| /* smp.c: Sparc SMP support. |
| * |
| * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) |
| * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) |
| * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org) |
| */ |
| |
| #include <asm/head.h> |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/threads.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/mm.h> |
| #include <linux/fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/cache.h> |
| #include <linux/delay.h> |
| |
| #include <asm/ptrace.h> |
| #include <asm/atomic.h> |
| |
| #include <asm/irq.h> |
| #include <asm/page.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/oplib.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/cpudata.h> |
| #include <asm/leon.h> |
| |
| #include "irq.h" |
| |
| volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,}; |
| |
| cpumask_t smp_commenced_mask = CPU_MASK_NONE; |
| |
| /* The only guaranteed locking primitive available on all Sparc |
| * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically |
| * places the current byte at the effective address into dest_reg and |
| * places 0xff there afterwards. Pretty lame locking primitive |
| * compared to the Alpha and the Intel no? Most Sparcs have 'swap' |
| * instruction which is much better... |
| */ |
| |
| void __cpuinit smp_store_cpu_info(int id) |
| { |
| int cpu_node; |
| |
| cpu_data(id).udelay_val = loops_per_jiffy; |
| |
| cpu_find_by_mid(id, &cpu_node); |
| cpu_data(id).clock_tick = prom_getintdefault(cpu_node, |
| "clock-frequency", 0); |
| cpu_data(id).prom_node = cpu_node; |
| cpu_data(id).mid = cpu_get_hwmid(cpu_node); |
| |
| if (cpu_data(id).mid < 0) |
| panic("No MID found for CPU%d at node 0x%08d", id, cpu_node); |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| extern void smp4m_smp_done(void); |
| extern void smp4d_smp_done(void); |
| unsigned long bogosum = 0; |
| int cpu, num = 0; |
| |
| for_each_online_cpu(cpu) { |
| num++; |
| bogosum += cpu_data(cpu).udelay_val; |
| } |
| |
| printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n", |
| num, bogosum/(500000/HZ), |
| (bogosum/(5000/HZ))%100); |
| |
| switch(sparc_cpu_model) { |
| case sun4: |
| printk("SUN4\n"); |
| BUG(); |
| break; |
| case sun4c: |
| printk("SUN4C\n"); |
| BUG(); |
| break; |
| case sun4m: |
| smp4m_smp_done(); |
| break; |
| case sun4d: |
| smp4d_smp_done(); |
| break; |
| case sparc_leon: |
| leon_smp_done(); |
| break; |
| case sun4e: |
| printk("SUN4E\n"); |
| BUG(); |
| break; |
| case sun4u: |
| printk("SUN4U\n"); |
| BUG(); |
| break; |
| default: |
| printk("UNKNOWN!\n"); |
| BUG(); |
| break; |
| }; |
| } |
| |
| void cpu_panic(void) |
| { |
| printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); |
| panic("SMP bolixed\n"); |
| } |
| |
| struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 }; |
| |
| void smp_send_reschedule(int cpu) |
| { |
| /* |
| * CPU model dependent way of implementing IPI generation targeting |
| * a single CPU. The trap handler needs only to do trap entry/return |
| * to call schedule. |
| */ |
| BTFIXUP_CALL(smp_ipi_resched)(cpu); |
| } |
| |
| void smp_send_stop(void) |
| { |
| } |
| |
| void arch_send_call_function_single_ipi(int cpu) |
| { |
| /* trigger one IPI single call on one CPU */ |
| BTFIXUP_CALL(smp_ipi_single)(cpu); |
| } |
| |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask) |
| { |
| int cpu; |
| |
| /* trigger IPI mask call on each CPU */ |
| for_each_cpu(cpu, mask) |
| BTFIXUP_CALL(smp_ipi_mask_one)(cpu); |
| } |
| |
| void smp_resched_interrupt(void) |
| { |
| local_cpu_data().irq_resched_count++; |
| /* |
| * do nothing, since it all was about calling re-schedule |
| * routine called by interrupt return code. |
| */ |
| } |
| |
| void smp_call_function_single_interrupt(void) |
| { |
| irq_enter(); |
| generic_smp_call_function_single_interrupt(); |
| local_cpu_data().irq_call_count++; |
| irq_exit(); |
| } |
| |
| void smp_call_function_interrupt(void) |
| { |
| irq_enter(); |
| generic_smp_call_function_interrupt(); |
| local_cpu_data().irq_call_count++; |
| irq_exit(); |
| } |
| |
| void smp_flush_cache_all(void) |
| { |
| xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all)); |
| local_flush_cache_all(); |
| } |
| |
| void smp_flush_tlb_all(void) |
| { |
| xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all)); |
| local_flush_tlb_all(); |
| } |
| |
| void smp_flush_cache_mm(struct mm_struct *mm) |
| { |
| if(mm->context != NO_CONTEXT) { |
| cpumask_t cpu_mask = *mm_cpumask(mm); |
| cpu_clear(smp_processor_id(), cpu_mask); |
| if (!cpus_empty(cpu_mask)) |
| xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm); |
| local_flush_cache_mm(mm); |
| } |
| } |
| |
| void smp_flush_tlb_mm(struct mm_struct *mm) |
| { |
| if(mm->context != NO_CONTEXT) { |
| cpumask_t cpu_mask = *mm_cpumask(mm); |
| cpu_clear(smp_processor_id(), cpu_mask); |
| if (!cpus_empty(cpu_mask)) { |
| xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm); |
| if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) |
| cpumask_copy(mm_cpumask(mm), |
| cpumask_of(smp_processor_id())); |
| } |
| local_flush_tlb_mm(mm); |
| } |
| } |
| |
| void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| if (mm->context != NO_CONTEXT) { |
| cpumask_t cpu_mask = *mm_cpumask(mm); |
| cpu_clear(smp_processor_id(), cpu_mask); |
| if (!cpus_empty(cpu_mask)) |
| xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end); |
| local_flush_cache_range(vma, start, end); |
| } |
| } |
| |
| void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| if (mm->context != NO_CONTEXT) { |
| cpumask_t cpu_mask = *mm_cpumask(mm); |
| cpu_clear(smp_processor_id(), cpu_mask); |
| if (!cpus_empty(cpu_mask)) |
| xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end); |
| local_flush_tlb_range(vma, start, end); |
| } |
| } |
| |
| void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| if(mm->context != NO_CONTEXT) { |
| cpumask_t cpu_mask = *mm_cpumask(mm); |
| cpu_clear(smp_processor_id(), cpu_mask); |
| if (!cpus_empty(cpu_mask)) |
| xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page); |
| local_flush_cache_page(vma, page); |
| } |
| } |
| |
| void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| if(mm->context != NO_CONTEXT) { |
| cpumask_t cpu_mask = *mm_cpumask(mm); |
| cpu_clear(smp_processor_id(), cpu_mask); |
| if (!cpus_empty(cpu_mask)) |
| xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page); |
| local_flush_tlb_page(vma, page); |
| } |
| } |
| |
| void smp_reschedule_irq(void) |
| { |
| set_need_resched(); |
| } |
| |
| void smp_flush_page_to_ram(unsigned long page) |
| { |
| /* Current theory is that those who call this are the one's |
| * who have just dirtied their cache with the pages contents |
| * in kernel space, therefore we only run this on local cpu. |
| * |
| * XXX This experiment failed, research further... -DaveM |
| */ |
| #if 1 |
| xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page); |
| #endif |
| local_flush_page_to_ram(page); |
| } |
| |
| void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) |
| { |
| cpumask_t cpu_mask = *mm_cpumask(mm); |
| cpu_clear(smp_processor_id(), cpu_mask); |
| if (!cpus_empty(cpu_mask)) |
| xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr); |
| local_flush_sig_insns(mm, insn_addr); |
| } |
| |
| extern unsigned int lvl14_resolution; |
| |
| /* /proc/profile writes can call this, don't __init it please. */ |
| static DEFINE_SPINLOCK(prof_setup_lock); |
| |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| int i; |
| unsigned long flags; |
| |
| /* Prevent level14 ticker IRQ flooding. */ |
| if((!multiplier) || (lvl14_resolution / multiplier) < 500) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&prof_setup_lock, flags); |
| for_each_possible_cpu(i) { |
| load_profile_irq(i, lvl14_resolution / multiplier); |
| prof_multiplier(i) = multiplier; |
| } |
| spin_unlock_irqrestore(&prof_setup_lock, flags); |
| |
| return 0; |
| } |
| |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| extern void __init smp4m_boot_cpus(void); |
| extern void __init smp4d_boot_cpus(void); |
| int i, cpuid, extra; |
| |
| printk("Entering SMP Mode...\n"); |
| |
| extra = 0; |
| for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) { |
| if (cpuid >= NR_CPUS) |
| extra++; |
| } |
| /* i = number of cpus */ |
| if (extra && max_cpus > i - extra) |
| printk("Warning: NR_CPUS is too low to start all cpus\n"); |
| |
| smp_store_cpu_info(boot_cpu_id); |
| |
| switch(sparc_cpu_model) { |
| case sun4: |
| printk("SUN4\n"); |
| BUG(); |
| break; |
| case sun4c: |
| printk("SUN4C\n"); |
| BUG(); |
| break; |
| case sun4m: |
| smp4m_boot_cpus(); |
| break; |
| case sun4d: |
| smp4d_boot_cpus(); |
| break; |
| case sparc_leon: |
| leon_boot_cpus(); |
| break; |
| case sun4e: |
| printk("SUN4E\n"); |
| BUG(); |
| break; |
| case sun4u: |
| printk("SUN4U\n"); |
| BUG(); |
| break; |
| default: |
| printk("UNKNOWN!\n"); |
| BUG(); |
| break; |
| }; |
| } |
| |
| /* Set this up early so that things like the scheduler can init |
| * properly. We use the same cpu mask for both the present and |
| * possible cpu map. |
| */ |
| void __init smp_setup_cpu_possible_map(void) |
| { |
| int instance, mid; |
| |
| instance = 0; |
| while (!cpu_find_by_instance(instance, NULL, &mid)) { |
| if (mid < NR_CPUS) { |
| set_cpu_possible(mid, true); |
| set_cpu_present(mid, true); |
| } |
| instance++; |
| } |
| } |
| |
| void __init smp_prepare_boot_cpu(void) |
| { |
| int cpuid = hard_smp_processor_id(); |
| |
| if (cpuid >= NR_CPUS) { |
| prom_printf("Serious problem, boot cpu id >= NR_CPUS\n"); |
| prom_halt(); |
| } |
| if (cpuid != 0) |
| printk("boot cpu id != 0, this could work but is untested\n"); |
| |
| current_thread_info()->cpu = cpuid; |
| set_cpu_online(cpuid, true); |
| set_cpu_possible(cpuid, true); |
| } |
| |
| int __cpuinit __cpu_up(unsigned int cpu) |
| { |
| extern int __cpuinit smp4m_boot_one_cpu(int); |
| extern int __cpuinit smp4d_boot_one_cpu(int); |
| int ret=0; |
| |
| switch(sparc_cpu_model) { |
| case sun4: |
| printk("SUN4\n"); |
| BUG(); |
| break; |
| case sun4c: |
| printk("SUN4C\n"); |
| BUG(); |
| break; |
| case sun4m: |
| ret = smp4m_boot_one_cpu(cpu); |
| break; |
| case sun4d: |
| ret = smp4d_boot_one_cpu(cpu); |
| break; |
| case sparc_leon: |
| ret = leon_boot_one_cpu(cpu); |
| break; |
| case sun4e: |
| printk("SUN4E\n"); |
| BUG(); |
| break; |
| case sun4u: |
| printk("SUN4U\n"); |
| BUG(); |
| break; |
| default: |
| printk("UNKNOWN!\n"); |
| BUG(); |
| break; |
| }; |
| |
| if (!ret) { |
| cpu_set(cpu, smp_commenced_mask); |
| while (!cpu_online(cpu)) |
| mb(); |
| } |
| return ret; |
| } |
| |
| void smp_bogo(struct seq_file *m) |
| { |
| int i; |
| |
| for_each_online_cpu(i) { |
| seq_printf(m, |
| "Cpu%dBogo\t: %lu.%02lu\n", |
| i, |
| cpu_data(i).udelay_val/(500000/HZ), |
| (cpu_data(i).udelay_val/(5000/HZ))%100); |
| } |
| } |
| |
| void smp_info(struct seq_file *m) |
| { |
| int i; |
| |
| seq_printf(m, "State:\n"); |
| for_each_online_cpu(i) |
| seq_printf(m, "CPU%d\t\t: online\n", i); |
| } |