 
|  | int ret = 0; | 
|  |  | 
|  | do_again: | 
|  | mutex_lock(&node->mutex); | 
|  | curr = __btrfs_first_delayed_deletion_item(node); | 
|  | if (!curr) | 
|  | goto delete_fail; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto delete_fail; | 
|  | else if (ret > 0) { | 
|  | /* | 
|  | * can't find the item which the node points to, so this node | 
|  | * is invalid, just drop it. | 
|  | */ | 
|  | prev = curr; | 
|  | curr = __btrfs_next_delayed_item(prev); | 
|  | btrfs_release_delayed_item(prev); | 
|  | ret = 0; | 
|  | btrfs_release_path(path); | 
|  | if (curr) { | 
|  | mutex_unlock(&node->mutex); | 
|  | goto do_again; | 
|  | } else | 
|  | goto delete_fail; | 
|  | } | 
|  |  | 
|  | btrfs_batch_delete_items(trans, root, path, curr); | 
|  | btrfs_release_path(path); | 
|  | mutex_unlock(&node->mutex); | 
|  | goto do_again; | 
|  |  | 
|  | delete_fail: | 
|  | btrfs_release_path(path); | 
|  | mutex_unlock(&node->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) | 
|  | { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  |  | 
|  | if (delayed_node && delayed_node->inode_dirty) { | 
|  | BUG_ON(!delayed_node->root); | 
|  | delayed_node->inode_dirty = 0; | 
|  | delayed_node->count--; | 
|  |  | 
|  | delayed_root = delayed_node->root->fs_info->delayed_root; | 
|  | finish_one_item(delayed_root); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | struct extent_buffer *leaf; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = node->inode_id; | 
|  | btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_lookup_inode(trans, root, path, &key, 1); | 
|  | if (ret > 0) { | 
|  | btrfs_release_path(path); | 
|  | return -ENOENT; | 
|  | } else if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | btrfs_unlock_up_safe(path, 1); | 
|  | leaf = path->nodes[0]; | 
|  | inode_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, | 
|  | sizeof(struct btrfs_inode_item)); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | btrfs_delayed_inode_release_metadata(root, node); | 
|  | btrfs_release_delayed_inode(node); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&node->mutex); | 
|  | if (!node->inode_dirty) { | 
|  | mutex_unlock(&node->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = __btrfs_update_delayed_inode(trans, root, path, node); | 
|  | mutex_unlock(&node->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_delayed_node *node) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_insert_delayed_items(trans, path, node->root, node); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_delete_delayed_items(trans, path, node->root, node); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_update_delayed_inode(trans, node->root, path, node); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when committing the transaction. | 
|  | * Returns 0 on success. | 
|  | * Returns < 0 on error and returns with an aborted transaction with any | 
|  | * outstanding delayed items cleaned up. | 
|  | */ | 
|  | static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, int nr) | 
|  | { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  | struct btrfs_delayed_node *curr_node, *prev_node; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | int ret = 0; | 
|  | bool count = (nr > 0); | 
|  |  | 
|  | if (trans->aborted) | 
|  | return -EIO; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | block_rsv = trans->block_rsv; | 
|  | trans->block_rsv = &root->fs_info->delayed_block_rsv; | 
|  |  | 
|  | delayed_root = btrfs_get_delayed_root(root); | 
|  |  | 
|  | curr_node = btrfs_first_delayed_node(delayed_root); | 
|  | while (curr_node && (!count || (count && nr--))) { | 
|  | ret = __btrfs_commit_inode_delayed_items(trans, path, | 
|  | curr_node); | 
|  | if (ret) { | 
|  | btrfs_release_delayed_node(curr_node); | 
|  | curr_node = NULL; | 
|  | btrfs_abort_transaction(trans, root, ret); | 
|  | break; | 
|  | } | 
|  |  | 
|  | prev_node = curr_node; | 
|  | curr_node = btrfs_next_delayed_node(curr_node); | 
|  | btrfs_release_delayed_node(prev_node); | 
|  | } | 
|  |  | 
|  | if (curr_node) | 
|  | btrfs_release_delayed_node(curr_node); | 
|  | btrfs_free_path(path); | 
|  | trans->block_rsv = block_rsv; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | return __btrfs_run_delayed_items(trans, root, -1); | 
|  | } | 
|  |  | 
|  | int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, int nr) | 
|  | { | 
|  | return __btrfs_run_delayed_items(trans, root, nr); | 
|  | } | 
|  |  | 
|  | int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | int ret; | 
|  |  | 
|  | if (!delayed_node) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (!delayed_node->count) { | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return 0; | 
|  | } | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | block_rsv = trans->block_rsv; | 
|  | trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; | 
|  |  | 
|  | ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); | 
|  |  | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | btrfs_free_path(path); | 
|  | trans->block_rsv = block_rsv; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_commit_inode_delayed_inode(struct inode *inode) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | int ret; | 
|  |  | 
|  | if (!delayed_node) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (!delayed_node->inode_dirty) { | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return 0; | 
|  | } | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  |  | 
|  | trans = btrfs_join_transaction(delayed_node->root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto trans_out; | 
|  | } | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | block_rsv = trans->block_rsv; | 
|  | trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (delayed_node->inode_dirty) | 
|  | ret = __btrfs_update_delayed_inode(trans, delayed_node->root, | 
|  | path, delayed_node); | 
|  | else | 
|  | ret = 0; | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | trans->block_rsv = block_rsv; | 
|  | trans_out: | 
|  | btrfs_end_transaction(trans, delayed_node->root); | 
|  | btrfs_btree_balance_dirty(delayed_node->root); | 
|  | out: | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_remove_delayed_node(struct inode *inode) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  |  | 
|  | delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node); | 
|  | if (!delayed_node) | 
|  | return; | 
|  |  | 
|  | BTRFS_I(inode)->delayed_node = NULL; | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | } | 
|  |  | 
|  | struct btrfs_async_delayed_work { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  | int nr; | 
|  | struct btrfs_work work; | 
|  | }; | 
|  |  | 
|  | static void btrfs_async_run_delayed_root(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_async_delayed_work *async_work; | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_delayed_node *delayed_node = NULL; | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | int total_done = 0; | 
|  |  | 
|  | async_work = container_of(work, struct btrfs_async_delayed_work, work); | 
|  | delayed_root = async_work->delayed_root; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | goto out; | 
|  |  | 
|  | again: | 
|  | if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2) | 
|  | goto free_path; | 
|  |  | 
|  | delayed_node = btrfs_first_prepared_delayed_node(delayed_root); | 
|  | if (!delayed_node) | 
|  | goto free_path; | 
|  |  | 
|  | path->leave_spinning = 1; | 
|  | root = delayed_node->root; | 
|  |  | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) | 
|  | goto release_path; | 
|  |  | 
|  | block_rsv = trans->block_rsv; | 
|  | trans->block_rsv = &root->fs_info->delayed_block_rsv; | 
|  |  | 
|  | __btrfs_commit_inode_delayed_items(trans, path, delayed_node); | 
|  | /* | 
|  | * Maybe new delayed items have been inserted, so we need requeue | 
|  | * the work. Besides that, we must dequeue the empty delayed nodes | 
|  | * to avoid the race between delayed items balance and the worker. | 
|  | * The race like this: | 
|  | * 	Task1				Worker thread | 
|  | * 					count == 0, needn't requeue | 
|  | * 					  also needn't insert the | 
|  | * 					  delayed node into prepare | 
|  | * 					  list again. | 
|  | * 	add lots of delayed items | 
|  | * 	queue the delayed node | 
|  | * 	  already in the list, | 
|  | * 	  and not in the prepare | 
|  | * 	  list, it means the delayed | 
|  | * 	  node is being dealt with | 
|  | * 	  by the worker. | 
|  | * 	do delayed items balance | 
|  | * 	  the delayed node is being | 
|  | * 	  dealt with by the worker | 
|  | * 	  now, just wait. | 
|  | * 	  				the worker goto idle. | 
|  | * Task1 will sleep until the transaction is commited. | 
|  | */ | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node); | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  |  | 
|  | trans->block_rsv = block_rsv; | 
|  | btrfs_end_transaction_dmeta(trans, root); | 
|  | btrfs_btree_balance_dirty_nodelay(root); | 
|  |  | 
|  | release_path: | 
|  | btrfs_release_path(path); | 
|  | total_done++; | 
|  |  | 
|  | btrfs_release_prepared_delayed_node(delayed_node); | 
|  | if (async_work->nr == 0 || total_done < async_work->nr) | 
|  | goto again; | 
|  |  | 
|  | free_path: | 
|  | btrfs_free_path(path); | 
|  | out: | 
|  | wake_up(&delayed_root->wait); | 
|  | kfree(async_work); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, | 
|  | struct btrfs_root *root, int nr) | 
|  | { | 
|  | struct btrfs_async_delayed_work *async_work; | 
|  |  | 
|  | if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) | 
|  | return 0; | 
|  |  | 
|  | async_work = kmalloc(sizeof(*async_work), GFP_NOFS); | 
|  | if (!async_work) | 
|  | return -ENOMEM; | 
|  |  | 
|  | async_work->delayed_root = delayed_root; | 
|  | async_work->work.func = btrfs_async_run_delayed_root; | 
|  | async_work->work.flags = 0; | 
|  | async_work->nr = nr; | 
|  |  | 
|  | btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_assert_delayed_root_empty(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  | delayed_root = btrfs_get_delayed_root(root); | 
|  | WARN_ON(btrfs_first_delayed_node(delayed_root)); | 
|  | } | 
|  |  | 
|  | static int refs_newer(struct btrfs_delayed_root *delayed_root, | 
|  | int seq, int count) | 
|  | { | 
|  | int val = atomic_read(&delayed_root->items_seq); | 
|  |  | 
|  | if (val < seq || val >= seq + count) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_balance_delayed_items(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  | int seq; | 
|  |  | 
|  | delayed_root = btrfs_get_delayed_root(root); | 
|  |  | 
|  | if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) | 
|  | return; | 
|  |  | 
|  | seq = atomic_read(&delayed_root->items_seq); | 
|  |  | 
|  | if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { | 
|  | int ret; | 
|  | DEFINE_WAIT(__wait); | 
|  |  | 
|  | ret = btrfs_wq_run_delayed_node(delayed_root, root, 0); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | while (1) { | 
|  | prepare_to_wait(&delayed_root->wait, &__wait, | 
|  | TASK_INTERRUPTIBLE); | 
|  |  | 
|  | if (refs_newer(delayed_root, seq, | 
|  | BTRFS_DELAYED_BATCH) || | 
|  | atomic_read(&delayed_root->items) < | 
|  | BTRFS_DELAYED_BACKGROUND) { | 
|  | break; | 
|  | } | 
|  | if (!signal_pending(current)) | 
|  | schedule(); | 
|  | else | 
|  | break; | 
|  | } | 
|  | finish_wait(&delayed_root->wait, &__wait); | 
|  | } | 
|  |  | 
|  | btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH); | 
|  | } | 
|  |  | 
|  | /* Will return 0 or -ENOMEM */ | 
|  | int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, const char *name, | 
|  | int name_len, struct inode *dir, | 
|  | struct btrfs_disk_key *disk_key, u8 type, | 
|  | u64 index) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  | struct btrfs_delayed_item *delayed_item; | 
|  | struct btrfs_dir_item *dir_item; | 
|  | int ret; | 
|  |  | 
|  | delayed_node = btrfs_get_or_create_delayed_node(dir); | 
|  | if (IS_ERR(delayed_node)) | 
|  | return PTR_ERR(delayed_node); | 
|  |  | 
|  | delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); | 
|  | if (!delayed_item) { | 
|  | ret = -ENOMEM; | 
|  | goto release_node; | 
|  | } | 
|  |  | 
|  | delayed_item->key.objectid = btrfs_ino(dir); | 
|  | btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY); | 
|  | delayed_item->key.offset = index; | 
|  |  | 
|  | dir_item = (struct btrfs_dir_item *)delayed_item->data; | 
|  | dir_item->location = *disk_key; | 
|  | dir_item->transid = cpu_to_le64(trans->transid); | 
|  | dir_item->data_len = 0; | 
|  | dir_item->name_len = cpu_to_le16(name_len); | 
|  | dir_item->type = type; | 
|  | memcpy((char *)(dir_item + 1), name, name_len); | 
|  |  | 
|  | ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item); | 
|  | /* | 
|  | * we have reserved enough space when we start a new transaction, | 
|  | * so reserving metadata failure is impossible | 
|  | */ | 
|  | BUG_ON(ret); | 
|  |  | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); | 
|  | if (unlikely(ret)) { | 
|  | printk(KERN_ERR "err add delayed dir index item(name: %s) into " | 
|  | "the insertion tree of the delayed node" | 
|  | "(root id: %llu, inode id: %llu, errno: %d)\n", | 
|  | name, | 
|  | (unsigned long long)delayed_node->root->objectid, | 
|  | (unsigned long long)delayed_node->inode_id, | 
|  | ret); | 
|  | BUG(); | 
|  | } | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  |  | 
|  | release_node: | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root, | 
|  | struct btrfs_delayed_node *node, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct btrfs_delayed_item *item; | 
|  |  | 
|  | mutex_lock(&node->mutex); | 
|  | item = __btrfs_lookup_delayed_insertion_item(node, key); | 
|  | if (!item) { | 
|  | mutex_unlock(&node->mutex); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | btrfs_delayed_item_release_metadata(root, item); | 
|  | btrfs_release_delayed_item(item); | 
|  | mutex_unlock(&node->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct inode *dir, | 
|  | u64 index) | 
|  | { | 
|  | struct btrfs_delayed_node *node; | 
|  | struct btrfs_delayed_item *item; | 
|  | struct btrfs_key item_key; | 
|  | int ret; | 
|  |  | 
|  | node = btrfs_get_or_create_delayed_node(dir); | 
|  | if (IS_ERR(node)) | 
|  | return PTR_ERR(node); | 
|  |  | 
|  | item_key.objectid = btrfs_ino(dir); | 
|  | btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY); | 
|  | item_key.offset = index; | 
|  |  | 
|  | ret = btrfs_delete_delayed_insertion_item(root, node, &item_key); | 
|  | if (!ret) | 
|  | goto end; | 
|  |  | 
|  | item = btrfs_alloc_delayed_item(0); | 
|  | if (!item) { | 
|  | ret = -ENOMEM; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | item->key = item_key; | 
|  |  | 
|  | ret = btrfs_delayed_item_reserve_metadata(trans, root, item); | 
|  | /* | 
|  | * we have reserved enough space when we start a new transaction, | 
|  | * so reserving metadata failure is impossible. | 
|  | */ | 
|  | BUG_ON(ret); | 
|  |  | 
|  | mutex_lock(&node->mutex); | 
|  | ret = __btrfs_add_delayed_deletion_item(node, item); | 
|  | if (unlikely(ret)) { | 
|  | printk(KERN_ERR "err add delayed dir index item(index: %llu) " | 
|  | "into the deletion tree of the delayed node" | 
|  | "(root id: %llu, inode id: %llu, errno: %d)\n", | 
|  | (unsigned long long)index, | 
|  | (unsigned long long)node->root->objectid, | 
|  | (unsigned long long)node->inode_id, | 
|  | ret); | 
|  | BUG(); | 
|  | } | 
|  | mutex_unlock(&node->mutex); | 
|  | end: | 
|  | btrfs_release_delayed_node(node); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_inode_delayed_dir_index_count(struct inode *inode) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); | 
|  |  | 
|  | if (!delayed_node) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* | 
|  | * Since we have held i_mutex of this directory, it is impossible that | 
|  | * a new directory index is added into the delayed node and index_cnt | 
|  | * is updated now. So we needn't lock the delayed node. | 
|  | */ | 
|  | if (!delayed_node->index_cnt) { | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | BTRFS_I(inode)->index_cnt = delayed_node->index_cnt; | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list, | 
|  | struct list_head *del_list) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  | struct btrfs_delayed_item *item; | 
|  |  | 
|  | delayed_node = btrfs_get_delayed_node(inode); | 
|  | if (!delayed_node) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | item = __btrfs_first_delayed_insertion_item(delayed_node); | 
|  | while (item) { | 
|  | atomic_inc(&item->refs); | 
|  | list_add_tail(&item->readdir_list, ins_list); | 
|  | item = __btrfs_next_delayed_item(item); | 
|  | } | 
|  |  | 
|  | item = __btrfs_first_delayed_deletion_item(delayed_node); | 
|  | while (item) { | 
|  | atomic_inc(&item->refs); | 
|  | list_add_tail(&item->readdir_list, del_list); | 
|  | item = __btrfs_next_delayed_item(item); | 
|  | } | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | /* | 
|  | * This delayed node is still cached in the btrfs inode, so refs | 
|  | * must be > 1 now, and we needn't check it is going to be freed | 
|  | * or not. | 
|  | * | 
|  | * Besides that, this function is used to read dir, we do not | 
|  | * insert/delete delayed items in this period. So we also needn't | 
|  | * requeue or dequeue this delayed node. | 
|  | */ | 
|  | atomic_dec(&delayed_node->refs); | 
|  | } | 
|  |  | 
|  | void btrfs_put_delayed_items(struct list_head *ins_list, | 
|  | struct list_head *del_list) | 
|  | { | 
|  | struct btrfs_delayed_item *curr, *next; | 
|  |  | 
|  | list_for_each_entry_safe(curr, next, ins_list, readdir_list) { | 
|  | list_del(&curr->readdir_list); | 
|  | if (atomic_dec_and_test(&curr->refs)) | 
|  | kfree(curr); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(curr, next, del_list, readdir_list) { | 
|  | list_del(&curr->readdir_list); | 
|  | if (atomic_dec_and_test(&curr->refs)) | 
|  | kfree(curr); | 
|  | } | 
|  | } | 
|  |  | 
|  | int btrfs_should_delete_dir_index(struct list_head *del_list, | 
|  | u64 index) | 
|  | { | 
|  | struct btrfs_delayed_item *curr, *next; | 
|  | int ret; | 
|  |  | 
|  | if (list_empty(del_list)) | 
|  | return 0; | 
|  |  | 
|  | list_for_each_entry_safe(curr, next, del_list, readdir_list) { | 
|  | if (curr->key.offset > index) | 
|  | break; | 
|  |  | 
|  | list_del(&curr->readdir_list); | 
|  | ret = (curr->key.offset == index); | 
|  |  | 
|  | if (atomic_dec_and_test(&curr->refs)) | 
|  | kfree(curr); | 
|  |  | 
|  | if (ret) | 
|  | return 1; | 
|  | else | 
|  | continue; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree | 
|  | * | 
|  | */ | 
|  | int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent, | 
|  | filldir_t filldir, | 
|  | struct list_head *ins_list) | 
|  | { | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_delayed_item *curr, *next; | 
|  | struct btrfs_key location; | 
|  | char *name; | 
|  | int name_len; | 
|  | int over = 0; | 
|  | unsigned char d_type; | 
|  |  | 
|  | if (list_empty(ins_list)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Changing the data of the delayed item is impossible. So | 
|  | * we needn't lock them. And we have held i_mutex of the | 
|  | * directory, nobody can delete any directory indexes now. | 
|  | */ | 
|  | list_for_each_entry_safe(curr, next, ins_list, readdir_list) { | 
|  | list_del(&curr->readdir_list); | 
|  |  | 
|  | if (curr->key.offset < filp->f_pos) { | 
|  | if (atomic_dec_and_test(&curr->refs)) | 
|  | kfree(curr); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | filp->f_pos = curr->key.offset; | 
|  |  | 
|  | di = (struct btrfs_dir_item *)curr->data; | 
|  | name = (char *)(di + 1); | 
|  | name_len = le16_to_cpu(di->name_len); | 
|  |  | 
|  | d_type = btrfs_filetype_table[di->type]; | 
|  | btrfs_disk_key_to_cpu(&location, &di->location); | 
|  |  | 
|  | over = filldir(dirent, name, name_len, curr->key.offset, | 
|  | location.objectid, d_type); | 
|  |  | 
|  | if (atomic_dec_and_test(&curr->refs)) | 
|  | kfree(curr); | 
|  |  | 
|  | if (over) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, | 
|  | generation, 64); | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, | 
|  | sequence, 64); | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, | 
|  | transid, 64); | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, | 
|  | nbytes, 64); | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, | 
|  | block_group, 64); | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); | 
|  |  | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); | 
|  | BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); | 
|  |  | 
|  | static void fill_stack_inode_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode_item *inode_item, | 
|  | struct inode *inode) | 
|  | { | 
|  | btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); | 
|  | btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); | 
|  | btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); | 
|  | btrfs_set_stack_inode_mode(inode_item, inode->i_mode); | 
|  | btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); | 
|  | btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); | 
|  | btrfs_set_stack_inode_generation(inode_item, | 
|  | BTRFS_I(inode)->generation); | 
|  | btrfs_set_stack_inode_sequence(inode_item, inode->i_version); | 
|  | btrfs_set_stack_inode_transid(inode_item, trans->transid); | 
|  | btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); | 
|  | btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); | 
|  | btrfs_set_stack_inode_block_group(inode_item, 0); | 
|  |  | 
|  | btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item), | 
|  | inode->i_atime.tv_sec); | 
|  | btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item), | 
|  | inode->i_atime.tv_nsec); | 
|  |  | 
|  | btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item), | 
|  | inode->i_mtime.tv_sec); | 
|  | btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item), | 
|  | inode->i_mtime.tv_nsec); | 
|  |  | 
|  | btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item), | 
|  | inode->i_ctime.tv_sec); | 
|  | btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item), | 
|  | inode->i_ctime.tv_nsec); | 
|  | } | 
|  |  | 
|  | int btrfs_fill_inode(struct inode *inode, u32 *rdev) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | struct btrfs_timespec *tspec; | 
|  |  | 
|  | delayed_node = btrfs_get_delayed_node(inode); | 
|  | if (!delayed_node) | 
|  | return -ENOENT; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (!delayed_node->inode_dirty) { | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | inode_item = &delayed_node->inode_item; | 
|  |  | 
|  | i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); | 
|  | i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); | 
|  | btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); | 
|  | inode->i_mode = btrfs_stack_inode_mode(inode_item); | 
|  | set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); | 
|  | inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); | 
|  | BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); | 
|  | inode->i_version = btrfs_stack_inode_sequence(inode_item); | 
|  | inode->i_rdev = 0; | 
|  | *rdev = btrfs_stack_inode_rdev(inode_item); | 
|  | BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); | 
|  |  | 
|  | tspec = btrfs_inode_atime(inode_item); | 
|  | inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec); | 
|  | inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec); | 
|  |  | 
|  | tspec = btrfs_inode_mtime(inode_item); | 
|  | inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec); | 
|  | inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec); | 
|  |  | 
|  | tspec = btrfs_inode_ctime(inode_item); | 
|  | inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec); | 
|  | inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec); | 
|  |  | 
|  | inode->i_generation = BTRFS_I(inode)->generation; | 
|  | BTRFS_I(inode)->index_cnt = (u64)-1; | 
|  |  | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct inode *inode) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  | int ret = 0; | 
|  |  | 
|  | delayed_node = btrfs_get_or_create_delayed_node(inode); | 
|  | if (IS_ERR(delayed_node)) | 
|  | return PTR_ERR(delayed_node); | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | if (delayed_node->inode_dirty) { | 
|  | fill_stack_inode_item(trans, &delayed_node->inode_item, inode); | 
|  | goto release_node; | 
|  | } | 
|  |  | 
|  | ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode, | 
|  | delayed_node); | 
|  | if (ret) | 
|  | goto release_node; | 
|  |  | 
|  | fill_stack_inode_item(trans, &delayed_node->inode_item, inode); | 
|  | delayed_node->inode_dirty = 1; | 
|  | delayed_node->count++; | 
|  | atomic_inc(&root->fs_info->delayed_root->items); | 
|  | release_node: | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) | 
|  | { | 
|  | struct btrfs_root *root = delayed_node->root; | 
|  | struct btrfs_delayed_item *curr_item, *prev_item; | 
|  |  | 
|  | mutex_lock(&delayed_node->mutex); | 
|  | curr_item = __btrfs_first_delayed_insertion_item(delayed_node); | 
|  | while (curr_item) { | 
|  | btrfs_delayed_item_release_metadata(root, curr_item); | 
|  | prev_item = curr_item; | 
|  | curr_item = __btrfs_next_delayed_item(prev_item); | 
|  | btrfs_release_delayed_item(prev_item); | 
|  | } | 
|  |  | 
|  | curr_item = __btrfs_first_delayed_deletion_item(delayed_node); | 
|  | while (curr_item) { | 
|  | btrfs_delayed_item_release_metadata(root, curr_item); | 
|  | prev_item = curr_item; | 
|  | curr_item = __btrfs_next_delayed_item(prev_item); | 
|  | btrfs_release_delayed_item(prev_item); | 
|  | } | 
|  |  | 
|  | if (delayed_node->inode_dirty) { | 
|  | btrfs_delayed_inode_release_metadata(root, delayed_node); | 
|  | btrfs_release_delayed_inode(delayed_node); | 
|  | } | 
|  | mutex_unlock(&delayed_node->mutex); | 
|  | } | 
|  |  | 
|  | void btrfs_kill_delayed_inode_items(struct inode *inode) | 
|  | { | 
|  | struct btrfs_delayed_node *delayed_node; | 
|  |  | 
|  | delayed_node = btrfs_get_delayed_node(inode); | 
|  | if (!delayed_node) | 
|  | return; | 
|  |  | 
|  | __btrfs_kill_delayed_node(delayed_node); | 
|  | btrfs_release_delayed_node(delayed_node); | 
|  | } | 
|  |  | 
|  | void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) | 
|  | { | 
|  | u64 inode_id = 0; | 
|  | struct btrfs_delayed_node *delayed_nodes[8]; | 
|  | int i, n; | 
|  |  | 
|  | while (1) { | 
|  | spin_lock(&root->inode_lock); | 
|  | n = radix_tree_gang_lookup(&root->delayed_nodes_tree, | 
|  | (void **)delayed_nodes, inode_id, | 
|  | ARRAY_SIZE(delayed_nodes)); | 
|  | if (!n) { | 
|  | spin_unlock(&root->inode_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | inode_id = delayed_nodes[n - 1]->inode_id + 1; | 
|  |  | 
|  | for (i = 0; i < n; i++) | 
|  | atomic_inc(&delayed_nodes[i]->refs); | 
|  | spin_unlock(&root->inode_lock); | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | __btrfs_kill_delayed_node(delayed_nodes[i]); | 
|  | btrfs_release_delayed_node(delayed_nodes[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_destroy_delayed_inodes(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_delayed_root *delayed_root; | 
|  | struct btrfs_delayed_node *curr_node, *prev_node; | 
|  |  | 
|  | delayed_root = btrfs_get_delayed_root(root); | 
|  |  | 
|  | curr_node = btrfs_first_delayed_node(delayed_root); | 
|  | while (curr_node) { | 
|  | __btrfs_kill_delayed_node(curr_node); | 
|  |  | 
|  | prev_node = curr_node; | 
|  | curr_node = btrfs_next_delayed_node(curr_node); | 
|  | btrfs_release_delayed_node(prev_node); | 
|  | } | 
|  | } | 
|  |  |