| /* |
| * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /* |
| * GK20A does not have dedicated video memory, and to accurately represent this |
| * fact Nouveau will not create a RAM device for it. Therefore its instmem |
| * implementation must be done directly on top of system memory, while providing |
| * coherent read and write operations. |
| * |
| * Instmem can be allocated through two means: |
| * 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory |
| * pages contiguous to the GPU. This is the preferred way. |
| * 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically |
| * contiguous memory. |
| * |
| * In both cases CPU read and writes are performed using PRAMIN (i.e. using the |
| * GPU path) to ensure these operations are coherent for the GPU. This allows us |
| * to use more "relaxed" allocation parameters when using the DMA API, since we |
| * never need a kernel mapping. |
| */ |
| #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base) |
| #include "priv.h" |
| |
| #include <core/memory.h> |
| #include <core/mm.h> |
| #include <core/tegra.h> |
| #include <subdev/fb.h> |
| |
| #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory) |
| |
| struct gk20a_instobj { |
| struct nvkm_memory memory; |
| struct gk20a_instmem *imem; |
| struct nvkm_mem mem; |
| }; |
| |
| /* |
| * Used for objects allocated using the DMA API |
| */ |
| struct gk20a_instobj_dma { |
| struct gk20a_instobj base; |
| |
| void *cpuaddr; |
| dma_addr_t handle; |
| struct nvkm_mm_node r; |
| }; |
| |
| /* |
| * Used for objects flattened using the IOMMU API |
| */ |
| struct gk20a_instobj_iommu { |
| struct gk20a_instobj base; |
| |
| /* array of base.mem->size pages */ |
| struct page *pages[]; |
| }; |
| |
| struct gk20a_instmem { |
| struct nvkm_instmem base; |
| unsigned long lock_flags; |
| spinlock_t lock; |
| u64 addr; |
| |
| /* Only used if IOMMU if present */ |
| struct mutex *mm_mutex; |
| struct nvkm_mm *mm; |
| struct iommu_domain *domain; |
| unsigned long iommu_pgshift; |
| |
| /* Only used by DMA API */ |
| struct dma_attrs attrs; |
| }; |
| |
| static enum nvkm_memory_target |
| gk20a_instobj_target(struct nvkm_memory *memory) |
| { |
| return NVKM_MEM_TARGET_HOST; |
| } |
| |
| static u64 |
| gk20a_instobj_addr(struct nvkm_memory *memory) |
| { |
| return gk20a_instobj(memory)->mem.offset; |
| |
| } |
| |
| static u64 |
| gk20a_instobj_size(struct nvkm_memory *memory) |
| { |
| return (u64)gk20a_instobj(memory)->mem.size << 12; |
| } |
| |
| static void __iomem * |
| gk20a_instobj_acquire(struct nvkm_memory *memory) |
| { |
| struct gk20a_instmem *imem = gk20a_instobj(memory)->imem; |
| unsigned long flags; |
| spin_lock_irqsave(&imem->lock, flags); |
| imem->lock_flags = flags; |
| return NULL; |
| } |
| |
| static void |
| gk20a_instobj_release(struct nvkm_memory *memory) |
| { |
| struct gk20a_instmem *imem = gk20a_instobj(memory)->imem; |
| spin_unlock_irqrestore(&imem->lock, imem->lock_flags); |
| } |
| |
| /* |
| * Use PRAMIN to read/write data and avoid coherency issues. |
| * PRAMIN uses the GPU path and ensures data will always be coherent. |
| * |
| * A dynamic mapping based solution would be desirable in the future, but |
| * the issue remains of how to maintain coherency efficiently. On ARM it is |
| * not easy (if possible at all?) to create uncached temporary mappings. |
| */ |
| |
| static u32 |
| gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset) |
| { |
| struct gk20a_instobj *node = gk20a_instobj(memory); |
| struct gk20a_instmem *imem = node->imem; |
| struct nvkm_device *device = imem->base.subdev.device; |
| u64 base = (node->mem.offset + offset) & 0xffffff00000ULL; |
| u64 addr = (node->mem.offset + offset) & 0x000000fffffULL; |
| u32 data; |
| |
| if (unlikely(imem->addr != base)) { |
| nvkm_wr32(device, 0x001700, base >> 16); |
| imem->addr = base; |
| } |
| data = nvkm_rd32(device, 0x700000 + addr); |
| return data; |
| } |
| |
| static void |
| gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) |
| { |
| struct gk20a_instobj *node = gk20a_instobj(memory); |
| struct gk20a_instmem *imem = node->imem; |
| struct nvkm_device *device = imem->base.subdev.device; |
| u64 base = (node->mem.offset + offset) & 0xffffff00000ULL; |
| u64 addr = (node->mem.offset + offset) & 0x000000fffffULL; |
| |
| if (unlikely(imem->addr != base)) { |
| nvkm_wr32(device, 0x001700, base >> 16); |
| imem->addr = base; |
| } |
| nvkm_wr32(device, 0x700000 + addr, data); |
| } |
| |
| static void |
| gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset) |
| { |
| struct gk20a_instobj *node = gk20a_instobj(memory); |
| nvkm_vm_map_at(vma, offset, &node->mem); |
| } |
| |
| static void |
| gk20a_instobj_dtor_dma(struct gk20a_instobj *_node) |
| { |
| struct gk20a_instobj_dma *node = (void *)_node; |
| struct gk20a_instmem *imem = _node->imem; |
| struct device *dev = imem->base.subdev.device->dev; |
| |
| if (unlikely(!node->cpuaddr)) |
| return; |
| |
| dma_free_attrs(dev, _node->mem.size << PAGE_SHIFT, node->cpuaddr, |
| node->handle, &imem->attrs); |
| } |
| |
| static void |
| gk20a_instobj_dtor_iommu(struct gk20a_instobj *_node) |
| { |
| struct gk20a_instobj_iommu *node = (void *)_node; |
| struct gk20a_instmem *imem = _node->imem; |
| struct nvkm_mm_node *r; |
| int i; |
| |
| if (unlikely(list_empty(&_node->mem.regions))) |
| return; |
| |
| r = list_first_entry(&_node->mem.regions, struct nvkm_mm_node, |
| rl_entry); |
| |
| /* clear bit 34 to unmap pages */ |
| r->offset &= ~BIT(34 - imem->iommu_pgshift); |
| |
| /* Unmap pages from GPU address space and free them */ |
| for (i = 0; i < _node->mem.size; i++) { |
| iommu_unmap(imem->domain, |
| (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE); |
| __free_page(node->pages[i]); |
| } |
| |
| /* Release area from GPU address space */ |
| mutex_lock(imem->mm_mutex); |
| nvkm_mm_free(imem->mm, &r); |
| mutex_unlock(imem->mm_mutex); |
| } |
| |
| static void * |
| gk20a_instobj_dtor(struct nvkm_memory *memory) |
| { |
| struct gk20a_instobj *node = gk20a_instobj(memory); |
| struct gk20a_instmem *imem = node->imem; |
| |
| if (imem->domain) |
| gk20a_instobj_dtor_iommu(node); |
| else |
| gk20a_instobj_dtor_dma(node); |
| |
| return node; |
| } |
| |
| static const struct nvkm_memory_func |
| gk20a_instobj_func = { |
| .dtor = gk20a_instobj_dtor, |
| .target = gk20a_instobj_target, |
| .addr = gk20a_instobj_addr, |
| .size = gk20a_instobj_size, |
| .acquire = gk20a_instobj_acquire, |
| .release = gk20a_instobj_release, |
| .rd32 = gk20a_instobj_rd32, |
| .wr32 = gk20a_instobj_wr32, |
| .map = gk20a_instobj_map, |
| }; |
| |
| static int |
| gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align, |
| struct gk20a_instobj **_node) |
| { |
| struct gk20a_instobj_dma *node; |
| struct nvkm_subdev *subdev = &imem->base.subdev; |
| struct device *dev = subdev->device->dev; |
| |
| if (!(node = kzalloc(sizeof(*node), GFP_KERNEL))) |
| return -ENOMEM; |
| *_node = &node->base; |
| |
| node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, |
| &node->handle, GFP_KERNEL, |
| &imem->attrs); |
| if (!node->cpuaddr) { |
| nvkm_error(subdev, "cannot allocate DMA memory\n"); |
| return -ENOMEM; |
| } |
| |
| /* alignment check */ |
| if (unlikely(node->handle & (align - 1))) |
| nvkm_warn(subdev, |
| "memory not aligned as requested: %pad (0x%x)\n", |
| &node->handle, align); |
| |
| /* present memory for being mapped using small pages */ |
| node->r.type = 12; |
| node->r.offset = node->handle >> 12; |
| node->r.length = (npages << PAGE_SHIFT) >> 12; |
| |
| node->base.mem.offset = node->handle; |
| |
| INIT_LIST_HEAD(&node->base.mem.regions); |
| list_add_tail(&node->r.rl_entry, &node->base.mem.regions); |
| |
| return 0; |
| } |
| |
| static int |
| gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align, |
| struct gk20a_instobj **_node) |
| { |
| struct gk20a_instobj_iommu *node; |
| struct nvkm_subdev *subdev = &imem->base.subdev; |
| struct nvkm_mm_node *r; |
| int ret; |
| int i; |
| |
| if (!(node = kzalloc(sizeof(*node) + |
| sizeof( node->pages[0]) * npages, GFP_KERNEL))) |
| return -ENOMEM; |
| *_node = &node->base; |
| |
| /* Allocate backing memory */ |
| for (i = 0; i < npages; i++) { |
| struct page *p = alloc_page(GFP_KERNEL); |
| |
| if (p == NULL) { |
| ret = -ENOMEM; |
| goto free_pages; |
| } |
| node->pages[i] = p; |
| } |
| |
| mutex_lock(imem->mm_mutex); |
| /* Reserve area from GPU address space */ |
| ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages, |
| align >> imem->iommu_pgshift, &r); |
| mutex_unlock(imem->mm_mutex); |
| if (ret) { |
| nvkm_error(subdev, "virtual space is full!\n"); |
| goto free_pages; |
| } |
| |
| /* Map into GPU address space */ |
| for (i = 0; i < npages; i++) { |
| struct page *p = node->pages[i]; |
| u32 offset = (r->offset + i) << imem->iommu_pgshift; |
| |
| ret = iommu_map(imem->domain, offset, page_to_phys(p), |
| PAGE_SIZE, IOMMU_READ | IOMMU_WRITE); |
| if (ret < 0) { |
| nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret); |
| |
| while (i-- > 0) { |
| offset -= PAGE_SIZE; |
| iommu_unmap(imem->domain, offset, PAGE_SIZE); |
| } |
| goto release_area; |
| } |
| } |
| |
| /* Bit 34 tells that an address is to be resolved through the IOMMU */ |
| r->offset |= BIT(34 - imem->iommu_pgshift); |
| |
| node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift; |
| |
| INIT_LIST_HEAD(&node->base.mem.regions); |
| list_add_tail(&r->rl_entry, &node->base.mem.regions); |
| |
| return 0; |
| |
| release_area: |
| mutex_lock(imem->mm_mutex); |
| nvkm_mm_free(imem->mm, &r); |
| mutex_unlock(imem->mm_mutex); |
| |
| free_pages: |
| for (i = 0; i < npages && node->pages[i] != NULL; i++) |
| __free_page(node->pages[i]); |
| |
| return ret; |
| } |
| |
| static int |
| gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero, |
| struct nvkm_memory **pmemory) |
| { |
| struct gk20a_instmem *imem = gk20a_instmem(base); |
| struct gk20a_instobj *node = NULL; |
| struct nvkm_subdev *subdev = &imem->base.subdev; |
| int ret; |
| |
| nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__, |
| imem->domain ? "IOMMU" : "DMA", size, align); |
| |
| /* Round size and align to page bounds */ |
| size = max(roundup(size, PAGE_SIZE), PAGE_SIZE); |
| align = max(roundup(align, PAGE_SIZE), PAGE_SIZE); |
| |
| if (imem->domain) |
| ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT, |
| align, &node); |
| else |
| ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT, |
| align, &node); |
| *pmemory = node ? &node->memory : NULL; |
| if (ret) |
| return ret; |
| |
| nvkm_memory_ctor(&gk20a_instobj_func, &node->memory); |
| node->imem = imem; |
| |
| /* present memory for being mapped using small pages */ |
| node->mem.size = size >> 12; |
| node->mem.memtype = 0; |
| node->mem.page_shift = 12; |
| |
| nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n", |
| size, align, node->mem.offset); |
| |
| return 0; |
| } |
| |
| static void |
| gk20a_instmem_fini(struct nvkm_instmem *base) |
| { |
| gk20a_instmem(base)->addr = ~0ULL; |
| } |
| |
| static const struct nvkm_instmem_func |
| gk20a_instmem = { |
| .fini = gk20a_instmem_fini, |
| .memory_new = gk20a_instobj_new, |
| .persistent = true, |
| .zero = false, |
| }; |
| |
| int |
| gk20a_instmem_new(struct nvkm_device *device, int index, |
| struct nvkm_instmem **pimem) |
| { |
| struct nvkm_device_tegra *tdev = device->func->tegra(device); |
| struct gk20a_instmem *imem; |
| |
| if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL))) |
| return -ENOMEM; |
| nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base); |
| spin_lock_init(&imem->lock); |
| *pimem = &imem->base; |
| |
| if (tdev->iommu.domain) { |
| imem->domain = tdev->iommu.domain; |
| imem->mm = &tdev->iommu.mm; |
| imem->iommu_pgshift = tdev->iommu.pgshift; |
| imem->mm_mutex = &tdev->iommu.mutex; |
| |
| nvkm_info(&imem->base.subdev, "using IOMMU\n"); |
| } else { |
| init_dma_attrs(&imem->attrs); |
| /* |
| * We will access instmem through PRAMIN and thus do not need a |
| * consistent CPU pointer or kernel mapping |
| */ |
| dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs); |
| dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs); |
| dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs); |
| dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs); |
| |
| nvkm_info(&imem->base.subdev, "using DMA API\n"); |
| } |
| |
| return 0; |
| } |