| /******************************************************************************* |
| |
| Intel 10 Gigabit PCI Express Linux driver |
| Copyright(c) 1999 - 2012 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| #include <linux/netdevice.h> |
| |
| #include "ixgbe.h" |
| #include "ixgbe_common.h" |
| #include "ixgbe_phy.h" |
| |
| static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw); |
| static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); |
| static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); |
| static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw); |
| static void ixgbe_standby_eeprom(struct ixgbe_hw *hw); |
| static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, |
| u16 count); |
| static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count); |
| static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); |
| static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); |
| static void ixgbe_release_eeprom(struct ixgbe_hw *hw); |
| |
| static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr); |
| static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg); |
| static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, |
| u16 words, u16 *data); |
| static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, |
| u16 words, u16 *data); |
| static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, |
| u16 offset); |
| static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw); |
| |
| /** |
| * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow |
| * control |
| * @hw: pointer to hardware structure |
| * |
| * There are several phys that do not support autoneg flow control. This |
| * function check the device id to see if the associated phy supports |
| * autoneg flow control. |
| **/ |
| static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw) |
| { |
| |
| switch (hw->device_id) { |
| case IXGBE_DEV_ID_X540T: |
| return 0; |
| case IXGBE_DEV_ID_82599_T3_LOM: |
| return 0; |
| default: |
| return IXGBE_ERR_FC_NOT_SUPPORTED; |
| } |
| } |
| |
| /** |
| * ixgbe_setup_fc - Set up flow control |
| * @hw: pointer to hardware structure |
| * |
| * Called at init time to set up flow control. |
| **/ |
| static s32 ixgbe_setup_fc(struct ixgbe_hw *hw) |
| { |
| s32 ret_val = 0; |
| u32 reg = 0, reg_bp = 0; |
| u16 reg_cu = 0; |
| |
| /* |
| * Validate the requested mode. Strict IEEE mode does not allow |
| * ixgbe_fc_rx_pause because it will cause us to fail at UNH. |
| */ |
| if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) { |
| hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n"); |
| ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; |
| goto out; |
| } |
| |
| /* |
| * 10gig parts do not have a word in the EEPROM to determine the |
| * default flow control setting, so we explicitly set it to full. |
| */ |
| if (hw->fc.requested_mode == ixgbe_fc_default) |
| hw->fc.requested_mode = ixgbe_fc_full; |
| |
| /* |
| * Set up the 1G and 10G flow control advertisement registers so the |
| * HW will be able to do fc autoneg once the cable is plugged in. If |
| * we link at 10G, the 1G advertisement is harmless and vice versa. |
| */ |
| switch (hw->phy.media_type) { |
| case ixgbe_media_type_fiber: |
| case ixgbe_media_type_backplane: |
| reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); |
| reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC); |
| break; |
| case ixgbe_media_type_copper: |
| hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, |
| MDIO_MMD_AN, ®_cu); |
| break; |
| default: |
| break; |
| } |
| |
| /* |
| * The possible values of fc.requested_mode are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames, |
| * but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames but |
| * we do not support receiving pause frames). |
| * 3: Both Rx and Tx flow control (symmetric) are enabled. |
| * other: Invalid. |
| */ |
| switch (hw->fc.requested_mode) { |
| case ixgbe_fc_none: |
| /* Flow control completely disabled by software override. */ |
| reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); |
| if (hw->phy.media_type == ixgbe_media_type_backplane) |
| reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE | |
| IXGBE_AUTOC_ASM_PAUSE); |
| else if (hw->phy.media_type == ixgbe_media_type_copper) |
| reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); |
| break; |
| case ixgbe_fc_tx_pause: |
| /* |
| * Tx Flow control is enabled, and Rx Flow control is |
| * disabled by software override. |
| */ |
| reg |= IXGBE_PCS1GANA_ASM_PAUSE; |
| reg &= ~IXGBE_PCS1GANA_SYM_PAUSE; |
| if (hw->phy.media_type == ixgbe_media_type_backplane) { |
| reg_bp |= IXGBE_AUTOC_ASM_PAUSE; |
| reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE; |
| } else if (hw->phy.media_type == ixgbe_media_type_copper) { |
| reg_cu |= IXGBE_TAF_ASM_PAUSE; |
| reg_cu &= ~IXGBE_TAF_SYM_PAUSE; |
| } |
| break; |
| case ixgbe_fc_rx_pause: |
| /* |
| * Rx Flow control is enabled and Tx Flow control is |
| * disabled by software override. Since there really |
| * isn't a way to advertise that we are capable of RX |
| * Pause ONLY, we will advertise that we support both |
| * symmetric and asymmetric Rx PAUSE, as such we fall |
| * through to the fc_full statement. Later, we will |
| * disable the adapter's ability to send PAUSE frames. |
| */ |
| case ixgbe_fc_full: |
| /* Flow control (both Rx and Tx) is enabled by SW override. */ |
| reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE; |
| if (hw->phy.media_type == ixgbe_media_type_backplane) |
| reg_bp |= IXGBE_AUTOC_SYM_PAUSE | |
| IXGBE_AUTOC_ASM_PAUSE; |
| else if (hw->phy.media_type == ixgbe_media_type_copper) |
| reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE; |
| break; |
| default: |
| hw_dbg(hw, "Flow control param set incorrectly\n"); |
| ret_val = IXGBE_ERR_CONFIG; |
| goto out; |
| break; |
| } |
| |
| if (hw->mac.type != ixgbe_mac_X540) { |
| /* |
| * Enable auto-negotiation between the MAC & PHY; |
| * the MAC will advertise clause 37 flow control. |
| */ |
| IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg); |
| reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL); |
| |
| /* Disable AN timeout */ |
| if (hw->fc.strict_ieee) |
| reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN; |
| |
| IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg); |
| hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg); |
| } |
| |
| /* |
| * AUTOC restart handles negotiation of 1G and 10G on backplane |
| * and copper. There is no need to set the PCS1GCTL register. |
| * |
| */ |
| if (hw->phy.media_type == ixgbe_media_type_backplane) { |
| reg_bp |= IXGBE_AUTOC_AN_RESTART; |
| IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp); |
| } else if ((hw->phy.media_type == ixgbe_media_type_copper) && |
| (ixgbe_device_supports_autoneg_fc(hw) == 0)) { |
| hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, |
| MDIO_MMD_AN, reg_cu); |
| } |
| |
| hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg); |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx |
| * @hw: pointer to hardware structure |
| * |
| * Starts the hardware by filling the bus info structure and media type, clears |
| * all on chip counters, initializes receive address registers, multicast |
| * table, VLAN filter table, calls routine to set up link and flow control |
| * settings, and leaves transmit and receive units disabled and uninitialized |
| **/ |
| s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw) |
| { |
| u32 ctrl_ext; |
| |
| /* Set the media type */ |
| hw->phy.media_type = hw->mac.ops.get_media_type(hw); |
| |
| /* Identify the PHY */ |
| hw->phy.ops.identify(hw); |
| |
| /* Clear the VLAN filter table */ |
| hw->mac.ops.clear_vfta(hw); |
| |
| /* Clear statistics registers */ |
| hw->mac.ops.clear_hw_cntrs(hw); |
| |
| /* Set No Snoop Disable */ |
| ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); |
| ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; |
| IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| /* Setup flow control */ |
| ixgbe_setup_fc(hw); |
| |
| /* Clear adapter stopped flag */ |
| hw->adapter_stopped = false; |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_start_hw_gen2 - Init sequence for common device family |
| * @hw: pointer to hw structure |
| * |
| * Performs the init sequence common to the second generation |
| * of 10 GbE devices. |
| * Devices in the second generation: |
| * 82599 |
| * X540 |
| **/ |
| s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw) |
| { |
| u32 i; |
| u32 regval; |
| |
| /* Clear the rate limiters */ |
| for (i = 0; i < hw->mac.max_tx_queues; i++) { |
| IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i); |
| IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0); |
| } |
| IXGBE_WRITE_FLUSH(hw); |
| |
| /* Disable relaxed ordering */ |
| for (i = 0; i < hw->mac.max_tx_queues; i++) { |
| regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); |
| regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN; |
| IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); |
| } |
| |
| for (i = 0; i < hw->mac.max_rx_queues; i++) { |
| regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); |
| regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN | |
| IXGBE_DCA_RXCTRL_HEAD_WRO_EN); |
| IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_init_hw_generic - Generic hardware initialization |
| * @hw: pointer to hardware structure |
| * |
| * Initialize the hardware by resetting the hardware, filling the bus info |
| * structure and media type, clears all on chip counters, initializes receive |
| * address registers, multicast table, VLAN filter table, calls routine to set |
| * up link and flow control settings, and leaves transmit and receive units |
| * disabled and uninitialized |
| **/ |
| s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw) |
| { |
| s32 status; |
| |
| /* Reset the hardware */ |
| status = hw->mac.ops.reset_hw(hw); |
| |
| if (status == 0) { |
| /* Start the HW */ |
| status = hw->mac.ops.start_hw(hw); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters |
| * @hw: pointer to hardware structure |
| * |
| * Clears all hardware statistics counters by reading them from the hardware |
| * Statistics counters are clear on read. |
| **/ |
| s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw) |
| { |
| u16 i = 0; |
| |
| IXGBE_READ_REG(hw, IXGBE_CRCERRS); |
| IXGBE_READ_REG(hw, IXGBE_ILLERRC); |
| IXGBE_READ_REG(hw, IXGBE_ERRBC); |
| IXGBE_READ_REG(hw, IXGBE_MSPDC); |
| for (i = 0; i < 8; i++) |
| IXGBE_READ_REG(hw, IXGBE_MPC(i)); |
| |
| IXGBE_READ_REG(hw, IXGBE_MLFC); |
| IXGBE_READ_REG(hw, IXGBE_MRFC); |
| IXGBE_READ_REG(hw, IXGBE_RLEC); |
| IXGBE_READ_REG(hw, IXGBE_LXONTXC); |
| IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); |
| if (hw->mac.type >= ixgbe_mac_82599EB) { |
| IXGBE_READ_REG(hw, IXGBE_LXONRXCNT); |
| IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT); |
| } else { |
| IXGBE_READ_REG(hw, IXGBE_LXONRXC); |
| IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); |
| } |
| |
| for (i = 0; i < 8; i++) { |
| IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); |
| IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); |
| if (hw->mac.type >= ixgbe_mac_82599EB) { |
| IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i)); |
| IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i)); |
| } else { |
| IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); |
| IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); |
| } |
| } |
| if (hw->mac.type >= ixgbe_mac_82599EB) |
| for (i = 0; i < 8; i++) |
| IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i)); |
| IXGBE_READ_REG(hw, IXGBE_PRC64); |
| IXGBE_READ_REG(hw, IXGBE_PRC127); |
| IXGBE_READ_REG(hw, IXGBE_PRC255); |
| IXGBE_READ_REG(hw, IXGBE_PRC511); |
| IXGBE_READ_REG(hw, IXGBE_PRC1023); |
| IXGBE_READ_REG(hw, IXGBE_PRC1522); |
| IXGBE_READ_REG(hw, IXGBE_GPRC); |
| IXGBE_READ_REG(hw, IXGBE_BPRC); |
| IXGBE_READ_REG(hw, IXGBE_MPRC); |
| IXGBE_READ_REG(hw, IXGBE_GPTC); |
| IXGBE_READ_REG(hw, IXGBE_GORCL); |
| IXGBE_READ_REG(hw, IXGBE_GORCH); |
| IXGBE_READ_REG(hw, IXGBE_GOTCL); |
| IXGBE_READ_REG(hw, IXGBE_GOTCH); |
| if (hw->mac.type == ixgbe_mac_82598EB) |
| for (i = 0; i < 8; i++) |
| IXGBE_READ_REG(hw, IXGBE_RNBC(i)); |
| IXGBE_READ_REG(hw, IXGBE_RUC); |
| IXGBE_READ_REG(hw, IXGBE_RFC); |
| IXGBE_READ_REG(hw, IXGBE_ROC); |
| IXGBE_READ_REG(hw, IXGBE_RJC); |
| IXGBE_READ_REG(hw, IXGBE_MNGPRC); |
| IXGBE_READ_REG(hw, IXGBE_MNGPDC); |
| IXGBE_READ_REG(hw, IXGBE_MNGPTC); |
| IXGBE_READ_REG(hw, IXGBE_TORL); |
| IXGBE_READ_REG(hw, IXGBE_TORH); |
| IXGBE_READ_REG(hw, IXGBE_TPR); |
| IXGBE_READ_REG(hw, IXGBE_TPT); |
| IXGBE_READ_REG(hw, IXGBE_PTC64); |
| IXGBE_READ_REG(hw, IXGBE_PTC127); |
| IXGBE_READ_REG(hw, IXGBE_PTC255); |
| IXGBE_READ_REG(hw, IXGBE_PTC511); |
| IXGBE_READ_REG(hw, IXGBE_PTC1023); |
| IXGBE_READ_REG(hw, IXGBE_PTC1522); |
| IXGBE_READ_REG(hw, IXGBE_MPTC); |
| IXGBE_READ_REG(hw, IXGBE_BPTC); |
| for (i = 0; i < 16; i++) { |
| IXGBE_READ_REG(hw, IXGBE_QPRC(i)); |
| IXGBE_READ_REG(hw, IXGBE_QPTC(i)); |
| if (hw->mac.type >= ixgbe_mac_82599EB) { |
| IXGBE_READ_REG(hw, IXGBE_QBRC_L(i)); |
| IXGBE_READ_REG(hw, IXGBE_QBRC_H(i)); |
| IXGBE_READ_REG(hw, IXGBE_QBTC_L(i)); |
| IXGBE_READ_REG(hw, IXGBE_QBTC_H(i)); |
| IXGBE_READ_REG(hw, IXGBE_QPRDC(i)); |
| } else { |
| IXGBE_READ_REG(hw, IXGBE_QBRC(i)); |
| IXGBE_READ_REG(hw, IXGBE_QBTC(i)); |
| } |
| } |
| |
| if (hw->mac.type == ixgbe_mac_X540) { |
| if (hw->phy.id == 0) |
| hw->phy.ops.identify(hw); |
| hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i); |
| hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i); |
| hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i); |
| hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_read_pba_string_generic - Reads part number string from EEPROM |
| * @hw: pointer to hardware structure |
| * @pba_num: stores the part number string from the EEPROM |
| * @pba_num_size: part number string buffer length |
| * |
| * Reads the part number string from the EEPROM. |
| **/ |
| s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num, |
| u32 pba_num_size) |
| { |
| s32 ret_val; |
| u16 data; |
| u16 pba_ptr; |
| u16 offset; |
| u16 length; |
| |
| if (pba_num == NULL) { |
| hw_dbg(hw, "PBA string buffer was null\n"); |
| return IXGBE_ERR_INVALID_ARGUMENT; |
| } |
| |
| ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| |
| ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| |
| /* |
| * if data is not ptr guard the PBA must be in legacy format which |
| * means pba_ptr is actually our second data word for the PBA number |
| * and we can decode it into an ascii string |
| */ |
| if (data != IXGBE_PBANUM_PTR_GUARD) { |
| hw_dbg(hw, "NVM PBA number is not stored as string\n"); |
| |
| /* we will need 11 characters to store the PBA */ |
| if (pba_num_size < 11) { |
| hw_dbg(hw, "PBA string buffer too small\n"); |
| return IXGBE_ERR_NO_SPACE; |
| } |
| |
| /* extract hex string from data and pba_ptr */ |
| pba_num[0] = (data >> 12) & 0xF; |
| pba_num[1] = (data >> 8) & 0xF; |
| pba_num[2] = (data >> 4) & 0xF; |
| pba_num[3] = data & 0xF; |
| pba_num[4] = (pba_ptr >> 12) & 0xF; |
| pba_num[5] = (pba_ptr >> 8) & 0xF; |
| pba_num[6] = '-'; |
| pba_num[7] = 0; |
| pba_num[8] = (pba_ptr >> 4) & 0xF; |
| pba_num[9] = pba_ptr & 0xF; |
| |
| /* put a null character on the end of our string */ |
| pba_num[10] = '\0'; |
| |
| /* switch all the data but the '-' to hex char */ |
| for (offset = 0; offset < 10; offset++) { |
| if (pba_num[offset] < 0xA) |
| pba_num[offset] += '0'; |
| else if (pba_num[offset] < 0x10) |
| pba_num[offset] += 'A' - 0xA; |
| } |
| |
| return 0; |
| } |
| |
| ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| |
| if (length == 0xFFFF || length == 0) { |
| hw_dbg(hw, "NVM PBA number section invalid length\n"); |
| return IXGBE_ERR_PBA_SECTION; |
| } |
| |
| /* check if pba_num buffer is big enough */ |
| if (pba_num_size < (((u32)length * 2) - 1)) { |
| hw_dbg(hw, "PBA string buffer too small\n"); |
| return IXGBE_ERR_NO_SPACE; |
| } |
| |
| /* trim pba length from start of string */ |
| pba_ptr++; |
| length--; |
| |
| for (offset = 0; offset < length; offset++) { |
| ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| pba_num[offset * 2] = (u8)(data >> 8); |
| pba_num[(offset * 2) + 1] = (u8)(data & 0xFF); |
| } |
| pba_num[offset * 2] = '\0'; |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_get_mac_addr_generic - Generic get MAC address |
| * @hw: pointer to hardware structure |
| * @mac_addr: Adapter MAC address |
| * |
| * Reads the adapter's MAC address from first Receive Address Register (RAR0) |
| * A reset of the adapter must be performed prior to calling this function |
| * in order for the MAC address to have been loaded from the EEPROM into RAR0 |
| **/ |
| s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr) |
| { |
| u32 rar_high; |
| u32 rar_low; |
| u16 i; |
| |
| rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); |
| rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); |
| |
| for (i = 0; i < 4; i++) |
| mac_addr[i] = (u8)(rar_low >> (i*8)); |
| |
| for (i = 0; i < 2; i++) |
| mac_addr[i+4] = (u8)(rar_high >> (i*8)); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_get_bus_info_generic - Generic set PCI bus info |
| * @hw: pointer to hardware structure |
| * |
| * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure |
| **/ |
| s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw) |
| { |
| struct ixgbe_adapter *adapter = hw->back; |
| struct ixgbe_mac_info *mac = &hw->mac; |
| u16 link_status; |
| |
| hw->bus.type = ixgbe_bus_type_pci_express; |
| |
| /* Get the negotiated link width and speed from PCI config space */ |
| pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS, |
| &link_status); |
| |
| switch (link_status & IXGBE_PCI_LINK_WIDTH) { |
| case IXGBE_PCI_LINK_WIDTH_1: |
| hw->bus.width = ixgbe_bus_width_pcie_x1; |
| break; |
| case IXGBE_PCI_LINK_WIDTH_2: |
| hw->bus.width = ixgbe_bus_width_pcie_x2; |
| break; |
| case IXGBE_PCI_LINK_WIDTH_4: |
| hw->bus.width = ixgbe_bus_width_pcie_x4; |
| break; |
| case IXGBE_PCI_LINK_WIDTH_8: |
| hw->bus.width = ixgbe_bus_width_pcie_x8; |
| break; |
| default: |
| hw->bus.width = ixgbe_bus_width_unknown; |
| break; |
| } |
| |
| switch (link_status & IXGBE_PCI_LINK_SPEED) { |
| case IXGBE_PCI_LINK_SPEED_2500: |
| hw->bus.speed = ixgbe_bus_speed_2500; |
| break; |
| case IXGBE_PCI_LINK_SPEED_5000: |
| hw->bus.speed = ixgbe_bus_speed_5000; |
| break; |
| default: |
| hw->bus.speed = ixgbe_bus_speed_unknown; |
| break; |
| } |
| |
| mac->ops.set_lan_id(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices |
| * @hw: pointer to the HW structure |
| * |
| * Determines the LAN function id by reading memory-mapped registers |
| * and swaps the port value if requested. |
| **/ |
| void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw) |
| { |
| struct ixgbe_bus_info *bus = &hw->bus; |
| u32 reg; |
| |
| reg = IXGBE_READ_REG(hw, IXGBE_STATUS); |
| bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT; |
| bus->lan_id = bus->func; |
| |
| /* check for a port swap */ |
| reg = IXGBE_READ_REG(hw, IXGBE_FACTPS); |
| if (reg & IXGBE_FACTPS_LFS) |
| bus->func ^= 0x1; |
| } |
| |
| /** |
| * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units |
| * @hw: pointer to hardware structure |
| * |
| * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, |
| * disables transmit and receive units. The adapter_stopped flag is used by |
| * the shared code and drivers to determine if the adapter is in a stopped |
| * state and should not touch the hardware. |
| **/ |
| s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw) |
| { |
| u32 reg_val; |
| u16 i; |
| |
| /* |
| * Set the adapter_stopped flag so other driver functions stop touching |
| * the hardware |
| */ |
| hw->adapter_stopped = true; |
| |
| /* Disable the receive unit */ |
| IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0); |
| |
| /* Clear interrupt mask to stop interrupts from being generated */ |
| IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK); |
| |
| /* Clear any pending interrupts, flush previous writes */ |
| IXGBE_READ_REG(hw, IXGBE_EICR); |
| |
| /* Disable the transmit unit. Each queue must be disabled. */ |
| for (i = 0; i < hw->mac.max_tx_queues; i++) |
| IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH); |
| |
| /* Disable the receive unit by stopping each queue */ |
| for (i = 0; i < hw->mac.max_rx_queues; i++) { |
| reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i)); |
| reg_val &= ~IXGBE_RXDCTL_ENABLE; |
| reg_val |= IXGBE_RXDCTL_SWFLSH; |
| IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val); |
| } |
| |
| /* flush all queues disables */ |
| IXGBE_WRITE_FLUSH(hw); |
| usleep_range(1000, 2000); |
| |
| /* |
| * Prevent the PCI-E bus from from hanging by disabling PCI-E master |
| * access and verify no pending requests |
| */ |
| return ixgbe_disable_pcie_master(hw); |
| } |
| |
| /** |
| * ixgbe_led_on_generic - Turns on the software controllable LEDs. |
| * @hw: pointer to hardware structure |
| * @index: led number to turn on |
| **/ |
| s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index) |
| { |
| u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); |
| |
| /* To turn on the LED, set mode to ON. */ |
| led_reg &= ~IXGBE_LED_MODE_MASK(index); |
| led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); |
| IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_led_off_generic - Turns off the software controllable LEDs. |
| * @hw: pointer to hardware structure |
| * @index: led number to turn off |
| **/ |
| s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index) |
| { |
| u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); |
| |
| /* To turn off the LED, set mode to OFF. */ |
| led_reg &= ~IXGBE_LED_MODE_MASK(index); |
| led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); |
| IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_init_eeprom_params_generic - Initialize EEPROM params |
| * @hw: pointer to hardware structure |
| * |
| * Initializes the EEPROM parameters ixgbe_eeprom_info within the |
| * ixgbe_hw struct in order to set up EEPROM access. |
| **/ |
| s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw) |
| { |
| struct ixgbe_eeprom_info *eeprom = &hw->eeprom; |
| u32 eec; |
| u16 eeprom_size; |
| |
| if (eeprom->type == ixgbe_eeprom_uninitialized) { |
| eeprom->type = ixgbe_eeprom_none; |
| /* Set default semaphore delay to 10ms which is a well |
| * tested value */ |
| eeprom->semaphore_delay = 10; |
| /* Clear EEPROM page size, it will be initialized as needed */ |
| eeprom->word_page_size = 0; |
| |
| /* |
| * Check for EEPROM present first. |
| * If not present leave as none |
| */ |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| if (eec & IXGBE_EEC_PRES) { |
| eeprom->type = ixgbe_eeprom_spi; |
| |
| /* |
| * SPI EEPROM is assumed here. This code would need to |
| * change if a future EEPROM is not SPI. |
| */ |
| eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >> |
| IXGBE_EEC_SIZE_SHIFT); |
| eeprom->word_size = 1 << (eeprom_size + |
| IXGBE_EEPROM_WORD_SIZE_SHIFT); |
| } |
| |
| if (eec & IXGBE_EEC_ADDR_SIZE) |
| eeprom->address_bits = 16; |
| else |
| eeprom->address_bits = 8; |
| hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: " |
| "%d\n", eeprom->type, eeprom->word_size, |
| eeprom->address_bits); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang |
| * @hw: pointer to hardware structure |
| * @offset: offset within the EEPROM to write |
| * @words: number of words |
| * @data: 16 bit word(s) to write to EEPROM |
| * |
| * Reads 16 bit word(s) from EEPROM through bit-bang method |
| **/ |
| s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, |
| u16 words, u16 *data) |
| { |
| s32 status = 0; |
| u16 i, count; |
| |
| hw->eeprom.ops.init_params(hw); |
| |
| if (words == 0) { |
| status = IXGBE_ERR_INVALID_ARGUMENT; |
| goto out; |
| } |
| |
| if (offset + words > hw->eeprom.word_size) { |
| status = IXGBE_ERR_EEPROM; |
| goto out; |
| } |
| |
| /* |
| * The EEPROM page size cannot be queried from the chip. We do lazy |
| * initialization. It is worth to do that when we write large buffer. |
| */ |
| if ((hw->eeprom.word_page_size == 0) && |
| (words > IXGBE_EEPROM_PAGE_SIZE_MAX)) |
| ixgbe_detect_eeprom_page_size_generic(hw, offset); |
| |
| /* |
| * We cannot hold synchronization semaphores for too long |
| * to avoid other entity starvation. However it is more efficient |
| * to read in bursts than synchronizing access for each word. |
| */ |
| for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { |
| count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? |
| IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); |
| status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i, |
| count, &data[i]); |
| |
| if (status != 0) |
| break; |
| } |
| |
| out: |
| return status; |
| } |
| |
| /** |
| * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM |
| * @hw: pointer to hardware structure |
| * @offset: offset within the EEPROM to be written to |
| * @words: number of word(s) |
| * @data: 16 bit word(s) to be written to the EEPROM |
| * |
| * If ixgbe_eeprom_update_checksum is not called after this function, the |
| * EEPROM will most likely contain an invalid checksum. |
| **/ |
| static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, |
| u16 words, u16 *data) |
| { |
| s32 status; |
| u16 word; |
| u16 page_size; |
| u16 i; |
| u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI; |
| |
| /* Prepare the EEPROM for writing */ |
| status = ixgbe_acquire_eeprom(hw); |
| |
| if (status == 0) { |
| if (ixgbe_ready_eeprom(hw) != 0) { |
| ixgbe_release_eeprom(hw); |
| status = IXGBE_ERR_EEPROM; |
| } |
| } |
| |
| if (status == 0) { |
| for (i = 0; i < words; i++) { |
| ixgbe_standby_eeprom(hw); |
| |
| /* Send the WRITE ENABLE command (8 bit opcode ) */ |
| ixgbe_shift_out_eeprom_bits(hw, |
| IXGBE_EEPROM_WREN_OPCODE_SPI, |
| IXGBE_EEPROM_OPCODE_BITS); |
| |
| ixgbe_standby_eeprom(hw); |
| |
| /* |
| * Some SPI eeproms use the 8th address bit embedded |
| * in the opcode |
| */ |
| if ((hw->eeprom.address_bits == 8) && |
| ((offset + i) >= 128)) |
| write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; |
| |
| /* Send the Write command (8-bit opcode + addr) */ |
| ixgbe_shift_out_eeprom_bits(hw, write_opcode, |
| IXGBE_EEPROM_OPCODE_BITS); |
| ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), |
| hw->eeprom.address_bits); |
| |
| page_size = hw->eeprom.word_page_size; |
| |
| /* Send the data in burst via SPI*/ |
| do { |
| word = data[i]; |
| word = (word >> 8) | (word << 8); |
| ixgbe_shift_out_eeprom_bits(hw, word, 16); |
| |
| if (page_size == 0) |
| break; |
| |
| /* do not wrap around page */ |
| if (((offset + i) & (page_size - 1)) == |
| (page_size - 1)) |
| break; |
| } while (++i < words); |
| |
| ixgbe_standby_eeprom(hw); |
| usleep_range(10000, 20000); |
| } |
| /* Done with writing - release the EEPROM */ |
| ixgbe_release_eeprom(hw); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM |
| * @hw: pointer to hardware structure |
| * @offset: offset within the EEPROM to be written to |
| * @data: 16 bit word to be written to the EEPROM |
| * |
| * If ixgbe_eeprom_update_checksum is not called after this function, the |
| * EEPROM will most likely contain an invalid checksum. |
| **/ |
| s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data) |
| { |
| s32 status; |
| |
| hw->eeprom.ops.init_params(hw); |
| |
| if (offset >= hw->eeprom.word_size) { |
| status = IXGBE_ERR_EEPROM; |
| goto out; |
| } |
| |
| status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data); |
| |
| out: |
| return status; |
| } |
| |
| /** |
| * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang |
| * @hw: pointer to hardware structure |
| * @offset: offset within the EEPROM to be read |
| * @words: number of word(s) |
| * @data: read 16 bit words(s) from EEPROM |
| * |
| * Reads 16 bit word(s) from EEPROM through bit-bang method |
| **/ |
| s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, |
| u16 words, u16 *data) |
| { |
| s32 status = 0; |
| u16 i, count; |
| |
| hw->eeprom.ops.init_params(hw); |
| |
| if (words == 0) { |
| status = IXGBE_ERR_INVALID_ARGUMENT; |
| goto out; |
| } |
| |
| if (offset + words > hw->eeprom.word_size) { |
| status = IXGBE_ERR_EEPROM; |
| goto out; |
| } |
| |
| /* |
| * We cannot hold synchronization semaphores for too long |
| * to avoid other entity starvation. However it is more efficient |
| * to read in bursts than synchronizing access for each word. |
| */ |
| for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { |
| count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? |
| IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); |
| |
| status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i, |
| count, &data[i]); |
| |
| if (status != 0) |
| break; |
| } |
| |
| out: |
| return status; |
| } |
| |
| /** |
| * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang |
| * @hw: pointer to hardware structure |
| * @offset: offset within the EEPROM to be read |
| * @words: number of word(s) |
| * @data: read 16 bit word(s) from EEPROM |
| * |
| * Reads 16 bit word(s) from EEPROM through bit-bang method |
| **/ |
| static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, |
| u16 words, u16 *data) |
| { |
| s32 status; |
| u16 word_in; |
| u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI; |
| u16 i; |
| |
| /* Prepare the EEPROM for reading */ |
| status = ixgbe_acquire_eeprom(hw); |
| |
| if (status == 0) { |
| if (ixgbe_ready_eeprom(hw) != 0) { |
| ixgbe_release_eeprom(hw); |
| status = IXGBE_ERR_EEPROM; |
| } |
| } |
| |
| if (status == 0) { |
| for (i = 0; i < words; i++) { |
| ixgbe_standby_eeprom(hw); |
| /* |
| * Some SPI eeproms use the 8th address bit embedded |
| * in the opcode |
| */ |
| if ((hw->eeprom.address_bits == 8) && |
| ((offset + i) >= 128)) |
| read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; |
| |
| /* Send the READ command (opcode + addr) */ |
| ixgbe_shift_out_eeprom_bits(hw, read_opcode, |
| IXGBE_EEPROM_OPCODE_BITS); |
| ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), |
| hw->eeprom.address_bits); |
| |
| /* Read the data. */ |
| word_in = ixgbe_shift_in_eeprom_bits(hw, 16); |
| data[i] = (word_in >> 8) | (word_in << 8); |
| } |
| |
| /* End this read operation */ |
| ixgbe_release_eeprom(hw); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang |
| * @hw: pointer to hardware structure |
| * @offset: offset within the EEPROM to be read |
| * @data: read 16 bit value from EEPROM |
| * |
| * Reads 16 bit value from EEPROM through bit-bang method |
| **/ |
| s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, |
| u16 *data) |
| { |
| s32 status; |
| |
| hw->eeprom.ops.init_params(hw); |
| |
| if (offset >= hw->eeprom.word_size) { |
| status = IXGBE_ERR_EEPROM; |
| goto out; |
| } |
| |
| status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); |
| |
| out: |
| return status; |
| } |
| |
| /** |
| * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD |
| * @hw: pointer to hardware structure |
| * @offset: offset of word in the EEPROM to read |
| * @words: number of word(s) |
| * @data: 16 bit word(s) from the EEPROM |
| * |
| * Reads a 16 bit word(s) from the EEPROM using the EERD register. |
| **/ |
| s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset, |
| u16 words, u16 *data) |
| { |
| u32 eerd; |
| s32 status = 0; |
| u32 i; |
| |
| hw->eeprom.ops.init_params(hw); |
| |
| if (words == 0) { |
| status = IXGBE_ERR_INVALID_ARGUMENT; |
| goto out; |
| } |
| |
| if (offset >= hw->eeprom.word_size) { |
| status = IXGBE_ERR_EEPROM; |
| goto out; |
| } |
| |
| for (i = 0; i < words; i++) { |
| eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) + |
| IXGBE_EEPROM_RW_REG_START; |
| |
| IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); |
| status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ); |
| |
| if (status == 0) { |
| data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >> |
| IXGBE_EEPROM_RW_REG_DATA); |
| } else { |
| hw_dbg(hw, "Eeprom read timed out\n"); |
| goto out; |
| } |
| } |
| out: |
| return status; |
| } |
| |
| /** |
| * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size |
| * @hw: pointer to hardware structure |
| * @offset: offset within the EEPROM to be used as a scratch pad |
| * |
| * Discover EEPROM page size by writing marching data at given offset. |
| * This function is called only when we are writing a new large buffer |
| * at given offset so the data would be overwritten anyway. |
| **/ |
| static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, |
| u16 offset) |
| { |
| u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX]; |
| s32 status = 0; |
| u16 i; |
| |
| for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++) |
| data[i] = i; |
| |
| hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX; |
| status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, |
| IXGBE_EEPROM_PAGE_SIZE_MAX, data); |
| hw->eeprom.word_page_size = 0; |
| if (status != 0) |
| goto out; |
| |
| status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); |
| if (status != 0) |
| goto out; |
| |
| /* |
| * When writing in burst more than the actual page size |
| * EEPROM address wraps around current page. |
| */ |
| hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0]; |
| |
| hw_dbg(hw, "Detected EEPROM page size = %d words.", |
| hw->eeprom.word_page_size); |
| out: |
| return status; |
| } |
| |
| /** |
| * ixgbe_read_eerd_generic - Read EEPROM word using EERD |
| * @hw: pointer to hardware structure |
| * @offset: offset of word in the EEPROM to read |
| * @data: word read from the EEPROM |
| * |
| * Reads a 16 bit word from the EEPROM using the EERD register. |
| **/ |
| s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) |
| { |
| return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data); |
| } |
| |
| /** |
| * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR |
| * @hw: pointer to hardware structure |
| * @offset: offset of word in the EEPROM to write |
| * @words: number of words |
| * @data: word(s) write to the EEPROM |
| * |
| * Write a 16 bit word(s) to the EEPROM using the EEWR register. |
| **/ |
| s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset, |
| u16 words, u16 *data) |
| { |
| u32 eewr; |
| s32 status = 0; |
| u16 i; |
| |
| hw->eeprom.ops.init_params(hw); |
| |
| if (words == 0) { |
| status = IXGBE_ERR_INVALID_ARGUMENT; |
| goto out; |
| } |
| |
| if (offset >= hw->eeprom.word_size) { |
| status = IXGBE_ERR_EEPROM; |
| goto out; |
| } |
| |
| for (i = 0; i < words; i++) { |
| eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | |
| (data[i] << IXGBE_EEPROM_RW_REG_DATA) | |
| IXGBE_EEPROM_RW_REG_START; |
| |
| status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); |
| if (status != 0) { |
| hw_dbg(hw, "Eeprom write EEWR timed out\n"); |
| goto out; |
| } |
| |
| IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr); |
| |
| status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); |
| if (status != 0) { |
| hw_dbg(hw, "Eeprom write EEWR timed out\n"); |
| goto out; |
| } |
| } |
| |
| out: |
| return status; |
| } |
| |
| /** |
| * ixgbe_write_eewr_generic - Write EEPROM word using EEWR |
| * @hw: pointer to hardware structure |
| * @offset: offset of word in the EEPROM to write |
| * @data: word write to the EEPROM |
| * |
| * Write a 16 bit word to the EEPROM using the EEWR register. |
| **/ |
| s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data) |
| { |
| return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data); |
| } |
| |
| /** |
| * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status |
| * @hw: pointer to hardware structure |
| * @ee_reg: EEPROM flag for polling |
| * |
| * Polls the status bit (bit 1) of the EERD or EEWR to determine when the |
| * read or write is done respectively. |
| **/ |
| static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg) |
| { |
| u32 i; |
| u32 reg; |
| s32 status = IXGBE_ERR_EEPROM; |
| |
| for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) { |
| if (ee_reg == IXGBE_NVM_POLL_READ) |
| reg = IXGBE_READ_REG(hw, IXGBE_EERD); |
| else |
| reg = IXGBE_READ_REG(hw, IXGBE_EEWR); |
| |
| if (reg & IXGBE_EEPROM_RW_REG_DONE) { |
| status = 0; |
| break; |
| } |
| udelay(5); |
| } |
| return status; |
| } |
| |
| /** |
| * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang |
| * @hw: pointer to hardware structure |
| * |
| * Prepares EEPROM for access using bit-bang method. This function should |
| * be called before issuing a command to the EEPROM. |
| **/ |
| static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw) |
| { |
| s32 status = 0; |
| u32 eec; |
| u32 i; |
| |
| if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0) |
| status = IXGBE_ERR_SWFW_SYNC; |
| |
| if (status == 0) { |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| |
| /* Request EEPROM Access */ |
| eec |= IXGBE_EEC_REQ; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| |
| for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) { |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| if (eec & IXGBE_EEC_GNT) |
| break; |
| udelay(5); |
| } |
| |
| /* Release if grant not acquired */ |
| if (!(eec & IXGBE_EEC_GNT)) { |
| eec &= ~IXGBE_EEC_REQ; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| hw_dbg(hw, "Could not acquire EEPROM grant\n"); |
| |
| hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); |
| status = IXGBE_ERR_EEPROM; |
| } |
| |
| /* Setup EEPROM for Read/Write */ |
| if (status == 0) { |
| /* Clear CS and SK */ |
| eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK); |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| IXGBE_WRITE_FLUSH(hw); |
| udelay(1); |
| } |
| } |
| return status; |
| } |
| |
| /** |
| * ixgbe_get_eeprom_semaphore - Get hardware semaphore |
| * @hw: pointer to hardware structure |
| * |
| * Sets the hardware semaphores so EEPROM access can occur for bit-bang method |
| **/ |
| static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) |
| { |
| s32 status = IXGBE_ERR_EEPROM; |
| u32 timeout = 2000; |
| u32 i; |
| u32 swsm; |
| |
| /* Get SMBI software semaphore between device drivers first */ |
| for (i = 0; i < timeout; i++) { |
| /* |
| * If the SMBI bit is 0 when we read it, then the bit will be |
| * set and we have the semaphore |
| */ |
| swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); |
| if (!(swsm & IXGBE_SWSM_SMBI)) { |
| status = 0; |
| break; |
| } |
| udelay(50); |
| } |
| |
| if (i == timeout) { |
| hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore " |
| "not granted.\n"); |
| /* |
| * this release is particularly important because our attempts |
| * above to get the semaphore may have succeeded, and if there |
| * was a timeout, we should unconditionally clear the semaphore |
| * bits to free the driver to make progress |
| */ |
| ixgbe_release_eeprom_semaphore(hw); |
| |
| udelay(50); |
| /* |
| * one last try |
| * If the SMBI bit is 0 when we read it, then the bit will be |
| * set and we have the semaphore |
| */ |
| swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); |
| if (!(swsm & IXGBE_SWSM_SMBI)) |
| status = 0; |
| } |
| |
| /* Now get the semaphore between SW/FW through the SWESMBI bit */ |
| if (status == 0) { |
| for (i = 0; i < timeout; i++) { |
| swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); |
| |
| /* Set the SW EEPROM semaphore bit to request access */ |
| swsm |= IXGBE_SWSM_SWESMBI; |
| IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); |
| |
| /* |
| * If we set the bit successfully then we got the |
| * semaphore. |
| */ |
| swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); |
| if (swsm & IXGBE_SWSM_SWESMBI) |
| break; |
| |
| udelay(50); |
| } |
| |
| /* |
| * Release semaphores and return error if SW EEPROM semaphore |
| * was not granted because we don't have access to the EEPROM |
| */ |
| if (i >= timeout) { |
| hw_dbg(hw, "SWESMBI Software EEPROM semaphore " |
| "not granted.\n"); |
| ixgbe_release_eeprom_semaphore(hw); |
| status = IXGBE_ERR_EEPROM; |
| } |
| } else { |
| hw_dbg(hw, "Software semaphore SMBI between device drivers " |
| "not granted.\n"); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_release_eeprom_semaphore - Release hardware semaphore |
| * @hw: pointer to hardware structure |
| * |
| * This function clears hardware semaphore bits. |
| **/ |
| static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) |
| { |
| u32 swsm; |
| |
| swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); |
| |
| /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ |
| swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); |
| IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); |
| IXGBE_WRITE_FLUSH(hw); |
| } |
| |
| /** |
| * ixgbe_ready_eeprom - Polls for EEPROM ready |
| * @hw: pointer to hardware structure |
| **/ |
| static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw) |
| { |
| s32 status = 0; |
| u16 i; |
| u8 spi_stat_reg; |
| |
| /* |
| * Read "Status Register" repeatedly until the LSB is cleared. The |
| * EEPROM will signal that the command has been completed by clearing |
| * bit 0 of the internal status register. If it's not cleared within |
| * 5 milliseconds, then error out. |
| */ |
| for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) { |
| ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI, |
| IXGBE_EEPROM_OPCODE_BITS); |
| spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8); |
| if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI)) |
| break; |
| |
| udelay(5); |
| ixgbe_standby_eeprom(hw); |
| } |
| |
| /* |
| * On some parts, SPI write time could vary from 0-20mSec on 3.3V |
| * devices (and only 0-5mSec on 5V devices) |
| */ |
| if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) { |
| hw_dbg(hw, "SPI EEPROM Status error\n"); |
| status = IXGBE_ERR_EEPROM; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state |
| * @hw: pointer to hardware structure |
| **/ |
| static void ixgbe_standby_eeprom(struct ixgbe_hw *hw) |
| { |
| u32 eec; |
| |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| |
| /* Toggle CS to flush commands */ |
| eec |= IXGBE_EEC_CS; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| IXGBE_WRITE_FLUSH(hw); |
| udelay(1); |
| eec &= ~IXGBE_EEC_CS; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| IXGBE_WRITE_FLUSH(hw); |
| udelay(1); |
| } |
| |
| /** |
| * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM. |
| * @hw: pointer to hardware structure |
| * @data: data to send to the EEPROM |
| * @count: number of bits to shift out |
| **/ |
| static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, |
| u16 count) |
| { |
| u32 eec; |
| u32 mask; |
| u32 i; |
| |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| |
| /* |
| * Mask is used to shift "count" bits of "data" out to the EEPROM |
| * one bit at a time. Determine the starting bit based on count |
| */ |
| mask = 0x01 << (count - 1); |
| |
| for (i = 0; i < count; i++) { |
| /* |
| * A "1" is shifted out to the EEPROM by setting bit "DI" to a |
| * "1", and then raising and then lowering the clock (the SK |
| * bit controls the clock input to the EEPROM). A "0" is |
| * shifted out to the EEPROM by setting "DI" to "0" and then |
| * raising and then lowering the clock. |
| */ |
| if (data & mask) |
| eec |= IXGBE_EEC_DI; |
| else |
| eec &= ~IXGBE_EEC_DI; |
| |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| udelay(1); |
| |
| ixgbe_raise_eeprom_clk(hw, &eec); |
| ixgbe_lower_eeprom_clk(hw, &eec); |
| |
| /* |
| * Shift mask to signify next bit of data to shift in to the |
| * EEPROM |
| */ |
| mask = mask >> 1; |
| } |
| |
| /* We leave the "DI" bit set to "0" when we leave this routine. */ |
| eec &= ~IXGBE_EEC_DI; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| IXGBE_WRITE_FLUSH(hw); |
| } |
| |
| /** |
| * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM |
| * @hw: pointer to hardware structure |
| **/ |
| static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count) |
| { |
| u32 eec; |
| u32 i; |
| u16 data = 0; |
| |
| /* |
| * In order to read a register from the EEPROM, we need to shift |
| * 'count' bits in from the EEPROM. Bits are "shifted in" by raising |
| * the clock input to the EEPROM (setting the SK bit), and then reading |
| * the value of the "DO" bit. During this "shifting in" process the |
| * "DI" bit should always be clear. |
| */ |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| |
| eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI); |
| |
| for (i = 0; i < count; i++) { |
| data = data << 1; |
| ixgbe_raise_eeprom_clk(hw, &eec); |
| |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| |
| eec &= ~(IXGBE_EEC_DI); |
| if (eec & IXGBE_EEC_DO) |
| data |= 1; |
| |
| ixgbe_lower_eeprom_clk(hw, &eec); |
| } |
| |
| return data; |
| } |
| |
| /** |
| * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input. |
| * @hw: pointer to hardware structure |
| * @eec: EEC register's current value |
| **/ |
| static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) |
| { |
| /* |
| * Raise the clock input to the EEPROM |
| * (setting the SK bit), then delay |
| */ |
| *eec = *eec | IXGBE_EEC_SK; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); |
| IXGBE_WRITE_FLUSH(hw); |
| udelay(1); |
| } |
| |
| /** |
| * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input. |
| * @hw: pointer to hardware structure |
| * @eecd: EECD's current value |
| **/ |
| static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) |
| { |
| /* |
| * Lower the clock input to the EEPROM (clearing the SK bit), then |
| * delay |
| */ |
| *eec = *eec & ~IXGBE_EEC_SK; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); |
| IXGBE_WRITE_FLUSH(hw); |
| udelay(1); |
| } |
| |
| /** |
| * ixgbe_release_eeprom - Release EEPROM, release semaphores |
| * @hw: pointer to hardware structure |
| **/ |
| static void ixgbe_release_eeprom(struct ixgbe_hw *hw) |
| { |
| u32 eec; |
| |
| eec = IXGBE_READ_REG(hw, IXGBE_EEC); |
| |
| eec |= IXGBE_EEC_CS; /* Pull CS high */ |
| eec &= ~IXGBE_EEC_SK; /* Lower SCK */ |
| |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| udelay(1); |
| |
| /* Stop requesting EEPROM access */ |
| eec &= ~IXGBE_EEC_REQ; |
| IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); |
| |
| hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); |
| |
| /* |
| * Delay before attempt to obtain semaphore again to allow FW |
| * access. semaphore_delay is in ms we need us for usleep_range |
| */ |
| usleep_range(hw->eeprom.semaphore_delay * 1000, |
| hw->eeprom.semaphore_delay * 2000); |
| } |
| |
| /** |
| * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum |
| * @hw: pointer to hardware structure |
| **/ |
| u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw) |
| { |
| u16 i; |
| u16 j; |
| u16 checksum = 0; |
| u16 length = 0; |
| u16 pointer = 0; |
| u16 word = 0; |
| |
| /* Include 0x0-0x3F in the checksum */ |
| for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { |
| if (hw->eeprom.ops.read(hw, i, &word) != 0) { |
| hw_dbg(hw, "EEPROM read failed\n"); |
| break; |
| } |
| checksum += word; |
| } |
| |
| /* Include all data from pointers except for the fw pointer */ |
| for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { |
| hw->eeprom.ops.read(hw, i, &pointer); |
| |
| /* Make sure the pointer seems valid */ |
| if (pointer != 0xFFFF && pointer != 0) { |
| hw->eeprom.ops.read(hw, pointer, &length); |
| |
| if (length != 0xFFFF && length != 0) { |
| for (j = pointer+1; j <= pointer+length; j++) { |
| hw->eeprom.ops.read(hw, j, &word); |
| checksum += word; |
| } |
| } |
| } |
| } |
| |
| checksum = (u16)IXGBE_EEPROM_SUM - checksum; |
| |
| return checksum; |
| } |
| |
| /** |
| * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum |
| * @hw: pointer to hardware structure |
| * @checksum_val: calculated checksum |
| * |
| * Performs checksum calculation and validates the EEPROM checksum. If the |
| * caller does not need checksum_val, the value can be NULL. |
| **/ |
| s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw, |
| u16 *checksum_val) |
| { |
| s32 status; |
| u16 checksum; |
| u16 read_checksum = 0; |
| |
| /* |
| * Read the first word from the EEPROM. If this times out or fails, do |
| * not continue or we could be in for a very long wait while every |
| * EEPROM read fails |
| */ |
| status = hw->eeprom.ops.read(hw, 0, &checksum); |
| |
| if (status == 0) { |
| checksum = hw->eeprom.ops.calc_checksum(hw); |
| |
| hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); |
| |
| /* |
| * Verify read checksum from EEPROM is the same as |
| * calculated checksum |
| */ |
| if (read_checksum != checksum) |
| status = IXGBE_ERR_EEPROM_CHECKSUM; |
| |
| /* If the user cares, return the calculated checksum */ |
| if (checksum_val) |
| *checksum_val = checksum; |
| } else { |
| hw_dbg(hw, "EEPROM read failed\n"); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum |
| * @hw: pointer to hardware structure |
| **/ |
| s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw) |
| { |
| s32 status; |
| u16 checksum; |
| |
| /* |
| * Read the first word from the EEPROM. If this times out or fails, do |
| * not continue or we could be in for a very long wait while every |
| * EEPROM read fails |
| */ |
| status = hw->eeprom.ops.read(hw, 0, &checksum); |
| |
| if (status == 0) { |
| checksum = hw->eeprom.ops.calc_checksum(hw); |
| status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, |
| checksum); |
| } else { |
| hw_dbg(hw, "EEPROM read failed\n"); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_validate_mac_addr - Validate MAC address |
| * @mac_addr: pointer to MAC address. |
| * |
| * Tests a MAC address to ensure it is a valid Individual Address |
| **/ |
| s32 ixgbe_validate_mac_addr(u8 *mac_addr) |
| { |
| s32 status = 0; |
| |
| /* Make sure it is not a multicast address */ |
| if (IXGBE_IS_MULTICAST(mac_addr)) |
| status = IXGBE_ERR_INVALID_MAC_ADDR; |
| /* Not a broadcast address */ |
| else if (IXGBE_IS_BROADCAST(mac_addr)) |
| status = IXGBE_ERR_INVALID_MAC_ADDR; |
| /* Reject the zero address */ |
| else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 && |
| mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) |
| status = IXGBE_ERR_INVALID_MAC_ADDR; |
| |
| return status; |
| } |
| |
| /** |
| * ixgbe_set_rar_generic - Set Rx address register |
| * @hw: pointer to hardware structure |
| * @index: Receive address register to write |
| * @addr: Address to put into receive address register |
| * @vmdq: VMDq "set" or "pool" index |
| * @enable_addr: set flag that address is active |
| * |
| * Puts an ethernet address into a receive address register. |
| **/ |
| s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq, |
| u32 enable_addr) |
| { |
| u32 rar_low, rar_high; |
| u32 rar_entries = hw->mac.num_rar_entries; |
| |
| /* Make sure we are using a valid rar index range */ |
| if (index >= rar_entries) { |
| hw_dbg(hw, "RAR index %d is out of range.\n", index); |
| return IXGBE_ERR_INVALID_ARGUMENT; |
| } |
| |
| /* setup VMDq pool selection before this RAR gets enabled */ |
| hw->mac.ops.set_vmdq(hw, index, vmdq); |
| |
| /* |
| * HW expects these in little endian so we reverse the byte |
| * order from network order (big endian) to little endian |
| */ |
| rar_low = ((u32)addr[0] | |
| ((u32)addr[1] << 8) | |
| ((u32)addr[2] << 16) | |
| ((u32)addr[3] << 24)); |
| /* |
| * Some parts put the VMDq setting in the extra RAH bits, |
| * so save everything except the lower 16 bits that hold part |
| * of the address and the address valid bit. |
| */ |
| rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); |
| rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); |
| rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8)); |
| |
| if (enable_addr != 0) |
| rar_high |= IXGBE_RAH_AV; |
| |
| IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); |
| IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_clear_rar_generic - Remove Rx address register |
| * @hw: pointer to hardware structure |
| * @index: Receive address register to write |
| * |
| * Clears an ethernet address from a receive address register. |
| **/ |
| s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index) |
| { |
| u32 rar_high; |
| u32 rar_entries = hw->mac.num_rar_entries; |
| |
| /* Make sure we are using a valid rar index range */ |
| if (index >= rar_entries) { |
| hw_dbg(hw, "RAR index %d is out of range.\n", index); |
| return IXGBE_ERR_INVALID_ARGUMENT; |
| } |
| |
| /* |
| * Some parts put the VMDq setting in the extra RAH bits, |
| * so save everything except the lower 16 bits that hold part |
| * of the address and the address valid bit. |
| */ |
| rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); |
| rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); |
| |
| IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0); |
| IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); |
| |
| /* clear VMDq pool/queue selection for this RAR */ |
| hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_init_rx_addrs_generic - Initializes receive address filters. |
| * @hw: pointer to hardware structure |
| * |
| * Places the MAC address in receive address register 0 and clears the rest |
| * of the receive address registers. Clears the multicast table. Assumes |
| * the receiver is in reset when the routine is called. |
| **/ |
| s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw) |
| { |
| u32 i; |
| u32 rar_entries = hw->mac.num_rar_entries; |
| |
| /* |
| * If the current mac address is valid, assume it is a software override |
| * to the permanent address. |
| * Otherwise, use the permanent address from the eeprom. |
| */ |
| if (ixgbe_validate_mac_addr(hw->mac.addr) == |
| IXGBE_ERR_INVALID_MAC_ADDR) { |
| /* Get the MAC address from the RAR0 for later reference */ |
| hw->mac.ops.get_mac_addr(hw, hw->mac.addr); |
| |
| hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr); |
| } else { |
| /* Setup the receive address. */ |
| hw_dbg(hw, "Overriding MAC Address in RAR[0]\n"); |
| hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr); |
| |
| hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); |
| |
| /* clear VMDq pool/queue selection for RAR 0 */ |
| hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL); |
| } |
| hw->addr_ctrl.overflow_promisc = 0; |
| |
| hw->addr_ctrl.rar_used_count = 1; |
| |
| /* Zero out the other receive addresses. */ |
| hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1); |
| for (i = 1; i < rar_entries; i++) { |
| IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); |
| IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); |
| } |
| |
| /* Clear the MTA */ |
| hw->addr_ctrl.mta_in_use = 0; |
| IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); |
| |
| hw_dbg(hw, " Clearing MTA\n"); |
| for (i = 0; i < hw->mac.mcft_size; i++) |
| IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); |
| |
| if (hw->mac.ops.init_uta_tables) |
| hw->mac.ops.init_uta_tables(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_mta_vector - Determines bit-vector in multicast table to set |
| * @hw: pointer to hardware structure |
| * @mc_addr: the multicast address |
| * |
| * Extracts the 12 bits, from a multicast address, to determine which |
| * bit-vector to set in the multicast table. The hardware uses 12 bits, from |
| * incoming rx multicast addresses, to determine the bit-vector to check in |
| * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set |
| * by the MO field of the MCSTCTRL. The MO field is set during initialization |
| * to mc_filter_type. |
| **/ |
| static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr) |
| { |
| u32 vector = 0; |
| |
| switch (hw->mac.mc_filter_type) { |
| case 0: /* use bits [47:36] of the address */ |
| vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); |
| break; |
| case 1: /* use bits [46:35] of the address */ |
| vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); |
| break; |
| case 2: /* use bits [45:34] of the address */ |
| vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); |
| break; |
| case 3: /* use bits [43:32] of the address */ |
| vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); |
| break; |
| default: /* Invalid mc_filter_type */ |
| hw_dbg(hw, "MC filter type param set incorrectly\n"); |
| break; |
| } |
| |
| /* vector can only be 12-bits or boundary will be exceeded */ |
| vector &= 0xFFF; |
| return vector; |
| } |
| |
| /** |
| * ixgbe_set_mta - Set bit-vector in multicast table |
| * @hw: pointer to hardware structure |
| * @hash_value: Multicast address hash value |
| * |
| * Sets the bit-vector in the multicast table. |
| **/ |
| static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr) |
| { |
| u32 vector; |
| u32 vector_bit; |
| u32 vector_reg; |
| |
| hw->addr_ctrl.mta_in_use++; |
| |
| vector = ixgbe_mta_vector(hw, mc_addr); |
| hw_dbg(hw, " bit-vector = 0x%03X\n", vector); |
| |
| /* |
| * The MTA is a register array of 128 32-bit registers. It is treated |
| * like an array of 4096 bits. We want to set bit |
| * BitArray[vector_value]. So we figure out what register the bit is |
| * in, read it, OR in the new bit, then write back the new value. The |
| * register is determined by the upper 7 bits of the vector value and |
| * the bit within that register are determined by the lower 5 bits of |
| * the value. |
| */ |
| vector_reg = (vector >> 5) & 0x7F; |
| vector_bit = vector & 0x1F; |
| hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit); |
| } |
| |
| /** |
| * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses |
| * @hw: pointer to hardware structure |
| * @netdev: pointer to net device structure |
| * |
| * The given list replaces any existing list. Clears the MC addrs from receive |
| * address registers and the multicast table. Uses unused receive address |
| * registers for the first multicast addresses, and hashes the rest into the |
| * multicast table. |
| **/ |
| s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, |
| struct net_device *netdev) |
| { |
| struct netdev_hw_addr *ha; |
| u32 i; |
| |
| /* |
| * Set the new number of MC addresses that we are being requested to |
| * use. |
| */ |
| hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev); |
| hw->addr_ctrl.mta_in_use = 0; |
| |
| /* Clear mta_shadow */ |
| hw_dbg(hw, " Clearing MTA\n"); |
| memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); |
| |
| /* Update mta shadow */ |
| netdev_for_each_mc_addr(ha, netdev) { |
| hw_dbg(hw, " Adding the multicast addresses:\n"); |
| ixgbe_set_mta(hw, ha->addr); |
| } |
| |
| /* Enable mta */ |
| for (i = 0; i < hw->mac.mcft_size; i++) |
| IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i, |
| hw->mac.mta_shadow[i]); |
| |
| if (hw->addr_ctrl.mta_in_use > 0) |
| IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, |
| IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); |
| |
| hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n"); |
| return 0; |
| } |
| |
| /** |
| * ixgbe_enable_mc_generic - Enable multicast address in RAR |
| * @hw: pointer to hardware structure |
| * |
| * Enables multicast address in RAR and the use of the multicast hash table. |
| **/ |
| s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw) |
| { |
| struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; |
| |
| if (a->mta_in_use > 0) |
| IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | |
| hw->mac.mc_filter_type); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_disable_mc_generic - Disable multicast address in RAR |
| * @hw: pointer to hardware structure |
| * |
| * Disables multicast address in RAR and the use of the multicast hash table. |
| **/ |
| s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw) |
| { |
| struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; |
| |
| if (a->mta_in_use > 0) |
| IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_fc_enable_generic - Enable flow control |
| * @hw: pointer to hardware structure |
| * |
| * Enable flow control according to the current settings. |
| **/ |
| s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw) |
| { |
| s32 ret_val = 0; |
| u32 mflcn_reg, fccfg_reg; |
| u32 reg; |
| u32 fcrtl, fcrth; |
| int i; |
| |
| /* |
| * Validate the water mark configuration for packet buffer 0. Zero |
| * water marks indicate that the packet buffer was not configured |
| * and the watermarks for packet buffer 0 should always be configured. |
| */ |
| if (!hw->fc.low_water || |
| !hw->fc.high_water[0] || |
| !hw->fc.pause_time) { |
| hw_dbg(hw, "Invalid water mark configuration\n"); |
| ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; |
| goto out; |
| } |
| |
| /* Negotiate the fc mode to use */ |
| ixgbe_fc_autoneg(hw); |
| |
| /* Disable any previous flow control settings */ |
| mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN); |
| mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE); |
| |
| fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG); |
| fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY); |
| |
| /* |
| * The possible values of fc.current_mode are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames, |
| * but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames but |
| * we do not support receiving pause frames). |
| * 3: Both Rx and Tx flow control (symmetric) are enabled. |
| * other: Invalid. |
| */ |
| switch (hw->fc.current_mode) { |
| case ixgbe_fc_none: |
| /* |
| * Flow control is disabled by software override or autoneg. |
| * The code below will actually disable it in the HW. |
| */ |
| break; |
| case ixgbe_fc_rx_pause: |
| /* |
| * Rx Flow control is enabled and Tx Flow control is |
| * disabled by software override. Since there really |
| * isn't a way to advertise that we are capable of RX |
| * Pause ONLY, we will advertise that we support both |
| * symmetric and asymmetric Rx PAUSE. Later, we will |
| * disable the adapter's ability to send PAUSE frames. |
| */ |
| mflcn_reg |= IXGBE_MFLCN_RFCE; |
| break; |
| case ixgbe_fc_tx_pause: |
| /* |
| * Tx Flow control is enabled, and Rx Flow control is |
| * disabled by software override. |
| */ |
| fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; |
| break; |
| case ixgbe_fc_full: |
| /* Flow control (both Rx and Tx) is enabled by SW override. */ |
| mflcn_reg |= IXGBE_MFLCN_RFCE; |
| fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; |
| break; |
| default: |
| hw_dbg(hw, "Flow control param set incorrectly\n"); |
| ret_val = IXGBE_ERR_CONFIG; |
| goto out; |
| break; |
| } |
| |
| /* Set 802.3x based flow control settings. */ |
| mflcn_reg |= IXGBE_MFLCN_DPF; |
| IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg); |
| IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg); |
| |
| fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE; |
| |
| /* Set up and enable Rx high/low water mark thresholds, enable XON. */ |
| for (i = 0; i < MAX_TRAFFIC_CLASS; i++) { |
| if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && |
| hw->fc.high_water[i]) { |
| IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl); |
| fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN; |
| } else { |
| IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0); |
| /* |
| * In order to prevent Tx hangs when the internal Tx |
| * switch is enabled we must set the high water mark |
| * to the maximum FCRTH value. This allows the Tx |
| * switch to function even under heavy Rx workloads. |
| */ |
| fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32; |
| } |
| |
| IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth); |
| } |
| |
| /* Configure pause time (2 TCs per register) */ |
| reg = hw->fc.pause_time * 0x00010001; |
| for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++) |
| IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg); |
| |
| IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * ixgbe_negotiate_fc - Negotiate flow control |
| * @hw: pointer to hardware structure |
| * @adv_reg: flow control advertised settings |
| * @lp_reg: link partner's flow control settings |
| * @adv_sym: symmetric pause bit in advertisement |
| * @adv_asm: asymmetric pause bit in advertisement |
| * @lp_sym: symmetric pause bit in link partner advertisement |
| * @lp_asm: asymmetric pause bit in link partner advertisement |
| * |
| * Find the intersection between advertised settings and link partner's |
| * advertised settings |
| **/ |
| static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg, |
| u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm) |
| { |
| if ((!(adv_reg)) || (!(lp_reg))) |
| return IXGBE_ERR_FC_NOT_NEGOTIATED; |
| |
| if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) { |
| /* |
| * Now we need to check if the user selected Rx ONLY |
| * of pause frames. In this case, we had to advertise |
| * FULL flow control because we could not advertise RX |
| * ONLY. Hence, we must now check to see if we need to |
| * turn OFF the TRANSMISSION of PAUSE frames. |
| */ |
| if (hw->fc.requested_mode == ixgbe_fc_full) { |
| hw->fc.current_mode = ixgbe_fc_full; |
| hw_dbg(hw, "Flow Control = FULL.\n"); |
| } else { |
| hw->fc.current_mode = ixgbe_fc_rx_pause; |
| hw_dbg(hw, "Flow Control=RX PAUSE frames only\n"); |
| } |
| } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) && |
| (lp_reg & lp_sym) && (lp_reg & lp_asm)) { |
| hw->fc.current_mode = ixgbe_fc_tx_pause; |
| hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n"); |
| } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) && |
| !(lp_reg & lp_sym) && (lp_reg & lp_asm)) { |
| hw->fc.current_mode = ixgbe_fc_rx_pause; |
| hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n"); |
| } else { |
| hw->fc.current_mode = ixgbe_fc_none; |
| hw_dbg(hw, "Flow Control = NONE.\n"); |
| } |
| return 0; |
| } |
| |
| /** |
| * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber |
| * @hw: pointer to hardware structure |
| * |
| * Enable flow control according on 1 gig fiber. |
| **/ |
| static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw) |
| { |
| u32 pcs_anadv_reg, pcs_lpab_reg, linkstat; |
| s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; |
| |
| /* |
| * On multispeed fiber at 1g, bail out if |
| * - link is up but AN did not complete, or if |
| * - link is up and AN completed but timed out |
| */ |
| |
| linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA); |
| if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) || |
| (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) |
| goto out; |
| |
| pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); |
| pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP); |
| |
| ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg, |
| pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE, |
| IXGBE_PCS1GANA_ASM_PAUSE, |
| IXGBE_PCS1GANA_SYM_PAUSE, |
| IXGBE_PCS1GANA_ASM_PAUSE); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37 |
| * @hw: pointer to hardware structure |
| * |
| * Enable flow control according to IEEE clause 37. |
| **/ |
| static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw) |
| { |
| u32 links2, anlp1_reg, autoc_reg, links; |
| s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; |
| |
| /* |
| * On backplane, bail out if |
| * - backplane autoneg was not completed, or if |
| * - we are 82599 and link partner is not AN enabled |
| */ |
| links = IXGBE_READ_REG(hw, IXGBE_LINKS); |
| if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) |
| goto out; |
| |
| if (hw->mac.type == ixgbe_mac_82599EB) { |
| links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2); |
| if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) |
| goto out; |
| } |
| /* |
| * Read the 10g AN autoc and LP ability registers and resolve |
| * local flow control settings accordingly |
| */ |
| autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); |
| anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1); |
| |
| ret_val = ixgbe_negotiate_fc(hw, autoc_reg, |
| anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE, |
| IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37 |
| * @hw: pointer to hardware structure |
| * |
| * Enable flow control according to IEEE clause 37. |
| **/ |
| static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw) |
| { |
| u16 technology_ability_reg = 0; |
| u16 lp_technology_ability_reg = 0; |
| |
| hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, |
| MDIO_MMD_AN, |
| &technology_ability_reg); |
| hw->phy.ops.read_reg(hw, MDIO_AN_LPA, |
| MDIO_MMD_AN, |
| &lp_technology_ability_reg); |
| |
| return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg, |
| (u32)lp_technology_ability_reg, |
| IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE, |
| IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE); |
| } |
| |
| /** |
| * ixgbe_fc_autoneg - Configure flow control |
| * @hw: pointer to hardware structure |
| * |
| * Compares our advertised flow control capabilities to those advertised by |
| * our link partner, and determines the proper flow control mode to use. |
| **/ |
| void ixgbe_fc_autoneg(struct ixgbe_hw *hw) |
| { |
| s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; |
| ixgbe_link_speed speed; |
| bool link_up; |
| |
| /* |
| * AN should have completed when the cable was plugged in. |
| * Look for reasons to bail out. Bail out if: |
| * - FC autoneg is disabled, or if |
| * - link is not up. |
| * |
| * Since we're being called from an LSC, link is already known to be up. |
| * So use link_up_wait_to_complete=false. |
| */ |
| if (hw->fc.disable_fc_autoneg) |
| goto out; |
| |
| hw->mac.ops.check_link(hw, &speed, &link_up, false); |
| if (!link_up) |
| goto out; |
| |
| switch (hw->phy.media_type) { |
| /* Autoneg flow control on fiber adapters */ |
| case ixgbe_media_type_fiber: |
| if (speed == IXGBE_LINK_SPEED_1GB_FULL) |
| ret_val = ixgbe_fc_autoneg_fiber(hw); |
| break; |
| |
| /* Autoneg flow control on backplane adapters */ |
| case ixgbe_media_type_backplane: |
| ret_val = ixgbe_fc_autoneg_backplane(hw); |
| break; |
| |
| /* Autoneg flow control on copper adapters */ |
| case ixgbe_media_type_copper: |
| if (ixgbe_device_supports_autoneg_fc(hw) == 0) |
| ret_val = ixgbe_fc_autoneg_copper(hw); |
| break; |
| |
| default: |
| break; |
| } |
| |
| out: |
| if (ret_val == 0) { |
| hw->fc.fc_was_autonegged = true; |
| } else { |
| hw->fc.fc_was_autonegged = false; |
| hw->fc.current_mode = hw->fc.requested_mode; |
| } |
| } |
| |
| /** |
| * ixgbe_disable_pcie_master - Disable PCI-express master access |
| * @hw: pointer to hardware structure |
| * |
| * Disables PCI-Express master access and verifies there are no pending |
| * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable |
| * bit hasn't caused the master requests to be disabled, else 0 |
| * is returned signifying master requests disabled. |
| **/ |
| static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw) |
| { |
| struct ixgbe_adapter *adapter = hw->back; |
| s32 status = 0; |
| u32 i; |
| u16 value; |
| |
| /* Always set this bit to ensure any future transactions are blocked */ |
| IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS); |
| |
| /* Exit if master requests are blocked */ |
| if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) |
| goto out; |
| |
| /* Poll for master request bit to clear */ |
| for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { |
| udelay(100); |
| if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) |
| goto out; |
| } |
| |
| /* |
| * Two consecutive resets are required via CTRL.RST per datasheet |
| * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine |
| * of this need. The first reset prevents new master requests from |
| * being issued by our device. We then must wait 1usec or more for any |
| * remaining completions from the PCIe bus to trickle in, and then reset |
| * again to clear out any effects they may have had on our device. |
| */ |
| hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n"); |
| hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; |
| |
| /* |
| * Before proceeding, make sure that the PCIe block does not have |
| * transactions pending. |
| */ |
| for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { |
| udelay(100); |
| pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS, |
| &value); |
| if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) |
| goto out; |
| } |
| |
| hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n"); |
| status = IXGBE_ERR_MASTER_REQUESTS_PENDING; |
| |
| out: |
| return status; |
| } |
| |
| /** |
| * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore |
| * @hw: pointer to hardware structure |
| * @mask: Mask to specify which semaphore to acquire |
| * |
| * Acquires the SWFW semaphore through the GSSR register for the specified |
| * function (CSR, PHY0, PHY1, EEPROM, Flash) |
| **/ |
| s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask) |
| { |
| u32 gssr; |
| u32 swmask = mask; |
| u32 fwmask = mask << 5; |
| s32 timeout = 200; |
| |
| while (timeout) { |
| /* |
| * SW EEPROM semaphore bit is used for access to all |
| * SW_FW_SYNC/GSSR bits (not just EEPROM) |
| */ |
| if (ixgbe_get_eeprom_semaphore(hw)) |
| return IXGBE_ERR_SWFW_SYNC; |
| |
| gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); |
| if (!(gssr & (fwmask | swmask))) |
| break; |
| |
| /* |
| * Firmware currently using resource (fwmask) or other software |
| * thread currently using resource (swmask) |
| */ |
| ixgbe_release_eeprom_semaphore(hw); |
| usleep_range(5000, 10000); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n"); |
| return IXGBE_ERR_SWFW_SYNC; |
| } |
| |
| gssr |= swmask; |
| IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); |
| |
| ixgbe_release_eeprom_semaphore(hw); |
| return 0; |
| } |
| |
| /** |
| * ixgbe_release_swfw_sync - Release SWFW semaphore |
| * @hw: pointer to hardware structure |
| * @mask: Mask to specify which semaphore to release |
| * |
| * Releases the SWFW semaphore through the GSSR register for the specified |
| * function (CSR, PHY0, PHY1, EEPROM, Flash) |
| **/ |
| void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask) |
| { |
| u32 gssr; |
| u32 swmask = mask; |
| |
| ixgbe_get_eeprom_semaphore(hw); |
| |
| gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); |
| gssr &= ~swmask; |
| IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); |
| |
| ixgbe_release_eeprom_semaphore(hw); |
| } |
| |
| /** |
| * ixgbe_disable_rx_buff_generic - Stops the receive data path |
| * @hw: pointer to hardware structure |
| * |
| * Stops the receive data path and waits for the HW to internally |
| * empty the Rx security block. |
| **/ |
| s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw) |
| { |
| #define IXGBE_MAX_SECRX_POLL 40 |
| int i; |
| int secrxreg; |
| |
| secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); |
| secrxreg |= IXGBE_SECRXCTRL_RX_DIS; |
| IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); |
| for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) { |
| secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT); |
| if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY) |
| break; |
| else |
| /* Use interrupt-safe sleep just in case */ |
| udelay(1000); |
| } |
| |
| /* For informational purposes only */ |
| if (i >= IXGBE_MAX_SECRX_POLL) |
| hw_dbg(hw, "Rx unit being enabled before security " |
| "path fully disabled. Continuing with init.\n"); |
| |
| return 0; |
| |
| } |
| |
| /** |
| * ixgbe_enable_rx_buff - Enables the receive data path |
| * @hw: pointer to hardware structure |
| * |
| * Enables the receive data path |
| **/ |
| s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw) |
| { |
| int secrxreg; |
| |
| secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); |
| secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS; |
| IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit |
| * @hw: pointer to hardware structure |
| * @regval: register value to write to RXCTRL |
| * |
| * Enables the Rx DMA unit |
| **/ |
| s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval) |
| { |
| IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_blink_led_start_generic - Blink LED based on index. |
| * @hw: pointer to hardware structure |
| * @index: led number to blink |
| **/ |
| s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index) |
| { |
| ixgbe_link_speed speed = 0; |
| bool link_up = false; |
| u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); |
| u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); |
| |
| /* |
| * Link must be up to auto-blink the LEDs; |
| * Force it if link is down. |
| */ |
| hw->mac.ops.check_link(hw, &speed, &link_up, false); |
| |
| if (!link_up) { |
| autoc_reg |= IXGBE_AUTOC_AN_RESTART; |
| autoc_reg |= IXGBE_AUTOC_FLU; |
| IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); |
| IXGBE_WRITE_FLUSH(hw); |
| usleep_range(10000, 20000); |
| } |
| |
| led_reg &= ~IXGBE_LED_MODE_MASK(index); |
| led_reg |= IXGBE_LED_BLINK(index); |
| IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_blink_led_stop_generic - Stop blinking LED based on index. |
| * @hw: pointer to hardware structure |
| * @index: led number to stop blinking |
| **/ |
| s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index) |
| { |
| u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); |
| u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); |
| |
| autoc_reg &= ~IXGBE_AUTOC_FLU; |
| autoc_reg |= IXGBE_AUTOC_AN_RESTART; |
| IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); |
| |
| led_reg &= ~IXGBE_LED_MODE_MASK(index); |
| led_reg &= ~IXGBE_LED_BLINK(index); |
| led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index); |
| IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); |
| IXGBE_WRITE_FLUSH(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM |
| * @hw: pointer to hardware structure |
| * @san_mac_offset: SAN MAC address offset |
| * |
| * This function will read the EEPROM location for the SAN MAC address |
| * pointer, and returns the value at that location. This is used in both |
| * get and set mac_addr routines. |
| **/ |
| static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, |
| u16 *san_mac_offset) |
| { |
| /* |
| * First read the EEPROM pointer to see if the MAC addresses are |
| * available. |
| */ |
| hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM |
| * @hw: pointer to hardware structure |
| * @san_mac_addr: SAN MAC address |
| * |
| * Reads the SAN MAC address from the EEPROM, if it's available. This is |
| * per-port, so set_lan_id() must be called before reading the addresses. |
| * set_lan_id() is called by identify_sfp(), but this cannot be relied |
| * upon for non-SFP connections, so we must call it here. |
| **/ |
| s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) |
| { |
| u16 san_mac_data, san_mac_offset; |
| u8 i; |
| |
| /* |
| * First read the EEPROM pointer to see if the MAC addresses are |
| * available. If they're not, no point in calling set_lan_id() here. |
| */ |
| ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); |
| |
| if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) { |
| /* |
| * No addresses available in this EEPROM. It's not an |
| * error though, so just wipe the local address and return. |
| */ |
| for (i = 0; i < 6; i++) |
| san_mac_addr[i] = 0xFF; |
| |
| goto san_mac_addr_out; |
| } |
| |
| /* make sure we know which port we need to program */ |
| hw->mac.ops.set_lan_id(hw); |
| /* apply the port offset to the address offset */ |
| (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : |
| (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); |
| for (i = 0; i < 3; i++) { |
| hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data); |
| san_mac_addr[i * 2] = (u8)(san_mac_data); |
| san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8); |
| san_mac_offset++; |
| } |
| |
| san_mac_addr_out: |
| return 0; |
| } |
| |
| /** |
| * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count |
| * @hw: pointer to hardware structure |
| * |
| * Read PCIe configuration space, and get the MSI-X vector count from |
| * the capabilities table. |
| **/ |
| u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw) |
| { |
| struct ixgbe_adapter *adapter = hw->back; |
| u16 msix_count = 1; |
| u16 max_msix_count; |
| u16 pcie_offset; |
| |
| switch (hw->mac.type) { |
| case ixgbe_mac_82598EB: |
| pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS; |
| max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598; |
| break; |
| case ixgbe_mac_82599EB: |
| case ixgbe_mac_X540: |
| pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS; |
| max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599; |
| break; |
| default: |
| return msix_count; |
| } |
| |
| pci_read_config_word(adapter->pdev, pcie_offset, &msix_count); |
| msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK; |
| |
| /* MSI-X count is zero-based in HW */ |
| msix_count++; |
| |
| if (msix_count > max_msix_count) |
| msix_count = max_msix_count; |
| |
| return msix_count; |
| } |
| |
| /** |
| * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address |
| * @hw: pointer to hardware struct |
| * @rar: receive address register index to disassociate |
| * @vmdq: VMDq pool index to remove from the rar |
| **/ |
| s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) |
| { |
| u32 mpsar_lo, mpsar_hi; |
| u32 rar_entries = hw->mac.num_rar_entries; |
| |
| /* Make sure we are using a valid rar index range */ |
| if (rar >= rar_entries) { |
| hw_dbg(hw, "RAR index %d is out of range.\n", rar); |
| return IXGBE_ERR_INVALID_ARGUMENT; |
| } |
| |
| mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); |
| mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); |
| |
| if (!mpsar_lo && !mpsar_hi) |
| goto done; |
| |
| if (vmdq == IXGBE_CLEAR_VMDQ_ALL) { |
| if (mpsar_lo) { |
| IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); |
| mpsar_lo = 0; |
| } |
| if (mpsar_hi) { |
| IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); |
| mpsar_hi = 0; |
| } |
| } else if (vmdq < 32) { |
| mpsar_lo &= ~(1 << vmdq); |
| IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo); |
| } else { |
| mpsar_hi &= ~(1 << (vmdq - 32)); |
| IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi); |
| } |
| |
| /* was that the last pool using this rar? */ |
| if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) |
| hw->mac.ops.clear_rar(hw, rar); |
| done: |
| return 0; |
| } |
| |
| /** |
| * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address |
| * @hw: pointer to hardware struct |
| * @rar: receive address register index to associate with a VMDq index |
| * @vmdq: VMDq pool index |
| **/ |
| s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) |
| { |
| u32 mpsar; |
| u32 rar_entries = hw->mac.num_rar_entries; |
| |
| /* Make sure we are using a valid rar index range */ |
| if (rar >= rar_entries) { |
| hw_dbg(hw, "RAR index %d is out of range.\n", rar); |
| return IXGBE_ERR_INVALID_ARGUMENT; |
| } |
| |
| if (vmdq < 32) { |
| mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); |
| mpsar |= 1 << vmdq; |
| IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar); |
| } else { |
| mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); |
| mpsar |= 1 << (vmdq - 32); |
| IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar); |
| } |
| return 0; |
| } |
| |
| /** |
| * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array |
| * @hw: pointer to hardware structure |
| **/ |
| s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw) |
| { |
| int i; |
| |
| for (i = 0; i < 128; i++) |
| IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot |
| * @hw: pointer to hardware structure |
| * @vlan: VLAN id to write to VLAN filter |
| * |
| * return the VLVF index where this VLAN id should be placed |
| * |
| **/ |
| static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan) |
| { |
| u32 bits = 0; |
| u32 first_empty_slot = 0; |
| s32 regindex; |
| |
| /* short cut the special case */ |
| if (vlan == 0) |
| return 0; |
| |
| /* |
| * Search for the vlan id in the VLVF entries. Save off the first empty |
| * slot found along the way |
| */ |
| for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) { |
| bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex)); |
| if (!bits && !(first_empty_slot)) |
| first_empty_slot = regindex; |
| else if ((bits & 0x0FFF) == vlan) |
| break; |
| } |
| |
| /* |
| * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan |
| * in the VLVF. Else use the first empty VLVF register for this |
| * vlan id. |
| */ |
| if (regindex >= IXGBE_VLVF_ENTRIES) { |
| if (first_empty_slot) |
| regindex = first_empty_slot; |
| else { |
| hw_dbg(hw, "No space in VLVF.\n"); |
| regindex = IXGBE_ERR_NO_SPACE; |
| } |
| } |
| |
| return regindex; |
| } |
| |
| /** |
| * ixgbe_set_vfta_generic - Set VLAN filter table |
| * @hw: pointer to hardware structure |
| * @vlan: VLAN id to write to VLAN filter |
| * @vind: VMDq output index that maps queue to VLAN id in VFVFB |
| * @vlan_on: boolean flag to turn on/off VLAN in VFVF |
| * |
| * Turn on/off specified VLAN in the VLAN filter table. |
| **/ |
| s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, |
| bool vlan_on) |
| { |
| s32 regindex; |
| u32 bitindex; |
| u32 vfta; |
| u32 bits; |
| u32 vt; |
| u32 targetbit; |
| bool vfta_changed = false; |
| |
| if (vlan > 4095) |
| return IXGBE_ERR_PARAM; |
| |
| /* |
| * this is a 2 part operation - first the VFTA, then the |
| * VLVF and VLVFB if VT Mode is set |
| * We don't write the VFTA until we know the VLVF part succeeded. |
| */ |
| |
| /* Part 1 |
| * The VFTA is a bitstring made up of 128 32-bit registers |
| * that enable the particular VLAN id, much like the MTA: |
| * bits[11-5]: which register |
| * bits[4-0]: which bit in the register |
| */ |
| regindex = (vlan >> 5) & 0x7F; |
| bitindex = vlan & 0x1F; |
| targetbit = (1 << bitindex); |
| vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex)); |
| |
| if (vlan_on) { |
| if (!(vfta & targetbit)) { |
| vfta |= targetbit; |
| vfta_changed = true; |
| } |
| } else { |
| if ((vfta & targetbit)) { |
| vfta &= ~targetbit; |
| vfta_changed = true; |
| } |
| } |
| |
| /* Part 2 |
| * If VT Mode is set |
| * Either vlan_on |
| * make sure the vlan is in VLVF |
| * set the vind bit in the matching VLVFB |
| * Or !vlan_on |
| * clear the pool bit and possibly the vind |
| */ |
| vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL); |
| if (vt & IXGBE_VT_CTL_VT_ENABLE) { |
| s32 vlvf_index; |
| |
| vlvf_index = ixgbe_find_vlvf_slot(hw, vlan); |
| if (vlvf_index < 0) |
| return vlvf_index; |
| |
| if (vlan_on) { |
| /* set the pool bit */ |
| if (vind < 32) { |
| bits = IXGBE_READ_REG(hw, |
| IXGBE_VLVFB(vlvf_index*2)); |
| bits |= (1 << vind); |
| IXGBE_WRITE_REG(hw, |
| IXGBE_VLVFB(vlvf_index*2), |
| bits); |
| } else { |
| bits = IXGBE_READ_REG(hw, |
| IXGBE_VLVFB((vlvf_index*2)+1)); |
| bits |= (1 << (vind-32)); |
| IXGBE_WRITE_REG(hw, |
| IXGBE_VLVFB((vlvf_index*2)+1), |
| bits); |
| } |
| } else { |
| /* clear the pool bit */ |
| if (vind < 32) { |
| bits = IXGBE_READ_REG(hw, |
| IXGBE_VLVFB(vlvf_index*2)); |
| bits &= ~(1 << vind); |
| IXGBE_WRITE_REG(hw, |
| IXGBE_VLVFB(vlvf_index*2), |
| bits); |
| bits |= IXGBE_READ_REG(hw, |
| IXGBE_VLVFB((vlvf_index*2)+1)); |
| } else { |
| bits = IXGBE_READ_REG(hw, |
| IXGBE_VLVFB((vlvf_index*2)+1)); |
| bits &= ~(1 << (vind-32)); |
| IXGBE_WRITE_REG(hw, |
| IXGBE_VLVFB((vlvf_index*2)+1), |
| bits); |
| bits |= IXGBE_READ_REG(hw, |
| IXGBE_VLVFB(vlvf_index*2)); |
| } |
| } |
| |
| /* |
| * If there are still bits set in the VLVFB registers |
| * for the VLAN ID indicated we need to see if the |
| * caller is requesting that we clear the VFTA entry bit. |
| * If the caller has requested that we clear the VFTA |
| * entry bit but there are still pools/VFs using this VLAN |
| * ID entry then ignore the request. We're not worried |
| * about the case where we're turning the VFTA VLAN ID |
| * entry bit on, only when requested to turn it off as |
| * there may be multiple pools and/or VFs using the |
| * VLAN ID entry. In that case we cannot clear the |
| * VFTA bit until all pools/VFs using that VLAN ID have also |
| * been cleared. This will be indicated by "bits" being |
| * zero. |
| */ |
| if (bits) { |
| IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), |
| (IXGBE_VLVF_VIEN | vlan)); |
| if (!vlan_on) { |
| /* someone wants to clear the vfta entry |
| * but some pools/VFs are still using it. |
| * Ignore it. */ |
| vfta_changed = false; |
| } |
| } |
| else |
| IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0); |
| } |
| |
| if (vfta_changed) |
| IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_clear_vfta_generic - Clear VLAN filter table |
| * @hw: pointer to hardware structure |
| * |
| * Clears the VLAN filer table, and the VMDq index associated with the filter |
| **/ |
| s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw) |
| { |
| u32 offset; |
| |
| for (offset = 0; offset < hw->mac.vft_size; offset++) |
| IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0); |
| |
| for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) { |
| IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0); |
| IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0); |
| IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_check_mac_link_generic - Determine link and speed status |
| * @hw: pointer to hardware structure |
| * @speed: pointer to link speed |
| * @link_up: true when link is up |
| * @link_up_wait_to_complete: bool used to wait for link up or not |
| * |
| * Reads the links register to determine if link is up and the current speed |
| **/ |
| s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed, |
| bool *link_up, bool link_up_wait_to_complete) |
| { |
| u32 links_reg, links_orig; |
| u32 i; |
| |
| /* clear the old state */ |
| links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS); |
| |
| links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); |
| |
| if (links_orig != links_reg) { |
| hw_dbg(hw, "LINKS changed from %08X to %08X\n", |
| links_orig, links_reg); |
| } |
| |
| if (link_up_wait_to_complete) { |
| for (i = 0; i < IXGBE_LINK_UP_TIME; i++) { |
| if (links_reg & IXGBE_LINKS_UP) { |
| *link_up = true; |
| break; |
| } else { |
| *link_up = false; |
| } |
| msleep(100); |
| links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); |
| } |
| } else { |
| if (links_reg & IXGBE_LINKS_UP) |
| *link_up = true; |
| else |
| *link_up = false; |
| } |
| |
| if ((links_reg & IXGBE_LINKS_SPEED_82599) == |
| IXGBE_LINKS_SPEED_10G_82599) |
| *speed = IXGBE_LINK_SPEED_10GB_FULL; |
| else if ((links_reg & IXGBE_LINKS_SPEED_82599) == |
| IXGBE_LINKS_SPEED_1G_82599) |
| *speed = IXGBE_LINK_SPEED_1GB_FULL; |
| else if ((links_reg & IXGBE_LINKS_SPEED_82599) == |
| IXGBE_LINKS_SPEED_100_82599) |
| *speed = IXGBE_LINK_SPEED_100_FULL; |
| else |
| *speed = IXGBE_LINK_SPEED_UNKNOWN; |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from |
| * the EEPROM |
| * @hw: pointer to hardware structure |
| * @wwnn_prefix: the alternative WWNN prefix |
| * @wwpn_prefix: the alternative WWPN prefix |
| * |
| * This function will read the EEPROM from the alternative SAN MAC address |
| * block to check the support for the alternative WWNN/WWPN prefix support. |
| **/ |
| s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix, |
| u16 *wwpn_prefix) |
| { |
| u16 offset, caps; |
| u16 alt_san_mac_blk_offset; |
| |
| /* clear output first */ |
| *wwnn_prefix = 0xFFFF; |
| *wwpn_prefix = 0xFFFF; |
| |
| /* check if alternative SAN MAC is supported */ |
| hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR, |
| &alt_san_mac_blk_offset); |
| |
| if ((alt_san_mac_blk_offset == 0) || |
| (alt_san_mac_blk_offset == 0xFFFF)) |
| goto wwn_prefix_out; |
| |
| /* check capability in alternative san mac address block */ |
| offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET; |
| hw->eeprom.ops.read(hw, offset, &caps); |
| if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN)) |
| goto wwn_prefix_out; |
| |
| /* get the corresponding prefix for WWNN/WWPN */ |
| offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET; |
| hw->eeprom.ops.read(hw, offset, wwnn_prefix); |
| |
| offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET; |
| hw->eeprom.ops.read(hw, offset, wwpn_prefix); |
| |
| wwn_prefix_out: |
| return 0; |
| } |
| |
| /** |
| * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing |
| * @hw: pointer to hardware structure |
| * @enable: enable or disable switch for anti-spoofing |
| * @pf: Physical Function pool - do not enable anti-spoofing for the PF |
| * |
| **/ |
| void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf) |
| { |
| int j; |
| int pf_target_reg = pf >> 3; |
| int pf_target_shift = pf % 8; |
| u32 pfvfspoof = 0; |
| |
| if (hw->mac.type == ixgbe_mac_82598EB) |
| return; |
| |
| if (enable) |
| pfvfspoof = IXGBE_SPOOF_MACAS_MASK; |
| |
| /* |
| * PFVFSPOOF register array is size 8 with 8 bits assigned to |
| * MAC anti-spoof enables in each register array element. |
| */ |
| for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++) |
| IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof); |
| |
| /* If not enabling anti-spoofing then done */ |
| if (!enable) |
| return; |
| |
| /* |
| * The PF should be allowed to spoof so that it can support |
| * emulation mode NICs. Reset the bit assigned to the PF |
| */ |
| pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg)); |
| pfvfspoof ^= (1 << pf_target_shift); |
| IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof); |
| } |
| |
| /** |
| * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing |
| * @hw: pointer to hardware structure |
| * @enable: enable or disable switch for VLAN anti-spoofing |
| * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing |
| * |
| **/ |
| void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) |
| { |
| int vf_target_reg = vf >> 3; |
| int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT; |
| u32 pfvfspoof; |
| |
| if (hw->mac.type == ixgbe_mac_82598EB) |
| return; |
| |
| pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); |
| if (enable) |
| pfvfspoof |= (1 << vf_target_shift); |
| else |
| pfvfspoof &= ~(1 << vf_target_shift); |
| IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); |
| } |
| |
| /** |
| * ixgbe_get_device_caps_generic - Get additional device capabilities |
| * @hw: pointer to hardware structure |
| * @device_caps: the EEPROM word with the extra device capabilities |
| * |
| * This function will read the EEPROM location for the device capabilities, |
| * and return the word through device_caps. |
| **/ |
| s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps) |
| { |
| hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps); |
| |
| return 0; |
| } |
| |
| /** |
| * ixgbe_set_rxpba_generic - Initialize RX packet buffer |
| * @hw: pointer to hardware structure |
| * @num_pb: number of packet buffers to allocate |
| * @headroom: reserve n KB of headroom |
| * @strategy: packet buffer allocation strategy |
| **/ |
| void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, |
| int num_pb, |
| u32 headroom, |
| int strategy) |
| { |
| u32 pbsize = hw->mac.rx_pb_size; |
| int i = 0; |
| u32 rxpktsize, txpktsize, txpbthresh; |
| |
| /* Reserve headroom */ |
| pbsize -= headroom; |
| |
| if (!num_pb) |
| num_pb = 1; |
| |
| /* Divide remaining packet buffer space amongst the number |
| * of packet buffers requested using supplied strategy. |
| */ |
| switch (strategy) { |
| case (PBA_STRATEGY_WEIGHTED): |
| /* pba_80_48 strategy weight first half of packet buffer with |
| * 5/8 of the packet buffer space. |
| */ |
| rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8)); |
| pbsize -= rxpktsize * (num_pb / 2); |
| rxpktsize <<= IXGBE_RXPBSIZE_SHIFT; |
| for (; i < (num_pb / 2); i++) |
| IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); |
| /* Fall through to configure remaining packet buffers */ |
| case (PBA_STRATEGY_EQUAL): |
| /* Divide the remaining Rx packet buffer evenly among the TCs */ |
| rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT; |
| for (; i < num_pb; i++) |
| IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); |
| break; |
| default: |
| break; |
| } |
| |
| /* |
| * Setup Tx packet buffer and threshold equally for all TCs |
| * TXPBTHRESH register is set in K so divide by 1024 and subtract |
| * 10 since the largest packet we support is just over 9K. |
| */ |
| txpktsize = IXGBE_TXPBSIZE_MAX / num_pb; |
| txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX; |
| for (i = 0; i < num_pb; i++) { |
| IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize); |
| IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh); |
| } |
| |
| /* Clear unused TCs, if any, to zero buffer size*/ |
| for (; i < IXGBE_MAX_PB; i++) { |
| IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0); |
| IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0); |
| IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0); |
| } |
| } |
| |
| /** |
| * ixgbe_calculate_checksum - Calculate checksum for buffer |
| * @buffer: pointer to EEPROM |
| * @length: size of EEPROM to calculate a checksum for |
| * Calculates the checksum for some buffer on a specified length. The |
| * checksum calculated is returned. |
| **/ |
| static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length) |
| { |
| u32 i; |
| u8 sum = 0; |
| |
| if (!buffer) |
| return 0; |
| |
| for (i = 0; i < length; i++) |
| sum += buffer[i]; |
| |
| return (u8) (0 - sum); |
| } |
| |
| /** |
| * ixgbe_host_interface_command - Issue command to manageability block |
| * @hw: pointer to the HW structure |
| * @buffer: contains the command to write and where the return status will |
| * be placed |
| * @length: length of buffer, must be multiple of 4 bytes |
| * |
| * Communicates with the manageability block. On success return 0 |
| * else return IXGBE_ERR_HOST_INTERFACE_COMMAND. |
| **/ |
| static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer, |
| u32 length) |
| { |
| u32 hicr, i, bi; |
| u32 hdr_size = sizeof(struct ixgbe_hic_hdr); |
| u8 buf_len, dword_len; |
| |
| s32 ret_val = 0; |
| |
| if (length == 0 || length & 0x3 || |
| length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { |
| hw_dbg(hw, "Buffer length failure.\n"); |
| ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; |
| goto out; |
| } |
| |
| /* Check that the host interface is enabled. */ |
| hicr = IXGBE_READ_REG(hw, IXGBE_HICR); |
| if ((hicr & IXGBE_HICR_EN) == 0) { |
| hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n"); |
| ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; |
| goto out; |
| } |
| |
| /* Calculate length in DWORDs */ |
| dword_len = length >> 2; |
| |
| /* |
| * The device driver writes the relevant command block |
| * into the ram area. |
| */ |
| for (i = 0; i < dword_len; i++) |
| IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG, |
| i, cpu_to_le32(buffer[i])); |
| |
| /* Setting this bit tells the ARC that a new command is pending. */ |
| IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C); |
| |
| for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) { |
| hicr = IXGBE_READ_REG(hw, IXGBE_HICR); |
| if (!(hicr & IXGBE_HICR_C)) |
| break; |
| usleep_range(1000, 2000); |
| } |
| |
| /* Check command successful completion. */ |
| if (i == IXGBE_HI_COMMAND_TIMEOUT || |
| (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) { |
| hw_dbg(hw, "Command has failed with no status valid.\n"); |
| ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; |
| goto out; |
| } |
| |
| /* Calculate length in DWORDs */ |
| dword_len = hdr_size >> 2; |
| |
| /* first pull in the header so we know the buffer length */ |
| for (bi = 0; bi < dword_len; bi++) { |
| buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); |
| le32_to_cpus(&buffer[bi]); |
| } |
| |
| /* If there is any thing in data position pull it in */ |
| buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len; |
| if (buf_len == 0) |
| goto out; |
| |
| if (length < (buf_len + hdr_size)) { |
| hw_dbg(hw, "Buffer not large enough for reply message.\n"); |
| ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; |
| goto out; |
| } |
| |
| /* Calculate length in DWORDs, add 3 for odd lengths */ |
| dword_len = (buf_len + 3) >> 2; |
| |
| /* Pull in the rest of the buffer (bi is where we left off)*/ |
| for (; bi <= dword_len; bi++) { |
| buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); |
| le32_to_cpus(&buffer[bi]); |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware |
| * @hw: pointer to the HW structure |
| * @maj: driver version major number |
| * @min: driver version minor number |
| * @build: driver version build number |
| * @sub: driver version sub build number |
| * |
| * Sends driver version number to firmware through the manageability |
| * block. On success return 0 |
| * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring |
| * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. |
| **/ |
| s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min, |
| u8 build, u8 sub) |
| { |
| struct ixgbe_hic_drv_info fw_cmd; |
| int i; |
| s32 ret_val = 0; |
| |
| if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) { |
| ret_val = IXGBE_ERR_SWFW_SYNC; |
| goto out; |
| } |
| |
| fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO; |
| fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN; |
| fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED; |
| fw_cmd.port_num = (u8)hw->bus.func; |
| fw_cmd.ver_maj = maj; |
| fw_cmd.ver_min = min; |
| fw_cmd.ver_build = build; |
| fw_cmd.ver_sub = sub; |
| fw_cmd.hdr.checksum = 0; |
| fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd, |
| (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len)); |
| fw_cmd.pad = 0; |
| fw_cmd.pad2 = 0; |
| |
| for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) { |
| ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd, |
| sizeof(fw_cmd)); |
| if (ret_val != 0) |
| continue; |
| |
| if (fw_cmd.hdr.cmd_or_resp.ret_status == |
| FW_CEM_RESP_STATUS_SUCCESS) |
| ret_val = 0; |
| else |
| ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; |
| |
| break; |
| } |
| |
| hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo |
| * @hw: pointer to the hardware structure |
| * |
| * The 82599 and x540 MACs can experience issues if TX work is still pending |
| * when a reset occurs. This function prevents this by flushing the PCIe |
| * buffers on the system. |
| **/ |
| void ixgbe_clear_tx_pending(struct ixgbe_hw *hw) |
| { |
| u32 gcr_ext, hlreg0; |
| |
| /* |
| * If double reset is not requested then all transactions should |
| * already be clear and as such there is no work to do |
| */ |
| if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED)) |
| return; |
| |
| /* |
| * Set loopback enable to prevent any transmits from being sent |
| * should the link come up. This assumes that the RXCTRL.RXEN bit |
| * has already been cleared. |
| */ |
| hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0); |
| IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK); |
| |
| /* initiate cleaning flow for buffers in the PCIe transaction layer */ |
| gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT); |
| IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, |
| gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR); |
| |
| /* Flush all writes and allow 20usec for all transactions to clear */ |
| IXGBE_WRITE_FLUSH(hw); |
| udelay(20); |
| |
| /* restore previous register values */ |
| IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext); |
| IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0); |
| } |
| |
| static const u8 ixgbe_emc_temp_data[4] = { |
| IXGBE_EMC_INTERNAL_DATA, |
| IXGBE_EMC_DIODE1_DATA, |
| IXGBE_EMC_DIODE2_DATA, |
| IXGBE_EMC_DIODE3_DATA |
| }; |
| static const u8 ixgbe_emc_therm_limit[4] = { |
| IXGBE_EMC_INTERNAL_THERM_LIMIT, |
| IXGBE_EMC_DIODE1_THERM_LIMIT, |
| IXGBE_EMC_DIODE2_THERM_LIMIT, |
| IXGBE_EMC_DIODE3_THERM_LIMIT |
| }; |
| |
| /** |
| * ixgbe_get_ets_data - Extracts the ETS bit data |
| * @hw: pointer to hardware structure |
| * @ets_cfg: extected ETS data |
| * @ets_offset: offset of ETS data |
| * |
| * Returns error code. |
| **/ |
| static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg, |
| u16 *ets_offset) |
| { |
| s32 status = 0; |
| |
| status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset); |
| if (status) |
| goto out; |
| |
| if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) { |
| status = IXGBE_NOT_IMPLEMENTED; |
| goto out; |
| } |
| |
| status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg); |
| if (status) |
| goto out; |
| |
| if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) { |
| status = IXGBE_NOT_IMPLEMENTED; |
| goto out; |
| } |
| |
| out: |
| return status; |
| } |
| |
| /** |
| * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data |
| * @hw: pointer to hardware structure |
| * |
| * Returns the thermal sensor data structure |
| **/ |
| s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw) |
| { |
| s32 status = 0; |
| u16 ets_offset; |
| u16 ets_cfg; |
| u16 ets_sensor; |
| u8 num_sensors; |
| u8 i; |
| struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; |
| |
| /* Only support thermal sensors attached to physical port 0 */ |
| if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) { |
| status = IXGBE_NOT_IMPLEMENTED; |
| goto out; |
| } |
| |
| status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset); |
| if (status) |
| goto out; |
| |
| num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK); |
| if (num_sensors > IXGBE_MAX_SENSORS) |
| num_sensors = IXGBE_MAX_SENSORS; |
| |
| for (i = 0; i < num_sensors; i++) { |
| u8 sensor_index; |
| u8 sensor_location; |
| |
| status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i), |
| &ets_sensor); |
| if (status) |
| goto out; |
| |
| sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >> |
| IXGBE_ETS_DATA_INDEX_SHIFT); |
| sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >> |
| IXGBE_ETS_DATA_LOC_SHIFT); |
| |
| if (sensor_location != 0) { |
| status = hw->phy.ops.read_i2c_byte(hw, |
| ixgbe_emc_temp_data[sensor_index], |
| IXGBE_I2C_THERMAL_SENSOR_ADDR, |
| &data->sensor[i].temp); |
| if (status) |
| goto out; |
| } |
| } |
| out: |
| return status; |
| } |
| |
| /** |
| * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds |
| * @hw: pointer to hardware structure |
| * |
| * Inits the thermal sensor thresholds according to the NVM map |
| * and save off the threshold and location values into mac.thermal_sensor_data |
| **/ |
| s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw) |
| { |
| s32 status = 0; |
| u16 ets_offset; |
| u16 ets_cfg; |
| u16 ets_sensor; |
| u8 low_thresh_delta; |
| u8 num_sensors; |
| u8 therm_limit; |
| u8 i; |
| struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; |
| |
| memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data)); |
| |
| /* Only support thermal sensors attached to physical port 0 */ |
| if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) { |
| status = IXGBE_NOT_IMPLEMENTED; |
| goto out; |
| } |
| |
| status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset); |
| if (status) |
| goto out; |
| |
| low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >> |
| IXGBE_ETS_LTHRES_DELTA_SHIFT); |
| num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK); |
| if (num_sensors > IXGBE_MAX_SENSORS) |
| num_sensors = IXGBE_MAX_SENSORS; |
| |
| for (i = 0; i < num_sensors; i++) { |
| u8 sensor_index; |
| u8 sensor_location; |
| |
| hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor); |
| sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >> |
| IXGBE_ETS_DATA_INDEX_SHIFT); |
| sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >> |
| IXGBE_ETS_DATA_LOC_SHIFT); |
| therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK; |
| |
| hw->phy.ops.write_i2c_byte(hw, |
| ixgbe_emc_therm_limit[sensor_index], |
| IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit); |
| |
| if (sensor_location == 0) |
| continue; |
| |
| data->sensor[i].location = sensor_location; |
| data->sensor[i].caution_thresh = therm_limit; |
| data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta; |
| } |
| out: |
| return status; |
| } |
| |