blob: d4cf4ce19aac5f5965a94f115fef1acae7510ab9 [file] [log] [blame]
/*
* Performance counter x86 architecture code
*
* Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
* Copyright (C) 2009 Jaswinder Singh Rajput
* Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
*
* For licencing details see kernel-base/COPYING
*/
#include <linux/perf_counter.h>
#include <linux/capability.h>
#include <linux/notifier.h>
#include <linux/hardirq.h>
#include <linux/kprobes.h>
#include <linux/module.h>
#include <linux/kdebug.h>
#include <linux/sched.h>
#include <linux/uaccess.h>
#include <linux/highmem.h>
#include <asm/apic.h>
#include <asm/stacktrace.h>
#include <asm/nmi.h>
static u64 perf_counter_mask __read_mostly;
struct cpu_hw_counters {
struct perf_counter *counters[X86_PMC_IDX_MAX];
unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
unsigned long interrupts;
int enabled;
};
/*
* struct x86_pmu - generic x86 pmu
*/
struct x86_pmu {
const char *name;
int version;
int (*handle_irq)(struct pt_regs *);
void (*disable_all)(void);
void (*enable_all)(void);
void (*enable)(struct hw_perf_counter *, int);
void (*disable)(struct hw_perf_counter *, int);
unsigned eventsel;
unsigned perfctr;
u64 (*event_map)(int);
u64 (*raw_event)(u64);
int max_events;
int num_counters;
int num_counters_fixed;
int counter_bits;
u64 counter_mask;
u64 max_period;
u64 intel_ctrl;
};
static struct x86_pmu x86_pmu __read_mostly;
static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
.enabled = 1,
};
/*
* Intel PerfMon v3. Used on Core2 and later.
*/
static const u64 intel_perfmon_event_map[] =
{
[PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
[PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
[PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
};
static u64 intel_pmu_event_map(int event)
{
return intel_perfmon_event_map[event];
}
/*
* Generalized hw caching related event table, filled
* in on a per model basis. A value of 0 means
* 'not supported', -1 means 'event makes no sense on
* this CPU', any other value means the raw event
* ID.
*/
#define C(x) PERF_COUNT_HW_CACHE_##x
static u64 __read_mostly hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
static const u64 nehalem_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
[ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
[ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
[ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static const u64 core2_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static const u64 atom_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static u64 intel_pmu_raw_event(u64 event)
{
#define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
#define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
#define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
#define CORE_EVNTSEL_INV_MASK 0x00800000ULL
#define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
#define CORE_EVNTSEL_MASK \
(CORE_EVNTSEL_EVENT_MASK | \
CORE_EVNTSEL_UNIT_MASK | \
CORE_EVNTSEL_EDGE_MASK | \
CORE_EVNTSEL_INV_MASK | \
CORE_EVNTSEL_COUNTER_MASK)
return event & CORE_EVNTSEL_MASK;
}
static const u64 amd_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
[ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
[ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
[ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
[ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
[ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
[ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
[ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
/*
* AMD Performance Monitor K7 and later.
*/
static const u64 amd_perfmon_event_map[] =
{
[PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
[PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
};
static u64 amd_pmu_event_map(int event)
{
return amd_perfmon_event_map[event];
}
static u64 amd_pmu_raw_event(u64 event)
{
#define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
#define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
#define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
#define K7_EVNTSEL_INV_MASK 0x000800000ULL
#define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
#define K7_EVNTSEL_MASK \
(K7_EVNTSEL_EVENT_MASK | \
K7_EVNTSEL_UNIT_MASK | \
K7_EVNTSEL_EDGE_MASK | \
K7_EVNTSEL_INV_MASK | \
K7_EVNTSEL_COUNTER_MASK)
return event & K7_EVNTSEL_MASK;
}
/*
* Propagate counter elapsed time into the generic counter.
* Can only be executed on the CPU where the counter is active.
* Returns the delta events processed.
*/
static u64
x86_perf_counter_update(struct perf_counter *counter,
struct hw_perf_counter *hwc, int idx)
{
int shift = 64 - x86_pmu.counter_bits;
u64 prev_raw_count, new_raw_count;
s64 delta;
/*
* Careful: an NMI might modify the previous counter value.
*
* Our tactic to handle this is to first atomically read and
* exchange a new raw count - then add that new-prev delta
* count to the generic counter atomically:
*/
again:
prev_raw_count = atomic64_read(&hwc->prev_count);
rdmsrl(hwc->counter_base + idx, new_raw_count);
if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
/*
* Now we have the new raw value and have updated the prev
* timestamp already. We can now calculate the elapsed delta
* (counter-)time and add that to the generic counter.
*
* Careful, not all hw sign-extends above the physical width
* of the count.
*/
delta = (new_raw_count << shift) - (prev_raw_count << shift);
delta >>= shift;
atomic64_add(delta, &counter->count);
atomic64_sub(delta, &hwc->period_left);
return new_raw_count;
}
static atomic_t active_counters;
static DEFINE_MUTEX(pmc_reserve_mutex);
static bool reserve_pmc_hardware(void)
{
int i;
if (nmi_watchdog == NMI_LOCAL_APIC)
disable_lapic_nmi_watchdog();
for (i = 0; i < x86_pmu.num_counters; i++) {
if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
goto perfctr_fail;
}
for (i = 0; i < x86_pmu.num_counters; i++) {
if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
goto eventsel_fail;
}
return true;
eventsel_fail:
for (i--; i >= 0; i--)
release_evntsel_nmi(x86_pmu.eventsel + i);
i = x86_pmu.num_counters;
perfctr_fail:
for (i--; i >= 0; i--)
release_perfctr_nmi(x86_pmu.perfctr + i);
if (nmi_watchdog == NMI_LOCAL_APIC)
enable_lapic_nmi_watchdog();
return false;
}
static void release_pmc_hardware(void)
{
int i;
for (i = 0; i < x86_pmu.num_counters; i++) {
release_perfctr_nmi(x86_pmu.perfctr + i);
release_evntsel_nmi(x86_pmu.eventsel + i);
}
if (nmi_watchdog == NMI_LOCAL_APIC)
enable_lapic_nmi_watchdog();
}
static void hw_perf_counter_destroy(struct perf_counter *counter)
{
if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
release_pmc_hardware();
mutex_unlock(&pmc_reserve_mutex);
}
}
static inline int x86_pmu_initialized(void)
{
return x86_pmu.handle_irq != NULL;
}
static inline int
set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
{
unsigned int cache_type, cache_op, cache_result;
u64 config, val;
config = attr->config;
cache_type = (config >> 0) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return -EINVAL;
cache_op = (config >> 8) & 0xff;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return -EINVAL;
cache_result = (config >> 16) & 0xff;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return -EINVAL;
val = hw_cache_event_ids[cache_type][cache_op][cache_result];
if (val == 0)
return -ENOENT;
if (val == -1)
return -EINVAL;
hwc->config |= val;
return 0;
}
/*
* Setup the hardware configuration for a given attr_type
*/
static int __hw_perf_counter_init(struct perf_counter *counter)
{
struct perf_counter_attr *attr = &counter->attr;
struct hw_perf_counter *hwc = &counter->hw;
int err;
if (!x86_pmu_initialized())
return -ENODEV;
err = 0;
if (!atomic_inc_not_zero(&active_counters)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
err = -EBUSY;
else
atomic_inc(&active_counters);
mutex_unlock(&pmc_reserve_mutex);
}
if (err)
return err;
/*
* Generate PMC IRQs:
* (keep 'enabled' bit clear for now)
*/
hwc->config = ARCH_PERFMON_EVENTSEL_INT;
/*
* Count user and OS events unless requested not to.
*/
if (!attr->exclude_user)
hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
if (!attr->exclude_kernel)
hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
if (!hwc->sample_period) {
hwc->sample_period = x86_pmu.max_period;
hwc->last_period = hwc->sample_period;
atomic64_set(&hwc->period_left, hwc->sample_period);
}
counter->destroy = hw_perf_counter_destroy;
/*
* Raw event type provide the config in the event structure
*/
if (attr->type == PERF_TYPE_RAW) {
hwc->config |= x86_pmu.raw_event(attr->config);
return 0;
}
if (attr->type == PERF_TYPE_HW_CACHE)
return set_ext_hw_attr(hwc, attr);
if (attr->config >= x86_pmu.max_events)
return -EINVAL;
/*
* The generic map:
*/
hwc->config |= x86_pmu.event_map(attr->config);
return 0;
}
static void intel_pmu_disable_all(void)
{
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
}
static void amd_pmu_disable_all(void)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
int idx;
if (!cpuc->enabled)
return;
cpuc->enabled = 0;
/*
* ensure we write the disable before we start disabling the
* counters proper, so that amd_pmu_enable_counter() does the
* right thing.
*/
barrier();
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
u64 val;
if (!test_bit(idx, cpuc->active_mask))
continue;
rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
continue;
val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
}
}
void hw_perf_disable(void)
{
if (!x86_pmu_initialized())
return;
return x86_pmu.disable_all();
}
static void intel_pmu_enable_all(void)
{
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
}
static void amd_pmu_enable_all(void)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
int idx;
if (cpuc->enabled)
return;
cpuc->enabled = 1;
barrier();
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
u64 val;
if (!test_bit(idx, cpuc->active_mask))
continue;
rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
continue;
val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
}
}
void hw_perf_enable(void)
{
if (!x86_pmu_initialized())
return;
x86_pmu.enable_all();
}
static inline u64 intel_pmu_get_status(void)
{
u64 status;
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
return status;
}
static inline void intel_pmu_ack_status(u64 ack)
{
wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}
static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
{
int err;
err = checking_wrmsrl(hwc->config_base + idx,
hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
}
static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
{
int err;
err = checking_wrmsrl(hwc->config_base + idx,
hwc->config);
}
static inline void
intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
{
int idx = __idx - X86_PMC_IDX_FIXED;
u64 ctrl_val, mask;
int err;
mask = 0xfULL << (idx * 4);
rdmsrl(hwc->config_base, ctrl_val);
ctrl_val &= ~mask;
err = checking_wrmsrl(hwc->config_base, ctrl_val);
}
static inline void
intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
{
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
intel_pmu_disable_fixed(hwc, idx);
return;
}
x86_pmu_disable_counter(hwc, idx);
}
static inline void
amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
{
x86_pmu_disable_counter(hwc, idx);
}
static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
/*
* Set the next IRQ period, based on the hwc->period_left value.
* To be called with the counter disabled in hw:
*/
static int
x86_perf_counter_set_period(struct perf_counter *counter,
struct hw_perf_counter *hwc, int idx)
{
s64 left = atomic64_read(&hwc->period_left);
s64 period = hwc->sample_period;
int err, ret = 0;
/*
* If we are way outside a reasoable range then just skip forward:
*/
if (unlikely(left <= -period)) {
left = period;
atomic64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (unlikely(left <= 0)) {
left += period;
atomic64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
/*
* Quirk: certain CPUs dont like it if just 1 event is left:
*/
if (unlikely(left < 2))
left = 2;
if (left > x86_pmu.max_period)
left = x86_pmu.max_period;
per_cpu(prev_left[idx], smp_processor_id()) = left;
/*
* The hw counter starts counting from this counter offset,
* mark it to be able to extra future deltas:
*/
atomic64_set(&hwc->prev_count, (u64)-left);
err = checking_wrmsrl(hwc->counter_base + idx,
(u64)(-left) & x86_pmu.counter_mask);
perf_counter_update_userpage(counter);
return ret;
}
static inline void
intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
{
int idx = __idx - X86_PMC_IDX_FIXED;
u64 ctrl_val, bits, mask;
int err;
/*
* Enable IRQ generation (0x8),
* and enable ring-3 counting (0x2) and ring-0 counting (0x1)
* if requested:
*/
bits = 0x8ULL;
if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
bits |= 0x2;
if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
bits |= 0x1;
bits <<= (idx * 4);
mask = 0xfULL << (idx * 4);
rdmsrl(hwc->config_base, ctrl_val);
ctrl_val &= ~mask;
ctrl_val |= bits;
err = checking_wrmsrl(hwc->config_base, ctrl_val);
}
static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
{
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
intel_pmu_enable_fixed(hwc, idx);
return;
}
x86_pmu_enable_counter(hwc, idx);
}
static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
if (cpuc->enabled)
x86_pmu_enable_counter(hwc, idx);
else
x86_pmu_disable_counter(hwc, idx);
}
static int
fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
{
unsigned int event;
if (!x86_pmu.num_counters_fixed)
return -1;
event = hwc->config & ARCH_PERFMON_EVENT_MASK;
if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_INSTRUCTIONS)))
return X86_PMC_IDX_FIXED_INSTRUCTIONS;
if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_CPU_CYCLES)))
return X86_PMC_IDX_FIXED_CPU_CYCLES;
if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_BUS_CYCLES)))
return X86_PMC_IDX_FIXED_BUS_CYCLES;
return -1;
}
/*
* Find a PMC slot for the freshly enabled / scheduled in counter:
*/
static int x86_pmu_enable(struct perf_counter *counter)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
struct hw_perf_counter *hwc = &counter->hw;
int idx;
idx = fixed_mode_idx(counter, hwc);
if (idx >= 0) {
/*
* Try to get the fixed counter, if that is already taken
* then try to get a generic counter:
*/
if (test_and_set_bit(idx, cpuc->used_mask))
goto try_generic;
hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
/*
* We set it so that counter_base + idx in wrmsr/rdmsr maps to
* MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
*/
hwc->counter_base =
MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
hwc->idx = idx;
} else {
idx = hwc->idx;
/* Try to get the previous generic counter again */
if (test_and_set_bit(idx, cpuc->used_mask)) {
try_generic:
idx = find_first_zero_bit(cpuc->used_mask,
x86_pmu.num_counters);
if (idx == x86_pmu.num_counters)
return -EAGAIN;
set_bit(idx, cpuc->used_mask);
hwc->idx = idx;
}
hwc->config_base = x86_pmu.eventsel;
hwc->counter_base = x86_pmu.perfctr;
}
perf_counters_lapic_init();
x86_pmu.disable(hwc, idx);
cpuc->counters[idx] = counter;
set_bit(idx, cpuc->active_mask);
x86_perf_counter_set_period(counter, hwc, idx);
x86_pmu.enable(hwc, idx);
perf_counter_update_userpage(counter);
return 0;
}
static void x86_pmu_unthrottle(struct perf_counter *counter)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
struct hw_perf_counter *hwc = &counter->hw;
if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
cpuc->counters[hwc->idx] != counter))
return;
x86_pmu.enable(hwc, hwc->idx);
}
void perf_counter_print_debug(void)
{
u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
struct cpu_hw_counters *cpuc;
unsigned long flags;
int cpu, idx;
if (!x86_pmu.num_counters)
return;
local_irq_save(flags);
cpu = smp_processor_id();
cpuc = &per_cpu(cpu_hw_counters, cpu);
if (x86_pmu.version >= 2) {
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
pr_info("\n");
pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
pr_info("CPU#%d: status: %016llx\n", cpu, status);
pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
}
pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
rdmsrl(x86_pmu.perfctr + idx, pmc_count);
prev_left = per_cpu(prev_left[idx], cpu);
pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
cpu, idx, pmc_ctrl);
pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
cpu, idx, pmc_count);
pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
cpu, idx, prev_left);
}
for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
cpu, idx, pmc_count);
}
local_irq_restore(flags);
}
static void x86_pmu_disable(struct perf_counter *counter)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
struct hw_perf_counter *hwc = &counter->hw;
int idx = hwc->idx;
/*
* Must be done before we disable, otherwise the nmi handler
* could reenable again:
*/
clear_bit(idx, cpuc->active_mask);
x86_pmu.disable(hwc, idx);
/*
* Make sure the cleared pointer becomes visible before we
* (potentially) free the counter:
*/
barrier();
/*
* Drain the remaining delta count out of a counter
* that we are disabling:
*/
x86_perf_counter_update(counter, hwc, idx);
cpuc->counters[idx] = NULL;
clear_bit(idx, cpuc->used_mask);
perf_counter_update_userpage(counter);
}
/*
* Save and restart an expired counter. Called by NMI contexts,
* so it has to be careful about preempting normal counter ops:
*/
static int intel_pmu_save_and_restart(struct perf_counter *counter)
{
struct hw_perf_counter *hwc = &counter->hw;
int idx = hwc->idx;
int ret;
x86_perf_counter_update(counter, hwc, idx);
ret = x86_perf_counter_set_period(counter, hwc, idx);
if (counter->state == PERF_COUNTER_STATE_ACTIVE)
intel_pmu_enable_counter(hwc, idx);
return ret;
}
static void intel_pmu_reset(void)
{
unsigned long flags;
int idx;
if (!x86_pmu.num_counters)
return;
local_irq_save(flags);
printk("clearing PMU state on CPU#%d\n", smp_processor_id());
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
}
for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
}
local_irq_restore(flags);
}
/*
* This handler is triggered by the local APIC, so the APIC IRQ handling
* rules apply:
*/
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
struct perf_sample_data data;
struct cpu_hw_counters *cpuc;
int bit, cpu, loops;
u64 ack, status;
data.regs = regs;
data.addr = 0;
cpu = smp_processor_id();
cpuc = &per_cpu(cpu_hw_counters, cpu);
perf_disable();
status = intel_pmu_get_status();
if (!status) {
perf_enable();
return 0;
}
loops = 0;
again:
if (++loops > 100) {
WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
perf_counter_print_debug();
intel_pmu_reset();
perf_enable();
return 1;
}
inc_irq_stat(apic_perf_irqs);
ack = status;
for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
struct perf_counter *counter = cpuc->counters[bit];
clear_bit(bit, (unsigned long *) &status);
if (!test_bit(bit, cpuc->active_mask))
continue;
if (!intel_pmu_save_and_restart(counter))
continue;
data.period = counter->hw.last_period;
if (perf_counter_overflow(counter, 1, &data))
intel_pmu_disable_counter(&counter->hw, bit);
}
intel_pmu_ack_status(ack);
/*
* Repeat if there is more work to be done:
*/
status = intel_pmu_get_status();
if (status)
goto again;
perf_enable();
return 1;
}
static int amd_pmu_handle_irq(struct pt_regs *regs)
{
struct perf_sample_data data;
struct cpu_hw_counters *cpuc;
struct perf_counter *counter;
struct hw_perf_counter *hwc;
int cpu, idx, handled = 0;
u64 val;
data.regs = regs;
data.addr = 0;
cpu = smp_processor_id();
cpuc = &per_cpu(cpu_hw_counters, cpu);
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
if (!test_bit(idx, cpuc->active_mask))
continue;
counter = cpuc->counters[idx];
hwc = &counter->hw;
val = x86_perf_counter_update(counter, hwc, idx);
if (val & (1ULL << (x86_pmu.counter_bits - 1)))
continue;
/*
* counter overflow
*/
handled = 1;
data.period = counter->hw.last_period;
if (!x86_perf_counter_set_period(counter, hwc, idx))
continue;
if (perf_counter_overflow(counter, 1, &data))
amd_pmu_disable_counter(hwc, idx);
}
if (handled)
inc_irq_stat(apic_perf_irqs);
return handled;
}
void smp_perf_pending_interrupt(struct pt_regs *regs)
{
irq_enter();
ack_APIC_irq();
inc_irq_stat(apic_pending_irqs);
perf_counter_do_pending();
irq_exit();
}
void set_perf_counter_pending(void)
{
apic->send_IPI_self(LOCAL_PENDING_VECTOR);
}
void perf_counters_lapic_init(void)
{
if (!x86_pmu_initialized())
return;
/*
* Always use NMI for PMU
*/
apic_write(APIC_LVTPC, APIC_DM_NMI);
}
static int __kprobes
perf_counter_nmi_handler(struct notifier_block *self,
unsigned long cmd, void *__args)
{
struct die_args *args = __args;
struct pt_regs *regs;
if (!atomic_read(&active_counters))
return NOTIFY_DONE;
switch (cmd) {
case DIE_NMI:
case DIE_NMI_IPI:
break;
default:
return NOTIFY_DONE;
}
regs = args->regs;
apic_write(APIC_LVTPC, APIC_DM_NMI);
/*
* Can't rely on the handled return value to say it was our NMI, two
* counters could trigger 'simultaneously' raising two back-to-back NMIs.
*
* If the first NMI handles both, the latter will be empty and daze
* the CPU.
*/
x86_pmu.handle_irq(regs);
return NOTIFY_STOP;
}
static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
.notifier_call = perf_counter_nmi_handler,
.next = NULL,
.priority = 1
};
static struct x86_pmu intel_pmu = {
.name = "Intel",
.handle_irq = intel_pmu_handle_irq,
.disable_all = intel_pmu_disable_all,
.enable_all = intel_pmu_enable_all,
.enable = intel_pmu_enable_counter,
.disable = intel_pmu_disable_counter,
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
.event_map = intel_pmu_event_map,
.raw_event = intel_pmu_raw_event,
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
/*
* Intel PMCs cannot be accessed sanely above 32 bit width,
* so we install an artificial 1<<31 period regardless of
* the generic counter period:
*/
.max_period = (1ULL << 31) - 1,
};
static struct x86_pmu amd_pmu = {
.name = "AMD",
.handle_irq = amd_pmu_handle_irq,
.disable_all = amd_pmu_disable_all,
.enable_all = amd_pmu_enable_all,
.enable = amd_pmu_enable_counter,
.disable = amd_pmu_disable_counter,
.eventsel = MSR_K7_EVNTSEL0,
.perfctr = MSR_K7_PERFCTR0,
.event_map = amd_pmu_event_map,
.raw_event = amd_pmu_raw_event,
.max_events = ARRAY_SIZE(amd_perfmon_event_map),
.num_counters = 4,
.counter_bits = 48,
.counter_mask = (1ULL << 48) - 1,
/* use highest bit to detect overflow */
.max_period = (1ULL << 47) - 1,
};
static int intel_pmu_init(void)
{
union cpuid10_edx edx;
union cpuid10_eax eax;
unsigned int unused;
unsigned int ebx;
int version;
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
return -ENODEV;
/*
* Check whether the Architectural PerfMon supports
* Branch Misses Retired Event or not.
*/
cpuid(10, &eax.full, &ebx, &unused, &edx.full);
if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
return -ENODEV;
version = eax.split.version_id;
if (version < 2)
return -ENODEV;
x86_pmu = intel_pmu;
x86_pmu.version = version;
x86_pmu.num_counters = eax.split.num_counters;
x86_pmu.counter_bits = eax.split.bit_width;
x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
/*
* Quirk: v2 perfmon does not report fixed-purpose counters, so
* assume at least 3 counters:
*/
x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
/*
* Install the hw-cache-events table:
*/
switch (boot_cpu_data.x86_model) {
case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
case 29: /* six-core 45 nm xeon "Dunnington" */
memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
pr_cont("Core2 events, ");
break;
default:
case 26:
memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
pr_cont("Nehalem/Corei7 events, ");
break;
case 28:
memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
pr_cont("Atom events, ");
break;
}
return 0;
}
static int amd_pmu_init(void)
{
/* Performance-monitoring supported from K7 and later: */
if (boot_cpu_data.x86 < 6)
return -ENODEV;
x86_pmu = amd_pmu;
/* Events are common for all AMDs */
memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
return 0;
}
void __init init_hw_perf_counters(void)
{
int err;
pr_info("Performance Counters: ");
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_INTEL:
err = intel_pmu_init();
break;
case X86_VENDOR_AMD:
err = amd_pmu_init();
break;
default:
return;
}
if (err != 0) {
pr_cont("no PMU driver, software counters only.\n");
return;
}
pr_cont("%s PMU driver.\n", x86_pmu.name);
if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
}
perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
perf_max_counters = x86_pmu.num_counters;
if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
}
perf_counter_mask |=
((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
x86_pmu.intel_ctrl = perf_counter_mask;
perf_counters_lapic_init();
register_die_notifier(&perf_counter_nmi_notifier);
pr_info("... version: %d\n", x86_pmu.version);
pr_info("... bit width: %d\n", x86_pmu.counter_bits);
pr_info("... generic counters: %d\n", x86_pmu.num_counters);
pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
pr_info("... max period: %016Lx\n", x86_pmu.max_period);
pr_info("... fixed-purpose counters: %d\n", x86_pmu.num_counters_fixed);
pr_info("... counter mask: %016Lx\n", perf_counter_mask);
}
static inline void x86_pmu_read(struct perf_counter *counter)
{
x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
}
static const struct pmu pmu = {
.enable = x86_pmu_enable,
.disable = x86_pmu_disable,
.read = x86_pmu_read,
.unthrottle = x86_pmu_unthrottle,
};
const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
{
int err;
err = __hw_perf_counter_init(counter);
if (err)
return ERR_PTR(err);
return &pmu;
}
/*
* callchain support
*/
static inline
void callchain_store(struct perf_callchain_entry *entry, u64 ip)
{
if (entry->nr < PERF_MAX_STACK_DEPTH)
entry->ip[entry->nr++] = ip;
}
static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
static void
backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
{
/* Ignore warnings */
}
static void backtrace_warning(void *data, char *msg)
{
/* Ignore warnings */
}
static int backtrace_stack(void *data, char *name)
{
/* Process all stacks: */
return 0;
}
static void backtrace_address(void *data, unsigned long addr, int reliable)
{
struct perf_callchain_entry *entry = data;
if (reliable)
callchain_store(entry, addr);
}
static const struct stacktrace_ops backtrace_ops = {
.warning = backtrace_warning,
.warning_symbol = backtrace_warning_symbol,
.stack = backtrace_stack,
.address = backtrace_address,
};
#include "../dumpstack.h"
static void
perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
callchain_store(entry, PERF_CONTEXT_KERNEL);
callchain_store(entry, regs->ip);
dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
}
/*
* best effort, GUP based copy_from_user() that assumes IRQ or NMI context
*/
static unsigned long
copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
{
unsigned long offset, addr = (unsigned long)from;
int type = in_nmi() ? KM_NMI : KM_IRQ0;
unsigned long size, len = 0;
struct page *page;
void *map;
int ret;
do {
ret = __get_user_pages_fast(addr, 1, 0, &page);
if (!ret)
break;
offset = addr & (PAGE_SIZE - 1);
size = min(PAGE_SIZE - offset, n - len);
map = kmap_atomic(page, type);
memcpy(to, map+offset, size);
kunmap_atomic(map, type);
put_page(page);
len += size;
to += size;
addr += size;
} while (len < n);
return len;
}
static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
{
unsigned long bytes;
bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
return bytes == sizeof(*frame);
}
static void
perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
struct stack_frame frame;
const void __user *fp;
if (!user_mode(regs))
regs = task_pt_regs(current);
fp = (void __user *)regs->bp;
callchain_store(entry, PERF_CONTEXT_USER);
callchain_store(entry, regs->ip);
while (entry->nr < PERF_MAX_STACK_DEPTH) {
frame.next_frame = NULL;
frame.return_address = 0;
if (!copy_stack_frame(fp, &frame))
break;
if ((unsigned long)fp < regs->sp)
break;
callchain_store(entry, frame.return_address);
fp = frame.next_frame;
}
}
static void
perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
int is_user;
if (!regs)
return;
is_user = user_mode(regs);
if (!current || current->pid == 0)
return;
if (is_user && current->state != TASK_RUNNING)
return;
if (!is_user)
perf_callchain_kernel(regs, entry);
if (current->mm)
perf_callchain_user(regs, entry);
}
struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
struct perf_callchain_entry *entry;
if (in_nmi())
entry = &__get_cpu_var(nmi_entry);
else
entry = &__get_cpu_var(irq_entry);
entry->nr = 0;
perf_do_callchain(regs, entry);
return entry;
}