|  | /* | 
|  | * EMIF driver | 
|  | * | 
|  | * Copyright (C) 2012 Texas Instruments, Inc. | 
|  | * | 
|  | * Aneesh V <aneesh@ti.com> | 
|  | * Santosh Shilimkar <santosh.shilimkar@ti.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/platform_data/emif_plat.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <memory/jedec_ddr.h> | 
|  | #include "emif.h" | 
|  | #include "of_memory.h" | 
|  |  | 
|  | /** | 
|  | * struct emif_data - Per device static data for driver's use | 
|  | * @duplicate:			Whether the DDR devices attached to this EMIF | 
|  | *				instance are exactly same as that on EMIF1. In | 
|  | *				this case we can save some memory and processing | 
|  | * @temperature_level:		Maximum temperature of LPDDR2 devices attached | 
|  | *				to this EMIF - read from MR4 register. If there | 
|  | *				are two devices attached to this EMIF, this | 
|  | *				value is the maximum of the two temperature | 
|  | *				levels. | 
|  | * @node:			node in the device list | 
|  | * @base:			base address of memory-mapped IO registers. | 
|  | * @dev:			device pointer. | 
|  | * @addressing			table with addressing information from the spec | 
|  | * @regs_cache:			An array of 'struct emif_regs' that stores | 
|  | *				calculated register values for different | 
|  | *				frequencies, to avoid re-calculating them on | 
|  | *				each DVFS transition. | 
|  | * @curr_regs:			The set of register values used in the last | 
|  | *				frequency change (i.e. corresponding to the | 
|  | *				frequency in effect at the moment) | 
|  | * @plat_data:			Pointer to saved platform data. | 
|  | * @debugfs_root:		dentry to the root folder for EMIF in debugfs | 
|  | * @np_ddr:			Pointer to ddr device tree node | 
|  | */ | 
|  | struct emif_data { | 
|  | u8				duplicate; | 
|  | u8				temperature_level; | 
|  | u8				lpmode; | 
|  | struct list_head		node; | 
|  | unsigned long			irq_state; | 
|  | void __iomem			*base; | 
|  | struct device			*dev; | 
|  | const struct lpddr2_addressing	*addressing; | 
|  | struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES]; | 
|  | struct emif_regs		*curr_regs; | 
|  | struct emif_platform_data	*plat_data; | 
|  | struct dentry			*debugfs_root; | 
|  | struct device_node		*np_ddr; | 
|  | }; | 
|  |  | 
|  | static struct emif_data *emif1; | 
|  | static spinlock_t	emif_lock; | 
|  | static unsigned long	irq_state; | 
|  | static u32		t_ck; /* DDR clock period in ps */ | 
|  | static LIST_HEAD(device_list); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, | 
|  | struct emif_regs *regs) | 
|  | { | 
|  | u32 type = emif->plat_data->device_info->type; | 
|  | u32 ip_rev = emif->plat_data->ip_rev; | 
|  |  | 
|  | seq_printf(s, "EMIF register cache dump for %dMHz\n", | 
|  | regs->freq/1000000); | 
|  |  | 
|  | seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); | 
|  | seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); | 
|  | seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); | 
|  | seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); | 
|  |  | 
|  | if (ip_rev == EMIF_4D) { | 
|  | seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", | 
|  | regs->read_idle_ctrl_shdw_normal); | 
|  | seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", | 
|  | regs->read_idle_ctrl_shdw_volt_ramp); | 
|  | } else if (ip_rev == EMIF_4D5) { | 
|  | seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", | 
|  | regs->dll_calib_ctrl_shdw_normal); | 
|  | seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", | 
|  | regs->dll_calib_ctrl_shdw_volt_ramp); | 
|  | } | 
|  |  | 
|  | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { | 
|  | seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", | 
|  | regs->ref_ctrl_shdw_derated); | 
|  | seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", | 
|  | regs->sdram_tim1_shdw_derated); | 
|  | seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", | 
|  | regs->sdram_tim3_shdw_derated); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int emif_regdump_show(struct seq_file *s, void *unused) | 
|  | { | 
|  | struct emif_data	*emif	= s->private; | 
|  | struct emif_regs	**regs_cache; | 
|  | int			i; | 
|  |  | 
|  | if (emif->duplicate) | 
|  | regs_cache = emif1->regs_cache; | 
|  | else | 
|  | regs_cache = emif->regs_cache; | 
|  |  | 
|  | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { | 
|  | do_emif_regdump_show(s, emif, regs_cache[i]); | 
|  | seq_printf(s, "\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int emif_regdump_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, emif_regdump_show, inode->i_private); | 
|  | } | 
|  |  | 
|  | static const struct file_operations emif_regdump_fops = { | 
|  | .open			= emif_regdump_open, | 
|  | .read			= seq_read, | 
|  | .release		= single_release, | 
|  | }; | 
|  |  | 
|  | static int emif_mr4_show(struct seq_file *s, void *unused) | 
|  | { | 
|  | struct emif_data *emif = s->private; | 
|  |  | 
|  | seq_printf(s, "MR4=%d\n", emif->temperature_level); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int emif_mr4_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, emif_mr4_show, inode->i_private); | 
|  | } | 
|  |  | 
|  | static const struct file_operations emif_mr4_fops = { | 
|  | .open			= emif_mr4_open, | 
|  | .read			= seq_read, | 
|  | .release		= single_release, | 
|  | }; | 
|  |  | 
|  | static int __init_or_module emif_debugfs_init(struct emif_data *emif) | 
|  | { | 
|  | struct dentry	*dentry; | 
|  | int		ret; | 
|  |  | 
|  | dentry = debugfs_create_dir(dev_name(emif->dev), NULL); | 
|  | if (!dentry) { | 
|  | ret = -ENOMEM; | 
|  | goto err0; | 
|  | } | 
|  | emif->debugfs_root = dentry; | 
|  |  | 
|  | dentry = debugfs_create_file("regcache_dump", S_IRUGO, | 
|  | emif->debugfs_root, emif, &emif_regdump_fops); | 
|  | if (!dentry) { | 
|  | ret = -ENOMEM; | 
|  | goto err1; | 
|  | } | 
|  |  | 
|  | dentry = debugfs_create_file("mr4", S_IRUGO, | 
|  | emif->debugfs_root, emif, &emif_mr4_fops); | 
|  | if (!dentry) { | 
|  | ret = -ENOMEM; | 
|  | goto err1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | err1: | 
|  | debugfs_remove_recursive(emif->debugfs_root); | 
|  | err0: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __exit emif_debugfs_exit(struct emif_data *emif) | 
|  | { | 
|  | debugfs_remove_recursive(emif->debugfs_root); | 
|  | emif->debugfs_root = NULL; | 
|  | } | 
|  | #else | 
|  | static inline int __init_or_module emif_debugfs_init(struct emif_data *emif) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void __exit emif_debugfs_exit(struct emif_data *emif) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Calculate the period of DDR clock from frequency value | 
|  | */ | 
|  | static void set_ddr_clk_period(u32 freq) | 
|  | { | 
|  | /* Divide 10^12 by frequency to get period in ps */ | 
|  | t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get bus width used by EMIF. Note that this may be different from the | 
|  | * bus width of the DDR devices used. For instance two 16-bit DDR devices | 
|  | * may be connected to a given CS of EMIF. In this case bus width as far | 
|  | * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. | 
|  | */ | 
|  | static u32 get_emif_bus_width(struct emif_data *emif) | 
|  | { | 
|  | u32		width; | 
|  | void __iomem	*base = emif->base; | 
|  |  | 
|  | width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) | 
|  | >> NARROW_MODE_SHIFT; | 
|  | width = width == 0 ? 32 : 16; | 
|  |  | 
|  | return width; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the CL from SDRAM_CONFIG register | 
|  | */ | 
|  | static u32 get_cl(struct emif_data *emif) | 
|  | { | 
|  | u32		cl; | 
|  | void __iomem	*base = emif->base; | 
|  |  | 
|  | cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; | 
|  |  | 
|  | return cl; | 
|  | } | 
|  |  | 
|  | static void set_lpmode(struct emif_data *emif, u8 lpmode) | 
|  | { | 
|  | u32 temp; | 
|  | void __iomem *base = emif->base; | 
|  |  | 
|  | temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); | 
|  | temp &= ~LP_MODE_MASK; | 
|  | temp |= (lpmode << LP_MODE_SHIFT); | 
|  | writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); | 
|  | } | 
|  |  | 
|  | static void do_freq_update(void) | 
|  | { | 
|  | struct emif_data *emif; | 
|  |  | 
|  | /* | 
|  | * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE | 
|  | * | 
|  | * i728 DESCRIPTION: | 
|  | * The EMIF automatically puts the SDRAM into self-refresh mode | 
|  | * after the EMIF has not performed accesses during | 
|  | * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles | 
|  | * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set | 
|  | * to 0x2. If during a small window the following three events | 
|  | * occur: | 
|  | * - The SR_TIMING counter expires | 
|  | * - And frequency change is requested | 
|  | * - And OCP access is requested | 
|  | * Then it causes instable clock on the DDR interface. | 
|  | * | 
|  | * WORKAROUND | 
|  | * To avoid the occurrence of the three events, the workaround | 
|  | * is to disable the self-refresh when requesting a frequency | 
|  | * change. Before requesting a frequency change the software must | 
|  | * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the | 
|  | * frequency change has been done, the software can reprogram | 
|  | * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 | 
|  | */ | 
|  | list_for_each_entry(emif, &device_list, node) { | 
|  | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | 
|  | set_lpmode(emif, EMIF_LP_MODE_DISABLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: Do FREQ_UPDATE here when an API | 
|  | * is available for this as part of the new | 
|  | * clock framework | 
|  | */ | 
|  |  | 
|  | list_for_each_entry(emif, &device_list, node) { | 
|  | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | 
|  | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Find addressing table entry based on the device's type and density */ | 
|  | static const struct lpddr2_addressing *get_addressing_table( | 
|  | const struct ddr_device_info *device_info) | 
|  | { | 
|  | u32		index, type, density; | 
|  |  | 
|  | type = device_info->type; | 
|  | density = device_info->density; | 
|  |  | 
|  | switch (type) { | 
|  | case DDR_TYPE_LPDDR2_S4: | 
|  | index = density - 1; | 
|  | break; | 
|  | case DDR_TYPE_LPDDR2_S2: | 
|  | switch (density) { | 
|  | case DDR_DENSITY_1Gb: | 
|  | case DDR_DENSITY_2Gb: | 
|  | index = density + 3; | 
|  | break; | 
|  | default: | 
|  | index = density - 1; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return &lpddr2_jedec_addressing_table[index]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the the right timing table from the array of timing | 
|  | * tables of the device using DDR clock frequency | 
|  | */ | 
|  | static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, | 
|  | u32 freq) | 
|  | { | 
|  | u32				i, min, max, freq_nearest; | 
|  | const struct lpddr2_timings	*timings = NULL; | 
|  | const struct lpddr2_timings	*timings_arr = emif->plat_data->timings; | 
|  | struct				device *dev = emif->dev; | 
|  |  | 
|  | /* Start with a very high frequency - 1GHz */ | 
|  | freq_nearest = 1000000000; | 
|  |  | 
|  | /* | 
|  | * Find the timings table such that: | 
|  | *  1. the frequency range covers the required frequency(safe) AND | 
|  | *  2. the max_freq is closest to the required frequency(optimal) | 
|  | */ | 
|  | for (i = 0; i < emif->plat_data->timings_arr_size; i++) { | 
|  | max = timings_arr[i].max_freq; | 
|  | min = timings_arr[i].min_freq; | 
|  | if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { | 
|  | freq_nearest = max; | 
|  | timings = &timings_arr[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!timings) | 
|  | dev_err(dev, "%s: couldn't find timings for - %dHz\n", | 
|  | __func__, freq); | 
|  |  | 
|  | dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", | 
|  | __func__, freq, freq_nearest); | 
|  |  | 
|  | return timings; | 
|  | } | 
|  |  | 
|  | static u32 get_sdram_ref_ctrl_shdw(u32 freq, | 
|  | const struct lpddr2_addressing *addressing) | 
|  | { | 
|  | u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; | 
|  |  | 
|  | /* Scale down frequency and t_refi to avoid overflow */ | 
|  | freq_khz = freq / 1000; | 
|  | t_refi = addressing->tREFI_ns / 100; | 
|  |  | 
|  | /* | 
|  | * refresh rate to be set is 'tREFI(in us) * freq in MHz | 
|  | * division by 10000 to account for change in units | 
|  | */ | 
|  | val = t_refi * freq_khz / 10000; | 
|  | ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; | 
|  |  | 
|  | return ref_ctrl_shdw; | 
|  | } | 
|  |  | 
|  | static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, | 
|  | const struct lpddr2_min_tck *min_tck, | 
|  | const struct lpddr2_addressing *addressing) | 
|  | { | 
|  | u32 tim1 = 0, val = 0; | 
|  |  | 
|  | val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; | 
|  | tim1 |= val << T_WTR_SHIFT; | 
|  |  | 
|  | if (addressing->num_banks == B8) | 
|  | val = DIV_ROUND_UP(timings->tFAW, t_ck*4); | 
|  | else | 
|  | val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); | 
|  | tim1 |= (val - 1) << T_RRD_SHIFT; | 
|  |  | 
|  | val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; | 
|  | tim1 |= val << T_RC_SHIFT; | 
|  |  | 
|  | val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); | 
|  | tim1 |= (val - 1) << T_RAS_SHIFT; | 
|  |  | 
|  | val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; | 
|  | tim1 |= val << T_WR_SHIFT; | 
|  |  | 
|  | val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; | 
|  | tim1 |= val << T_RCD_SHIFT; | 
|  |  | 
|  | val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; | 
|  | tim1 |= val << T_RP_SHIFT; | 
|  |  | 
|  | return tim1; | 
|  | } | 
|  |  | 
|  | static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, | 
|  | const struct lpddr2_min_tck *min_tck, | 
|  | const struct lpddr2_addressing *addressing) | 
|  | { | 
|  | u32 tim1 = 0, val = 0; | 
|  |  | 
|  | val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; | 
|  | tim1 = val << T_WTR_SHIFT; | 
|  |  | 
|  | /* | 
|  | * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps | 
|  | * to tFAW for de-rating | 
|  | */ | 
|  | if (addressing->num_banks == B8) { | 
|  | val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; | 
|  | } else { | 
|  | val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); | 
|  | val = max(min_tck->tRRD, val) - 1; | 
|  | } | 
|  | tim1 |= val << T_RRD_SHIFT; | 
|  |  | 
|  | val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); | 
|  | tim1 |= (val - 1) << T_RC_SHIFT; | 
|  |  | 
|  | val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); | 
|  | val = max(min_tck->tRASmin, val) - 1; | 
|  | tim1 |= val << T_RAS_SHIFT; | 
|  |  | 
|  | val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; | 
|  | tim1 |= val << T_WR_SHIFT; | 
|  |  | 
|  | val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); | 
|  | tim1 |= (val - 1) << T_RCD_SHIFT; | 
|  |  | 
|  | val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); | 
|  | tim1 |= (val - 1) << T_RP_SHIFT; | 
|  |  | 
|  | return tim1; | 
|  | } | 
|  |  | 
|  | static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, | 
|  | const struct lpddr2_min_tck *min_tck, | 
|  | const struct lpddr2_addressing *addressing, | 
|  | u32 type) | 
|  | { | 
|  | u32 tim2 = 0, val = 0; | 
|  |  | 
|  | val = min_tck->tCKE - 1; | 
|  | tim2 |= val << T_CKE_SHIFT; | 
|  |  | 
|  | val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; | 
|  | tim2 |= val << T_RTP_SHIFT; | 
|  |  | 
|  | /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ | 
|  | val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; | 
|  | tim2 |= val << T_XSNR_SHIFT; | 
|  |  | 
|  | /* XSRD same as XSNR for LPDDR2 */ | 
|  | tim2 |= val << T_XSRD_SHIFT; | 
|  |  | 
|  | val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; | 
|  | tim2 |= val << T_XP_SHIFT; | 
|  |  | 
|  | return tim2; | 
|  | } | 
|  |  | 
|  | static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, | 
|  | const struct lpddr2_min_tck *min_tck, | 
|  | const struct lpddr2_addressing *addressing, | 
|  | u32 type, u32 ip_rev, u32 derated) | 
|  | { | 
|  | u32 tim3 = 0, val = 0, t_dqsck; | 
|  |  | 
|  | val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; | 
|  | val = val > 0xF ? 0xF : val; | 
|  | tim3 |= val << T_RAS_MAX_SHIFT; | 
|  |  | 
|  | val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; | 
|  | tim3 |= val << T_RFC_SHIFT; | 
|  |  | 
|  | t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? | 
|  | timings->tDQSCK_max_derated : timings->tDQSCK_max; | 
|  | if (ip_rev == EMIF_4D5) | 
|  | val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; | 
|  | else | 
|  | val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; | 
|  |  | 
|  | tim3 |= val << T_TDQSCKMAX_SHIFT; | 
|  |  | 
|  | val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; | 
|  | tim3 |= val << ZQ_ZQCS_SHIFT; | 
|  |  | 
|  | val = DIV_ROUND_UP(timings->tCKESR, t_ck); | 
|  | val = max(min_tck->tCKESR, val) - 1; | 
|  | tim3 |= val << T_CKESR_SHIFT; | 
|  |  | 
|  | if (ip_rev == EMIF_4D5) { | 
|  | tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; | 
|  |  | 
|  | val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; | 
|  | tim3 |= val << T_PDLL_UL_SHIFT; | 
|  | } | 
|  |  | 
|  | return tim3; | 
|  | } | 
|  |  | 
|  | static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, | 
|  | bool cs1_used, bool cal_resistors_per_cs) | 
|  | { | 
|  | u32 zq = 0, val = 0; | 
|  |  | 
|  | val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; | 
|  | zq |= val << ZQ_REFINTERVAL_SHIFT; | 
|  |  | 
|  | val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; | 
|  | zq |= val << ZQ_ZQCL_MULT_SHIFT; | 
|  |  | 
|  | val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; | 
|  | zq |= val << ZQ_ZQINIT_MULT_SHIFT; | 
|  |  | 
|  | zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; | 
|  |  | 
|  | if (cal_resistors_per_cs) | 
|  | zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; | 
|  | else | 
|  | zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; | 
|  |  | 
|  | zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ | 
|  |  | 
|  | val = cs1_used ? 1 : 0; | 
|  | zq |= val << ZQ_CS1EN_SHIFT; | 
|  |  | 
|  | return zq; | 
|  | } | 
|  |  | 
|  | static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, | 
|  | const struct emif_custom_configs *custom_configs, bool cs1_used, | 
|  | u32 sdram_io_width, u32 emif_bus_width) | 
|  | { | 
|  | u32 alert = 0, interval, devcnt; | 
|  |  | 
|  | if (custom_configs && (custom_configs->mask & | 
|  | EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) | 
|  | interval = custom_configs->temp_alert_poll_interval_ms; | 
|  | else | 
|  | interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; | 
|  |  | 
|  | interval *= 1000000;			/* Convert to ns */ | 
|  | interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */ | 
|  | alert |= (interval << TA_REFINTERVAL_SHIFT); | 
|  |  | 
|  | /* | 
|  | * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width | 
|  | * also to this form and subtract to get TA_DEVCNT, which is | 
|  | * in log2(x) form. | 
|  | */ | 
|  | emif_bus_width = __fls(emif_bus_width) - 1; | 
|  | devcnt = emif_bus_width - sdram_io_width; | 
|  | alert |= devcnt << TA_DEVCNT_SHIFT; | 
|  |  | 
|  | /* DEVWDT is in 'log2(x) - 3' form */ | 
|  | alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; | 
|  |  | 
|  | alert |= 1 << TA_SFEXITEN_SHIFT; | 
|  | alert |= 1 << TA_CS0EN_SHIFT; | 
|  | alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; | 
|  |  | 
|  | return alert; | 
|  | } | 
|  |  | 
|  | static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) | 
|  | { | 
|  | u32 idle = 0, val = 0; | 
|  |  | 
|  | /* | 
|  | * Maximum value in normal conditions and increased frequency | 
|  | * when voltage is ramping | 
|  | */ | 
|  | if (volt_ramp) | 
|  | val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; | 
|  | else | 
|  | val = 0x1FF; | 
|  |  | 
|  | /* | 
|  | * READ_IDLE_CTRL register in EMIF4D has same offset and fields | 
|  | * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts | 
|  | */ | 
|  | idle |= val << DLL_CALIB_INTERVAL_SHIFT; | 
|  | idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; | 
|  |  | 
|  | return idle; | 
|  | } | 
|  |  | 
|  | static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) | 
|  | { | 
|  | u32 calib = 0, val = 0; | 
|  |  | 
|  | if (volt_ramp == DDR_VOLTAGE_RAMPING) | 
|  | val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; | 
|  | else | 
|  | val = 0; /* Disabled when voltage is stable */ | 
|  |  | 
|  | calib |= val << DLL_CALIB_INTERVAL_SHIFT; | 
|  | calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; | 
|  |  | 
|  | return calib; | 
|  | } | 
|  |  | 
|  | static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, | 
|  | u32 freq, u8 RL) | 
|  | { | 
|  | u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; | 
|  |  | 
|  | val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; | 
|  | phy |= val << READ_LATENCY_SHIFT_4D; | 
|  |  | 
|  | if (freq <= 100000000) | 
|  | val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; | 
|  | else if (freq <= 200000000) | 
|  | val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; | 
|  | else | 
|  | val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; | 
|  |  | 
|  | phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; | 
|  |  | 
|  | return phy; | 
|  | } | 
|  |  | 
|  | static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) | 
|  | { | 
|  | u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; | 
|  |  | 
|  | /* | 
|  | * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, | 
|  | * half-delay is not needed else set half-delay | 
|  | */ | 
|  | if (freq >= 265000000 && freq < 267000000) | 
|  | half_delay = 0; | 
|  | else | 
|  | half_delay = 1; | 
|  |  | 
|  | phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; | 
|  | phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, | 
|  | t_ck) - 1) << READ_LATENCY_SHIFT_4D5); | 
|  |  | 
|  | return phy; | 
|  | } | 
|  |  | 
|  | static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) | 
|  | { | 
|  | u32 fifo_we_slave_ratio; | 
|  |  | 
|  | fifo_we_slave_ratio =  DIV_ROUND_CLOSEST( | 
|  | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); | 
|  |  | 
|  | return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | | 
|  | fifo_we_slave_ratio << 22; | 
|  | } | 
|  |  | 
|  | static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) | 
|  | { | 
|  | u32 fifo_we_slave_ratio; | 
|  |  | 
|  | fifo_we_slave_ratio =  DIV_ROUND_CLOSEST( | 
|  | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); | 
|  |  | 
|  | return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | | 
|  | fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; | 
|  | } | 
|  |  | 
|  | static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) | 
|  | { | 
|  | u32 fifo_we_slave_ratio; | 
|  |  | 
|  | fifo_we_slave_ratio =  DIV_ROUND_CLOSEST( | 
|  | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); | 
|  |  | 
|  | return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | | 
|  | fifo_we_slave_ratio << 13; | 
|  | } | 
|  |  | 
|  | static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) | 
|  | { | 
|  | u32 pwr_mgmt_ctrl	= 0, timeout; | 
|  | u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH; | 
|  | u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE; | 
|  | u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER; | 
|  | u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD; | 
|  |  | 
|  | struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; | 
|  |  | 
|  | if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { | 
|  | lpmode		= cust_cfgs->lpmode; | 
|  | timeout_perf	= cust_cfgs->lpmode_timeout_performance; | 
|  | timeout_pwr	= cust_cfgs->lpmode_timeout_power; | 
|  | freq_threshold  = cust_cfgs->lpmode_freq_threshold; | 
|  | } | 
|  |  | 
|  | /* Timeout based on DDR frequency */ | 
|  | timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; | 
|  |  | 
|  | /* The value to be set in register is "log2(timeout) - 3" */ | 
|  | if (timeout < 16) { | 
|  | timeout = 0; | 
|  | } else { | 
|  | timeout = __fls(timeout) - 3; | 
|  | if (timeout & (timeout - 1)) | 
|  | timeout++; | 
|  | } | 
|  |  | 
|  | switch (lpmode) { | 
|  | case EMIF_LP_MODE_CLOCK_STOP: | 
|  | pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) | | 
|  | SR_TIM_MASK | PD_TIM_MASK; | 
|  | break; | 
|  | case EMIF_LP_MODE_SELF_REFRESH: | 
|  | /* Workaround for errata i735 */ | 
|  | if (timeout < 6) | 
|  | timeout = 6; | 
|  |  | 
|  | pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) | | 
|  | CS_TIM_MASK | PD_TIM_MASK; | 
|  | break; | 
|  | case EMIF_LP_MODE_PWR_DN: | 
|  | pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) | | 
|  | CS_TIM_MASK | SR_TIM_MASK; | 
|  | break; | 
|  | case EMIF_LP_MODE_DISABLE: | 
|  | default: | 
|  | pwr_mgmt_ctrl = CS_TIM_MASK | | 
|  | PD_TIM_MASK | SR_TIM_MASK; | 
|  | } | 
|  |  | 
|  | /* No CS_TIM in EMIF_4D5 */ | 
|  | if (ip_rev == EMIF_4D5) | 
|  | pwr_mgmt_ctrl &= ~CS_TIM_MASK; | 
|  |  | 
|  | pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; | 
|  |  | 
|  | return pwr_mgmt_ctrl; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the temperature level of the EMIF instance: | 
|  | * Reads the MR4 register of attached SDRAM parts to find out the temperature | 
|  | * level. If there are two parts attached(one on each CS), then the temperature | 
|  | * level for the EMIF instance is the higher of the two temperatures. | 
|  | */ | 
|  | static void get_temperature_level(struct emif_data *emif) | 
|  | { | 
|  | u32		temp, temperature_level; | 
|  | void __iomem	*base; | 
|  |  | 
|  | base = emif->base; | 
|  |  | 
|  | /* Read mode register 4 */ | 
|  | writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); | 
|  | temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); | 
|  | temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> | 
|  | MR4_SDRAM_REF_RATE_SHIFT; | 
|  |  | 
|  | if (emif->plat_data->device_info->cs1_used) { | 
|  | writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); | 
|  | temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); | 
|  | temp = (temp & MR4_SDRAM_REF_RATE_MASK) | 
|  | >> MR4_SDRAM_REF_RATE_SHIFT; | 
|  | temperature_level = max(temp, temperature_level); | 
|  | } | 
|  |  | 
|  | /* treat everything less than nominal(3) in MR4 as nominal */ | 
|  | if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) | 
|  | temperature_level = SDRAM_TEMP_NOMINAL; | 
|  |  | 
|  | /* if we get reserved value in MR4 persist with the existing value */ | 
|  | if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) | 
|  | emif->temperature_level = temperature_level; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Program EMIF shadow registers that are not dependent on temperature | 
|  | * or voltage | 
|  | */ | 
|  | static void setup_registers(struct emif_data *emif, struct emif_regs *regs) | 
|  | { | 
|  | void __iomem	*base = emif->base; | 
|  |  | 
|  | writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); | 
|  | writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); | 
|  |  | 
|  | /* Settings specific for EMIF4D5 */ | 
|  | if (emif->plat_data->ip_rev != EMIF_4D5) | 
|  | return; | 
|  | writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); | 
|  | writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); | 
|  | writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When voltage ramps dll calibration and forced read idle should | 
|  | * happen more often | 
|  | */ | 
|  | static void setup_volt_sensitive_regs(struct emif_data *emif, | 
|  | struct emif_regs *regs, u32 volt_state) | 
|  | { | 
|  | u32		calib_ctrl; | 
|  | void __iomem	*base = emif->base; | 
|  |  | 
|  | /* | 
|  | * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as | 
|  | * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* | 
|  | * is an alias of the respective read_idle_ctrl_shdw_* (members of | 
|  | * a union). So, the below code takes care of both cases | 
|  | */ | 
|  | if (volt_state == DDR_VOLTAGE_RAMPING) | 
|  | calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; | 
|  | else | 
|  | calib_ctrl = regs->dll_calib_ctrl_shdw_normal; | 
|  |  | 
|  | writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setup_temperature_sensitive_regs() - set the timings for temperature | 
|  | * sensitive registers. This happens once at initialisation time based | 
|  | * on the temperature at boot time and subsequently based on the temperature | 
|  | * alert interrupt. Temperature alert can happen when the temperature | 
|  | * increases or drops. So this function can have the effect of either | 
|  | * derating the timings or going back to nominal values. | 
|  | */ | 
|  | static void setup_temperature_sensitive_regs(struct emif_data *emif, | 
|  | struct emif_regs *regs) | 
|  | { | 
|  | u32		tim1, tim3, ref_ctrl, type; | 
|  | void __iomem	*base = emif->base; | 
|  | u32		temperature; | 
|  |  | 
|  | type = emif->plat_data->device_info->type; | 
|  |  | 
|  | tim1 = regs->sdram_tim1_shdw; | 
|  | tim3 = regs->sdram_tim3_shdw; | 
|  | ref_ctrl = regs->ref_ctrl_shdw; | 
|  |  | 
|  | /* No de-rating for non-lpddr2 devices */ | 
|  | if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) | 
|  | goto out; | 
|  |  | 
|  | temperature = emif->temperature_level; | 
|  | if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { | 
|  | ref_ctrl = regs->ref_ctrl_shdw_derated; | 
|  | } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { | 
|  | tim1 = regs->sdram_tim1_shdw_derated; | 
|  | tim3 = regs->sdram_tim3_shdw_derated; | 
|  | ref_ctrl = regs->ref_ctrl_shdw_derated; | 
|  | } | 
|  |  | 
|  | out: | 
|  | writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); | 
|  | writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); | 
|  | writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); | 
|  | } | 
|  |  | 
|  | static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) | 
|  | { | 
|  | u32		old_temp_level; | 
|  | irqreturn_t	ret = IRQ_HANDLED; | 
|  |  | 
|  | spin_lock_irqsave(&emif_lock, irq_state); | 
|  | old_temp_level = emif->temperature_level; | 
|  | get_temperature_level(emif); | 
|  |  | 
|  | if (unlikely(emif->temperature_level == old_temp_level)) { | 
|  | goto out; | 
|  | } else if (!emif->curr_regs) { | 
|  | dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (emif->temperature_level < old_temp_level || | 
|  | emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { | 
|  | /* | 
|  | * Temperature coming down - defer handling to thread OR | 
|  | * Temperature far too high - do kernel_power_off() from | 
|  | * thread context | 
|  | */ | 
|  | ret = IRQ_WAKE_THREAD; | 
|  | } else { | 
|  | /* Temperature is going up - handle immediately */ | 
|  | setup_temperature_sensitive_regs(emif, emif->curr_regs); | 
|  | do_freq_update(); | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_unlock_irqrestore(&emif_lock, irq_state); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) | 
|  | { | 
|  | u32			interrupts; | 
|  | struct emif_data	*emif = dev_id; | 
|  | void __iomem		*base = emif->base; | 
|  | struct device		*dev = emif->dev; | 
|  | irqreturn_t		ret = IRQ_HANDLED; | 
|  |  | 
|  | /* Save the status and clear it */ | 
|  | interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); | 
|  | writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); | 
|  |  | 
|  | /* | 
|  | * Handle temperature alert | 
|  | * Temperature alert should be same for all ports | 
|  | * So, it's enough to process it only for one of the ports | 
|  | */ | 
|  | if (interrupts & TA_SYS_MASK) | 
|  | ret = handle_temp_alert(base, emif); | 
|  |  | 
|  | if (interrupts & ERR_SYS_MASK) | 
|  | dev_err(dev, "Access error from SYS port - %x\n", interrupts); | 
|  |  | 
|  | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { | 
|  | /* Save the status and clear it */ | 
|  | interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); | 
|  | writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); | 
|  |  | 
|  | if (interrupts & ERR_LL_MASK) | 
|  | dev_err(dev, "Access error from LL port - %x\n", | 
|  | interrupts); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static irqreturn_t emif_threaded_isr(int irq, void *dev_id) | 
|  | { | 
|  | struct emif_data	*emif = dev_id; | 
|  |  | 
|  | if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { | 
|  | dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); | 
|  | kernel_power_off(); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&emif_lock, irq_state); | 
|  |  | 
|  | if (emif->curr_regs) { | 
|  | setup_temperature_sensitive_regs(emif, emif->curr_regs); | 
|  | do_freq_update(); | 
|  | } else { | 
|  | dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&emif_lock, irq_state); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void clear_all_interrupts(struct emif_data *emif) | 
|  | { | 
|  | void __iomem	*base = emif->base; | 
|  |  | 
|  | writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), | 
|  | base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); | 
|  | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) | 
|  | writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), | 
|  | base + EMIF_LL_OCP_INTERRUPT_STATUS); | 
|  | } | 
|  |  | 
|  | static void disable_and_clear_all_interrupts(struct emif_data *emif) | 
|  | { | 
|  | void __iomem		*base = emif->base; | 
|  |  | 
|  | /* Disable all interrupts */ | 
|  | writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), | 
|  | base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); | 
|  | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) | 
|  | writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), | 
|  | base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); | 
|  |  | 
|  | /* Clear all interrupts */ | 
|  | clear_all_interrupts(emif); | 
|  | } | 
|  |  | 
|  | static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) | 
|  | { | 
|  | u32		interrupts, type; | 
|  | void __iomem	*base = emif->base; | 
|  |  | 
|  | type = emif->plat_data->device_info->type; | 
|  |  | 
|  | clear_all_interrupts(emif); | 
|  |  | 
|  | /* Enable interrupts for SYS interface */ | 
|  | interrupts = EN_ERR_SYS_MASK; | 
|  | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) | 
|  | interrupts |= EN_TA_SYS_MASK; | 
|  | writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); | 
|  |  | 
|  | /* Enable interrupts for LL interface */ | 
|  | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { | 
|  | /* TA need not be enabled for LL */ | 
|  | interrupts = EN_ERR_LL_MASK; | 
|  | writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); | 
|  | } | 
|  |  | 
|  | /* setup IRQ handlers */ | 
|  | return devm_request_threaded_irq(emif->dev, irq, | 
|  | emif_interrupt_handler, | 
|  | emif_threaded_isr, | 
|  | 0, dev_name(emif->dev), | 
|  | emif); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void __init_or_module emif_onetime_settings(struct emif_data *emif) | 
|  | { | 
|  | u32				pwr_mgmt_ctrl, zq, temp_alert_cfg; | 
|  | void __iomem			*base = emif->base; | 
|  | const struct lpddr2_addressing	*addressing; | 
|  | const struct ddr_device_info	*device_info; | 
|  |  | 
|  | device_info = emif->plat_data->device_info; | 
|  | addressing = get_addressing_table(device_info); | 
|  |  | 
|  | /* | 
|  | * Init power management settings | 
|  | * We don't know the frequency yet. Use a high frequency | 
|  | * value for a conservative timeout setting | 
|  | */ | 
|  | pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, | 
|  | emif->plat_data->ip_rev); | 
|  | emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; | 
|  | writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); | 
|  |  | 
|  | /* Init ZQ calibration settings */ | 
|  | zq = get_zq_config_reg(addressing, device_info->cs1_used, | 
|  | device_info->cal_resistors_per_cs); | 
|  | writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); | 
|  |  | 
|  | /* Check temperature level temperature level*/ | 
|  | get_temperature_level(emif); | 
|  | if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) | 
|  | dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); | 
|  |  | 
|  | /* Init temperature polling */ | 
|  | temp_alert_cfg = get_temp_alert_config(addressing, | 
|  | emif->plat_data->custom_configs, device_info->cs1_used, | 
|  | device_info->io_width, get_emif_bus_width(emif)); | 
|  | writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); | 
|  |  | 
|  | /* | 
|  | * Program external PHY control registers that are not frequency | 
|  | * dependent | 
|  | */ | 
|  | if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) | 
|  | return; | 
|  | writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); | 
|  | writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); | 
|  | } | 
|  |  | 
|  | static void get_default_timings(struct emif_data *emif) | 
|  | { | 
|  | struct emif_platform_data *pd = emif->plat_data; | 
|  |  | 
|  | pd->timings		= lpddr2_jedec_timings; | 
|  | pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings); | 
|  |  | 
|  | dev_warn(emif->dev, "%s: using default timings\n", __func__); | 
|  | } | 
|  |  | 
|  | static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, | 
|  | u32 ip_rev, struct device *dev) | 
|  | { | 
|  | int valid; | 
|  |  | 
|  | valid = (type == DDR_TYPE_LPDDR2_S4 || | 
|  | type == DDR_TYPE_LPDDR2_S2) | 
|  | && (density >= DDR_DENSITY_64Mb | 
|  | && density <= DDR_DENSITY_8Gb) | 
|  | && (io_width >= DDR_IO_WIDTH_8 | 
|  | && io_width <= DDR_IO_WIDTH_32); | 
|  |  | 
|  | /* Combinations of EMIF and PHY revisions that we support today */ | 
|  | switch (ip_rev) { | 
|  | case EMIF_4D: | 
|  | valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); | 
|  | break; | 
|  | case EMIF_4D5: | 
|  | valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); | 
|  | break; | 
|  | default: | 
|  | valid = 0; | 
|  | } | 
|  |  | 
|  | if (!valid) | 
|  | dev_err(dev, "%s: invalid DDR details\n", __func__); | 
|  | return valid; | 
|  | } | 
|  |  | 
|  | static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, | 
|  | struct device *dev) | 
|  | { | 
|  | int valid = 1; | 
|  |  | 
|  | if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && | 
|  | (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) | 
|  | valid = cust_cfgs->lpmode_freq_threshold && | 
|  | cust_cfgs->lpmode_timeout_performance && | 
|  | cust_cfgs->lpmode_timeout_power; | 
|  |  | 
|  | if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) | 
|  | valid = valid && cust_cfgs->temp_alert_poll_interval_ms; | 
|  |  | 
|  | if (!valid) | 
|  | dev_warn(dev, "%s: invalid custom configs\n", __func__); | 
|  |  | 
|  | return valid; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_OF) | 
|  | static void __init_or_module of_get_custom_configs(struct device_node *np_emif, | 
|  | struct emif_data *emif) | 
|  | { | 
|  | struct emif_custom_configs	*cust_cfgs = NULL; | 
|  | int				len; | 
|  | const int			*lpmode, *poll_intvl; | 
|  |  | 
|  | lpmode = of_get_property(np_emif, "low-power-mode", &len); | 
|  | poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len); | 
|  |  | 
|  | if (lpmode || poll_intvl) | 
|  | cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!cust_cfgs) | 
|  | return; | 
|  |  | 
|  | if (lpmode) { | 
|  | cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE; | 
|  | cust_cfgs->lpmode = *lpmode; | 
|  | of_property_read_u32(np_emif, | 
|  | "low-power-mode-timeout-performance", | 
|  | &cust_cfgs->lpmode_timeout_performance); | 
|  | of_property_read_u32(np_emif, | 
|  | "low-power-mode-timeout-power", | 
|  | &cust_cfgs->lpmode_timeout_power); | 
|  | of_property_read_u32(np_emif, | 
|  | "low-power-mode-freq-threshold", | 
|  | &cust_cfgs->lpmode_freq_threshold); | 
|  | } | 
|  |  | 
|  | if (poll_intvl) { | 
|  | cust_cfgs->mask |= | 
|  | EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL; | 
|  | cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl; | 
|  | } | 
|  |  | 
|  | if (!is_custom_config_valid(cust_cfgs, emif->dev)) { | 
|  | devm_kfree(emif->dev, cust_cfgs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | emif->plat_data->custom_configs = cust_cfgs; | 
|  | } | 
|  |  | 
|  | static void __init_or_module of_get_ddr_info(struct device_node *np_emif, | 
|  | struct device_node *np_ddr, | 
|  | struct ddr_device_info *dev_info) | 
|  | { | 
|  | u32 density = 0, io_width = 0; | 
|  | int len; | 
|  |  | 
|  | if (of_find_property(np_emif, "cs1-used", &len)) | 
|  | dev_info->cs1_used = true; | 
|  |  | 
|  | if (of_find_property(np_emif, "cal-resistor-per-cs", &len)) | 
|  | dev_info->cal_resistors_per_cs = true; | 
|  |  | 
|  | if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4")) | 
|  | dev_info->type = DDR_TYPE_LPDDR2_S4; | 
|  | else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2")) | 
|  | dev_info->type = DDR_TYPE_LPDDR2_S2; | 
|  |  | 
|  | of_property_read_u32(np_ddr, "density", &density); | 
|  | of_property_read_u32(np_ddr, "io-width", &io_width); | 
|  |  | 
|  | /* Convert from density in Mb to the density encoding in jedc_ddr.h */ | 
|  | if (density & (density - 1)) | 
|  | dev_info->density = 0; | 
|  | else | 
|  | dev_info->density = __fls(density) - 5; | 
|  |  | 
|  | /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */ | 
|  | if (io_width & (io_width - 1)) | 
|  | dev_info->io_width = 0; | 
|  | else | 
|  | dev_info->io_width = __fls(io_width) - 1; | 
|  | } | 
|  |  | 
|  | static struct emif_data * __init_or_module of_get_memory_device_details( | 
|  | struct device_node *np_emif, struct device *dev) | 
|  | { | 
|  | struct emif_data		*emif = NULL; | 
|  | struct ddr_device_info		*dev_info = NULL; | 
|  | struct emif_platform_data	*pd = NULL; | 
|  | struct device_node		*np_ddr; | 
|  | int				len; | 
|  |  | 
|  | np_ddr = of_parse_phandle(np_emif, "device-handle", 0); | 
|  | if (!np_ddr) | 
|  | goto error; | 
|  | emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL); | 
|  | pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); | 
|  | dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); | 
|  |  | 
|  | if (!emif || !pd || !dev_info) { | 
|  | dev_err(dev, "%s: Out of memory!!\n", | 
|  | __func__); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | emif->plat_data		= pd; | 
|  | pd->device_info		= dev_info; | 
|  | emif->dev		= dev; | 
|  | emif->np_ddr		= np_ddr; | 
|  | emif->temperature_level	= SDRAM_TEMP_NOMINAL; | 
|  |  | 
|  | if (of_device_is_compatible(np_emif, "ti,emif-4d")) | 
|  | emif->plat_data->ip_rev = EMIF_4D; | 
|  | else if (of_device_is_compatible(np_emif, "ti,emif-4d5")) | 
|  | emif->plat_data->ip_rev = EMIF_4D5; | 
|  |  | 
|  | of_property_read_u32(np_emif, "phy-type", &pd->phy_type); | 
|  |  | 
|  | if (of_find_property(np_emif, "hw-caps-ll-interface", &len)) | 
|  | pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE; | 
|  |  | 
|  | of_get_ddr_info(np_emif, np_ddr, dev_info); | 
|  | if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density, | 
|  | pd->device_info->io_width, pd->phy_type, pd->ip_rev, | 
|  | emif->dev)) { | 
|  | dev_err(dev, "%s: invalid device data!!\n", __func__); | 
|  | goto error; | 
|  | } | 
|  | /* | 
|  | * For EMIF instances other than EMIF1 see if the devices connected | 
|  | * are exactly same as on EMIF1(which is typically the case). If so, | 
|  | * mark it as a duplicate of EMIF1. This will save some memory and | 
|  | * computation. | 
|  | */ | 
|  | if (emif1 && emif1->np_ddr == np_ddr) { | 
|  | emif->duplicate = true; | 
|  | goto out; | 
|  | } else if (emif1) { | 
|  | dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", | 
|  | __func__); | 
|  | } | 
|  |  | 
|  | of_get_custom_configs(np_emif, emif); | 
|  | emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev, | 
|  | emif->plat_data->device_info->type, | 
|  | &emif->plat_data->timings_arr_size); | 
|  |  | 
|  | emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev); | 
|  | goto out; | 
|  |  | 
|  | error: | 
|  | return NULL; | 
|  | out: | 
|  | return emif; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static struct emif_data * __init_or_module of_get_memory_device_details( | 
|  | struct device_node *np_emif, struct device *dev) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct emif_data *__init_or_module get_device_details( | 
|  | struct platform_device *pdev) | 
|  | { | 
|  | u32				size; | 
|  | struct emif_data		*emif = NULL; | 
|  | struct ddr_device_info		*dev_info; | 
|  | struct emif_custom_configs	*cust_cfgs; | 
|  | struct emif_platform_data	*pd; | 
|  | struct device			*dev; | 
|  | void				*temp; | 
|  |  | 
|  | pd = pdev->dev.platform_data; | 
|  | dev = &pdev->dev; | 
|  |  | 
|  | if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, | 
|  | pd->device_info->density, pd->device_info->io_width, | 
|  | pd->phy_type, pd->ip_rev, dev))) { | 
|  | dev_err(dev, "%s: invalid device data\n", __func__); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); | 
|  | temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); | 
|  | dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); | 
|  |  | 
|  | if (!emif || !pd || !dev_info) { | 
|  | dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | memcpy(temp, pd, sizeof(*pd)); | 
|  | pd = temp; | 
|  | memcpy(dev_info, pd->device_info, sizeof(*dev_info)); | 
|  |  | 
|  | pd->device_info		= dev_info; | 
|  | emif->plat_data		= pd; | 
|  | emif->dev		= dev; | 
|  | emif->temperature_level	= SDRAM_TEMP_NOMINAL; | 
|  |  | 
|  | /* | 
|  | * For EMIF instances other than EMIF1 see if the devices connected | 
|  | * are exactly same as on EMIF1(which is typically the case). If so, | 
|  | * mark it as a duplicate of EMIF1 and skip copying timings data. | 
|  | * This will save some memory and some computation later. | 
|  | */ | 
|  | emif->duplicate = emif1 && (memcmp(dev_info, | 
|  | emif1->plat_data->device_info, | 
|  | sizeof(struct ddr_device_info)) == 0); | 
|  |  | 
|  | if (emif->duplicate) { | 
|  | pd->timings = NULL; | 
|  | pd->min_tck = NULL; | 
|  | goto out; | 
|  | } else if (emif1) { | 
|  | dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", | 
|  | __func__); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy custom configs - ignore allocation error, if any, as | 
|  | * custom_configs is not very critical | 
|  | */ | 
|  | cust_cfgs = pd->custom_configs; | 
|  | if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { | 
|  | temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); | 
|  | if (temp) | 
|  | memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); | 
|  | else | 
|  | dev_warn(dev, "%s:%d: allocation error\n", __func__, | 
|  | __LINE__); | 
|  | pd->custom_configs = temp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy timings and min-tck values from platform data. If it is not | 
|  | * available or if memory allocation fails, use JEDEC defaults | 
|  | */ | 
|  | size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; | 
|  | if (pd->timings) { | 
|  | temp = devm_kzalloc(dev, size, GFP_KERNEL); | 
|  | if (temp) { | 
|  | memcpy(temp, pd->timings, sizeof(*pd->timings)); | 
|  | pd->timings = temp; | 
|  | } else { | 
|  | dev_warn(dev, "%s:%d: allocation error\n", __func__, | 
|  | __LINE__); | 
|  | get_default_timings(emif); | 
|  | } | 
|  | } else { | 
|  | get_default_timings(emif); | 
|  | } | 
|  |  | 
|  | if (pd->min_tck) { | 
|  | temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); | 
|  | if (temp) { | 
|  | memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); | 
|  | pd->min_tck = temp; | 
|  | } else { | 
|  | dev_warn(dev, "%s:%d: allocation error\n", __func__, | 
|  | __LINE__); | 
|  | pd->min_tck = &lpddr2_jedec_min_tck; | 
|  | } | 
|  | } else { | 
|  | pd->min_tck = &lpddr2_jedec_min_tck; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return emif; | 
|  |  | 
|  | error: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int __init_or_module emif_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct emif_data	*emif; | 
|  | struct resource		*res; | 
|  | int			irq; | 
|  |  | 
|  | if (pdev->dev.of_node) | 
|  | emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev); | 
|  | else | 
|  | emif = get_device_details(pdev); | 
|  |  | 
|  | if (!emif) { | 
|  | pr_err("%s: error getting device data\n", __func__); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | list_add(&emif->node, &device_list); | 
|  | emif->addressing = get_addressing_table(emif->plat_data->device_info); | 
|  |  | 
|  | /* Save pointers to each other in emif and device structures */ | 
|  | emif->dev = &pdev->dev; | 
|  | platform_set_drvdata(pdev, emif); | 
|  |  | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (!res) { | 
|  | dev_err(emif->dev, "%s: error getting memory resource\n", | 
|  | __func__); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | emif->base = devm_request_and_ioremap(emif->dev, res); | 
|  | if (!emif->base) { | 
|  | dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n", | 
|  | __func__); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | irq = platform_get_irq(pdev, 0); | 
|  | if (irq < 0) { | 
|  | dev_err(emif->dev, "%s: error getting IRQ resource - %d\n", | 
|  | __func__, irq); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | emif_onetime_settings(emif); | 
|  | emif_debugfs_init(emif); | 
|  | disable_and_clear_all_interrupts(emif); | 
|  | setup_interrupts(emif, irq); | 
|  |  | 
|  | /* One-time actions taken on probing the first device */ | 
|  | if (!emif1) { | 
|  | emif1 = emif; | 
|  | spin_lock_init(&emif_lock); | 
|  |  | 
|  | /* | 
|  | * TODO: register notifiers for frequency and voltage | 
|  | * change here once the respective frameworks are | 
|  | * available | 
|  | */ | 
|  | } | 
|  |  | 
|  | dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", | 
|  | __func__, emif->base, irq); | 
|  |  | 
|  | return 0; | 
|  | error: | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int __exit emif_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct emif_data *emif = platform_get_drvdata(pdev); | 
|  |  | 
|  | emif_debugfs_exit(emif); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void emif_shutdown(struct platform_device *pdev) | 
|  | { | 
|  | struct emif_data	*emif = platform_get_drvdata(pdev); | 
|  |  | 
|  | disable_and_clear_all_interrupts(emif); | 
|  | } | 
|  |  | 
|  | static int get_emif_reg_values(struct emif_data *emif, u32 freq, | 
|  | struct emif_regs *regs) | 
|  | { | 
|  | u32				cs1_used, ip_rev, phy_type; | 
|  | u32				cl, type; | 
|  | const struct lpddr2_timings	*timings; | 
|  | const struct lpddr2_min_tck	*min_tck; | 
|  | const struct ddr_device_info	*device_info; | 
|  | const struct lpddr2_addressing	*addressing; | 
|  | struct emif_data		*emif_for_calc; | 
|  | struct device			*dev; | 
|  | const struct emif_custom_configs *custom_configs; | 
|  |  | 
|  | dev = emif->dev; | 
|  | /* | 
|  | * If the devices on this EMIF instance is duplicate of EMIF1, | 
|  | * use EMIF1 details for the calculation | 
|  | */ | 
|  | emif_for_calc	= emif->duplicate ? emif1 : emif; | 
|  | timings		= get_timings_table(emif_for_calc, freq); | 
|  | addressing	= emif_for_calc->addressing; | 
|  | if (!timings || !addressing) { | 
|  | dev_err(dev, "%s: not enough data available for %dHz", | 
|  | __func__, freq); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | device_info	= emif_for_calc->plat_data->device_info; | 
|  | type		= device_info->type; | 
|  | cs1_used	= device_info->cs1_used; | 
|  | ip_rev		= emif_for_calc->plat_data->ip_rev; | 
|  | phy_type	= emif_for_calc->plat_data->phy_type; | 
|  |  | 
|  | min_tck		= emif_for_calc->plat_data->min_tck; | 
|  | custom_configs	= emif_for_calc->plat_data->custom_configs; | 
|  |  | 
|  | set_ddr_clk_period(freq); | 
|  |  | 
|  | regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); | 
|  | regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, | 
|  | addressing); | 
|  | regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, | 
|  | addressing, type); | 
|  | regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, | 
|  | addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); | 
|  |  | 
|  | cl = get_cl(emif); | 
|  |  | 
|  | if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { | 
|  | regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( | 
|  | timings, freq, cl); | 
|  | } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { | 
|  | regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); | 
|  | regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); | 
|  | regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); | 
|  | regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); | 
|  | } else { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Only timeout values in pwr_mgmt_ctrl_shdw register */ | 
|  | regs->pwr_mgmt_ctrl_shdw = | 
|  | get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & | 
|  | (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); | 
|  |  | 
|  | if (ip_rev & EMIF_4D) { | 
|  | regs->read_idle_ctrl_shdw_normal = | 
|  | get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); | 
|  |  | 
|  | regs->read_idle_ctrl_shdw_volt_ramp = | 
|  | get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); | 
|  | } else if (ip_rev & EMIF_4D5) { | 
|  | regs->dll_calib_ctrl_shdw_normal = | 
|  | get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); | 
|  |  | 
|  | regs->dll_calib_ctrl_shdw_volt_ramp = | 
|  | get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); | 
|  | } | 
|  |  | 
|  | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { | 
|  | regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, | 
|  | addressing); | 
|  |  | 
|  | regs->sdram_tim1_shdw_derated = | 
|  | get_sdram_tim_1_shdw_derated(timings, min_tck, | 
|  | addressing); | 
|  |  | 
|  | regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, | 
|  | min_tck, addressing, type, ip_rev, | 
|  | EMIF_DERATED_TIMINGS); | 
|  | } | 
|  |  | 
|  | regs->freq = freq; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_regs() - gets the cached emif_regs structure for a given EMIF instance | 
|  | * given frequency(freq): | 
|  | * | 
|  | * As an optimisation, every EMIF instance other than EMIF1 shares the | 
|  | * register cache with EMIF1 if the devices connected on this instance | 
|  | * are same as that on EMIF1(indicated by the duplicate flag) | 
|  | * | 
|  | * If we do not have an entry corresponding to the frequency given, we | 
|  | * allocate a new entry and calculate the values | 
|  | * | 
|  | * Upon finding the right reg dump, save it in curr_regs. It can be | 
|  | * directly used for thermal de-rating and voltage ramping changes. | 
|  | */ | 
|  | static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) | 
|  | { | 
|  | int			i; | 
|  | struct emif_regs	**regs_cache; | 
|  | struct emif_regs	*regs = NULL; | 
|  | struct device		*dev; | 
|  |  | 
|  | dev = emif->dev; | 
|  | if (emif->curr_regs && emif->curr_regs->freq == freq) { | 
|  | dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); | 
|  | return emif->curr_regs; | 
|  | } | 
|  |  | 
|  | if (emif->duplicate) | 
|  | regs_cache = emif1->regs_cache; | 
|  | else | 
|  | regs_cache = emif->regs_cache; | 
|  |  | 
|  | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { | 
|  | if (regs_cache[i]->freq == freq) { | 
|  | regs = regs_cache[i]; | 
|  | dev_dbg(dev, | 
|  | "%s: reg dump found in reg cache for %u Hz\n", | 
|  | __func__, freq); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we don't have an entry for this frequency in the cache create one | 
|  | * and calculate the values | 
|  | */ | 
|  | if (!regs) { | 
|  | regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); | 
|  | if (!regs) | 
|  | return NULL; | 
|  |  | 
|  | if (get_emif_reg_values(emif, freq, regs)) { | 
|  | devm_kfree(emif->dev, regs); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now look for an un-used entry in the cache and save the | 
|  | * newly created struct. If there are no free entries | 
|  | * over-write the last entry | 
|  | */ | 
|  | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) | 
|  | ; | 
|  |  | 
|  | if (i >= EMIF_MAX_NUM_FREQUENCIES) { | 
|  | dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", | 
|  | __func__); | 
|  | i = EMIF_MAX_NUM_FREQUENCIES - 1; | 
|  | devm_kfree(emif->dev, regs_cache[i]); | 
|  | } | 
|  | regs_cache[i] = regs; | 
|  | } | 
|  |  | 
|  | return regs; | 
|  | } | 
|  |  | 
|  | static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) | 
|  | { | 
|  | dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, | 
|  | volt_state); | 
|  |  | 
|  | if (!emif->curr_regs) { | 
|  | dev_err(emif->dev, | 
|  | "%s: volt-notify before registers are ready: %d\n", | 
|  | __func__, volt_state); | 
|  | return; | 
|  | } | 
|  |  | 
|  | setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: voltage notify handling should be hooked up to | 
|  | * regulator framework as soon as the necessary support | 
|  | * is available in mainline kernel. This function is un-used | 
|  | * right now. | 
|  | */ | 
|  | static void __attribute__((unused)) volt_notify_handling(u32 volt_state) | 
|  | { | 
|  | struct emif_data *emif; | 
|  |  | 
|  | spin_lock_irqsave(&emif_lock, irq_state); | 
|  |  | 
|  | list_for_each_entry(emif, &device_list, node) | 
|  | do_volt_notify_handling(emif, volt_state); | 
|  | do_freq_update(); | 
|  |  | 
|  | spin_unlock_irqrestore(&emif_lock, irq_state); | 
|  | } | 
|  |  | 
|  | static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) | 
|  | { | 
|  | struct emif_regs *regs; | 
|  |  | 
|  | regs = get_regs(emif, new_freq); | 
|  | if (!regs) | 
|  | return; | 
|  |  | 
|  | emif->curr_regs = regs; | 
|  |  | 
|  | /* | 
|  | * Update the shadow registers: | 
|  | * Temperature and voltage-ramp sensitive settings are also configured | 
|  | * in terms of DDR cycles. So, we need to update them too when there | 
|  | * is a freq change | 
|  | */ | 
|  | dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", | 
|  | __func__, new_freq); | 
|  | setup_registers(emif, regs); | 
|  | setup_temperature_sensitive_regs(emif, regs); | 
|  | setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); | 
|  |  | 
|  | /* | 
|  | * Part of workaround for errata i728. See do_freq_update() | 
|  | * for more details | 
|  | */ | 
|  | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | 
|  | set_lpmode(emif, EMIF_LP_MODE_DISABLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: frequency notify handling should be hooked up to | 
|  | * clock framework as soon as the necessary support is | 
|  | * available in mainline kernel. This function is un-used | 
|  | * right now. | 
|  | */ | 
|  | static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) | 
|  | { | 
|  | struct emif_data *emif; | 
|  |  | 
|  | /* | 
|  | * NOTE: we are taking the spin-lock here and releases it | 
|  | * only in post-notifier. This doesn't look good and | 
|  | * Sparse complains about it, but this seems to be | 
|  | * un-avoidable. We need to lock a sequence of events | 
|  | * that is split between EMIF and clock framework. | 
|  | * | 
|  | * 1. EMIF driver updates EMIF timings in shadow registers in the | 
|  | *    frequency pre-notify callback from clock framework | 
|  | * 2. clock framework sets up the registers for the new frequency | 
|  | * 3. clock framework initiates a hw-sequence that updates | 
|  | *    the frequency EMIF timings synchronously. | 
|  | * | 
|  | * All these 3 steps should be performed as an atomic operation | 
|  | * vis-a-vis similar sequence in the EMIF interrupt handler | 
|  | * for temperature events. Otherwise, there could be race | 
|  | * conditions that could result in incorrect EMIF timings for | 
|  | * a given frequency | 
|  | */ | 
|  | spin_lock_irqsave(&emif_lock, irq_state); | 
|  |  | 
|  | list_for_each_entry(emif, &device_list, node) | 
|  | do_freq_pre_notify_handling(emif, new_freq); | 
|  | } | 
|  |  | 
|  | static void do_freq_post_notify_handling(struct emif_data *emif) | 
|  | { | 
|  | /* | 
|  | * Part of workaround for errata i728. See do_freq_update() | 
|  | * for more details | 
|  | */ | 
|  | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | 
|  | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: frequency notify handling should be hooked up to | 
|  | * clock framework as soon as the necessary support is | 
|  | * available in mainline kernel. This function is un-used | 
|  | * right now. | 
|  | */ | 
|  | static void __attribute__((unused)) freq_post_notify_handling(void) | 
|  | { | 
|  | struct emif_data *emif; | 
|  |  | 
|  | list_for_each_entry(emif, &device_list, node) | 
|  | do_freq_post_notify_handling(emif); | 
|  |  | 
|  | /* | 
|  | * Lock is done in pre-notify handler. See freq_pre_notify_handling() | 
|  | * for more details | 
|  | */ | 
|  | spin_unlock_irqrestore(&emif_lock, irq_state); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_OF) | 
|  | static const struct of_device_id emif_of_match[] = { | 
|  | { .compatible = "ti,emif-4d" }, | 
|  | { .compatible = "ti,emif-4d5" }, | 
|  | {}, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, emif_of_match); | 
|  | #endif | 
|  |  | 
|  | static struct platform_driver emif_driver = { | 
|  | .remove		= __exit_p(emif_remove), | 
|  | .shutdown	= emif_shutdown, | 
|  | .driver = { | 
|  | .name = "emif", | 
|  | .of_match_table = of_match_ptr(emif_of_match), | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __init_or_module emif_register(void) | 
|  | { | 
|  | return platform_driver_probe(&emif_driver, emif_probe); | 
|  | } | 
|  |  | 
|  | static void __exit emif_unregister(void) | 
|  | { | 
|  | platform_driver_unregister(&emif_driver); | 
|  | } | 
|  |  | 
|  | module_init(emif_register); | 
|  | module_exit(emif_unregister); | 
|  | MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS("platform:emif"); | 
|  | MODULE_AUTHOR("Texas Instruments Inc"); |