| /* | 
 |  *  arch/sparc64/mm/init.c | 
 |  * | 
 |  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) | 
 |  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) | 
 |  */ | 
 |   | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/string.h> | 
 | #include <linux/init.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/initrd.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/poison.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/gfp.h> | 
 |  | 
 | #include <asm/head.h> | 
 | #include <asm/page.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/oplib.h> | 
 | #include <asm/iommu.h> | 
 | #include <asm/io.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/dma.h> | 
 | #include <asm/starfire.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/spitfire.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/tsb.h> | 
 | #include <asm/hypervisor.h> | 
 | #include <asm/prom.h> | 
 | #include <asm/mdesc.h> | 
 | #include <asm/cpudata.h> | 
 | #include <asm/irq.h> | 
 |  | 
 | #include "init_64.h" | 
 |  | 
 | unsigned long kern_linear_pte_xor[4] __read_mostly; | 
 |  | 
 | /* A bitmap, two bits for every 256MB of physical memory.  These two | 
 |  * bits determine what page size we use for kernel linear | 
 |  * translations.  They form an index into kern_linear_pte_xor[].  The | 
 |  * value in the indexed slot is XOR'd with the TLB miss virtual | 
 |  * address to form the resulting TTE.  The mapping is: | 
 |  * | 
 |  *	0	==>	4MB | 
 |  *	1	==>	256MB | 
 |  *	2	==>	2GB | 
 |  *	3	==>	16GB | 
 |  * | 
 |  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later | 
 |  * support 2GB pages, and hopefully future cpus will support the 16GB | 
 |  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there | 
 |  * if these larger page sizes are not supported by the cpu. | 
 |  * | 
 |  * It would be nice to determine this from the machine description | 
 |  * 'cpu' properties, but we need to have this table setup before the | 
 |  * MDESC is initialized. | 
 |  */ | 
 | unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)]; | 
 |  | 
 | #ifndef CONFIG_DEBUG_PAGEALLOC | 
 | /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. | 
 |  * Space is allocated for this right after the trap table in | 
 |  * arch/sparc64/kernel/head.S | 
 |  */ | 
 | extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; | 
 | #endif | 
 |  | 
 | static unsigned long cpu_pgsz_mask; | 
 |  | 
 | #define MAX_BANKS	32 | 
 |  | 
 | static struct linux_prom64_registers pavail[MAX_BANKS]; | 
 | static int pavail_ents; | 
 |  | 
 | static int cmp_p64(const void *a, const void *b) | 
 | { | 
 | 	const struct linux_prom64_registers *x = a, *y = b; | 
 |  | 
 | 	if (x->phys_addr > y->phys_addr) | 
 | 		return 1; | 
 | 	if (x->phys_addr < y->phys_addr) | 
 | 		return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init read_obp_memory(const char *property, | 
 | 				   struct linux_prom64_registers *regs, | 
 | 				   int *num_ents) | 
 | { | 
 | 	phandle node = prom_finddevice("/memory"); | 
 | 	int prop_size = prom_getproplen(node, property); | 
 | 	int ents, ret, i; | 
 |  | 
 | 	ents = prop_size / sizeof(struct linux_prom64_registers); | 
 | 	if (ents > MAX_BANKS) { | 
 | 		prom_printf("The machine has more %s property entries than " | 
 | 			    "this kernel can support (%d).\n", | 
 | 			    property, MAX_BANKS); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	ret = prom_getproperty(node, property, (char *) regs, prop_size); | 
 | 	if (ret == -1) { | 
 | 		prom_printf("Couldn't get %s property from /memory.\n", | 
 | 				property); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	/* Sanitize what we got from the firmware, by page aligning | 
 | 	 * everything. | 
 | 	 */ | 
 | 	for (i = 0; i < ents; i++) { | 
 | 		unsigned long base, size; | 
 |  | 
 | 		base = regs[i].phys_addr; | 
 | 		size = regs[i].reg_size; | 
 |  | 
 | 		size &= PAGE_MASK; | 
 | 		if (base & ~PAGE_MASK) { | 
 | 			unsigned long new_base = PAGE_ALIGN(base); | 
 |  | 
 | 			size -= new_base - base; | 
 | 			if ((long) size < 0L) | 
 | 				size = 0UL; | 
 | 			base = new_base; | 
 | 		} | 
 | 		if (size == 0UL) { | 
 | 			/* If it is empty, simply get rid of it. | 
 | 			 * This simplifies the logic of the other | 
 | 			 * functions that process these arrays. | 
 | 			 */ | 
 | 			memmove(®s[i], ®s[i + 1], | 
 | 				(ents - i - 1) * sizeof(regs[0])); | 
 | 			i--; | 
 | 			ents--; | 
 | 			continue; | 
 | 		} | 
 | 		regs[i].phys_addr = base; | 
 | 		regs[i].reg_size = size; | 
 | 	} | 
 |  | 
 | 	*num_ents = ents; | 
 |  | 
 | 	sort(regs, ents, sizeof(struct linux_prom64_registers), | 
 | 	     cmp_p64, NULL); | 
 | } | 
 |  | 
 | unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES / | 
 | 					sizeof(unsigned long)]; | 
 | EXPORT_SYMBOL(sparc64_valid_addr_bitmap); | 
 |  | 
 | /* Kernel physical address base and size in bytes.  */ | 
 | unsigned long kern_base __read_mostly; | 
 | unsigned long kern_size __read_mostly; | 
 |  | 
 | /* Initial ramdisk setup */ | 
 | extern unsigned long sparc_ramdisk_image64; | 
 | extern unsigned int sparc_ramdisk_image; | 
 | extern unsigned int sparc_ramdisk_size; | 
 |  | 
 | struct page *mem_map_zero __read_mostly; | 
 | EXPORT_SYMBOL(mem_map_zero); | 
 |  | 
 | unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; | 
 |  | 
 | unsigned long sparc64_kern_pri_context __read_mostly; | 
 | unsigned long sparc64_kern_pri_nuc_bits __read_mostly; | 
 | unsigned long sparc64_kern_sec_context __read_mostly; | 
 |  | 
 | int num_kernel_image_mappings; | 
 |  | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | atomic_t dcpage_flushes = ATOMIC_INIT(0); | 
 | #ifdef CONFIG_SMP | 
 | atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); | 
 | #endif | 
 | #endif | 
 |  | 
 | inline void flush_dcache_page_impl(struct page *page) | 
 | { | 
 | 	BUG_ON(tlb_type == hypervisor); | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | 	atomic_inc(&dcpage_flushes); | 
 | #endif | 
 |  | 
 | #ifdef DCACHE_ALIASING_POSSIBLE | 
 | 	__flush_dcache_page(page_address(page), | 
 | 			    ((tlb_type == spitfire) && | 
 | 			     page_mapping(page) != NULL)); | 
 | #else | 
 | 	if (page_mapping(page) != NULL && | 
 | 	    tlb_type == spitfire) | 
 | 		__flush_icache_page(__pa(page_address(page))); | 
 | #endif | 
 | } | 
 |  | 
 | #define PG_dcache_dirty		PG_arch_1 | 
 | #define PG_dcache_cpu_shift	32UL | 
 | #define PG_dcache_cpu_mask	\ | 
 | 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) | 
 |  | 
 | #define dcache_dirty_cpu(page) \ | 
 | 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) | 
 |  | 
 | static inline void set_dcache_dirty(struct page *page, int this_cpu) | 
 | { | 
 | 	unsigned long mask = this_cpu; | 
 | 	unsigned long non_cpu_bits; | 
 |  | 
 | 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); | 
 | 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); | 
 |  | 
 | 	__asm__ __volatile__("1:\n\t" | 
 | 			     "ldx	[%2], %%g7\n\t" | 
 | 			     "and	%%g7, %1, %%g1\n\t" | 
 | 			     "or	%%g1, %0, %%g1\n\t" | 
 | 			     "casx	[%2], %%g7, %%g1\n\t" | 
 | 			     "cmp	%%g7, %%g1\n\t" | 
 | 			     "bne,pn	%%xcc, 1b\n\t" | 
 | 			     " nop" | 
 | 			     : /* no outputs */ | 
 | 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) | 
 | 			     : "g1", "g7"); | 
 | } | 
 |  | 
 | static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) | 
 | { | 
 | 	unsigned long mask = (1UL << PG_dcache_dirty); | 
 |  | 
 | 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n" | 
 | 			     "1:\n\t" | 
 | 			     "ldx	[%2], %%g7\n\t" | 
 | 			     "srlx	%%g7, %4, %%g1\n\t" | 
 | 			     "and	%%g1, %3, %%g1\n\t" | 
 | 			     "cmp	%%g1, %0\n\t" | 
 | 			     "bne,pn	%%icc, 2f\n\t" | 
 | 			     " andn	%%g7, %1, %%g1\n\t" | 
 | 			     "casx	[%2], %%g7, %%g1\n\t" | 
 | 			     "cmp	%%g7, %%g1\n\t" | 
 | 			     "bne,pn	%%xcc, 1b\n\t" | 
 | 			     " nop\n" | 
 | 			     "2:" | 
 | 			     : /* no outputs */ | 
 | 			     : "r" (cpu), "r" (mask), "r" (&page->flags), | 
 | 			       "i" (PG_dcache_cpu_mask), | 
 | 			       "i" (PG_dcache_cpu_shift) | 
 | 			     : "g1", "g7"); | 
 | } | 
 |  | 
 | static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) | 
 | { | 
 | 	unsigned long tsb_addr = (unsigned long) ent; | 
 |  | 
 | 	if (tlb_type == cheetah_plus || tlb_type == hypervisor) | 
 | 		tsb_addr = __pa(tsb_addr); | 
 |  | 
 | 	__tsb_insert(tsb_addr, tag, pte); | 
 | } | 
 |  | 
 | unsigned long _PAGE_ALL_SZ_BITS __read_mostly; | 
 |  | 
 | static void flush_dcache(unsigned long pfn) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = pfn_to_page(pfn); | 
 | 	if (page) { | 
 | 		unsigned long pg_flags; | 
 |  | 
 | 		pg_flags = page->flags; | 
 | 		if (pg_flags & (1UL << PG_dcache_dirty)) { | 
 | 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) & | 
 | 				   PG_dcache_cpu_mask); | 
 | 			int this_cpu = get_cpu(); | 
 |  | 
 | 			/* This is just to optimize away some function calls | 
 | 			 * in the SMP case. | 
 | 			 */ | 
 | 			if (cpu == this_cpu) | 
 | 				flush_dcache_page_impl(page); | 
 | 			else | 
 | 				smp_flush_dcache_page_impl(page, cpu); | 
 |  | 
 | 			clear_dcache_dirty_cpu(page, cpu); | 
 |  | 
 | 			put_cpu(); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* mm->context.lock must be held */ | 
 | static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, | 
 | 				    unsigned long tsb_hash_shift, unsigned long address, | 
 | 				    unsigned long tte) | 
 | { | 
 | 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; | 
 | 	unsigned long tag; | 
 |  | 
 | 	if (unlikely(!tsb)) | 
 | 		return; | 
 |  | 
 | 	tsb += ((address >> tsb_hash_shift) & | 
 | 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); | 
 | 	tag = (address >> 22UL); | 
 | 	tsb_insert(tsb, tag, tte); | 
 | } | 
 |  | 
 | #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) | 
 | static inline bool is_hugetlb_pte(pte_t pte) | 
 | { | 
 | 	if ((tlb_type == hypervisor && | 
 | 	     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) || | 
 | 	    (tlb_type != hypervisor && | 
 | 	     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 | #endif | 
 |  | 
 | void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) | 
 | { | 
 | 	struct mm_struct *mm; | 
 | 	unsigned long flags; | 
 | 	pte_t pte = *ptep; | 
 |  | 
 | 	if (tlb_type != hypervisor) { | 
 | 		unsigned long pfn = pte_pfn(pte); | 
 |  | 
 | 		if (pfn_valid(pfn)) | 
 | 			flush_dcache(pfn); | 
 | 	} | 
 |  | 
 | 	mm = vma->vm_mm; | 
 |  | 
 | 	spin_lock_irqsave(&mm->context.lock, flags); | 
 |  | 
 | #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) | 
 | 	if (mm->context.huge_pte_count && is_hugetlb_pte(pte)) | 
 | 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, | 
 | 					address, pte_val(pte)); | 
 | 	else | 
 | #endif | 
 | 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT, | 
 | 					address, pte_val(pte)); | 
 |  | 
 | 	spin_unlock_irqrestore(&mm->context.lock, flags); | 
 | } | 
 |  | 
 | void flush_dcache_page(struct page *page) | 
 | { | 
 | 	struct address_space *mapping; | 
 | 	int this_cpu; | 
 |  | 
 | 	if (tlb_type == hypervisor) | 
 | 		return; | 
 |  | 
 | 	/* Do not bother with the expensive D-cache flush if it | 
 | 	 * is merely the zero page.  The 'bigcore' testcase in GDB | 
 | 	 * causes this case to run millions of times. | 
 | 	 */ | 
 | 	if (page == ZERO_PAGE(0)) | 
 | 		return; | 
 |  | 
 | 	this_cpu = get_cpu(); | 
 |  | 
 | 	mapping = page_mapping(page); | 
 | 	if (mapping && !mapping_mapped(mapping)) { | 
 | 		int dirty = test_bit(PG_dcache_dirty, &page->flags); | 
 | 		if (dirty) { | 
 | 			int dirty_cpu = dcache_dirty_cpu(page); | 
 |  | 
 | 			if (dirty_cpu == this_cpu) | 
 | 				goto out; | 
 | 			smp_flush_dcache_page_impl(page, dirty_cpu); | 
 | 		} | 
 | 		set_dcache_dirty(page, this_cpu); | 
 | 	} else { | 
 | 		/* We could delay the flush for the !page_mapping | 
 | 		 * case too.  But that case is for exec env/arg | 
 | 		 * pages and those are %99 certainly going to get | 
 | 		 * faulted into the tlb (and thus flushed) anyways. | 
 | 		 */ | 
 | 		flush_dcache_page_impl(page); | 
 | 	} | 
 |  | 
 | out: | 
 | 	put_cpu(); | 
 | } | 
 | EXPORT_SYMBOL(flush_dcache_page); | 
 |  | 
 | void __kprobes flush_icache_range(unsigned long start, unsigned long end) | 
 | { | 
 | 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */ | 
 | 	if (tlb_type == spitfire) { | 
 | 		unsigned long kaddr; | 
 |  | 
 | 		/* This code only runs on Spitfire cpus so this is | 
 | 		 * why we can assume _PAGE_PADDR_4U. | 
 | 		 */ | 
 | 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { | 
 | 			unsigned long paddr, mask = _PAGE_PADDR_4U; | 
 |  | 
 | 			if (kaddr >= PAGE_OFFSET) | 
 | 				paddr = kaddr & mask; | 
 | 			else { | 
 | 				pgd_t *pgdp = pgd_offset_k(kaddr); | 
 | 				pud_t *pudp = pud_offset(pgdp, kaddr); | 
 | 				pmd_t *pmdp = pmd_offset(pudp, kaddr); | 
 | 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr); | 
 |  | 
 | 				paddr = pte_val(*ptep) & mask; | 
 | 			} | 
 | 			__flush_icache_page(paddr); | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(flush_icache_range); | 
 |  | 
 | void mmu_info(struct seq_file *m) | 
 | { | 
 | 	static const char *pgsz_strings[] = { | 
 | 		"8K", "64K", "512K", "4MB", "32MB", | 
 | 		"256MB", "2GB", "16GB", | 
 | 	}; | 
 | 	int i, printed; | 
 |  | 
 | 	if (tlb_type == cheetah) | 
 | 		seq_printf(m, "MMU Type\t: Cheetah\n"); | 
 | 	else if (tlb_type == cheetah_plus) | 
 | 		seq_printf(m, "MMU Type\t: Cheetah+\n"); | 
 | 	else if (tlb_type == spitfire) | 
 | 		seq_printf(m, "MMU Type\t: Spitfire\n"); | 
 | 	else if (tlb_type == hypervisor) | 
 | 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); | 
 | 	else | 
 | 		seq_printf(m, "MMU Type\t: ???\n"); | 
 |  | 
 | 	seq_printf(m, "MMU PGSZs\t: "); | 
 | 	printed = 0; | 
 | 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { | 
 | 		if (cpu_pgsz_mask & (1UL << i)) { | 
 | 			seq_printf(m, "%s%s", | 
 | 				   printed ? "," : "", pgsz_strings[i]); | 
 | 			printed++; | 
 | 		} | 
 | 	} | 
 | 	seq_putc(m, '\n'); | 
 |  | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | 	seq_printf(m, "DCPageFlushes\t: %d\n", | 
 | 		   atomic_read(&dcpage_flushes)); | 
 | #ifdef CONFIG_SMP | 
 | 	seq_printf(m, "DCPageFlushesXC\t: %d\n", | 
 | 		   atomic_read(&dcpage_flushes_xcall)); | 
 | #endif /* CONFIG_SMP */ | 
 | #endif /* CONFIG_DEBUG_DCFLUSH */ | 
 | } | 
 |  | 
 | struct linux_prom_translation prom_trans[512] __read_mostly; | 
 | unsigned int prom_trans_ents __read_mostly; | 
 |  | 
 | unsigned long kern_locked_tte_data; | 
 |  | 
 | /* The obp translations are saved based on 8k pagesize, since obp can | 
 |  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> | 
 |  * HI_OBP_ADDRESS range are handled in ktlb.S. | 
 |  */ | 
 | static inline int in_obp_range(unsigned long vaddr) | 
 | { | 
 | 	return (vaddr >= LOW_OBP_ADDRESS && | 
 | 		vaddr < HI_OBP_ADDRESS); | 
 | } | 
 |  | 
 | static int cmp_ptrans(const void *a, const void *b) | 
 | { | 
 | 	const struct linux_prom_translation *x = a, *y = b; | 
 |  | 
 | 	if (x->virt > y->virt) | 
 | 		return 1; | 
 | 	if (x->virt < y->virt) | 
 | 		return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Read OBP translations property into 'prom_trans[]'.  */ | 
 | static void __init read_obp_translations(void) | 
 | { | 
 | 	int n, node, ents, first, last, i; | 
 |  | 
 | 	node = prom_finddevice("/virtual-memory"); | 
 | 	n = prom_getproplen(node, "translations"); | 
 | 	if (unlikely(n == 0 || n == -1)) { | 
 | 		prom_printf("prom_mappings: Couldn't get size.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 | 	if (unlikely(n > sizeof(prom_trans))) { | 
 | 		prom_printf("prom_mappings: Size %d is too big.\n", n); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	if ((n = prom_getproperty(node, "translations", | 
 | 				  (char *)&prom_trans[0], | 
 | 				  sizeof(prom_trans))) == -1) { | 
 | 		prom_printf("prom_mappings: Couldn't get property.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	n = n / sizeof(struct linux_prom_translation); | 
 |  | 
 | 	ents = n; | 
 |  | 
 | 	sort(prom_trans, ents, sizeof(struct linux_prom_translation), | 
 | 	     cmp_ptrans, NULL); | 
 |  | 
 | 	/* Now kick out all the non-OBP entries.  */ | 
 | 	for (i = 0; i < ents; i++) { | 
 | 		if (in_obp_range(prom_trans[i].virt)) | 
 | 			break; | 
 | 	} | 
 | 	first = i; | 
 | 	for (; i < ents; i++) { | 
 | 		if (!in_obp_range(prom_trans[i].virt)) | 
 | 			break; | 
 | 	} | 
 | 	last = i; | 
 |  | 
 | 	for (i = 0; i < (last - first); i++) { | 
 | 		struct linux_prom_translation *src = &prom_trans[i + first]; | 
 | 		struct linux_prom_translation *dest = &prom_trans[i]; | 
 |  | 
 | 		*dest = *src; | 
 | 	} | 
 | 	for (; i < ents; i++) { | 
 | 		struct linux_prom_translation *dest = &prom_trans[i]; | 
 | 		dest->virt = dest->size = dest->data = 0x0UL; | 
 | 	} | 
 |  | 
 | 	prom_trans_ents = last - first; | 
 |  | 
 | 	if (tlb_type == spitfire) { | 
 | 		/* Clear diag TTE bits. */ | 
 | 		for (i = 0; i < prom_trans_ents; i++) | 
 | 			prom_trans[i].data &= ~0x0003fe0000000000UL; | 
 | 	} | 
 |  | 
 | 	/* Force execute bit on.  */ | 
 | 	for (i = 0; i < prom_trans_ents; i++) | 
 | 		prom_trans[i].data |= (tlb_type == hypervisor ? | 
 | 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U); | 
 | } | 
 |  | 
 | static void __init hypervisor_tlb_lock(unsigned long vaddr, | 
 | 				       unsigned long pte, | 
 | 				       unsigned long mmu) | 
 | { | 
 | 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); | 
 |  | 
 | 	if (ret != 0) { | 
 | 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " | 
 | 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret); | 
 | 		prom_halt(); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long kern_large_tte(unsigned long paddr); | 
 |  | 
 | static void __init remap_kernel(void) | 
 | { | 
 | 	unsigned long phys_page, tte_vaddr, tte_data; | 
 | 	int i, tlb_ent = sparc64_highest_locked_tlbent(); | 
 |  | 
 | 	tte_vaddr = (unsigned long) KERNBASE; | 
 | 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; | 
 | 	tte_data = kern_large_tte(phys_page); | 
 |  | 
 | 	kern_locked_tte_data = tte_data; | 
 |  | 
 | 	/* Now lock us into the TLBs via Hypervisor or OBP. */ | 
 | 	if (tlb_type == hypervisor) { | 
 | 		for (i = 0; i < num_kernel_image_mappings; i++) { | 
 | 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); | 
 | 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); | 
 | 			tte_vaddr += 0x400000; | 
 | 			tte_data += 0x400000; | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; i < num_kernel_image_mappings; i++) { | 
 | 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); | 
 | 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); | 
 | 			tte_vaddr += 0x400000; | 
 | 			tte_data += 0x400000; | 
 | 		} | 
 | 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i; | 
 | 	} | 
 | 	if (tlb_type == cheetah_plus) { | 
 | 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | | 
 | 					    CTX_CHEETAH_PLUS_NUC); | 
 | 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; | 
 | 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void __init inherit_prom_mappings(void) | 
 | { | 
 | 	/* Now fixup OBP's idea about where we really are mapped. */ | 
 | 	printk("Remapping the kernel... "); | 
 | 	remap_kernel(); | 
 | 	printk("done.\n"); | 
 | } | 
 |  | 
 | void prom_world(int enter) | 
 | { | 
 | 	if (!enter) | 
 | 		set_fs(get_fs()); | 
 |  | 
 | 	__asm__ __volatile__("flushw"); | 
 | } | 
 |  | 
 | void __flush_dcache_range(unsigned long start, unsigned long end) | 
 | { | 
 | 	unsigned long va; | 
 |  | 
 | 	if (tlb_type == spitfire) { | 
 | 		int n = 0; | 
 |  | 
 | 		for (va = start; va < end; va += 32) { | 
 | 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0); | 
 | 			if (++n >= 512) | 
 | 				break; | 
 | 		} | 
 | 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		start = __pa(start); | 
 | 		end = __pa(end); | 
 | 		for (va = start; va < end; va += 32) | 
 | 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 					     "membar #Sync" | 
 | 					     : /* no outputs */ | 
 | 					     : "r" (va), | 
 | 					       "i" (ASI_DCACHE_INVALIDATE)); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(__flush_dcache_range); | 
 |  | 
 | /* get_new_mmu_context() uses "cache + 1".  */ | 
 | DEFINE_SPINLOCK(ctx_alloc_lock); | 
 | unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; | 
 | #define MAX_CTX_NR	(1UL << CTX_NR_BITS) | 
 | #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR) | 
 | DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); | 
 |  | 
 | /* Caller does TLB context flushing on local CPU if necessary. | 
 |  * The caller also ensures that CTX_VALID(mm->context) is false. | 
 |  * | 
 |  * We must be careful about boundary cases so that we never | 
 |  * let the user have CTX 0 (nucleus) or we ever use a CTX | 
 |  * version of zero (and thus NO_CONTEXT would not be caught | 
 |  * by version mis-match tests in mmu_context.h). | 
 |  * | 
 |  * Always invoked with interrupts disabled. | 
 |  */ | 
 | void get_new_mmu_context(struct mm_struct *mm) | 
 | { | 
 | 	unsigned long ctx, new_ctx; | 
 | 	unsigned long orig_pgsz_bits; | 
 | 	int new_version; | 
 |  | 
 | 	spin_lock(&ctx_alloc_lock); | 
 | 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); | 
 | 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK; | 
 | 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); | 
 | 	new_version = 0; | 
 | 	if (new_ctx >= (1 << CTX_NR_BITS)) { | 
 | 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); | 
 | 		if (new_ctx >= ctx) { | 
 | 			int i; | 
 | 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + | 
 | 				CTX_FIRST_VERSION; | 
 | 			if (new_ctx == 1) | 
 | 				new_ctx = CTX_FIRST_VERSION; | 
 |  | 
 | 			/* Don't call memset, for 16 entries that's just | 
 | 			 * plain silly... | 
 | 			 */ | 
 | 			mmu_context_bmap[0] = 3; | 
 | 			mmu_context_bmap[1] = 0; | 
 | 			mmu_context_bmap[2] = 0; | 
 | 			mmu_context_bmap[3] = 0; | 
 | 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { | 
 | 				mmu_context_bmap[i + 0] = 0; | 
 | 				mmu_context_bmap[i + 1] = 0; | 
 | 				mmu_context_bmap[i + 2] = 0; | 
 | 				mmu_context_bmap[i + 3] = 0; | 
 | 			} | 
 | 			new_version = 1; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); | 
 | 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); | 
 | out: | 
 | 	tlb_context_cache = new_ctx; | 
 | 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; | 
 | 	spin_unlock(&ctx_alloc_lock); | 
 |  | 
 | 	if (unlikely(new_version)) | 
 | 		smp_new_mmu_context_version(); | 
 | } | 
 |  | 
 | static int numa_enabled = 1; | 
 | static int numa_debug; | 
 |  | 
 | static int __init early_numa(char *p) | 
 | { | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	if (strstr(p, "off")) | 
 | 		numa_enabled = 0; | 
 |  | 
 | 	if (strstr(p, "debug")) | 
 | 		numa_debug = 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("numa", early_numa); | 
 |  | 
 | #define numadbg(f, a...) \ | 
 | do {	if (numa_debug) \ | 
 | 		printk(KERN_INFO f, ## a); \ | 
 | } while (0) | 
 |  | 
 | static void __init find_ramdisk(unsigned long phys_base) | 
 | { | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	if (sparc_ramdisk_image || sparc_ramdisk_image64) { | 
 | 		unsigned long ramdisk_image; | 
 |  | 
 | 		/* Older versions of the bootloader only supported a | 
 | 		 * 32-bit physical address for the ramdisk image | 
 | 		 * location, stored at sparc_ramdisk_image.  Newer | 
 | 		 * SILO versions set sparc_ramdisk_image to zero and | 
 | 		 * provide a full 64-bit physical address at | 
 | 		 * sparc_ramdisk_image64. | 
 | 		 */ | 
 | 		ramdisk_image = sparc_ramdisk_image; | 
 | 		if (!ramdisk_image) | 
 | 			ramdisk_image = sparc_ramdisk_image64; | 
 |  | 
 | 		/* Another bootloader quirk.  The bootloader normalizes | 
 | 		 * the physical address to KERNBASE, so we have to | 
 | 		 * factor that back out and add in the lowest valid | 
 | 		 * physical page address to get the true physical address. | 
 | 		 */ | 
 | 		ramdisk_image -= KERNBASE; | 
 | 		ramdisk_image += phys_base; | 
 |  | 
 | 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n", | 
 | 			ramdisk_image, sparc_ramdisk_size); | 
 |  | 
 | 		initrd_start = ramdisk_image; | 
 | 		initrd_end = ramdisk_image + sparc_ramdisk_size; | 
 |  | 
 | 		memblock_reserve(initrd_start, sparc_ramdisk_size); | 
 |  | 
 | 		initrd_start += PAGE_OFFSET; | 
 | 		initrd_end += PAGE_OFFSET; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | struct node_mem_mask { | 
 | 	unsigned long mask; | 
 | 	unsigned long val; | 
 | }; | 
 | static struct node_mem_mask node_masks[MAX_NUMNODES]; | 
 | static int num_node_masks; | 
 |  | 
 | int numa_cpu_lookup_table[NR_CPUS]; | 
 | cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; | 
 |  | 
 | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
 |  | 
 | struct mdesc_mblock { | 
 | 	u64	base; | 
 | 	u64	size; | 
 | 	u64	offset; /* RA-to-PA */ | 
 | }; | 
 | static struct mdesc_mblock *mblocks; | 
 | static int num_mblocks; | 
 |  | 
 | static unsigned long ra_to_pa(unsigned long addr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < num_mblocks; i++) { | 
 | 		struct mdesc_mblock *m = &mblocks[i]; | 
 |  | 
 | 		if (addr >= m->base && | 
 | 		    addr < (m->base + m->size)) { | 
 | 			addr += m->offset; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return addr; | 
 | } | 
 |  | 
 | static int find_node(unsigned long addr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	addr = ra_to_pa(addr); | 
 | 	for (i = 0; i < num_node_masks; i++) { | 
 | 		struct node_mem_mask *p = &node_masks[i]; | 
 |  | 
 | 		if ((addr & p->mask) == p->val) | 
 | 			return i; | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | static u64 memblock_nid_range(u64 start, u64 end, int *nid) | 
 | { | 
 | 	*nid = find_node(start); | 
 | 	start += PAGE_SIZE; | 
 | 	while (start < end) { | 
 | 		int n = find_node(start); | 
 |  | 
 | 		if (n != *nid) | 
 | 			break; | 
 | 		start += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	if (start > end) | 
 | 		start = end; | 
 |  | 
 | 	return start; | 
 | } | 
 | #endif | 
 |  | 
 | /* This must be invoked after performing all of the necessary | 
 |  * memblock_set_node() calls for 'nid'.  We need to be able to get | 
 |  * correct data from get_pfn_range_for_nid(). | 
 |  */ | 
 | static void __init allocate_node_data(int nid) | 
 | { | 
 | 	struct pglist_data *p; | 
 | 	unsigned long start_pfn, end_pfn; | 
 | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
 | 	unsigned long paddr; | 
 |  | 
 | 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid); | 
 | 	if (!paddr) { | 
 | 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); | 
 | 		prom_halt(); | 
 | 	} | 
 | 	NODE_DATA(nid) = __va(paddr); | 
 | 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); | 
 |  | 
 | 	NODE_DATA(nid)->node_id = nid; | 
 | #endif | 
 |  | 
 | 	p = NODE_DATA(nid); | 
 |  | 
 | 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
 | 	p->node_start_pfn = start_pfn; | 
 | 	p->node_spanned_pages = end_pfn - start_pfn; | 
 | } | 
 |  | 
 | static void init_node_masks_nonnuma(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	numadbg("Initializing tables for non-numa.\n"); | 
 |  | 
 | 	node_masks[0].mask = node_masks[0].val = 0; | 
 | 	num_node_masks = 1; | 
 |  | 
 | 	for (i = 0; i < NR_CPUS; i++) | 
 | 		numa_cpu_lookup_table[i] = 0; | 
 |  | 
 | 	cpumask_setall(&numa_cpumask_lookup_table[0]); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
 | struct pglist_data *node_data[MAX_NUMNODES]; | 
 |  | 
 | EXPORT_SYMBOL(numa_cpu_lookup_table); | 
 | EXPORT_SYMBOL(numa_cpumask_lookup_table); | 
 | EXPORT_SYMBOL(node_data); | 
 |  | 
 | struct mdesc_mlgroup { | 
 | 	u64	node; | 
 | 	u64	latency; | 
 | 	u64	match; | 
 | 	u64	mask; | 
 | }; | 
 | static struct mdesc_mlgroup *mlgroups; | 
 | static int num_mlgroups; | 
 |  | 
 | static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, | 
 | 				   u32 cfg_handle) | 
 | { | 
 | 	u64 arc; | 
 |  | 
 | 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { | 
 | 		u64 target = mdesc_arc_target(md, arc); | 
 | 		const u64 *val; | 
 |  | 
 | 		val = mdesc_get_property(md, target, | 
 | 					 "cfg-handle", NULL); | 
 | 		if (val && *val == cfg_handle) | 
 | 			return 0; | 
 | 	} | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, | 
 | 				    u32 cfg_handle) | 
 | { | 
 | 	u64 arc, candidate, best_latency = ~(u64)0; | 
 |  | 
 | 	candidate = MDESC_NODE_NULL; | 
 | 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { | 
 | 		u64 target = mdesc_arc_target(md, arc); | 
 | 		const char *name = mdesc_node_name(md, target); | 
 | 		const u64 *val; | 
 |  | 
 | 		if (strcmp(name, "pio-latency-group")) | 
 | 			continue; | 
 |  | 
 | 		val = mdesc_get_property(md, target, "latency", NULL); | 
 | 		if (!val) | 
 | 			continue; | 
 |  | 
 | 		if (*val < best_latency) { | 
 | 			candidate = target; | 
 | 			best_latency = *val; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (candidate == MDESC_NODE_NULL) | 
 | 		return -ENODEV; | 
 |  | 
 | 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle); | 
 | } | 
 |  | 
 | int of_node_to_nid(struct device_node *dp) | 
 | { | 
 | 	const struct linux_prom64_registers *regs; | 
 | 	struct mdesc_handle *md; | 
 | 	u32 cfg_handle; | 
 | 	int count, nid; | 
 | 	u64 grp; | 
 |  | 
 | 	/* This is the right thing to do on currently supported | 
 | 	 * SUN4U NUMA platforms as well, as the PCI controller does | 
 | 	 * not sit behind any particular memory controller. | 
 | 	 */ | 
 | 	if (!mlgroups) | 
 | 		return -1; | 
 |  | 
 | 	regs = of_get_property(dp, "reg", NULL); | 
 | 	if (!regs) | 
 | 		return -1; | 
 |  | 
 | 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; | 
 |  | 
 | 	md = mdesc_grab(); | 
 |  | 
 | 	count = 0; | 
 | 	nid = -1; | 
 | 	mdesc_for_each_node_by_name(md, grp, "group") { | 
 | 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { | 
 | 			nid = count; | 
 | 			break; | 
 | 		} | 
 | 		count++; | 
 | 	} | 
 |  | 
 | 	mdesc_release(md); | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | static void __init add_node_ranges(void) | 
 | { | 
 | 	struct memblock_region *reg; | 
 |  | 
 | 	for_each_memblock(memory, reg) { | 
 | 		unsigned long size = reg->size; | 
 | 		unsigned long start, end; | 
 |  | 
 | 		start = reg->base; | 
 | 		end = start + size; | 
 | 		while (start < end) { | 
 | 			unsigned long this_end; | 
 | 			int nid; | 
 |  | 
 | 			this_end = memblock_nid_range(start, end, &nid); | 
 |  | 
 | 			numadbg("Setting memblock NUMA node nid[%d] " | 
 | 				"start[%lx] end[%lx]\n", | 
 | 				nid, start, this_end); | 
 |  | 
 | 			memblock_set_node(start, this_end - start, | 
 | 					  &memblock.memory, nid); | 
 | 			start = this_end; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int __init grab_mlgroups(struct mdesc_handle *md) | 
 | { | 
 | 	unsigned long paddr; | 
 | 	int count = 0; | 
 | 	u64 node; | 
 |  | 
 | 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") | 
 | 		count++; | 
 | 	if (!count) | 
 | 		return -ENOENT; | 
 |  | 
 | 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup), | 
 | 			  SMP_CACHE_BYTES); | 
 | 	if (!paddr) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	mlgroups = __va(paddr); | 
 | 	num_mlgroups = count; | 
 |  | 
 | 	count = 0; | 
 | 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") { | 
 | 		struct mdesc_mlgroup *m = &mlgroups[count++]; | 
 | 		const u64 *val; | 
 |  | 
 | 		m->node = node; | 
 |  | 
 | 		val = mdesc_get_property(md, node, "latency", NULL); | 
 | 		m->latency = *val; | 
 | 		val = mdesc_get_property(md, node, "address-match", NULL); | 
 | 		m->match = *val; | 
 | 		val = mdesc_get_property(md, node, "address-mask", NULL); | 
 | 		m->mask = *val; | 
 |  | 
 | 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " | 
 | 			"match[%llx] mask[%llx]\n", | 
 | 			count - 1, m->node, m->latency, m->match, m->mask); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init grab_mblocks(struct mdesc_handle *md) | 
 | { | 
 | 	unsigned long paddr; | 
 | 	int count = 0; | 
 | 	u64 node; | 
 |  | 
 | 	mdesc_for_each_node_by_name(md, node, "mblock") | 
 | 		count++; | 
 | 	if (!count) | 
 | 		return -ENOENT; | 
 |  | 
 | 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock), | 
 | 			  SMP_CACHE_BYTES); | 
 | 	if (!paddr) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	mblocks = __va(paddr); | 
 | 	num_mblocks = count; | 
 |  | 
 | 	count = 0; | 
 | 	mdesc_for_each_node_by_name(md, node, "mblock") { | 
 | 		struct mdesc_mblock *m = &mblocks[count++]; | 
 | 		const u64 *val; | 
 |  | 
 | 		val = mdesc_get_property(md, node, "base", NULL); | 
 | 		m->base = *val; | 
 | 		val = mdesc_get_property(md, node, "size", NULL); | 
 | 		m->size = *val; | 
 | 		val = mdesc_get_property(md, node, | 
 | 					 "address-congruence-offset", NULL); | 
 |  | 
 | 		/* The address-congruence-offset property is optional. | 
 | 		 * Explicity zero it be identifty this. | 
 | 		 */ | 
 | 		if (val) | 
 | 			m->offset = *val; | 
 | 		else | 
 | 			m->offset = 0UL; | 
 |  | 
 | 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", | 
 | 			count - 1, m->base, m->size, m->offset); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, | 
 | 					       u64 grp, cpumask_t *mask) | 
 | { | 
 | 	u64 arc; | 
 |  | 
 | 	cpumask_clear(mask); | 
 |  | 
 | 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { | 
 | 		u64 target = mdesc_arc_target(md, arc); | 
 | 		const char *name = mdesc_node_name(md, target); | 
 | 		const u64 *id; | 
 |  | 
 | 		if (strcmp(name, "cpu")) | 
 | 			continue; | 
 | 		id = mdesc_get_property(md, target, "id", NULL); | 
 | 		if (*id < nr_cpu_ids) | 
 | 			cpumask_set_cpu(*id, mask); | 
 | 	} | 
 | } | 
 |  | 
 | static struct mdesc_mlgroup * __init find_mlgroup(u64 node) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < num_mlgroups; i++) { | 
 | 		struct mdesc_mlgroup *m = &mlgroups[i]; | 
 | 		if (m->node == node) | 
 | 			return m; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, | 
 | 				      int index) | 
 | { | 
 | 	struct mdesc_mlgroup *candidate = NULL; | 
 | 	u64 arc, best_latency = ~(u64)0; | 
 | 	struct node_mem_mask *n; | 
 |  | 
 | 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { | 
 | 		u64 target = mdesc_arc_target(md, arc); | 
 | 		struct mdesc_mlgroup *m = find_mlgroup(target); | 
 | 		if (!m) | 
 | 			continue; | 
 | 		if (m->latency < best_latency) { | 
 | 			candidate = m; | 
 | 			best_latency = m->latency; | 
 | 		} | 
 | 	} | 
 | 	if (!candidate) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (num_node_masks != index) { | 
 | 		printk(KERN_ERR "Inconsistent NUMA state, " | 
 | 		       "index[%d] != num_node_masks[%d]\n", | 
 | 		       index, num_node_masks); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	n = &node_masks[num_node_masks++]; | 
 |  | 
 | 	n->mask = candidate->mask; | 
 | 	n->val = candidate->match; | 
 |  | 
 | 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n", | 
 | 		index, n->mask, n->val, candidate->latency); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, | 
 | 					 int index) | 
 | { | 
 | 	cpumask_t mask; | 
 | 	int cpu; | 
 |  | 
 | 	numa_parse_mdesc_group_cpus(md, grp, &mask); | 
 |  | 
 | 	for_each_cpu(cpu, &mask) | 
 | 		numa_cpu_lookup_table[cpu] = index; | 
 | 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask); | 
 |  | 
 | 	if (numa_debug) { | 
 | 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); | 
 | 		for_each_cpu(cpu, &mask) | 
 | 			printk("%d ", cpu); | 
 | 		printk("]\n"); | 
 | 	} | 
 |  | 
 | 	return numa_attach_mlgroup(md, grp, index); | 
 | } | 
 |  | 
 | static int __init numa_parse_mdesc(void) | 
 | { | 
 | 	struct mdesc_handle *md = mdesc_grab(); | 
 | 	int i, err, count; | 
 | 	u64 node; | 
 |  | 
 | 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); | 
 | 	if (node == MDESC_NODE_NULL) { | 
 | 		mdesc_release(md); | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	err = grab_mblocks(md); | 
 | 	if (err < 0) | 
 | 		goto out; | 
 |  | 
 | 	err = grab_mlgroups(md); | 
 | 	if (err < 0) | 
 | 		goto out; | 
 |  | 
 | 	count = 0; | 
 | 	mdesc_for_each_node_by_name(md, node, "group") { | 
 | 		err = numa_parse_mdesc_group(md, node, count); | 
 | 		if (err < 0) | 
 | 			break; | 
 | 		count++; | 
 | 	} | 
 |  | 
 | 	add_node_ranges(); | 
 |  | 
 | 	for (i = 0; i < num_node_masks; i++) { | 
 | 		allocate_node_data(i); | 
 | 		node_set_online(i); | 
 | 	} | 
 |  | 
 | 	err = 0; | 
 | out: | 
 | 	mdesc_release(md); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __init numa_parse_jbus(void) | 
 | { | 
 | 	unsigned long cpu, index; | 
 |  | 
 | 	/* NUMA node id is encoded in bits 36 and higher, and there is | 
 | 	 * a 1-to-1 mapping from CPU ID to NUMA node ID. | 
 | 	 */ | 
 | 	index = 0; | 
 | 	for_each_present_cpu(cpu) { | 
 | 		numa_cpu_lookup_table[cpu] = index; | 
 | 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); | 
 | 		node_masks[index].mask = ~((1UL << 36UL) - 1UL); | 
 | 		node_masks[index].val = cpu << 36UL; | 
 |  | 
 | 		index++; | 
 | 	} | 
 | 	num_node_masks = index; | 
 |  | 
 | 	add_node_ranges(); | 
 |  | 
 | 	for (index = 0; index < num_node_masks; index++) { | 
 | 		allocate_node_data(index); | 
 | 		node_set_online(index); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init numa_parse_sun4u(void) | 
 | { | 
 | 	if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		unsigned long ver; | 
 |  | 
 | 		__asm__ ("rdpr %%ver, %0" : "=r" (ver)); | 
 | 		if ((ver >> 32UL) == __JALAPENO_ID || | 
 | 		    (ver >> 32UL) == __SERRANO_ID) | 
 | 			return numa_parse_jbus(); | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int __init bootmem_init_numa(void) | 
 | { | 
 | 	int err = -1; | 
 |  | 
 | 	numadbg("bootmem_init_numa()\n"); | 
 |  | 
 | 	if (numa_enabled) { | 
 | 		if (tlb_type == hypervisor) | 
 | 			err = numa_parse_mdesc(); | 
 | 		else | 
 | 			err = numa_parse_sun4u(); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static int bootmem_init_numa(void) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static void __init bootmem_init_nonnuma(void) | 
 | { | 
 | 	unsigned long top_of_ram = memblock_end_of_DRAM(); | 
 | 	unsigned long total_ram = memblock_phys_mem_size(); | 
 |  | 
 | 	numadbg("bootmem_init_nonnuma()\n"); | 
 |  | 
 | 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", | 
 | 	       top_of_ram, total_ram); | 
 | 	printk(KERN_INFO "Memory hole size: %ldMB\n", | 
 | 	       (top_of_ram - total_ram) >> 20); | 
 |  | 
 | 	init_node_masks_nonnuma(); | 
 | 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0); | 
 | 	allocate_node_data(0); | 
 | 	node_set_online(0); | 
 | } | 
 |  | 
 | static unsigned long __init bootmem_init(unsigned long phys_base) | 
 | { | 
 | 	unsigned long end_pfn; | 
 |  | 
 | 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; | 
 | 	max_pfn = max_low_pfn = end_pfn; | 
 | 	min_low_pfn = (phys_base >> PAGE_SHIFT); | 
 |  | 
 | 	if (bootmem_init_numa() < 0) | 
 | 		bootmem_init_nonnuma(); | 
 |  | 
 | 	/* Dump memblock with node info. */ | 
 | 	memblock_dump_all(); | 
 |  | 
 | 	/* XXX cpu notifier XXX */ | 
 |  | 
 | 	sparse_memory_present_with_active_regions(MAX_NUMNODES); | 
 | 	sparse_init(); | 
 |  | 
 | 	return end_pfn; | 
 | } | 
 |  | 
 | static struct linux_prom64_registers pall[MAX_BANKS] __initdata; | 
 | static int pall_ents __initdata; | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | static unsigned long __ref kernel_map_range(unsigned long pstart, | 
 | 					    unsigned long pend, pgprot_t prot) | 
 | { | 
 | 	unsigned long vstart = PAGE_OFFSET + pstart; | 
 | 	unsigned long vend = PAGE_OFFSET + pend; | 
 | 	unsigned long alloc_bytes = 0UL; | 
 |  | 
 | 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { | 
 | 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", | 
 | 			    vstart, vend); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	while (vstart < vend) { | 
 | 		unsigned long this_end, paddr = __pa(vstart); | 
 | 		pgd_t *pgd = pgd_offset_k(vstart); | 
 | 		pud_t *pud; | 
 | 		pmd_t *pmd; | 
 | 		pte_t *pte; | 
 |  | 
 | 		pud = pud_offset(pgd, vstart); | 
 | 		if (pud_none(*pud)) { | 
 | 			pmd_t *new; | 
 |  | 
 | 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); | 
 | 			alloc_bytes += PAGE_SIZE; | 
 | 			pud_populate(&init_mm, pud, new); | 
 | 		} | 
 |  | 
 | 		pmd = pmd_offset(pud, vstart); | 
 | 		if (!pmd_present(*pmd)) { | 
 | 			pte_t *new; | 
 |  | 
 | 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); | 
 | 			alloc_bytes += PAGE_SIZE; | 
 | 			pmd_populate_kernel(&init_mm, pmd, new); | 
 | 		} | 
 |  | 
 | 		pte = pte_offset_kernel(pmd, vstart); | 
 | 		this_end = (vstart + PMD_SIZE) & PMD_MASK; | 
 | 		if (this_end > vend) | 
 | 			this_end = vend; | 
 |  | 
 | 		while (vstart < this_end) { | 
 | 			pte_val(*pte) = (paddr | pgprot_val(prot)); | 
 |  | 
 | 			vstart += PAGE_SIZE; | 
 | 			paddr += PAGE_SIZE; | 
 | 			pte++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return alloc_bytes; | 
 | } | 
 |  | 
 | extern unsigned int kvmap_linear_patch[1]; | 
 | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
 |  | 
 | static void __init kpte_set_val(unsigned long index, unsigned long val) | 
 | { | 
 | 	unsigned long *ptr = kpte_linear_bitmap; | 
 |  | 
 | 	val <<= ((index % (BITS_PER_LONG / 2)) * 2); | 
 | 	ptr += (index / (BITS_PER_LONG / 2)); | 
 |  | 
 | 	*ptr |= val; | 
 | } | 
 |  | 
 | static const unsigned long kpte_shift_min = 28; /* 256MB */ | 
 | static const unsigned long kpte_shift_max = 34; /* 16GB */ | 
 | static const unsigned long kpte_shift_incr = 3; | 
 |  | 
 | static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end, | 
 | 					   unsigned long shift) | 
 | { | 
 | 	unsigned long size = (1UL << shift); | 
 | 	unsigned long mask = (size - 1UL); | 
 | 	unsigned long remains = end - start; | 
 | 	unsigned long val; | 
 |  | 
 | 	if (remains < size || (start & mask)) | 
 | 		return start; | 
 |  | 
 | 	/* VAL maps: | 
 | 	 * | 
 | 	 *	shift 28 --> kern_linear_pte_xor index 1 | 
 | 	 *	shift 31 --> kern_linear_pte_xor index 2 | 
 | 	 *	shift 34 --> kern_linear_pte_xor index 3 | 
 | 	 */ | 
 | 	val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1; | 
 |  | 
 | 	remains &= ~mask; | 
 | 	if (shift != kpte_shift_max) | 
 | 		remains = size; | 
 |  | 
 | 	while (remains) { | 
 | 		unsigned long index = start >> kpte_shift_min; | 
 |  | 
 | 		kpte_set_val(index, val); | 
 |  | 
 | 		start += 1UL << kpte_shift_min; | 
 | 		remains -= 1UL << kpte_shift_min; | 
 | 	} | 
 |  | 
 | 	return start; | 
 | } | 
 |  | 
 | static void __init mark_kpte_bitmap(unsigned long start, unsigned long end) | 
 | { | 
 | 	unsigned long smallest_size, smallest_mask; | 
 | 	unsigned long s; | 
 |  | 
 | 	smallest_size = (1UL << kpte_shift_min); | 
 | 	smallest_mask = (smallest_size - 1UL); | 
 |  | 
 | 	while (start < end) { | 
 | 		unsigned long orig_start = start; | 
 |  | 
 | 		for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) { | 
 | 			start = kpte_mark_using_shift(start, end, s); | 
 |  | 
 | 			if (start != orig_start) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		if (start == orig_start) | 
 | 			start = (start + smallest_size) & ~smallest_mask; | 
 | 	} | 
 | } | 
 |  | 
 | static void __init init_kpte_bitmap(void) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	for (i = 0; i < pall_ents; i++) { | 
 | 		unsigned long phys_start, phys_end; | 
 |  | 
 | 		phys_start = pall[i].phys_addr; | 
 | 		phys_end = phys_start + pall[i].reg_size; | 
 |  | 
 | 		mark_kpte_bitmap(phys_start, phys_end); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init kernel_physical_mapping_init(void) | 
 | { | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 	unsigned long i, mem_alloced = 0UL; | 
 |  | 
 | 	for (i = 0; i < pall_ents; i++) { | 
 | 		unsigned long phys_start, phys_end; | 
 |  | 
 | 		phys_start = pall[i].phys_addr; | 
 | 		phys_end = phys_start + pall[i].reg_size; | 
 |  | 
 | 		mem_alloced += kernel_map_range(phys_start, phys_end, | 
 | 						PAGE_KERNEL); | 
 | 	} | 
 |  | 
 | 	printk("Allocated %ld bytes for kernel page tables.\n", | 
 | 	       mem_alloced); | 
 |  | 
 | 	kvmap_linear_patch[0] = 0x01000000; /* nop */ | 
 | 	flushi(&kvmap_linear_patch[0]); | 
 |  | 
 | 	__flush_tlb_all(); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | void kernel_map_pages(struct page *page, int numpages, int enable) | 
 | { | 
 | 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; | 
 | 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); | 
 |  | 
 | 	kernel_map_range(phys_start, phys_end, | 
 | 			 (enable ? PAGE_KERNEL : __pgprot(0))); | 
 |  | 
 | 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start, | 
 | 			       PAGE_OFFSET + phys_end); | 
 |  | 
 | 	/* we should perform an IPI and flush all tlbs, | 
 | 	 * but that can deadlock->flush only current cpu. | 
 | 	 */ | 
 | 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start, | 
 | 				 PAGE_OFFSET + phys_end); | 
 | } | 
 | #endif | 
 |  | 
 | unsigned long __init find_ecache_flush_span(unsigned long size) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | 		if (pavail[i].reg_size >= size) | 
 | 			return pavail[i].phys_addr; | 
 | 	} | 
 |  | 
 | 	return ~0UL; | 
 | } | 
 |  | 
 | unsigned long PAGE_OFFSET; | 
 | EXPORT_SYMBOL(PAGE_OFFSET); | 
 |  | 
 | static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits) | 
 | { | 
 | 	unsigned long final_shift; | 
 | 	unsigned int val = *insn; | 
 | 	unsigned int cnt; | 
 |  | 
 | 	/* We are patching in ilog2(max_supported_phys_address), and | 
 | 	 * we are doing so in a manner similar to a relocation addend. | 
 | 	 * That is, we are adding the shift value to whatever value | 
 | 	 * is in the shift instruction count field already. | 
 | 	 */ | 
 | 	cnt = (val & 0x3f); | 
 | 	val &= ~0x3f; | 
 |  | 
 | 	/* If we are trying to shift >= 64 bits, clear the destination | 
 | 	 * register.  This can happen when phys_bits ends up being equal | 
 | 	 * to MAX_PHYS_ADDRESS_BITS. | 
 | 	 */ | 
 | 	final_shift = (cnt + (64 - phys_bits)); | 
 | 	if (final_shift >= 64) { | 
 | 		unsigned int rd = (val >> 25) & 0x1f; | 
 |  | 
 | 		val = 0x80100000 | (rd << 25); | 
 | 	} else { | 
 | 		val |= final_shift; | 
 | 	} | 
 | 	*insn = val; | 
 |  | 
 | 	__asm__ __volatile__("flush	%0" | 
 | 			     : /* no outputs */ | 
 | 			     : "r" (insn)); | 
 | } | 
 |  | 
 | static void __init page_offset_shift_patch(unsigned long phys_bits) | 
 | { | 
 | 	extern unsigned int __page_offset_shift_patch; | 
 | 	extern unsigned int __page_offset_shift_patch_end; | 
 | 	unsigned int *p; | 
 |  | 
 | 	p = &__page_offset_shift_patch; | 
 | 	while (p < &__page_offset_shift_patch_end) { | 
 | 		unsigned int *insn = (unsigned int *)(unsigned long)*p; | 
 |  | 
 | 		page_offset_shift_patch_one(insn, phys_bits); | 
 |  | 
 | 		p++; | 
 | 	} | 
 | } | 
 |  | 
 | static void __init setup_page_offset(void) | 
 | { | 
 | 	unsigned long max_phys_bits = 40; | 
 |  | 
 | 	if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		max_phys_bits = 42; | 
 | 	} else if (tlb_type == hypervisor) { | 
 | 		switch (sun4v_chip_type) { | 
 | 		case SUN4V_CHIP_NIAGARA1: | 
 | 		case SUN4V_CHIP_NIAGARA2: | 
 | 			max_phys_bits = 39; | 
 | 			break; | 
 | 		case SUN4V_CHIP_NIAGARA3: | 
 | 			max_phys_bits = 43; | 
 | 			break; | 
 | 		case SUN4V_CHIP_NIAGARA4: | 
 | 		case SUN4V_CHIP_NIAGARA5: | 
 | 		case SUN4V_CHIP_SPARC64X: | 
 | 		default: | 
 | 			max_phys_bits = 47; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) { | 
 | 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n", | 
 | 			    max_phys_bits); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits); | 
 |  | 
 | 	pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n", | 
 | 		PAGE_OFFSET, max_phys_bits); | 
 |  | 
 | 	page_offset_shift_patch(max_phys_bits); | 
 | } | 
 |  | 
 | static void __init tsb_phys_patch(void) | 
 | { | 
 | 	struct tsb_ldquad_phys_patch_entry *pquad; | 
 | 	struct tsb_phys_patch_entry *p; | 
 |  | 
 | 	pquad = &__tsb_ldquad_phys_patch; | 
 | 	while (pquad < &__tsb_ldquad_phys_patch_end) { | 
 | 		unsigned long addr = pquad->addr; | 
 |  | 
 | 		if (tlb_type == hypervisor) | 
 | 			*(unsigned int *) addr = pquad->sun4v_insn; | 
 | 		else | 
 | 			*(unsigned int *) addr = pquad->sun4u_insn; | 
 | 		wmb(); | 
 | 		__asm__ __volatile__("flush	%0" | 
 | 				     : /* no outputs */ | 
 | 				     : "r" (addr)); | 
 |  | 
 | 		pquad++; | 
 | 	} | 
 |  | 
 | 	p = &__tsb_phys_patch; | 
 | 	while (p < &__tsb_phys_patch_end) { | 
 | 		unsigned long addr = p->addr; | 
 |  | 
 | 		*(unsigned int *) addr = p->insn; | 
 | 		wmb(); | 
 | 		__asm__ __volatile__("flush	%0" | 
 | 				     : /* no outputs */ | 
 | 				     : "r" (addr)); | 
 |  | 
 | 		p++; | 
 | 	} | 
 | } | 
 |  | 
 | /* Don't mark as init, we give this to the Hypervisor.  */ | 
 | #ifndef CONFIG_DEBUG_PAGEALLOC | 
 | #define NUM_KTSB_DESCR	2 | 
 | #else | 
 | #define NUM_KTSB_DESCR	1 | 
 | #endif | 
 | static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; | 
 | extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; | 
 |  | 
 | static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) | 
 | { | 
 | 	pa >>= KTSB_PHYS_SHIFT; | 
 |  | 
 | 	while (start < end) { | 
 | 		unsigned int *ia = (unsigned int *)(unsigned long)*start; | 
 |  | 
 | 		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10); | 
 | 		__asm__ __volatile__("flush	%0" : : "r" (ia)); | 
 |  | 
 | 		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff); | 
 | 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1)); | 
 |  | 
 | 		start++; | 
 | 	} | 
 | } | 
 |  | 
 | static void ktsb_phys_patch(void) | 
 | { | 
 | 	extern unsigned int __swapper_tsb_phys_patch; | 
 | 	extern unsigned int __swapper_tsb_phys_patch_end; | 
 | 	unsigned long ktsb_pa; | 
 |  | 
 | 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); | 
 | 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch, | 
 | 			    &__swapper_tsb_phys_patch_end, ktsb_pa); | 
 | #ifndef CONFIG_DEBUG_PAGEALLOC | 
 | 	{ | 
 | 	extern unsigned int __swapper_4m_tsb_phys_patch; | 
 | 	extern unsigned int __swapper_4m_tsb_phys_patch_end; | 
 | 	ktsb_pa = (kern_base + | 
 | 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); | 
 | 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, | 
 | 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void __init sun4v_ktsb_init(void) | 
 | { | 
 | 	unsigned long ktsb_pa; | 
 |  | 
 | 	/* First KTSB for PAGE_SIZE mappings.  */ | 
 | 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); | 
 |  | 
 | 	switch (PAGE_SIZE) { | 
 | 	case 8 * 1024: | 
 | 	default: | 
 | 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; | 
 | 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; | 
 | 		break; | 
 |  | 
 | 	case 64 * 1024: | 
 | 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; | 
 | 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; | 
 | 		break; | 
 |  | 
 | 	case 512 * 1024: | 
 | 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; | 
 | 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; | 
 | 		break; | 
 |  | 
 | 	case 4 * 1024 * 1024: | 
 | 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; | 
 | 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	ktsb_descr[0].assoc = 1; | 
 | 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; | 
 | 	ktsb_descr[0].ctx_idx = 0; | 
 | 	ktsb_descr[0].tsb_base = ktsb_pa; | 
 | 	ktsb_descr[0].resv = 0; | 
 |  | 
 | #ifndef CONFIG_DEBUG_PAGEALLOC | 
 | 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */ | 
 | 	ktsb_pa = (kern_base + | 
 | 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); | 
 |  | 
 | 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; | 
 | 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | | 
 | 				    HV_PGSZ_MASK_256MB | | 
 | 				    HV_PGSZ_MASK_2GB | | 
 | 				    HV_PGSZ_MASK_16GB) & | 
 | 				   cpu_pgsz_mask); | 
 | 	ktsb_descr[1].assoc = 1; | 
 | 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; | 
 | 	ktsb_descr[1].ctx_idx = 0; | 
 | 	ktsb_descr[1].tsb_base = ktsb_pa; | 
 | 	ktsb_descr[1].resv = 0; | 
 | #endif | 
 | } | 
 |  | 
 | void sun4v_ktsb_register(void) | 
 | { | 
 | 	unsigned long pa, ret; | 
 |  | 
 | 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); | 
 |  | 
 | 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); | 
 | 	if (ret != 0) { | 
 | 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " | 
 | 			    "errors with %lx\n", pa, ret); | 
 | 		prom_halt(); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init sun4u_linear_pte_xor_finalize(void) | 
 | { | 
 | #ifndef CONFIG_DEBUG_PAGEALLOC | 
 | 	/* This is where we would add Panther support for | 
 | 	 * 32MB and 256MB pages. | 
 | 	 */ | 
 | #endif | 
 | } | 
 |  | 
 | static void __init sun4v_linear_pte_xor_finalize(void) | 
 | { | 
 | #ifndef CONFIG_DEBUG_PAGEALLOC | 
 | 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { | 
 | 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ | 
 | 			PAGE_OFFSET; | 
 | 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V | | 
 | 					   _PAGE_P_4V | _PAGE_W_4V); | 
 | 	} else { | 
 | 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; | 
 | 	} | 
 |  | 
 | 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { | 
 | 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ | 
 | 			PAGE_OFFSET; | 
 | 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V | | 
 | 					   _PAGE_P_4V | _PAGE_W_4V); | 
 | 	} else { | 
 | 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; | 
 | 	} | 
 |  | 
 | 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { | 
 | 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ | 
 | 			PAGE_OFFSET; | 
 | 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V | | 
 | 					   _PAGE_P_4V | _PAGE_W_4V); | 
 | 	} else { | 
 | 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | /* paging_init() sets up the page tables */ | 
 |  | 
 | static unsigned long last_valid_pfn; | 
 | pgd_t swapper_pg_dir[PTRS_PER_PGD]; | 
 |  | 
 | static void sun4u_pgprot_init(void); | 
 | static void sun4v_pgprot_init(void); | 
 |  | 
 | void __init paging_init(void) | 
 | { | 
 | 	unsigned long end_pfn, shift, phys_base; | 
 | 	unsigned long real_end, i; | 
 | 	int node; | 
 |  | 
 | 	setup_page_offset(); | 
 |  | 
 | 	/* These build time checkes make sure that the dcache_dirty_cpu() | 
 | 	 * page->flags usage will work. | 
 | 	 * | 
 | 	 * When a page gets marked as dcache-dirty, we store the | 
 | 	 * cpu number starting at bit 32 in the page->flags.  Also, | 
 | 	 * functions like clear_dcache_dirty_cpu use the cpu mask | 
 | 	 * in 13-bit signed-immediate instruction fields. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Page flags must not reach into upper 32 bits that are used | 
 | 	 * for the cpu number | 
 | 	 */ | 
 | 	BUILD_BUG_ON(NR_PAGEFLAGS > 32); | 
 |  | 
 | 	/* | 
 | 	 * The bit fields placed in the high range must not reach below | 
 | 	 * the 32 bit boundary. Otherwise we cannot place the cpu field | 
 | 	 * at the 32 bit boundary. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + | 
 | 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32); | 
 |  | 
 | 	BUILD_BUG_ON(NR_CPUS > 4096); | 
 |  | 
 | 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; | 
 | 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; | 
 |  | 
 | 	/* Invalidate both kernel TSBs.  */ | 
 | 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); | 
 | #ifndef CONFIG_DEBUG_PAGEALLOC | 
 | 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); | 
 | #endif | 
 |  | 
 | 	if (tlb_type == hypervisor) | 
 | 		sun4v_pgprot_init(); | 
 | 	else | 
 | 		sun4u_pgprot_init(); | 
 |  | 
 | 	if (tlb_type == cheetah_plus || | 
 | 	    tlb_type == hypervisor) { | 
 | 		tsb_phys_patch(); | 
 | 		ktsb_phys_patch(); | 
 | 	} | 
 |  | 
 | 	if (tlb_type == hypervisor) | 
 | 		sun4v_patch_tlb_handlers(); | 
 |  | 
 | 	/* Find available physical memory... | 
 | 	 * | 
 | 	 * Read it twice in order to work around a bug in openfirmware. | 
 | 	 * The call to grab this table itself can cause openfirmware to | 
 | 	 * allocate memory, which in turn can take away some space from | 
 | 	 * the list of available memory.  Reading it twice makes sure | 
 | 	 * we really do get the final value. | 
 | 	 */ | 
 | 	read_obp_translations(); | 
 | 	read_obp_memory("reg", &pall[0], &pall_ents); | 
 | 	read_obp_memory("available", &pavail[0], &pavail_ents); | 
 | 	read_obp_memory("available", &pavail[0], &pavail_ents); | 
 |  | 
 | 	phys_base = 0xffffffffffffffffUL; | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | 		phys_base = min(phys_base, pavail[i].phys_addr); | 
 | 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size); | 
 | 	} | 
 |  | 
 | 	memblock_reserve(kern_base, kern_size); | 
 |  | 
 | 	find_ramdisk(phys_base); | 
 |  | 
 | 	memblock_enforce_memory_limit(cmdline_memory_size); | 
 |  | 
 | 	memblock_allow_resize(); | 
 | 	memblock_dump_all(); | 
 |  | 
 | 	set_bit(0, mmu_context_bmap); | 
 |  | 
 | 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); | 
 |  | 
 | 	real_end = (unsigned long)_end; | 
 | 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB); | 
 | 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n", | 
 | 	       num_kernel_image_mappings); | 
 |  | 
 | 	/* Set kernel pgd to upper alias so physical page computations | 
 | 	 * work. | 
 | 	 */ | 
 | 	init_mm.pgd += ((shift) / (sizeof(pgd_t))); | 
 | 	 | 
 | 	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir)); | 
 |  | 
 | 	/* Now can init the kernel/bad page tables. */ | 
 | 	pud_set(pud_offset(&swapper_pg_dir[0], 0), | 
 | 		swapper_low_pmd_dir + (shift / sizeof(pgd_t))); | 
 | 	 | 
 | 	inherit_prom_mappings(); | 
 | 	 | 
 | 	init_kpte_bitmap(); | 
 |  | 
 | 	/* Ok, we can use our TLB miss and window trap handlers safely.  */ | 
 | 	setup_tba(); | 
 |  | 
 | 	__flush_tlb_all(); | 
 |  | 
 | 	prom_build_devicetree(); | 
 | 	of_populate_present_mask(); | 
 | #ifndef CONFIG_SMP | 
 | 	of_fill_in_cpu_data(); | 
 | #endif | 
 |  | 
 | 	if (tlb_type == hypervisor) { | 
 | 		sun4v_mdesc_init(); | 
 | 		mdesc_populate_present_mask(cpu_all_mask); | 
 | #ifndef CONFIG_SMP | 
 | 		mdesc_fill_in_cpu_data(cpu_all_mask); | 
 | #endif | 
 | 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); | 
 |  | 
 | 		sun4v_linear_pte_xor_finalize(); | 
 |  | 
 | 		sun4v_ktsb_init(); | 
 | 		sun4v_ktsb_register(); | 
 | 	} else { | 
 | 		unsigned long impl, ver; | 
 |  | 
 | 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | | 
 | 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); | 
 |  | 
 | 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); | 
 | 		impl = ((ver >> 32) & 0xffff); | 
 | 		if (impl == PANTHER_IMPL) | 
 | 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | | 
 | 					  HV_PGSZ_MASK_256MB); | 
 |  | 
 | 		sun4u_linear_pte_xor_finalize(); | 
 | 	} | 
 |  | 
 | 	/* Flush the TLBs and the 4M TSB so that the updated linear | 
 | 	 * pte XOR settings are realized for all mappings. | 
 | 	 */ | 
 | 	__flush_tlb_all(); | 
 | #ifndef CONFIG_DEBUG_PAGEALLOC | 
 | 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); | 
 | #endif | 
 | 	__flush_tlb_all(); | 
 |  | 
 | 	/* Setup bootmem... */ | 
 | 	last_valid_pfn = end_pfn = bootmem_init(phys_base); | 
 |  | 
 | 	/* Once the OF device tree and MDESC have been setup, we know | 
 | 	 * the list of possible cpus.  Therefore we can allocate the | 
 | 	 * IRQ stacks. | 
 | 	 */ | 
 | 	for_each_possible_cpu(i) { | 
 | 		node = cpu_to_node(i); | 
 |  | 
 | 		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), | 
 | 							THREAD_SIZE, | 
 | 							THREAD_SIZE, 0); | 
 | 		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), | 
 | 							THREAD_SIZE, | 
 | 							THREAD_SIZE, 0); | 
 | 	} | 
 |  | 
 | 	kernel_physical_mapping_init(); | 
 |  | 
 | 	{ | 
 | 		unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
 |  | 
 | 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | 
 |  | 
 | 		max_zone_pfns[ZONE_NORMAL] = end_pfn; | 
 |  | 
 | 		free_area_init_nodes(max_zone_pfns); | 
 | 	} | 
 |  | 
 | 	printk("Booting Linux...\n"); | 
 | } | 
 |  | 
 | int page_in_phys_avail(unsigned long paddr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	paddr &= PAGE_MASK; | 
 |  | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | 		unsigned long start, end; | 
 |  | 
 | 		start = pavail[i].phys_addr; | 
 | 		end = start + pavail[i].reg_size; | 
 |  | 
 | 		if (paddr >= start && paddr < end) | 
 | 			return 1; | 
 | 	} | 
 | 	if (paddr >= kern_base && paddr < (kern_base + kern_size)) | 
 | 		return 1; | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	if (paddr >= __pa(initrd_start) && | 
 | 	    paddr < __pa(PAGE_ALIGN(initrd_end))) | 
 | 		return 1; | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata; | 
 | static int pavail_rescan_ents __initdata; | 
 |  | 
 | /* Certain OBP calls, such as fetching "available" properties, can | 
 |  * claim physical memory.  So, along with initializing the valid | 
 |  * address bitmap, what we do here is refetch the physical available | 
 |  * memory list again, and make sure it provides at least as much | 
 |  * memory as 'pavail' does. | 
 |  */ | 
 | static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents); | 
 |  | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | 		unsigned long old_start, old_end; | 
 |  | 
 | 		old_start = pavail[i].phys_addr; | 
 | 		old_end = old_start + pavail[i].reg_size; | 
 | 		while (old_start < old_end) { | 
 | 			int n; | 
 |  | 
 | 			for (n = 0; n < pavail_rescan_ents; n++) { | 
 | 				unsigned long new_start, new_end; | 
 |  | 
 | 				new_start = pavail_rescan[n].phys_addr; | 
 | 				new_end = new_start + | 
 | 					pavail_rescan[n].reg_size; | 
 |  | 
 | 				if (new_start <= old_start && | 
 | 				    new_end >= (old_start + PAGE_SIZE)) { | 
 | 					set_bit(old_start >> ILOG2_4MB, bitmap); | 
 | 					goto do_next_page; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			prom_printf("mem_init: Lost memory in pavail\n"); | 
 | 			prom_printf("mem_init: OLD start[%lx] size[%lx]\n", | 
 | 				    pavail[i].phys_addr, | 
 | 				    pavail[i].reg_size); | 
 | 			prom_printf("mem_init: NEW start[%lx] size[%lx]\n", | 
 | 				    pavail_rescan[i].phys_addr, | 
 | 				    pavail_rescan[i].reg_size); | 
 | 			prom_printf("mem_init: Cannot continue, aborting.\n"); | 
 | 			prom_halt(); | 
 |  | 
 | 		do_next_page: | 
 | 			old_start += PAGE_SIZE; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void __init patch_tlb_miss_handler_bitmap(void) | 
 | { | 
 | 	extern unsigned int valid_addr_bitmap_insn[]; | 
 | 	extern unsigned int valid_addr_bitmap_patch[]; | 
 |  | 
 | 	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1]; | 
 | 	mb(); | 
 | 	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0]; | 
 | 	flushi(&valid_addr_bitmap_insn[0]); | 
 | } | 
 |  | 
 | static void __init register_page_bootmem_info(void) | 
 | { | 
 | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
 | 	int i; | 
 |  | 
 | 	for_each_online_node(i) | 
 | 		if (NODE_DATA(i)->node_spanned_pages) | 
 | 			register_page_bootmem_info_node(NODE_DATA(i)); | 
 | #endif | 
 | } | 
 | void __init mem_init(void) | 
 | { | 
 | 	unsigned long addr, last; | 
 |  | 
 | 	addr = PAGE_OFFSET + kern_base; | 
 | 	last = PAGE_ALIGN(kern_size) + addr; | 
 | 	while (addr < last) { | 
 | 		set_bit(__pa(addr) >> ILOG2_4MB, sparc64_valid_addr_bitmap); | 
 | 		addr += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap); | 
 | 	patch_tlb_miss_handler_bitmap(); | 
 |  | 
 | 	high_memory = __va(last_valid_pfn << PAGE_SHIFT); | 
 |  | 
 | 	register_page_bootmem_info(); | 
 | 	free_all_bootmem(); | 
 |  | 
 | 	/* | 
 | 	 * Set up the zero page, mark it reserved, so that page count | 
 | 	 * is not manipulated when freeing the page from user ptes. | 
 | 	 */ | 
 | 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); | 
 | 	if (mem_map_zero == NULL) { | 
 | 		prom_printf("paging_init: Cannot alloc zero page.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 | 	mark_page_reserved(mem_map_zero); | 
 |  | 
 | 	mem_init_print_info(NULL); | 
 |  | 
 | 	if (tlb_type == cheetah || tlb_type == cheetah_plus) | 
 | 		cheetah_ecache_flush_init(); | 
 | } | 
 |  | 
 | void free_initmem(void) | 
 | { | 
 | 	unsigned long addr, initend; | 
 | 	int do_free = 1; | 
 |  | 
 | 	/* If the physical memory maps were trimmed by kernel command | 
 | 	 * line options, don't even try freeing this initmem stuff up. | 
 | 	 * The kernel image could have been in the trimmed out region | 
 | 	 * and if so the freeing below will free invalid page structs. | 
 | 	 */ | 
 | 	if (cmdline_memory_size) | 
 | 		do_free = 0; | 
 |  | 
 | 	/* | 
 | 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. | 
 | 	 */ | 
 | 	addr = PAGE_ALIGN((unsigned long)(__init_begin)); | 
 | 	initend = (unsigned long)(__init_end) & PAGE_MASK; | 
 | 	for (; addr < initend; addr += PAGE_SIZE) { | 
 | 		unsigned long page; | 
 |  | 
 | 		page = (addr + | 
 | 			((unsigned long) __va(kern_base)) - | 
 | 			((unsigned long) KERNBASE)); | 
 | 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); | 
 |  | 
 | 		if (do_free) | 
 | 			free_reserved_page(virt_to_page(page)); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | void free_initrd_mem(unsigned long start, unsigned long end) | 
 | { | 
 | 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM, | 
 | 			   "initrd"); | 
 | } | 
 | #endif | 
 |  | 
 | #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U) | 
 | #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V) | 
 | #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) | 
 | #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) | 
 | #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) | 
 | #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) | 
 |  | 
 | pgprot_t PAGE_KERNEL __read_mostly; | 
 | EXPORT_SYMBOL(PAGE_KERNEL); | 
 |  | 
 | pgprot_t PAGE_KERNEL_LOCKED __read_mostly; | 
 | pgprot_t PAGE_COPY __read_mostly; | 
 |  | 
 | pgprot_t PAGE_SHARED __read_mostly; | 
 | EXPORT_SYMBOL(PAGE_SHARED); | 
 |  | 
 | unsigned long pg_iobits __read_mostly; | 
 |  | 
 | unsigned long _PAGE_IE __read_mostly; | 
 | EXPORT_SYMBOL(_PAGE_IE); | 
 |  | 
 | unsigned long _PAGE_E __read_mostly; | 
 | EXPORT_SYMBOL(_PAGE_E); | 
 |  | 
 | unsigned long _PAGE_CACHE __read_mostly; | 
 | EXPORT_SYMBOL(_PAGE_CACHE); | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | unsigned long vmemmap_table[VMEMMAP_SIZE]; | 
 |  | 
 | static long __meminitdata addr_start, addr_end; | 
 | static int __meminitdata node_start; | 
 |  | 
 | int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend, | 
 | 			       int node) | 
 | { | 
 | 	unsigned long phys_start = (vstart - VMEMMAP_BASE); | 
 | 	unsigned long phys_end = (vend - VMEMMAP_BASE); | 
 | 	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK; | 
 | 	unsigned long end = VMEMMAP_ALIGN(phys_end); | 
 | 	unsigned long pte_base; | 
 |  | 
 | 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | | 
 | 		    _PAGE_CP_4U | _PAGE_CV_4U | | 
 | 		    _PAGE_P_4U | _PAGE_W_4U); | 
 | 	if (tlb_type == hypervisor) | 
 | 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | | 
 | 			    _PAGE_CP_4V | _PAGE_CV_4V | | 
 | 			    _PAGE_P_4V | _PAGE_W_4V); | 
 |  | 
 | 	for (; addr < end; addr += VMEMMAP_CHUNK) { | 
 | 		unsigned long *vmem_pp = | 
 | 			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT); | 
 | 		void *block; | 
 |  | 
 | 		if (!(*vmem_pp & _PAGE_VALID)) { | 
 | 			block = vmemmap_alloc_block(1UL << ILOG2_4MB, node); | 
 | 			if (!block) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			*vmem_pp = pte_base | __pa(block); | 
 |  | 
 | 			/* check to see if we have contiguous blocks */ | 
 | 			if (addr_end != addr || node_start != node) { | 
 | 				if (addr_start) | 
 | 					printk(KERN_DEBUG " [%lx-%lx] on node %d\n", | 
 | 					       addr_start, addr_end-1, node_start); | 
 | 				addr_start = addr; | 
 | 				node_start = node; | 
 | 			} | 
 | 			addr_end = addr + VMEMMAP_CHUNK; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __meminit vmemmap_populate_print_last(void) | 
 | { | 
 | 	if (addr_start) { | 
 | 		printk(KERN_DEBUG " [%lx-%lx] on node %d\n", | 
 | 		       addr_start, addr_end-1, node_start); | 
 | 		addr_start = 0; | 
 | 		addr_end = 0; | 
 | 		node_start = 0; | 
 | 	} | 
 | } | 
 |  | 
 | void vmemmap_free(unsigned long start, unsigned long end) | 
 | { | 
 | } | 
 |  | 
 | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ | 
 |  | 
 | static void prot_init_common(unsigned long page_none, | 
 | 			     unsigned long page_shared, | 
 | 			     unsigned long page_copy, | 
 | 			     unsigned long page_readonly, | 
 | 			     unsigned long page_exec_bit) | 
 | { | 
 | 	PAGE_COPY = __pgprot(page_copy); | 
 | 	PAGE_SHARED = __pgprot(page_shared); | 
 |  | 
 | 	protection_map[0x0] = __pgprot(page_none); | 
 | 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); | 
 | 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); | 
 | 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); | 
 | 	protection_map[0x4] = __pgprot(page_readonly); | 
 | 	protection_map[0x5] = __pgprot(page_readonly); | 
 | 	protection_map[0x6] = __pgprot(page_copy); | 
 | 	protection_map[0x7] = __pgprot(page_copy); | 
 | 	protection_map[0x8] = __pgprot(page_none); | 
 | 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); | 
 | 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); | 
 | 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); | 
 | 	protection_map[0xc] = __pgprot(page_readonly); | 
 | 	protection_map[0xd] = __pgprot(page_readonly); | 
 | 	protection_map[0xe] = __pgprot(page_shared); | 
 | 	protection_map[0xf] = __pgprot(page_shared); | 
 | } | 
 |  | 
 | static void __init sun4u_pgprot_init(void) | 
 | { | 
 | 	unsigned long page_none, page_shared, page_copy, page_readonly; | 
 | 	unsigned long page_exec_bit; | 
 | 	int i; | 
 |  | 
 | 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | | 
 | 				_PAGE_CACHE_4U | _PAGE_P_4U | | 
 | 				__ACCESS_BITS_4U | __DIRTY_BITS_4U | | 
 | 				_PAGE_EXEC_4U); | 
 | 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | | 
 | 				       _PAGE_CACHE_4U | _PAGE_P_4U | | 
 | 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U | | 
 | 				       _PAGE_EXEC_4U | _PAGE_L_4U); | 
 |  | 
 | 	_PAGE_IE = _PAGE_IE_4U; | 
 | 	_PAGE_E = _PAGE_E_4U; | 
 | 	_PAGE_CACHE = _PAGE_CACHE_4U; | 
 |  | 
 | 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | | 
 | 		     __ACCESS_BITS_4U | _PAGE_E_4U); | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; | 
 | #else | 
 | 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ | 
 | 		PAGE_OFFSET; | 
 | #endif | 
 | 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | | 
 | 				   _PAGE_P_4U | _PAGE_W_4U); | 
 |  | 
 | 	for (i = 1; i < 4; i++) | 
 | 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; | 
 |  | 
 | 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | | 
 | 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | | 
 | 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); | 
 |  | 
 |  | 
 | 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; | 
 | 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | | 
 | 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); | 
 | 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | | 
 | 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U); | 
 | 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | | 
 | 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U); | 
 |  | 
 | 	page_exec_bit = _PAGE_EXEC_4U; | 
 |  | 
 | 	prot_init_common(page_none, page_shared, page_copy, page_readonly, | 
 | 			 page_exec_bit); | 
 | } | 
 |  | 
 | static void __init sun4v_pgprot_init(void) | 
 | { | 
 | 	unsigned long page_none, page_shared, page_copy, page_readonly; | 
 | 	unsigned long page_exec_bit; | 
 | 	int i; | 
 |  | 
 | 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | | 
 | 				_PAGE_CACHE_4V | _PAGE_P_4V | | 
 | 				__ACCESS_BITS_4V | __DIRTY_BITS_4V | | 
 | 				_PAGE_EXEC_4V); | 
 | 	PAGE_KERNEL_LOCKED = PAGE_KERNEL; | 
 |  | 
 | 	_PAGE_IE = _PAGE_IE_4V; | 
 | 	_PAGE_E = _PAGE_E_4V; | 
 | 	_PAGE_CACHE = _PAGE_CACHE_4V; | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; | 
 | #else | 
 | 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ | 
 | 		PAGE_OFFSET; | 
 | #endif | 
 | 	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V | | 
 | 				   _PAGE_P_4V | _PAGE_W_4V); | 
 |  | 
 | 	for (i = 1; i < 4; i++) | 
 | 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; | 
 |  | 
 | 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | | 
 | 		     __ACCESS_BITS_4V | _PAGE_E_4V); | 
 |  | 
 | 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | | 
 | 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | | 
 | 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | | 
 | 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); | 
 |  | 
 | 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V; | 
 | 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | | 
 | 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); | 
 | 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | | 
 | 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V); | 
 | 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | | 
 | 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V); | 
 |  | 
 | 	page_exec_bit = _PAGE_EXEC_4V; | 
 |  | 
 | 	prot_init_common(page_none, page_shared, page_copy, page_readonly, | 
 | 			 page_exec_bit); | 
 | } | 
 |  | 
 | unsigned long pte_sz_bits(unsigned long sz) | 
 | { | 
 | 	if (tlb_type == hypervisor) { | 
 | 		switch (sz) { | 
 | 		case 8 * 1024: | 
 | 		default: | 
 | 			return _PAGE_SZ8K_4V; | 
 | 		case 64 * 1024: | 
 | 			return _PAGE_SZ64K_4V; | 
 | 		case 512 * 1024: | 
 | 			return _PAGE_SZ512K_4V; | 
 | 		case 4 * 1024 * 1024: | 
 | 			return _PAGE_SZ4MB_4V; | 
 | 		} | 
 | 	} else { | 
 | 		switch (sz) { | 
 | 		case 8 * 1024: | 
 | 		default: | 
 | 			return _PAGE_SZ8K_4U; | 
 | 		case 64 * 1024: | 
 | 			return _PAGE_SZ64K_4U; | 
 | 		case 512 * 1024: | 
 | 			return _PAGE_SZ512K_4U; | 
 | 		case 4 * 1024 * 1024: | 
 | 			return _PAGE_SZ4MB_4U; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) | 
 | { | 
 | 	pte_t pte; | 
 |  | 
 | 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot)); | 
 | 	pte_val(pte) |= (((unsigned long)space) << 32); | 
 | 	pte_val(pte) |= pte_sz_bits(page_size); | 
 |  | 
 | 	return pte; | 
 | } | 
 |  | 
 | static unsigned long kern_large_tte(unsigned long paddr) | 
 | { | 
 | 	unsigned long val; | 
 |  | 
 | 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U | | 
 | 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | | 
 | 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); | 
 | 	if (tlb_type == hypervisor) | 
 | 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V | | 
 | 		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | | 
 | 		       _PAGE_EXEC_4V | _PAGE_W_4V); | 
 |  | 
 | 	return val | paddr; | 
 | } | 
 |  | 
 | /* If not locked, zap it. */ | 
 | void __flush_tlb_all(void) | 
 | { | 
 | 	unsigned long pstate; | 
 | 	int i; | 
 |  | 
 | 	__asm__ __volatile__("flushw\n\t" | 
 | 			     "rdpr	%%pstate, %0\n\t" | 
 | 			     "wrpr	%0, %1, %%pstate" | 
 | 			     : "=r" (pstate) | 
 | 			     : "i" (PSTATE_IE)); | 
 | 	if (tlb_type == hypervisor) { | 
 | 		sun4v_mmu_demap_all(); | 
 | 	} else if (tlb_type == spitfire) { | 
 | 		for (i = 0; i < 64; i++) { | 
 | 			/* Spitfire Errata #32 workaround */ | 
 | 			/* NOTE: Always runs on spitfire, so no | 
 | 			 *       cheetah+ page size encodings. | 
 | 			 */ | 
 | 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
 | 					     "flush	%%g6" | 
 | 					     : /* No outputs */ | 
 | 					     : "r" (0), | 
 | 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
 |  | 
 | 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : /* no outputs */ | 
 | 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); | 
 | 				spitfire_put_dtlb_data(i, 0x0UL); | 
 | 			} | 
 |  | 
 | 			/* Spitfire Errata #32 workaround */ | 
 | 			/* NOTE: Always runs on spitfire, so no | 
 | 			 *       cheetah+ page size encodings. | 
 | 			 */ | 
 | 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
 | 					     "flush	%%g6" | 
 | 					     : /* No outputs */ | 
 | 					     : "r" (0), | 
 | 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
 |  | 
 | 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : /* no outputs */ | 
 | 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); | 
 | 				spitfire_put_itlb_data(i, 0x0UL); | 
 | 			} | 
 | 		} | 
 | 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		cheetah_flush_dtlb_all(); | 
 | 		cheetah_flush_itlb_all(); | 
 | 	} | 
 | 	__asm__ __volatile__("wrpr	%0, 0, %%pstate" | 
 | 			     : : "r" (pstate)); | 
 | } | 
 |  | 
 | pte_t *pte_alloc_one_kernel(struct mm_struct *mm, | 
 | 			    unsigned long address) | 
 | { | 
 | 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | | 
 | 				       __GFP_REPEAT | __GFP_ZERO); | 
 | 	pte_t *pte = NULL; | 
 |  | 
 | 	if (page) | 
 | 		pte = (pte_t *) page_address(page); | 
 |  | 
 | 	return pte; | 
 | } | 
 |  | 
 | pgtable_t pte_alloc_one(struct mm_struct *mm, | 
 | 			unsigned long address) | 
 | { | 
 | 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | | 
 | 				       __GFP_REPEAT | __GFP_ZERO); | 
 | 	if (!page) | 
 | 		return NULL; | 
 | 	if (!pgtable_page_ctor(page)) { | 
 | 		free_hot_cold_page(page, 0); | 
 | 		return NULL; | 
 | 	} | 
 | 	return (pte_t *) page_address(page); | 
 | } | 
 |  | 
 | void pte_free_kernel(struct mm_struct *mm, pte_t *pte) | 
 | { | 
 | 	free_page((unsigned long)pte); | 
 | } | 
 |  | 
 | static void __pte_free(pgtable_t pte) | 
 | { | 
 | 	struct page *page = virt_to_page(pte); | 
 |  | 
 | 	pgtable_page_dtor(page); | 
 | 	__free_page(page); | 
 | } | 
 |  | 
 | void pte_free(struct mm_struct *mm, pgtable_t pte) | 
 | { | 
 | 	__pte_free(pte); | 
 | } | 
 |  | 
 | void pgtable_free(void *table, bool is_page) | 
 | { | 
 | 	if (is_page) | 
 | 		__pte_free(table); | 
 | 	else | 
 | 		kmem_cache_free(pgtable_cache, table); | 
 | } | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, | 
 | 			  pmd_t *pmd) | 
 | { | 
 | 	unsigned long pte, flags; | 
 | 	struct mm_struct *mm; | 
 | 	pmd_t entry = *pmd; | 
 |  | 
 | 	if (!pmd_large(entry) || !pmd_young(entry)) | 
 | 		return; | 
 |  | 
 | 	pte = pmd_val(entry); | 
 |  | 
 | 	/* We are fabricating 8MB pages using 4MB real hw pages.  */ | 
 | 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT)); | 
 |  | 
 | 	mm = vma->vm_mm; | 
 |  | 
 | 	spin_lock_irqsave(&mm->context.lock, flags); | 
 |  | 
 | 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) | 
 | 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, | 
 | 					addr, pte); | 
 |  | 
 | 	spin_unlock_irqrestore(&mm->context.lock, flags); | 
 | } | 
 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
 |  | 
 | #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) | 
 | static void context_reload(void *__data) | 
 | { | 
 | 	struct mm_struct *mm = __data; | 
 |  | 
 | 	if (mm == current->mm) | 
 | 		load_secondary_context(mm); | 
 | } | 
 |  | 
 | void hugetlb_setup(struct pt_regs *regs) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct tsb_config *tp; | 
 |  | 
 | 	if (in_atomic() || !mm) { | 
 | 		const struct exception_table_entry *entry; | 
 |  | 
 | 		entry = search_exception_tables(regs->tpc); | 
 | 		if (entry) { | 
 | 			regs->tpc = entry->fixup; | 
 | 			regs->tnpc = regs->tpc + 4; | 
 | 			return; | 
 | 		} | 
 | 		pr_alert("Unexpected HugeTLB setup in atomic context.\n"); | 
 | 		die_if_kernel("HugeTSB in atomic", regs); | 
 | 	} | 
 |  | 
 | 	tp = &mm->context.tsb_block[MM_TSB_HUGE]; | 
 | 	if (likely(tp->tsb == NULL)) | 
 | 		tsb_grow(mm, MM_TSB_HUGE, 0); | 
 |  | 
 | 	tsb_context_switch(mm); | 
 | 	smp_tsb_sync(mm); | 
 |  | 
 | 	/* On UltraSPARC-III+ and later, configure the second half of | 
 | 	 * the Data-TLB for huge pages. | 
 | 	 */ | 
 | 	if (tlb_type == cheetah_plus) { | 
 | 		unsigned long ctx; | 
 |  | 
 | 		spin_lock(&ctx_alloc_lock); | 
 | 		ctx = mm->context.sparc64_ctx_val; | 
 | 		ctx &= ~CTX_PGSZ_MASK; | 
 | 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; | 
 | 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; | 
 |  | 
 | 		if (ctx != mm->context.sparc64_ctx_val) { | 
 | 			/* When changing the page size fields, we | 
 | 			 * must perform a context flush so that no | 
 | 			 * stale entries match.  This flush must | 
 | 			 * occur with the original context register | 
 | 			 * settings. | 
 | 			 */ | 
 | 			do_flush_tlb_mm(mm); | 
 |  | 
 | 			/* Reload the context register of all processors | 
 | 			 * also executing in this address space. | 
 | 			 */ | 
 | 			mm->context.sparc64_ctx_val = ctx; | 
 | 			on_each_cpu(context_reload, mm, 0); | 
 | 		} | 
 | 		spin_unlock(&ctx_alloc_lock); | 
 | 	} | 
 | } | 
 | #endif |