| /* |
| * linux/arch/cris/arch-v10/mm/init.c |
| * |
| */ |
| #include <linux/mmzone.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/mm.h> |
| #include <asm/pgtable.h> |
| #include <asm/page.h> |
| #include <asm/types.h> |
| #include <asm/mmu.h> |
| #include <asm/io.h> |
| #include <asm/mmu_context.h> |
| #include <arch/svinto.h> |
| |
| extern void tlb_init(void); |
| |
| /* |
| * The kernel is already mapped with a kernel segment at kseg_c so |
| * we don't need to map it with a page table. However head.S also |
| * temporarily mapped it at kseg_4 so we should set up the ksegs again, |
| * clear the TLB and do some other paging setup stuff. |
| */ |
| |
| void __init |
| paging_init(void) |
| { |
| int i; |
| unsigned long zones_size[MAX_NR_ZONES]; |
| |
| printk("Setting up paging and the MMU.\n"); |
| |
| /* clear out the init_mm.pgd that will contain the kernel's mappings */ |
| |
| for(i = 0; i < PTRS_PER_PGD; i++) |
| swapper_pg_dir[i] = __pgd(0); |
| |
| /* make sure the current pgd table points to something sane |
| * (even if it is most probably not used until the next |
| * switch_mm) |
| */ |
| |
| per_cpu(current_pgd, smp_processor_id()) = init_mm.pgd; |
| |
| /* initialise the TLB (tlb.c) */ |
| |
| tlb_init(); |
| |
| /* see README.mm for details on the KSEG setup */ |
| |
| #ifdef CONFIG_CRIS_LOW_MAP |
| /* Etrax-100 LX version 1 has a bug so that we cannot map anything |
| * across the 0x80000000 boundary, so we need to shrink the user-virtual |
| * area to 0x50000000 instead of 0xb0000000 and map things slightly |
| * different. The unused areas are marked as paged so that we can catch |
| * freak kernel accesses there. |
| * |
| * The ARTPEC chip is mapped at 0xa so we pass that segment straight |
| * through. We cannot vremap it because the vmalloc area is below 0x8 |
| * and Juliette needs an uncached area above 0x8. |
| * |
| * Same thing with 0xc and 0x9, which is memory-mapped I/O on some boards. |
| * We map them straight over in LOW_MAP, but use vremap in LX version 2. |
| */ |
| |
| #define CACHED_BOOTROM (KSEG_F | 0x08000000UL) |
| |
| *R_MMU_KSEG = ( IO_STATE(R_MMU_KSEG, seg_f, seg ) | /* bootrom */ |
| IO_STATE(R_MMU_KSEG, seg_e, page ) | |
| IO_STATE(R_MMU_KSEG, seg_d, page ) | |
| IO_STATE(R_MMU_KSEG, seg_c, page ) | |
| IO_STATE(R_MMU_KSEG, seg_b, seg ) | /* kernel reg area */ |
| IO_STATE(R_MMU_KSEG, seg_a, page ) | |
| IO_STATE(R_MMU_KSEG, seg_9, seg ) | /* LED's on some boards */ |
| IO_STATE(R_MMU_KSEG, seg_8, seg ) | /* CSE0/1, flash and I/O */ |
| IO_STATE(R_MMU_KSEG, seg_7, page ) | /* kernel vmalloc area */ |
| IO_STATE(R_MMU_KSEG, seg_6, seg ) | /* kernel DRAM area */ |
| IO_STATE(R_MMU_KSEG, seg_5, seg ) | /* cached flash */ |
| IO_STATE(R_MMU_KSEG, seg_4, page ) | /* user area */ |
| IO_STATE(R_MMU_KSEG, seg_3, page ) | /* user area */ |
| IO_STATE(R_MMU_KSEG, seg_2, page ) | /* user area */ |
| IO_STATE(R_MMU_KSEG, seg_1, page ) | /* user area */ |
| IO_STATE(R_MMU_KSEG, seg_0, page ) ); /* user area */ |
| |
| *R_MMU_KBASE_HI = ( IO_FIELD(R_MMU_KBASE_HI, base_f, 0x3 ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_e, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_d, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_c, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_b, 0xb ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_a, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_9, 0x9 ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_8, 0x8 ) ); |
| |
| *R_MMU_KBASE_LO = ( IO_FIELD(R_MMU_KBASE_LO, base_7, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_6, 0x4 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_5, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_4, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_3, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_2, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_1, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_0, 0x0 ) ); |
| #else |
| /* This code is for the corrected Etrax-100 LX version 2... */ |
| |
| #define CACHED_BOOTROM (KSEG_A | 0x08000000UL) |
| |
| *R_MMU_KSEG = ( IO_STATE(R_MMU_KSEG, seg_f, seg ) | /* cached flash */ |
| IO_STATE(R_MMU_KSEG, seg_e, seg ) | /* uncached flash */ |
| IO_STATE(R_MMU_KSEG, seg_d, page ) | /* vmalloc area */ |
| IO_STATE(R_MMU_KSEG, seg_c, seg ) | /* kernel area */ |
| IO_STATE(R_MMU_KSEG, seg_b, seg ) | /* kernel reg area */ |
| IO_STATE(R_MMU_KSEG, seg_a, seg ) | /* bootrom */ |
| IO_STATE(R_MMU_KSEG, seg_9, page ) | /* user area */ |
| IO_STATE(R_MMU_KSEG, seg_8, page ) | |
| IO_STATE(R_MMU_KSEG, seg_7, page ) | |
| IO_STATE(R_MMU_KSEG, seg_6, page ) | |
| IO_STATE(R_MMU_KSEG, seg_5, page ) | |
| IO_STATE(R_MMU_KSEG, seg_4, page ) | |
| IO_STATE(R_MMU_KSEG, seg_3, page ) | |
| IO_STATE(R_MMU_KSEG, seg_2, page ) | |
| IO_STATE(R_MMU_KSEG, seg_1, page ) | |
| IO_STATE(R_MMU_KSEG, seg_0, page ) ); |
| |
| *R_MMU_KBASE_HI = ( IO_FIELD(R_MMU_KBASE_HI, base_f, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_e, 0x8 ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_d, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_c, 0x4 ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_b, 0xb ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_a, 0x3 ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_9, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_HI, base_8, 0x0 ) ); |
| |
| *R_MMU_KBASE_LO = ( IO_FIELD(R_MMU_KBASE_LO, base_7, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_6, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_5, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_4, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_3, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_2, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_1, 0x0 ) | |
| IO_FIELD(R_MMU_KBASE_LO, base_0, 0x0 ) ); |
| #endif |
| |
| *R_MMU_CONTEXT = ( IO_FIELD(R_MMU_CONTEXT, page_id, 0 ) ); |
| |
| /* The MMU has been enabled ever since head.S but just to make |
| * it totally obvious we do it here as well. |
| */ |
| |
| *R_MMU_CTRL = ( IO_STATE(R_MMU_CTRL, inv_excp, enable ) | |
| IO_STATE(R_MMU_CTRL, acc_excp, enable ) | |
| IO_STATE(R_MMU_CTRL, we_excp, enable ) ); |
| |
| *R_MMU_ENABLE = IO_STATE(R_MMU_ENABLE, mmu_enable, enable); |
| |
| /* |
| * initialize the bad page table and bad page to point |
| * to a couple of allocated pages |
| */ |
| |
| empty_zero_page = (unsigned long)alloc_bootmem_pages(PAGE_SIZE); |
| memset((void *)empty_zero_page, 0, PAGE_SIZE); |
| |
| /* All pages are DMA'able in Etrax, so put all in the DMA'able zone */ |
| |
| zones_size[0] = ((unsigned long)high_memory - PAGE_OFFSET) >> PAGE_SHIFT; |
| |
| for (i = 1; i < MAX_NR_ZONES; i++) |
| zones_size[i] = 0; |
| |
| /* Use free_area_init_node instead of free_area_init, because the former |
| * is designed for systems where the DRAM starts at an address substantially |
| * higher than 0, like us (we start at PAGE_OFFSET). This saves space in the |
| * mem_map page array. |
| */ |
| |
| free_area_init_node(0, zones_size, PAGE_OFFSET >> PAGE_SHIFT, 0); |
| } |
| |
| /* Initialize remaps of some I/O-ports. It is important that this |
| * is called before any driver is initialized. |
| */ |
| |
| static int |
| __init init_ioremap(void) |
| { |
| |
| /* Give the external I/O-port addresses their values */ |
| |
| #ifdef CONFIG_CRIS_LOW_MAP |
| /* Simply a linear map (see the KSEG map above in paging_init) */ |
| port_cse1_addr = (volatile unsigned long *)(MEM_CSE1_START | |
| MEM_NON_CACHEABLE); |
| port_csp0_addr = (volatile unsigned long *)(MEM_CSP0_START | |
| MEM_NON_CACHEABLE); |
| port_csp4_addr = (volatile unsigned long *)(MEM_CSP4_START | |
| MEM_NON_CACHEABLE); |
| #else |
| /* Note that nothing blows up just because we do this remapping |
| * it's ok even if the ports are not used or connected |
| * to anything (or connected to a non-I/O thing) */ |
| port_cse1_addr = (volatile unsigned long *) |
| ioremap((unsigned long)(MEM_CSE1_START | MEM_NON_CACHEABLE), 16); |
| port_csp0_addr = (volatile unsigned long *) |
| ioremap((unsigned long)(MEM_CSP0_START | MEM_NON_CACHEABLE), 16); |
| port_csp4_addr = (volatile unsigned long *) |
| ioremap((unsigned long)(MEM_CSP4_START | MEM_NON_CACHEABLE), 16); |
| #endif |
| return 0; |
| } |
| |
| __initcall(init_ioremap); |
| |
| /* Helper function for the two below */ |
| |
| static inline void |
| flush_etrax_cacherange(void *startadr, int length) |
| { |
| /* CACHED_BOOTROM is mapped to the boot-rom area (cached) which |
| * we can use to get fast dummy-reads of cachelines |
| */ |
| |
| volatile short *flushadr = (volatile short *)(((unsigned long)startadr & ~PAGE_MASK) | |
| CACHED_BOOTROM); |
| |
| length = length > 8192 ? 8192 : length; /* No need to flush more than cache size */ |
| |
| while(length > 0) { |
| *flushadr; /* dummy read to flush */ |
| flushadr += (32/sizeof(short)); /* a cacheline is 32 bytes */ |
| length -= 32; |
| } |
| } |
| |
| /* Due to a bug in Etrax100(LX) all versions, receiving DMA buffers |
| * will occasionally corrupt certain CPU writes if the DMA buffers |
| * happen to be hot in the cache. |
| * |
| * As a workaround, we have to flush the relevant parts of the cache |
| * before (re) inserting any receiving descriptor into the DMA HW. |
| */ |
| |
| void |
| prepare_rx_descriptor(struct etrax_dma_descr *desc) |
| { |
| flush_etrax_cacherange((void *)desc->buf, desc->sw_len ? desc->sw_len : 65536); |
| } |
| |
| /* Do the same thing but flush the entire cache */ |
| |
| void |
| flush_etrax_cache(void) |
| { |
| flush_etrax_cacherange(0, 8192); |
| } |