| /* |
| * linux/kernel/signal.c |
| * |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * |
| * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson |
| * |
| * 2003-06-02 Jim Houston - Concurrent Computer Corp. |
| * Changes to use preallocated sigqueue structures |
| * to allow signals to be sent reliably. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/smp_lock.h> |
| #include <linux/init.h> |
| #include <linux/sched.h> |
| #include <linux/fs.h> |
| #include <linux/tty.h> |
| #include <linux/binfmts.h> |
| #include <linux/security.h> |
| #include <linux/syscalls.h> |
| #include <linux/ptrace.h> |
| #include <linux/posix-timers.h> |
| #include <linux/signal.h> |
| #include <asm/param.h> |
| #include <asm/uaccess.h> |
| #include <asm/unistd.h> |
| #include <asm/siginfo.h> |
| |
| /* |
| * SLAB caches for signal bits. |
| */ |
| |
| static kmem_cache_t *sigqueue_cachep; |
| |
| /* |
| * In POSIX a signal is sent either to a specific thread (Linux task) |
| * or to the process as a whole (Linux thread group). How the signal |
| * is sent determines whether it's to one thread or the whole group, |
| * which determines which signal mask(s) are involved in blocking it |
| * from being delivered until later. When the signal is delivered, |
| * either it's caught or ignored by a user handler or it has a default |
| * effect that applies to the whole thread group (POSIX process). |
| * |
| * The possible effects an unblocked signal set to SIG_DFL can have are: |
| * ignore - Nothing Happens |
| * terminate - kill the process, i.e. all threads in the group, |
| * similar to exit_group. The group leader (only) reports |
| * WIFSIGNALED status to its parent. |
| * coredump - write a core dump file describing all threads using |
| * the same mm and then kill all those threads |
| * stop - stop all the threads in the group, i.e. TASK_STOPPED state |
| * |
| * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. |
| * Other signals when not blocked and set to SIG_DFL behaves as follows. |
| * The job control signals also have other special effects. |
| * |
| * +--------------------+------------------+ |
| * | POSIX signal | default action | |
| * +--------------------+------------------+ |
| * | SIGHUP | terminate | |
| * | SIGINT | terminate | |
| * | SIGQUIT | coredump | |
| * | SIGILL | coredump | |
| * | SIGTRAP | coredump | |
| * | SIGABRT/SIGIOT | coredump | |
| * | SIGBUS | coredump | |
| * | SIGFPE | coredump | |
| * | SIGKILL | terminate(+) | |
| * | SIGUSR1 | terminate | |
| * | SIGSEGV | coredump | |
| * | SIGUSR2 | terminate | |
| * | SIGPIPE | terminate | |
| * | SIGALRM | terminate | |
| * | SIGTERM | terminate | |
| * | SIGCHLD | ignore | |
| * | SIGCONT | ignore(*) | |
| * | SIGSTOP | stop(*)(+) | |
| * | SIGTSTP | stop(*) | |
| * | SIGTTIN | stop(*) | |
| * | SIGTTOU | stop(*) | |
| * | SIGURG | ignore | |
| * | SIGXCPU | coredump | |
| * | SIGXFSZ | coredump | |
| * | SIGVTALRM | terminate | |
| * | SIGPROF | terminate | |
| * | SIGPOLL/SIGIO | terminate | |
| * | SIGSYS/SIGUNUSED | coredump | |
| * | SIGSTKFLT | terminate | |
| * | SIGWINCH | ignore | |
| * | SIGPWR | terminate | |
| * | SIGRTMIN-SIGRTMAX | terminate | |
| * +--------------------+------------------+ |
| * | non-POSIX signal | default action | |
| * +--------------------+------------------+ |
| * | SIGEMT | coredump | |
| * +--------------------+------------------+ |
| * |
| * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". |
| * (*) Special job control effects: |
| * When SIGCONT is sent, it resumes the process (all threads in the group) |
| * from TASK_STOPPED state and also clears any pending/queued stop signals |
| * (any of those marked with "stop(*)"). This happens regardless of blocking, |
| * catching, or ignoring SIGCONT. When any stop signal is sent, it clears |
| * any pending/queued SIGCONT signals; this happens regardless of blocking, |
| * catching, or ignored the stop signal, though (except for SIGSTOP) the |
| * default action of stopping the process may happen later or never. |
| */ |
| |
| #ifdef SIGEMT |
| #define M_SIGEMT M(SIGEMT) |
| #else |
| #define M_SIGEMT 0 |
| #endif |
| |
| #if SIGRTMIN > BITS_PER_LONG |
| #define M(sig) (1ULL << ((sig)-1)) |
| #else |
| #define M(sig) (1UL << ((sig)-1)) |
| #endif |
| #define T(sig, mask) (M(sig) & (mask)) |
| |
| #define SIG_KERNEL_ONLY_MASK (\ |
| M(SIGKILL) | M(SIGSTOP) ) |
| |
| #define SIG_KERNEL_STOP_MASK (\ |
| M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) ) |
| |
| #define SIG_KERNEL_COREDUMP_MASK (\ |
| M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \ |
| M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \ |
| M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT ) |
| |
| #define SIG_KERNEL_IGNORE_MASK (\ |
| M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) ) |
| |
| #define sig_kernel_only(sig) \ |
| (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK)) |
| #define sig_kernel_coredump(sig) \ |
| (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK)) |
| #define sig_kernel_ignore(sig) \ |
| (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK)) |
| #define sig_kernel_stop(sig) \ |
| (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK)) |
| |
| #define sig_user_defined(t, signr) \ |
| (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ |
| ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) |
| |
| #define sig_fatal(t, signr) \ |
| (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ |
| (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) |
| |
| static int sig_ignored(struct task_struct *t, int sig) |
| { |
| void __user * handler; |
| |
| /* |
| * Tracers always want to know about signals.. |
| */ |
| if (t->ptrace & PT_PTRACED) |
| return 0; |
| |
| /* |
| * Blocked signals are never ignored, since the |
| * signal handler may change by the time it is |
| * unblocked. |
| */ |
| if (sigismember(&t->blocked, sig)) |
| return 0; |
| |
| /* Is it explicitly or implicitly ignored? */ |
| handler = t->sighand->action[sig-1].sa.sa_handler; |
| return handler == SIG_IGN || |
| (handler == SIG_DFL && sig_kernel_ignore(sig)); |
| } |
| |
| /* |
| * Re-calculate pending state from the set of locally pending |
| * signals, globally pending signals, and blocked signals. |
| */ |
| static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) |
| { |
| unsigned long ready; |
| long i; |
| |
| switch (_NSIG_WORDS) { |
| default: |
| for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) |
| ready |= signal->sig[i] &~ blocked->sig[i]; |
| break; |
| |
| case 4: ready = signal->sig[3] &~ blocked->sig[3]; |
| ready |= signal->sig[2] &~ blocked->sig[2]; |
| ready |= signal->sig[1] &~ blocked->sig[1]; |
| ready |= signal->sig[0] &~ blocked->sig[0]; |
| break; |
| |
| case 2: ready = signal->sig[1] &~ blocked->sig[1]; |
| ready |= signal->sig[0] &~ blocked->sig[0]; |
| break; |
| |
| case 1: ready = signal->sig[0] &~ blocked->sig[0]; |
| } |
| return ready != 0; |
| } |
| |
| #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) |
| |
| fastcall void recalc_sigpending_tsk(struct task_struct *t) |
| { |
| if (t->signal->group_stop_count > 0 || |
| PENDING(&t->pending, &t->blocked) || |
| PENDING(&t->signal->shared_pending, &t->blocked)) |
| set_tsk_thread_flag(t, TIF_SIGPENDING); |
| else |
| clear_tsk_thread_flag(t, TIF_SIGPENDING); |
| } |
| |
| void recalc_sigpending(void) |
| { |
| recalc_sigpending_tsk(current); |
| } |
| |
| /* Given the mask, find the first available signal that should be serviced. */ |
| |
| static int |
| next_signal(struct sigpending *pending, sigset_t *mask) |
| { |
| unsigned long i, *s, *m, x; |
| int sig = 0; |
| |
| s = pending->signal.sig; |
| m = mask->sig; |
| switch (_NSIG_WORDS) { |
| default: |
| for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) |
| if ((x = *s &~ *m) != 0) { |
| sig = ffz(~x) + i*_NSIG_BPW + 1; |
| break; |
| } |
| break; |
| |
| case 2: if ((x = s[0] &~ m[0]) != 0) |
| sig = 1; |
| else if ((x = s[1] &~ m[1]) != 0) |
| sig = _NSIG_BPW + 1; |
| else |
| break; |
| sig += ffz(~x); |
| break; |
| |
| case 1: if ((x = *s &~ *m) != 0) |
| sig = ffz(~x) + 1; |
| break; |
| } |
| |
| return sig; |
| } |
| |
| static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags, |
| int override_rlimit) |
| { |
| struct sigqueue *q = NULL; |
| |
| atomic_inc(&t->user->sigpending); |
| if (override_rlimit || |
| atomic_read(&t->user->sigpending) <= |
| t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) |
| q = kmem_cache_alloc(sigqueue_cachep, flags); |
| if (unlikely(q == NULL)) { |
| atomic_dec(&t->user->sigpending); |
| } else { |
| INIT_LIST_HEAD(&q->list); |
| q->flags = 0; |
| q->lock = NULL; |
| q->user = get_uid(t->user); |
| } |
| return(q); |
| } |
| |
| static inline void __sigqueue_free(struct sigqueue *q) |
| { |
| if (q->flags & SIGQUEUE_PREALLOC) |
| return; |
| atomic_dec(&q->user->sigpending); |
| free_uid(q->user); |
| kmem_cache_free(sigqueue_cachep, q); |
| } |
| |
| static void flush_sigqueue(struct sigpending *queue) |
| { |
| struct sigqueue *q; |
| |
| sigemptyset(&queue->signal); |
| while (!list_empty(&queue->list)) { |
| q = list_entry(queue->list.next, struct sigqueue , list); |
| list_del_init(&q->list); |
| __sigqueue_free(q); |
| } |
| } |
| |
| /* |
| * Flush all pending signals for a task. |
| */ |
| |
| void |
| flush_signals(struct task_struct *t) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&t->sighand->siglock, flags); |
| clear_tsk_thread_flag(t,TIF_SIGPENDING); |
| flush_sigqueue(&t->pending); |
| flush_sigqueue(&t->signal->shared_pending); |
| spin_unlock_irqrestore(&t->sighand->siglock, flags); |
| } |
| |
| /* |
| * This function expects the tasklist_lock write-locked. |
| */ |
| void __exit_sighand(struct task_struct *tsk) |
| { |
| struct sighand_struct * sighand = tsk->sighand; |
| |
| /* Ok, we're done with the signal handlers */ |
| tsk->sighand = NULL; |
| if (atomic_dec_and_test(&sighand->count)) |
| kmem_cache_free(sighand_cachep, sighand); |
| } |
| |
| void exit_sighand(struct task_struct *tsk) |
| { |
| write_lock_irq(&tasklist_lock); |
| __exit_sighand(tsk); |
| write_unlock_irq(&tasklist_lock); |
| } |
| |
| /* |
| * This function expects the tasklist_lock write-locked. |
| */ |
| void __exit_signal(struct task_struct *tsk) |
| { |
| struct signal_struct * sig = tsk->signal; |
| struct sighand_struct * sighand = tsk->sighand; |
| |
| if (!sig) |
| BUG(); |
| if (!atomic_read(&sig->count)) |
| BUG(); |
| spin_lock(&sighand->siglock); |
| posix_cpu_timers_exit(tsk); |
| if (atomic_dec_and_test(&sig->count)) { |
| posix_cpu_timers_exit_group(tsk); |
| if (tsk == sig->curr_target) |
| sig->curr_target = next_thread(tsk); |
| tsk->signal = NULL; |
| spin_unlock(&sighand->siglock); |
| flush_sigqueue(&sig->shared_pending); |
| } else { |
| /* |
| * If there is any task waiting for the group exit |
| * then notify it: |
| */ |
| if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { |
| wake_up_process(sig->group_exit_task); |
| sig->group_exit_task = NULL; |
| } |
| if (tsk == sig->curr_target) |
| sig->curr_target = next_thread(tsk); |
| tsk->signal = NULL; |
| /* |
| * Accumulate here the counters for all threads but the |
| * group leader as they die, so they can be added into |
| * the process-wide totals when those are taken. |
| * The group leader stays around as a zombie as long |
| * as there are other threads. When it gets reaped, |
| * the exit.c code will add its counts into these totals. |
| * We won't ever get here for the group leader, since it |
| * will have been the last reference on the signal_struct. |
| */ |
| sig->utime = cputime_add(sig->utime, tsk->utime); |
| sig->stime = cputime_add(sig->stime, tsk->stime); |
| sig->min_flt += tsk->min_flt; |
| sig->maj_flt += tsk->maj_flt; |
| sig->nvcsw += tsk->nvcsw; |
| sig->nivcsw += tsk->nivcsw; |
| sig->sched_time += tsk->sched_time; |
| spin_unlock(&sighand->siglock); |
| sig = NULL; /* Marker for below. */ |
| } |
| clear_tsk_thread_flag(tsk,TIF_SIGPENDING); |
| flush_sigqueue(&tsk->pending); |
| if (sig) { |
| /* |
| * We are cleaning up the signal_struct here. We delayed |
| * calling exit_itimers until after flush_sigqueue, just in |
| * case our thread-local pending queue contained a queued |
| * timer signal that would have been cleared in |
| * exit_itimers. When that called sigqueue_free, it would |
| * attempt to re-take the tasklist_lock and deadlock. This |
| * can never happen if we ensure that all queues the |
| * timer's signal might be queued on have been flushed |
| * first. The shared_pending queue, and our own pending |
| * queue are the only queues the timer could be on, since |
| * there are no other threads left in the group and timer |
| * signals are constrained to threads inside the group. |
| */ |
| exit_itimers(sig); |
| exit_thread_group_keys(sig); |
| kmem_cache_free(signal_cachep, sig); |
| } |
| } |
| |
| void exit_signal(struct task_struct *tsk) |
| { |
| write_lock_irq(&tasklist_lock); |
| __exit_signal(tsk); |
| write_unlock_irq(&tasklist_lock); |
| } |
| |
| /* |
| * Flush all handlers for a task. |
| */ |
| |
| void |
| flush_signal_handlers(struct task_struct *t, int force_default) |
| { |
| int i; |
| struct k_sigaction *ka = &t->sighand->action[0]; |
| for (i = _NSIG ; i != 0 ; i--) { |
| if (force_default || ka->sa.sa_handler != SIG_IGN) |
| ka->sa.sa_handler = SIG_DFL; |
| ka->sa.sa_flags = 0; |
| sigemptyset(&ka->sa.sa_mask); |
| ka++; |
| } |
| } |
| |
| |
| /* Notify the system that a driver wants to block all signals for this |
| * process, and wants to be notified if any signals at all were to be |
| * sent/acted upon. If the notifier routine returns non-zero, then the |
| * signal will be acted upon after all. If the notifier routine returns 0, |
| * then then signal will be blocked. Only one block per process is |
| * allowed. priv is a pointer to private data that the notifier routine |
| * can use to determine if the signal should be blocked or not. */ |
| |
| void |
| block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(¤t->sighand->siglock, flags); |
| current->notifier_mask = mask; |
| current->notifier_data = priv; |
| current->notifier = notifier; |
| spin_unlock_irqrestore(¤t->sighand->siglock, flags); |
| } |
| |
| /* Notify the system that blocking has ended. */ |
| |
| void |
| unblock_all_signals(void) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(¤t->sighand->siglock, flags); |
| current->notifier = NULL; |
| current->notifier_data = NULL; |
| recalc_sigpending(); |
| spin_unlock_irqrestore(¤t->sighand->siglock, flags); |
| } |
| |
| static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info) |
| { |
| struct sigqueue *q, *first = NULL; |
| int still_pending = 0; |
| |
| if (unlikely(!sigismember(&list->signal, sig))) |
| return 0; |
| |
| /* |
| * Collect the siginfo appropriate to this signal. Check if |
| * there is another siginfo for the same signal. |
| */ |
| list_for_each_entry(q, &list->list, list) { |
| if (q->info.si_signo == sig) { |
| if (first) { |
| still_pending = 1; |
| break; |
| } |
| first = q; |
| } |
| } |
| if (first) { |
| list_del_init(&first->list); |
| copy_siginfo(info, &first->info); |
| __sigqueue_free(first); |
| if (!still_pending) |
| sigdelset(&list->signal, sig); |
| } else { |
| |
| /* Ok, it wasn't in the queue. This must be |
| a fast-pathed signal or we must have been |
| out of queue space. So zero out the info. |
| */ |
| sigdelset(&list->signal, sig); |
| info->si_signo = sig; |
| info->si_errno = 0; |
| info->si_code = 0; |
| info->si_pid = 0; |
| info->si_uid = 0; |
| } |
| return 1; |
| } |
| |
| static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, |
| siginfo_t *info) |
| { |
| int sig = 0; |
| |
| /* SIGKILL must have priority, otherwise it is quite easy |
| * to create an unkillable process, sending sig < SIGKILL |
| * to self */ |
| if (unlikely(sigismember(&pending->signal, SIGKILL))) { |
| if (!sigismember(mask, SIGKILL)) |
| sig = SIGKILL; |
| } |
| |
| if (likely(!sig)) |
| sig = next_signal(pending, mask); |
| if (sig) { |
| if (current->notifier) { |
| if (sigismember(current->notifier_mask, sig)) { |
| if (!(current->notifier)(current->notifier_data)) { |
| clear_thread_flag(TIF_SIGPENDING); |
| return 0; |
| } |
| } |
| } |
| |
| if (!collect_signal(sig, pending, info)) |
| sig = 0; |
| |
| } |
| recalc_sigpending(); |
| |
| return sig; |
| } |
| |
| /* |
| * Dequeue a signal and return the element to the caller, which is |
| * expected to free it. |
| * |
| * All callers have to hold the siglock. |
| */ |
| int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) |
| { |
| int signr = __dequeue_signal(&tsk->pending, mask, info); |
| if (!signr) |
| signr = __dequeue_signal(&tsk->signal->shared_pending, |
| mask, info); |
| if (signr && unlikely(sig_kernel_stop(signr))) { |
| /* |
| * Set a marker that we have dequeued a stop signal. Our |
| * caller might release the siglock and then the pending |
| * stop signal it is about to process is no longer in the |
| * pending bitmasks, but must still be cleared by a SIGCONT |
| * (and overruled by a SIGKILL). So those cases clear this |
| * shared flag after we've set it. Note that this flag may |
| * remain set after the signal we return is ignored or |
| * handled. That doesn't matter because its only purpose |
| * is to alert stop-signal processing code when another |
| * processor has come along and cleared the flag. |
| */ |
| tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; |
| } |
| if ( signr && |
| ((info->si_code & __SI_MASK) == __SI_TIMER) && |
| info->si_sys_private){ |
| /* |
| * Release the siglock to ensure proper locking order |
| * of timer locks outside of siglocks. Note, we leave |
| * irqs disabled here, since the posix-timers code is |
| * about to disable them again anyway. |
| */ |
| spin_unlock(&tsk->sighand->siglock); |
| do_schedule_next_timer(info); |
| spin_lock(&tsk->sighand->siglock); |
| } |
| return signr; |
| } |
| |
| /* |
| * Tell a process that it has a new active signal.. |
| * |
| * NOTE! we rely on the previous spin_lock to |
| * lock interrupts for us! We can only be called with |
| * "siglock" held, and the local interrupt must |
| * have been disabled when that got acquired! |
| * |
| * No need to set need_resched since signal event passing |
| * goes through ->blocked |
| */ |
| void signal_wake_up(struct task_struct *t, int resume) |
| { |
| unsigned int mask; |
| |
| set_tsk_thread_flag(t, TIF_SIGPENDING); |
| |
| /* |
| * For SIGKILL, we want to wake it up in the stopped/traced case. |
| * We don't check t->state here because there is a race with it |
| * executing another processor and just now entering stopped state. |
| * By using wake_up_state, we ensure the process will wake up and |
| * handle its death signal. |
| */ |
| mask = TASK_INTERRUPTIBLE; |
| if (resume) |
| mask |= TASK_STOPPED | TASK_TRACED; |
| if (!wake_up_state(t, mask)) |
| kick_process(t); |
| } |
| |
| /* |
| * Remove signals in mask from the pending set and queue. |
| * Returns 1 if any signals were found. |
| * |
| * All callers must be holding the siglock. |
| */ |
| static int rm_from_queue(unsigned long mask, struct sigpending *s) |
| { |
| struct sigqueue *q, *n; |
| |
| if (!sigtestsetmask(&s->signal, mask)) |
| return 0; |
| |
| sigdelsetmask(&s->signal, mask); |
| list_for_each_entry_safe(q, n, &s->list, list) { |
| if (q->info.si_signo < SIGRTMIN && |
| (mask & sigmask(q->info.si_signo))) { |
| list_del_init(&q->list); |
| __sigqueue_free(q); |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * Bad permissions for sending the signal |
| */ |
| static int check_kill_permission(int sig, struct siginfo *info, |
| struct task_struct *t) |
| { |
| int error = -EINVAL; |
| if (!valid_signal(sig)) |
| return error; |
| error = -EPERM; |
| if ((!info || ((unsigned long)info != 1 && |
| (unsigned long)info != 2 && SI_FROMUSER(info))) |
| && ((sig != SIGCONT) || |
| (current->signal->session != t->signal->session)) |
| && (current->euid ^ t->suid) && (current->euid ^ t->uid) |
| && (current->uid ^ t->suid) && (current->uid ^ t->uid) |
| && !capable(CAP_KILL)) |
| return error; |
| return security_task_kill(t, info, sig); |
| } |
| |
| /* forward decl */ |
| static void do_notify_parent_cldstop(struct task_struct *tsk, |
| struct task_struct *parent, |
| int why); |
| |
| /* |
| * Handle magic process-wide effects of stop/continue signals. |
| * Unlike the signal actions, these happen immediately at signal-generation |
| * time regardless of blocking, ignoring, or handling. This does the |
| * actual continuing for SIGCONT, but not the actual stopping for stop |
| * signals. The process stop is done as a signal action for SIG_DFL. |
| */ |
| static void handle_stop_signal(int sig, struct task_struct *p) |
| { |
| struct task_struct *t; |
| |
| if (p->flags & SIGNAL_GROUP_EXIT) |
| /* |
| * The process is in the middle of dying already. |
| */ |
| return; |
| |
| if (sig_kernel_stop(sig)) { |
| /* |
| * This is a stop signal. Remove SIGCONT from all queues. |
| */ |
| rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); |
| t = p; |
| do { |
| rm_from_queue(sigmask(SIGCONT), &t->pending); |
| t = next_thread(t); |
| } while (t != p); |
| } else if (sig == SIGCONT) { |
| /* |
| * Remove all stop signals from all queues, |
| * and wake all threads. |
| */ |
| if (unlikely(p->signal->group_stop_count > 0)) { |
| /* |
| * There was a group stop in progress. We'll |
| * pretend it finished before we got here. We are |
| * obliged to report it to the parent: if the |
| * SIGSTOP happened "after" this SIGCONT, then it |
| * would have cleared this pending SIGCONT. If it |
| * happened "before" this SIGCONT, then the parent |
| * got the SIGCHLD about the stop finishing before |
| * the continue happened. We do the notification |
| * now, and it's as if the stop had finished and |
| * the SIGCHLD was pending on entry to this kill. |
| */ |
| p->signal->group_stop_count = 0; |
| p->signal->flags = SIGNAL_STOP_CONTINUED; |
| spin_unlock(&p->sighand->siglock); |
| if (p->ptrace & PT_PTRACED) |
| do_notify_parent_cldstop(p, p->parent, |
| CLD_STOPPED); |
| else |
| do_notify_parent_cldstop( |
| p->group_leader, |
| p->group_leader->real_parent, |
| CLD_STOPPED); |
| spin_lock(&p->sighand->siglock); |
| } |
| rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); |
| t = p; |
| do { |
| unsigned int state; |
| rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); |
| |
| /* |
| * If there is a handler for SIGCONT, we must make |
| * sure that no thread returns to user mode before |
| * we post the signal, in case it was the only |
| * thread eligible to run the signal handler--then |
| * it must not do anything between resuming and |
| * running the handler. With the TIF_SIGPENDING |
| * flag set, the thread will pause and acquire the |
| * siglock that we hold now and until we've queued |
| * the pending signal. |
| * |
| * Wake up the stopped thread _after_ setting |
| * TIF_SIGPENDING |
| */ |
| state = TASK_STOPPED; |
| if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { |
| set_tsk_thread_flag(t, TIF_SIGPENDING); |
| state |= TASK_INTERRUPTIBLE; |
| } |
| wake_up_state(t, state); |
| |
| t = next_thread(t); |
| } while (t != p); |
| |
| if (p->signal->flags & SIGNAL_STOP_STOPPED) { |
| /* |
| * We were in fact stopped, and are now continued. |
| * Notify the parent with CLD_CONTINUED. |
| */ |
| p->signal->flags = SIGNAL_STOP_CONTINUED; |
| p->signal->group_exit_code = 0; |
| spin_unlock(&p->sighand->siglock); |
| if (p->ptrace & PT_PTRACED) |
| do_notify_parent_cldstop(p, p->parent, |
| CLD_CONTINUED); |
| else |
| do_notify_parent_cldstop( |
| p->group_leader, |
| p->group_leader->real_parent, |
| CLD_CONTINUED); |
| spin_lock(&p->sighand->siglock); |
| } else { |
| /* |
| * We are not stopped, but there could be a stop |
| * signal in the middle of being processed after |
| * being removed from the queue. Clear that too. |
| */ |
| p->signal->flags = 0; |
| } |
| } else if (sig == SIGKILL) { |
| /* |
| * Make sure that any pending stop signal already dequeued |
| * is undone by the wakeup for SIGKILL. |
| */ |
| p->signal->flags = 0; |
| } |
| } |
| |
| static int send_signal(int sig, struct siginfo *info, struct task_struct *t, |
| struct sigpending *signals) |
| { |
| struct sigqueue * q = NULL; |
| int ret = 0; |
| |
| /* |
| * fast-pathed signals for kernel-internal things like SIGSTOP |
| * or SIGKILL. |
| */ |
| if ((unsigned long)info == 2) |
| goto out_set; |
| |
| /* Real-time signals must be queued if sent by sigqueue, or |
| some other real-time mechanism. It is implementation |
| defined whether kill() does so. We attempt to do so, on |
| the principle of least surprise, but since kill is not |
| allowed to fail with EAGAIN when low on memory we just |
| make sure at least one signal gets delivered and don't |
| pass on the info struct. */ |
| |
| q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && |
| ((unsigned long) info < 2 || |
| info->si_code >= 0))); |
| if (q) { |
| list_add_tail(&q->list, &signals->list); |
| switch ((unsigned long) info) { |
| case 0: |
| q->info.si_signo = sig; |
| q->info.si_errno = 0; |
| q->info.si_code = SI_USER; |
| q->info.si_pid = current->pid; |
| q->info.si_uid = current->uid; |
| break; |
| case 1: |
| q->info.si_signo = sig; |
| q->info.si_errno = 0; |
| q->info.si_code = SI_KERNEL; |
| q->info.si_pid = 0; |
| q->info.si_uid = 0; |
| break; |
| default: |
| copy_siginfo(&q->info, info); |
| break; |
| } |
| } else { |
| if (sig >= SIGRTMIN && info && (unsigned long)info != 1 |
| && info->si_code != SI_USER) |
| /* |
| * Queue overflow, abort. We may abort if the signal was rt |
| * and sent by user using something other than kill(). |
| */ |
| return -EAGAIN; |
| if (((unsigned long)info > 1) && (info->si_code == SI_TIMER)) |
| /* |
| * Set up a return to indicate that we dropped |
| * the signal. |
| */ |
| ret = info->si_sys_private; |
| } |
| |
| out_set: |
| sigaddset(&signals->signal, sig); |
| return ret; |
| } |
| |
| #define LEGACY_QUEUE(sigptr, sig) \ |
| (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) |
| |
| |
| static int |
| specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) |
| { |
| int ret = 0; |
| |
| if (!irqs_disabled()) |
| BUG(); |
| assert_spin_locked(&t->sighand->siglock); |
| |
| if (((unsigned long)info > 2) && (info->si_code == SI_TIMER)) |
| /* |
| * Set up a return to indicate that we dropped the signal. |
| */ |
| ret = info->si_sys_private; |
| |
| /* Short-circuit ignored signals. */ |
| if (sig_ignored(t, sig)) |
| goto out; |
| |
| /* Support queueing exactly one non-rt signal, so that we |
| can get more detailed information about the cause of |
| the signal. */ |
| if (LEGACY_QUEUE(&t->pending, sig)) |
| goto out; |
| |
| ret = send_signal(sig, info, t, &t->pending); |
| if (!ret && !sigismember(&t->blocked, sig)) |
| signal_wake_up(t, sig == SIGKILL); |
| out: |
| return ret; |
| } |
| |
| /* |
| * Force a signal that the process can't ignore: if necessary |
| * we unblock the signal and change any SIG_IGN to SIG_DFL. |
| */ |
| |
| int |
| force_sig_info(int sig, struct siginfo *info, struct task_struct *t) |
| { |
| unsigned long int flags; |
| int ret; |
| |
| spin_lock_irqsave(&t->sighand->siglock, flags); |
| if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) { |
| t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; |
| sigdelset(&t->blocked, sig); |
| recalc_sigpending_tsk(t); |
| } |
| ret = specific_send_sig_info(sig, info, t); |
| spin_unlock_irqrestore(&t->sighand->siglock, flags); |
| |
| return ret; |
| } |
| |
| void |
| force_sig_specific(int sig, struct task_struct *t) |
| { |
| unsigned long int flags; |
| |
| spin_lock_irqsave(&t->sighand->siglock, flags); |
| if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) |
| t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; |
| sigdelset(&t->blocked, sig); |
| recalc_sigpending_tsk(t); |
| specific_send_sig_info(sig, (void *)2, t); |
| spin_unlock_irqrestore(&t->sighand->siglock, flags); |
| } |
| |
| /* |
| * Test if P wants to take SIG. After we've checked all threads with this, |
| * it's equivalent to finding no threads not blocking SIG. Any threads not |
| * blocking SIG were ruled out because they are not running and already |
| * have pending signals. Such threads will dequeue from the shared queue |
| * as soon as they're available, so putting the signal on the shared queue |
| * will be equivalent to sending it to one such thread. |
| */ |
| #define wants_signal(sig, p, mask) \ |
| (!sigismember(&(p)->blocked, sig) \ |
| && !((p)->state & mask) \ |
| && !((p)->flags & PF_EXITING) \ |
| && (task_curr(p) || !signal_pending(p))) |
| |
| |
| static void |
| __group_complete_signal(int sig, struct task_struct *p) |
| { |
| unsigned int mask; |
| struct task_struct *t; |
| |
| /* |
| * Don't bother traced and stopped tasks (but |
| * SIGKILL will punch through that). |
| */ |
| mask = TASK_STOPPED | TASK_TRACED; |
| if (sig == SIGKILL) |
| mask = 0; |
| |
| /* |
| * Now find a thread we can wake up to take the signal off the queue. |
| * |
| * If the main thread wants the signal, it gets first crack. |
| * Probably the least surprising to the average bear. |
| */ |
| if (wants_signal(sig, p, mask)) |
| t = p; |
| else if (thread_group_empty(p)) |
| /* |
| * There is just one thread and it does not need to be woken. |
| * It will dequeue unblocked signals before it runs again. |
| */ |
| return; |
| else { |
| /* |
| * Otherwise try to find a suitable thread. |
| */ |
| t = p->signal->curr_target; |
| if (t == NULL) |
| /* restart balancing at this thread */ |
| t = p->signal->curr_target = p; |
| BUG_ON(t->tgid != p->tgid); |
| |
| while (!wants_signal(sig, t, mask)) { |
| t = next_thread(t); |
| if (t == p->signal->curr_target) |
| /* |
| * No thread needs to be woken. |
| * Any eligible threads will see |
| * the signal in the queue soon. |
| */ |
| return; |
| } |
| p->signal->curr_target = t; |
| } |
| |
| /* |
| * Found a killable thread. If the signal will be fatal, |
| * then start taking the whole group down immediately. |
| */ |
| if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && |
| !sigismember(&t->real_blocked, sig) && |
| (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { |
| /* |
| * This signal will be fatal to the whole group. |
| */ |
| if (!sig_kernel_coredump(sig)) { |
| /* |
| * Start a group exit and wake everybody up. |
| * This way we don't have other threads |
| * running and doing things after a slower |
| * thread has the fatal signal pending. |
| */ |
| p->signal->flags = SIGNAL_GROUP_EXIT; |
| p->signal->group_exit_code = sig; |
| p->signal->group_stop_count = 0; |
| t = p; |
| do { |
| sigaddset(&t->pending.signal, SIGKILL); |
| signal_wake_up(t, 1); |
| t = next_thread(t); |
| } while (t != p); |
| return; |
| } |
| |
| /* |
| * There will be a core dump. We make all threads other |
| * than the chosen one go into a group stop so that nothing |
| * happens until it gets scheduled, takes the signal off |
| * the shared queue, and does the core dump. This is a |
| * little more complicated than strictly necessary, but it |
| * keeps the signal state that winds up in the core dump |
| * unchanged from the death state, e.g. which thread had |
| * the core-dump signal unblocked. |
| */ |
| rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); |
| rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); |
| p->signal->group_stop_count = 0; |
| p->signal->group_exit_task = t; |
| t = p; |
| do { |
| p->signal->group_stop_count++; |
| signal_wake_up(t, 0); |
| t = next_thread(t); |
| } while (t != p); |
| wake_up_process(p->signal->group_exit_task); |
| return; |
| } |
| |
| /* |
| * The signal is already in the shared-pending queue. |
| * Tell the chosen thread to wake up and dequeue it. |
| */ |
| signal_wake_up(t, sig == SIGKILL); |
| return; |
| } |
| |
| int |
| __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| { |
| int ret = 0; |
| |
| assert_spin_locked(&p->sighand->siglock); |
| handle_stop_signal(sig, p); |
| |
| if (((unsigned long)info > 2) && (info->si_code == SI_TIMER)) |
| /* |
| * Set up a return to indicate that we dropped the signal. |
| */ |
| ret = info->si_sys_private; |
| |
| /* Short-circuit ignored signals. */ |
| if (sig_ignored(p, sig)) |
| return ret; |
| |
| if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) |
| /* This is a non-RT signal and we already have one queued. */ |
| return ret; |
| |
| /* |
| * Put this signal on the shared-pending queue, or fail with EAGAIN. |
| * We always use the shared queue for process-wide signals, |
| * to avoid several races. |
| */ |
| ret = send_signal(sig, info, p, &p->signal->shared_pending); |
| if (unlikely(ret)) |
| return ret; |
| |
| __group_complete_signal(sig, p); |
| return 0; |
| } |
| |
| /* |
| * Nuke all other threads in the group. |
| */ |
| void zap_other_threads(struct task_struct *p) |
| { |
| struct task_struct *t; |
| |
| p->signal->flags = SIGNAL_GROUP_EXIT; |
| p->signal->group_stop_count = 0; |
| |
| if (thread_group_empty(p)) |
| return; |
| |
| for (t = next_thread(p); t != p; t = next_thread(t)) { |
| /* |
| * Don't bother with already dead threads |
| */ |
| if (t->exit_state) |
| continue; |
| |
| /* |
| * We don't want to notify the parent, since we are |
| * killed as part of a thread group due to another |
| * thread doing an execve() or similar. So set the |
| * exit signal to -1 to allow immediate reaping of |
| * the process. But don't detach the thread group |
| * leader. |
| */ |
| if (t != p->group_leader) |
| t->exit_signal = -1; |
| |
| sigaddset(&t->pending.signal, SIGKILL); |
| rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); |
| signal_wake_up(t, 1); |
| } |
| } |
| |
| /* |
| * Must be called with the tasklist_lock held for reading! |
| */ |
| int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| { |
| unsigned long flags; |
| int ret; |
| |
| ret = check_kill_permission(sig, info, p); |
| if (!ret && sig && p->sighand) { |
| spin_lock_irqsave(&p->sighand->siglock, flags); |
| ret = __group_send_sig_info(sig, info, p); |
| spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * kill_pg_info() sends a signal to a process group: this is what the tty |
| * control characters do (^C, ^Z etc) |
| */ |
| |
| int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) |
| { |
| struct task_struct *p = NULL; |
| int retval, success; |
| |
| if (pgrp <= 0) |
| return -EINVAL; |
| |
| success = 0; |
| retval = -ESRCH; |
| do_each_task_pid(pgrp, PIDTYPE_PGID, p) { |
| int err = group_send_sig_info(sig, info, p); |
| success |= !err; |
| retval = err; |
| } while_each_task_pid(pgrp, PIDTYPE_PGID, p); |
| return success ? 0 : retval; |
| } |
| |
| int |
| kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) |
| { |
| int retval; |
| |
| read_lock(&tasklist_lock); |
| retval = __kill_pg_info(sig, info, pgrp); |
| read_unlock(&tasklist_lock); |
| |
| return retval; |
| } |
| |
| int |
| kill_proc_info(int sig, struct siginfo *info, pid_t pid) |
| { |
| int error; |
| struct task_struct *p; |
| |
| read_lock(&tasklist_lock); |
| p = find_task_by_pid(pid); |
| error = -ESRCH; |
| if (p) |
| error = group_send_sig_info(sig, info, p); |
| read_unlock(&tasklist_lock); |
| return error; |
| } |
| |
| |
| /* |
| * kill_something_info() interprets pid in interesting ways just like kill(2). |
| * |
| * POSIX specifies that kill(-1,sig) is unspecified, but what we have |
| * is probably wrong. Should make it like BSD or SYSV. |
| */ |
| |
| static int kill_something_info(int sig, struct siginfo *info, int pid) |
| { |
| if (!pid) { |
| return kill_pg_info(sig, info, process_group(current)); |
| } else if (pid == -1) { |
| int retval = 0, count = 0; |
| struct task_struct * p; |
| |
| read_lock(&tasklist_lock); |
| for_each_process(p) { |
| if (p->pid > 1 && p->tgid != current->tgid) { |
| int err = group_send_sig_info(sig, info, p); |
| ++count; |
| if (err != -EPERM) |
| retval = err; |
| } |
| } |
| read_unlock(&tasklist_lock); |
| return count ? retval : -ESRCH; |
| } else if (pid < 0) { |
| return kill_pg_info(sig, info, -pid); |
| } else { |
| return kill_proc_info(sig, info, pid); |
| } |
| } |
| |
| /* |
| * These are for backward compatibility with the rest of the kernel source. |
| */ |
| |
| /* |
| * These two are the most common entry points. They send a signal |
| * just to the specific thread. |
| */ |
| int |
| send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| { |
| int ret; |
| unsigned long flags; |
| |
| /* |
| * Make sure legacy kernel users don't send in bad values |
| * (normal paths check this in check_kill_permission). |
| */ |
| if (!valid_signal(sig)) |
| return -EINVAL; |
| |
| /* |
| * We need the tasklist lock even for the specific |
| * thread case (when we don't need to follow the group |
| * lists) in order to avoid races with "p->sighand" |
| * going away or changing from under us. |
| */ |
| read_lock(&tasklist_lock); |
| spin_lock_irqsave(&p->sighand->siglock, flags); |
| ret = specific_send_sig_info(sig, info, p); |
| spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| read_unlock(&tasklist_lock); |
| return ret; |
| } |
| |
| int |
| send_sig(int sig, struct task_struct *p, int priv) |
| { |
| return send_sig_info(sig, (void*)(long)(priv != 0), p); |
| } |
| |
| /* |
| * This is the entry point for "process-wide" signals. |
| * They will go to an appropriate thread in the thread group. |
| */ |
| int |
| send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| { |
| int ret; |
| read_lock(&tasklist_lock); |
| ret = group_send_sig_info(sig, info, p); |
| read_unlock(&tasklist_lock); |
| return ret; |
| } |
| |
| void |
| force_sig(int sig, struct task_struct *p) |
| { |
| force_sig_info(sig, (void*)1L, p); |
| } |
| |
| /* |
| * When things go south during signal handling, we |
| * will force a SIGSEGV. And if the signal that caused |
| * the problem was already a SIGSEGV, we'll want to |
| * make sure we don't even try to deliver the signal.. |
| */ |
| int |
| force_sigsegv(int sig, struct task_struct *p) |
| { |
| if (sig == SIGSEGV) { |
| unsigned long flags; |
| spin_lock_irqsave(&p->sighand->siglock, flags); |
| p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; |
| spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| } |
| force_sig(SIGSEGV, p); |
| return 0; |
| } |
| |
| int |
| kill_pg(pid_t pgrp, int sig, int priv) |
| { |
| return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp); |
| } |
| |
| int |
| kill_proc(pid_t pid, int sig, int priv) |
| { |
| return kill_proc_info(sig, (void *)(long)(priv != 0), pid); |
| } |
| |
| /* |
| * These functions support sending signals using preallocated sigqueue |
| * structures. This is needed "because realtime applications cannot |
| * afford to lose notifications of asynchronous events, like timer |
| * expirations or I/O completions". In the case of Posix Timers |
| * we allocate the sigqueue structure from the timer_create. If this |
| * allocation fails we are able to report the failure to the application |
| * with an EAGAIN error. |
| */ |
| |
| struct sigqueue *sigqueue_alloc(void) |
| { |
| struct sigqueue *q; |
| |
| if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) |
| q->flags |= SIGQUEUE_PREALLOC; |
| return(q); |
| } |
| |
| void sigqueue_free(struct sigqueue *q) |
| { |
| unsigned long flags; |
| BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
| /* |
| * If the signal is still pending remove it from the |
| * pending queue. |
| */ |
| if (unlikely(!list_empty(&q->list))) { |
| read_lock(&tasklist_lock); |
| spin_lock_irqsave(q->lock, flags); |
| if (!list_empty(&q->list)) |
| list_del_init(&q->list); |
| spin_unlock_irqrestore(q->lock, flags); |
| read_unlock(&tasklist_lock); |
| } |
| q->flags &= ~SIGQUEUE_PREALLOC; |
| __sigqueue_free(q); |
| } |
| |
| int |
| send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) |
| { |
| unsigned long flags; |
| int ret = 0; |
| |
| /* |
| * We need the tasklist lock even for the specific |
| * thread case (when we don't need to follow the group |
| * lists) in order to avoid races with "p->sighand" |
| * going away or changing from under us. |
| */ |
| BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
| read_lock(&tasklist_lock); |
| spin_lock_irqsave(&p->sighand->siglock, flags); |
| |
| if (unlikely(!list_empty(&q->list))) { |
| /* |
| * If an SI_TIMER entry is already queue just increment |
| * the overrun count. |
| */ |
| if (q->info.si_code != SI_TIMER) |
| BUG(); |
| q->info.si_overrun++; |
| goto out; |
| } |
| /* Short-circuit ignored signals. */ |
| if (sig_ignored(p, sig)) { |
| ret = 1; |
| goto out; |
| } |
| |
| q->lock = &p->sighand->siglock; |
| list_add_tail(&q->list, &p->pending.list); |
| sigaddset(&p->pending.signal, sig); |
| if (!sigismember(&p->blocked, sig)) |
| signal_wake_up(p, sig == SIGKILL); |
| |
| out: |
| spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| read_unlock(&tasklist_lock); |
| return(ret); |
| } |
| |
| int |
| send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) |
| { |
| unsigned long flags; |
| int ret = 0; |
| |
| BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
| read_lock(&tasklist_lock); |
| spin_lock_irqsave(&p->sighand->siglock, flags); |
| handle_stop_signal(sig, p); |
| |
| /* Short-circuit ignored signals. */ |
| if (sig_ignored(p, sig)) { |
| ret = 1; |
| goto out; |
| } |
| |
| if (unlikely(!list_empty(&q->list))) { |
| /* |
| * If an SI_TIMER entry is already queue just increment |
| * the overrun count. Other uses should not try to |
| * send the signal multiple times. |
| */ |
| if (q->info.si_code != SI_TIMER) |
| BUG(); |
| q->info.si_overrun++; |
| goto out; |
| } |
| |
| /* |
| * Put this signal on the shared-pending queue. |
| * We always use the shared queue for process-wide signals, |
| * to avoid several races. |
| */ |
| q->lock = &p->sighand->siglock; |
| list_add_tail(&q->list, &p->signal->shared_pending.list); |
| sigaddset(&p->signal->shared_pending.signal, sig); |
| |
| __group_complete_signal(sig, p); |
| out: |
| spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| read_unlock(&tasklist_lock); |
| return(ret); |
| } |
| |
| /* |
| * Wake up any threads in the parent blocked in wait* syscalls. |
| */ |
| static inline void __wake_up_parent(struct task_struct *p, |
| struct task_struct *parent) |
| { |
| wake_up_interruptible_sync(&parent->signal->wait_chldexit); |
| } |
| |
| /* |
| * Let a parent know about the death of a child. |
| * For a stopped/continued status change, use do_notify_parent_cldstop instead. |
| */ |
| |
| void do_notify_parent(struct task_struct *tsk, int sig) |
| { |
| struct siginfo info; |
| unsigned long flags; |
| struct sighand_struct *psig; |
| |
| BUG_ON(sig == -1); |
| |
| /* do_notify_parent_cldstop should have been called instead. */ |
| BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); |
| |
| BUG_ON(!tsk->ptrace && |
| (tsk->group_leader != tsk || !thread_group_empty(tsk))); |
| |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_pid = tsk->pid; |
| info.si_uid = tsk->uid; |
| |
| /* FIXME: find out whether or not this is supposed to be c*time. */ |
| info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, |
| tsk->signal->utime)); |
| info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, |
| tsk->signal->stime)); |
| |
| info.si_status = tsk->exit_code & 0x7f; |
| if (tsk->exit_code & 0x80) |
| info.si_code = CLD_DUMPED; |
| else if (tsk->exit_code & 0x7f) |
| info.si_code = CLD_KILLED; |
| else { |
| info.si_code = CLD_EXITED; |
| info.si_status = tsk->exit_code >> 8; |
| } |
| |
| psig = tsk->parent->sighand; |
| spin_lock_irqsave(&psig->siglock, flags); |
| if (sig == SIGCHLD && |
| (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || |
| (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { |
| /* |
| * We are exiting and our parent doesn't care. POSIX.1 |
| * defines special semantics for setting SIGCHLD to SIG_IGN |
| * or setting the SA_NOCLDWAIT flag: we should be reaped |
| * automatically and not left for our parent's wait4 call. |
| * Rather than having the parent do it as a magic kind of |
| * signal handler, we just set this to tell do_exit that we |
| * can be cleaned up without becoming a zombie. Note that |
| * we still call __wake_up_parent in this case, because a |
| * blocked sys_wait4 might now return -ECHILD. |
| * |
| * Whether we send SIGCHLD or not for SA_NOCLDWAIT |
| * is implementation-defined: we do (if you don't want |
| * it, just use SIG_IGN instead). |
| */ |
| tsk->exit_signal = -1; |
| if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) |
| sig = 0; |
| } |
| if (valid_signal(sig) && sig > 0) |
| __group_send_sig_info(sig, &info, tsk->parent); |
| __wake_up_parent(tsk, tsk->parent); |
| spin_unlock_irqrestore(&psig->siglock, flags); |
| } |
| |
| static void |
| do_notify_parent_cldstop(struct task_struct *tsk, struct task_struct *parent, |
| int why) |
| { |
| struct siginfo info; |
| unsigned long flags; |
| struct sighand_struct *sighand; |
| |
| info.si_signo = SIGCHLD; |
| info.si_errno = 0; |
| info.si_pid = tsk->pid; |
| info.si_uid = tsk->uid; |
| |
| /* FIXME: find out whether or not this is supposed to be c*time. */ |
| info.si_utime = cputime_to_jiffies(tsk->utime); |
| info.si_stime = cputime_to_jiffies(tsk->stime); |
| |
| info.si_code = why; |
| switch (why) { |
| case CLD_CONTINUED: |
| info.si_status = SIGCONT; |
| break; |
| case CLD_STOPPED: |
| info.si_status = tsk->signal->group_exit_code & 0x7f; |
| break; |
| case CLD_TRAPPED: |
| info.si_status = tsk->exit_code & 0x7f; |
| break; |
| default: |
| BUG(); |
| } |
| |
| sighand = parent->sighand; |
| spin_lock_irqsave(&sighand->siglock, flags); |
| if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && |
| !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) |
| __group_send_sig_info(SIGCHLD, &info, parent); |
| /* |
| * Even if SIGCHLD is not generated, we must wake up wait4 calls. |
| */ |
| __wake_up_parent(tsk, parent); |
| spin_unlock_irqrestore(&sighand->siglock, flags); |
| } |
| |
| /* |
| * This must be called with current->sighand->siglock held. |
| * |
| * This should be the path for all ptrace stops. |
| * We always set current->last_siginfo while stopped here. |
| * That makes it a way to test a stopped process for |
| * being ptrace-stopped vs being job-control-stopped. |
| * |
| * If we actually decide not to stop at all because the tracer is gone, |
| * we leave nostop_code in current->exit_code. |
| */ |
| static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) |
| { |
| /* |
| * If there is a group stop in progress, |
| * we must participate in the bookkeeping. |
| */ |
| if (current->signal->group_stop_count > 0) |
| --current->signal->group_stop_count; |
| |
| current->last_siginfo = info; |
| current->exit_code = exit_code; |
| |
| /* Let the debugger run. */ |
| set_current_state(TASK_TRACED); |
| spin_unlock_irq(¤t->sighand->siglock); |
| read_lock(&tasklist_lock); |
| if (likely(current->ptrace & PT_PTRACED) && |
| likely(current->parent != current->real_parent || |
| !(current->ptrace & PT_ATTACHED)) && |
| (likely(current->parent->signal != current->signal) || |
| !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) { |
| do_notify_parent_cldstop(current, current->parent, |
| CLD_TRAPPED); |
| read_unlock(&tasklist_lock); |
| schedule(); |
| } else { |
| /* |
| * By the time we got the lock, our tracer went away. |
| * Don't stop here. |
| */ |
| read_unlock(&tasklist_lock); |
| set_current_state(TASK_RUNNING); |
| current->exit_code = nostop_code; |
| } |
| |
| /* |
| * We are back. Now reacquire the siglock before touching |
| * last_siginfo, so that we are sure to have synchronized with |
| * any signal-sending on another CPU that wants to examine it. |
| */ |
| spin_lock_irq(¤t->sighand->siglock); |
| current->last_siginfo = NULL; |
| |
| /* |
| * Queued signals ignored us while we were stopped for tracing. |
| * So check for any that we should take before resuming user mode. |
| */ |
| recalc_sigpending(); |
| } |
| |
| void ptrace_notify(int exit_code) |
| { |
| siginfo_t info; |
| |
| BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); |
| |
| memset(&info, 0, sizeof info); |
| info.si_signo = SIGTRAP; |
| info.si_code = exit_code; |
| info.si_pid = current->pid; |
| info.si_uid = current->uid; |
| |
| /* Let the debugger run. */ |
| spin_lock_irq(¤t->sighand->siglock); |
| ptrace_stop(exit_code, 0, &info); |
| spin_unlock_irq(¤t->sighand->siglock); |
| } |
| |
| static void |
| finish_stop(int stop_count) |
| { |
| /* |
| * If there are no other threads in the group, or if there is |
| * a group stop in progress and we are the last to stop, |
| * report to the parent. When ptraced, every thread reports itself. |
| */ |
| if (stop_count < 0 || (current->ptrace & PT_PTRACED)) { |
| read_lock(&tasklist_lock); |
| do_notify_parent_cldstop(current, current->parent, |
| CLD_STOPPED); |
| read_unlock(&tasklist_lock); |
| } |
| else if (stop_count == 0) { |
| read_lock(&tasklist_lock); |
| do_notify_parent_cldstop(current->group_leader, |
| current->group_leader->real_parent, |
| CLD_STOPPED); |
| read_unlock(&tasklist_lock); |
| } |
| |
| schedule(); |
| /* |
| * Now we don't run again until continued. |
| */ |
| current->exit_code = 0; |
| } |
| |
| /* |
| * This performs the stopping for SIGSTOP and other stop signals. |
| * We have to stop all threads in the thread group. |
| * Returns nonzero if we've actually stopped and released the siglock. |
| * Returns zero if we didn't stop and still hold the siglock. |
| */ |
| static int |
| do_signal_stop(int signr) |
| { |
| struct signal_struct *sig = current->signal; |
| struct sighand_struct *sighand = current->sighand; |
| int stop_count = -1; |
| |
| if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) |
| return 0; |
| |
| if (sig->group_stop_count > 0) { |
| /* |
| * There is a group stop in progress. We don't need to |
| * start another one. |
| */ |
| signr = sig->group_exit_code; |
| stop_count = --sig->group_stop_count; |
| current->exit_code = signr; |
| set_current_state(TASK_STOPPED); |
| if (stop_count == 0) |
| sig->flags = SIGNAL_STOP_STOPPED; |
| spin_unlock_irq(&sighand->siglock); |
| } |
| else if (thread_group_empty(current)) { |
| /* |
| * Lock must be held through transition to stopped state. |
| */ |
| current->exit_code = current->signal->group_exit_code = signr; |
| set_current_state(TASK_STOPPED); |
| sig->flags = SIGNAL_STOP_STOPPED; |
| spin_unlock_irq(&sighand->siglock); |
| } |
| else { |
| /* |
| * There is no group stop already in progress. |
| * We must initiate one now, but that requires |
| * dropping siglock to get both the tasklist lock |
| * and siglock again in the proper order. Note that |
| * this allows an intervening SIGCONT to be posted. |
| * We need to check for that and bail out if necessary. |
| */ |
| struct task_struct *t; |
| |
| spin_unlock_irq(&sighand->siglock); |
| |
| /* signals can be posted during this window */ |
| |
| read_lock(&tasklist_lock); |
| spin_lock_irq(&sighand->siglock); |
| |
| if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) { |
| /* |
| * Another stop or continue happened while we |
| * didn't have the lock. We can just swallow this |
| * signal now. If we raced with a SIGCONT, that |
| * should have just cleared it now. If we raced |
| * with another processor delivering a stop signal, |
| * then the SIGCONT that wakes us up should clear it. |
| */ |
| read_unlock(&tasklist_lock); |
| return 0; |
| } |
| |
| if (sig->group_stop_count == 0) { |
| sig->group_exit_code = signr; |
| stop_count = 0; |
| for (t = next_thread(current); t != current; |
| t = next_thread(t)) |
| /* |
| * Setting state to TASK_STOPPED for a group |
| * stop is always done with the siglock held, |
| * so this check has no races. |
| */ |
| if (t->state < TASK_STOPPED) { |
| stop_count++; |
| signal_wake_up(t, 0); |
| } |
| sig->group_stop_count = stop_count; |
| } |
| else { |
| /* A race with another thread while unlocked. */ |
| signr = sig->group_exit_code; |
| stop_count = --sig->group_stop_count; |
| } |
| |
| current->exit_code = signr; |
| set_current_state(TASK_STOPPED); |
| if (stop_count == 0) |
| sig->flags = SIGNAL_STOP_STOPPED; |
| |
| spin_unlock_irq(&sighand->siglock); |
| read_unlock(&tasklist_lock); |
| } |
| |
| finish_stop(stop_count); |
| return 1; |
| } |
| |
| /* |
| * Do appropriate magic when group_stop_count > 0. |
| * We return nonzero if we stopped, after releasing the siglock. |
| * We return zero if we still hold the siglock and should look |
| * for another signal without checking group_stop_count again. |
| */ |
| static inline int handle_group_stop(void) |
| { |
| int stop_count; |
| |
| if (current->signal->group_exit_task == current) { |
| /* |
| * Group stop is so we can do a core dump, |
| * We are the initiating thread, so get on with it. |
| */ |
| current->signal->group_exit_task = NULL; |
| return 0; |
| } |
| |
| if (current->signal->flags & SIGNAL_GROUP_EXIT) |
| /* |
| * Group stop is so another thread can do a core dump, |
| * or else we are racing against a death signal. |
| * Just punt the stop so we can get the next signal. |
| */ |
| return 0; |
| |
| /* |
| * There is a group stop in progress. We stop |
| * without any associated signal being in our queue. |
| */ |
| stop_count = --current->signal->group_stop_count; |
| if (stop_count == 0) |
| current->signal->flags = SIGNAL_STOP_STOPPED; |
| current->exit_code = current->signal->group_exit_code; |
| set_current_state(TASK_STOPPED); |
| spin_unlock_irq(¤t->sighand->siglock); |
| finish_stop(stop_count); |
| return 1; |
| } |
| |
| int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, |
| struct pt_regs *regs, void *cookie) |
| { |
| sigset_t *mask = ¤t->blocked; |
| int signr = 0; |
| |
| relock: |
| spin_lock_irq(¤t->sighand->siglock); |
| for (;;) { |
| struct k_sigaction *ka; |
| |
| if (unlikely(current->signal->group_stop_count > 0) && |
| handle_group_stop()) |
| goto relock; |
| |
| signr = dequeue_signal(current, mask, info); |
| |
| if (!signr) |
| break; /* will return 0 */ |
| |
| if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { |
| ptrace_signal_deliver(regs, cookie); |
| |
| /* Let the debugger run. */ |
| ptrace_stop(signr, signr, info); |
| |
| /* We're back. Did the debugger cancel the sig? */ |
| signr = current->exit_code; |
| if (signr == 0) |
| continue; |
| |
| current->exit_code = 0; |
| |
| /* Update the siginfo structure if the signal has |
| changed. If the debugger wanted something |
| specific in the siginfo structure then it should |
| have updated *info via PTRACE_SETSIGINFO. */ |
| if (signr != info->si_signo) { |
| info->si_signo = signr; |
| info->si_errno = 0; |
| info->si_code = SI_USER; |
| info->si_pid = current->parent->pid; |
| info->si_uid = current->parent->uid; |
| } |
| |
| /* If the (new) signal is now blocked, requeue it. */ |
| if (sigismember(¤t->blocked, signr)) { |
| specific_send_sig_info(signr, info, current); |
| continue; |
| } |
| } |
| |
| ka = ¤t->sighand->action[signr-1]; |
| if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ |
| continue; |
| if (ka->sa.sa_handler != SIG_DFL) { |
| /* Run the handler. */ |
| *return_ka = *ka; |
| |
| if (ka->sa.sa_flags & SA_ONESHOT) |
| ka->sa.sa_handler = SIG_DFL; |
| |
| break; /* will return non-zero "signr" value */ |
| } |
| |
| /* |
| * Now we are doing the default action for this signal. |
| */ |
| if (sig_kernel_ignore(signr)) /* Default is nothing. */ |
| continue; |
| |
| /* Init gets no signals it doesn't want. */ |
| if (current->pid == 1) |
| continue; |
| |
| if (sig_kernel_stop(signr)) { |
| /* |
| * The default action is to stop all threads in |
| * the thread group. The job control signals |
| * do nothing in an orphaned pgrp, but SIGSTOP |
| * always works. Note that siglock needs to be |
| * dropped during the call to is_orphaned_pgrp() |
| * because of lock ordering with tasklist_lock. |
| * This allows an intervening SIGCONT to be posted. |
| * We need to check for that and bail out if necessary. |
| */ |
| if (signr != SIGSTOP) { |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| /* signals can be posted during this window */ |
| |
| if (is_orphaned_pgrp(process_group(current))) |
| goto relock; |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| } |
| |
| if (likely(do_signal_stop(signr))) { |
| /* It released the siglock. */ |
| goto relock; |
| } |
| |
| /* |
| * We didn't actually stop, due to a race |
| * with SIGCONT or something like that. |
| */ |
| continue; |
| } |
| |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| /* |
| * Anything else is fatal, maybe with a core dump. |
| */ |
| current->flags |= PF_SIGNALED; |
| if (sig_kernel_coredump(signr)) { |
| /* |
| * If it was able to dump core, this kills all |
| * other threads in the group and synchronizes with |
| * their demise. If we lost the race with another |
| * thread getting here, it set group_exit_code |
| * first and our do_group_exit call below will use |
| * that value and ignore the one we pass it. |
| */ |
| do_coredump((long)signr, signr, regs); |
| } |
| |
| /* |
| * Death signals, no core dump. |
| */ |
| do_group_exit(signr); |
| /* NOTREACHED */ |
| } |
| spin_unlock_irq(¤t->sighand->siglock); |
| return signr; |
| } |
| |
| EXPORT_SYMBOL(recalc_sigpending); |
| EXPORT_SYMBOL_GPL(dequeue_signal); |
| EXPORT_SYMBOL(flush_signals); |
| EXPORT_SYMBOL(force_sig); |
| EXPORT_SYMBOL(kill_pg); |
| EXPORT_SYMBOL(kill_proc); |
| EXPORT_SYMBOL(ptrace_notify); |
| EXPORT_SYMBOL(send_sig); |
| EXPORT_SYMBOL(send_sig_info); |
| EXPORT_SYMBOL(sigprocmask); |
| EXPORT_SYMBOL(block_all_signals); |
| EXPORT_SYMBOL(unblock_all_signals); |
| |
| |
| /* |
| * System call entry points. |
| */ |
| |
| asmlinkage long sys_restart_syscall(void) |
| { |
| struct restart_block *restart = ¤t_thread_info()->restart_block; |
| return restart->fn(restart); |
| } |
| |
| long do_no_restart_syscall(struct restart_block *param) |
| { |
| return -EINTR; |
| } |
| |
| /* |
| * We don't need to get the kernel lock - this is all local to this |
| * particular thread.. (and that's good, because this is _heavily_ |
| * used by various programs) |
| */ |
| |
| /* |
| * This is also useful for kernel threads that want to temporarily |
| * (or permanently) block certain signals. |
| * |
| * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel |
| * interface happily blocks "unblockable" signals like SIGKILL |
| * and friends. |
| */ |
| int sigprocmask(int how, sigset_t *set, sigset_t *oldset) |
| { |
| int error; |
| sigset_t old_block; |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| old_block = current->blocked; |
| error = 0; |
| switch (how) { |
| case SIG_BLOCK: |
| sigorsets(¤t->blocked, ¤t->blocked, set); |
| break; |
| case SIG_UNBLOCK: |
| signandsets(¤t->blocked, ¤t->blocked, set); |
| break; |
| case SIG_SETMASK: |
| current->blocked = *set; |
| break; |
| default: |
| error = -EINVAL; |
| } |
| recalc_sigpending(); |
| spin_unlock_irq(¤t->sighand->siglock); |
| if (oldset) |
| *oldset = old_block; |
| return error; |
| } |
| |
| asmlinkage long |
| sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) |
| { |
| int error = -EINVAL; |
| sigset_t old_set, new_set; |
| |
| /* XXX: Don't preclude handling different sized sigset_t's. */ |
| if (sigsetsize != sizeof(sigset_t)) |
| goto out; |
| |
| if (set) { |
| error = -EFAULT; |
| if (copy_from_user(&new_set, set, sizeof(*set))) |
| goto out; |
| sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| |
| error = sigprocmask(how, &new_set, &old_set); |
| if (error) |
| goto out; |
| if (oset) |
| goto set_old; |
| } else if (oset) { |
| spin_lock_irq(¤t->sighand->siglock); |
| old_set = current->blocked; |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| set_old: |
| error = -EFAULT; |
| if (copy_to_user(oset, &old_set, sizeof(*oset))) |
| goto out; |
| } |
| error = 0; |
| out: |
| return error; |
| } |
| |
| long do_sigpending(void __user *set, unsigned long sigsetsize) |
| { |
| long error = -EINVAL; |
| sigset_t pending; |
| |
| if (sigsetsize > sizeof(sigset_t)) |
| goto out; |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| sigorsets(&pending, ¤t->pending.signal, |
| ¤t->signal->shared_pending.signal); |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| /* Outside the lock because only this thread touches it. */ |
| sigandsets(&pending, ¤t->blocked, &pending); |
| |
| error = -EFAULT; |
| if (!copy_to_user(set, &pending, sigsetsize)) |
| error = 0; |
| |
| out: |
| return error; |
| } |
| |
| asmlinkage long |
| sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) |
| { |
| return do_sigpending(set, sigsetsize); |
| } |
| |
| #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER |
| |
| int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) |
| { |
| int err; |
| |
| if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) |
| return -EFAULT; |
| if (from->si_code < 0) |
| return __copy_to_user(to, from, sizeof(siginfo_t)) |
| ? -EFAULT : 0; |
| /* |
| * If you change siginfo_t structure, please be sure |
| * this code is fixed accordingly. |
| * It should never copy any pad contained in the structure |
| * to avoid security leaks, but must copy the generic |
| * 3 ints plus the relevant union member. |
| */ |
| err = __put_user(from->si_signo, &to->si_signo); |
| err |= __put_user(from->si_errno, &to->si_errno); |
| err |= __put_user((short)from->si_code, &to->si_code); |
| switch (from->si_code & __SI_MASK) { |
| case __SI_KILL: |
| err |= __put_user(from->si_pid, &to->si_pid); |
| err |= __put_user(from->si_uid, &to->si_uid); |
| break; |
| case __SI_TIMER: |
| err |= __put_user(from->si_tid, &to->si_tid); |
| err |= __put_user(from->si_overrun, &to->si_overrun); |
| err |= __put_user(from->si_ptr, &to->si_ptr); |
| break; |
| case __SI_POLL: |
| err |= __put_user(from->si_band, &to->si_band); |
| err |= __put_user(from->si_fd, &to->si_fd); |
| break; |
| case __SI_FAULT: |
| err |= __put_user(from->si_addr, &to->si_addr); |
| #ifdef __ARCH_SI_TRAPNO |
| err |= __put_user(from->si_trapno, &to->si_trapno); |
| #endif |
| break; |
| case __SI_CHLD: |
| err |= __put_user(from->si_pid, &to->si_pid); |
| err |= __put_user(from->si_uid, &to->si_uid); |
| err |= __put_user(from->si_status, &to->si_status); |
| err |= __put_user(from->si_utime, &to->si_utime); |
| err |= __put_user(from->si_stime, &to->si_stime); |
| break; |
| case __SI_RT: /* This is not generated by the kernel as of now. */ |
| case __SI_MESGQ: /* But this is */ |
| err |= __put_user(from->si_pid, &to->si_pid); |
| err |= __put_user(from->si_uid, &to->si_uid); |
| err |= __put_user(from->si_ptr, &to->si_ptr); |
| break; |
| default: /* this is just in case for now ... */ |
| err |= __put_user(from->si_pid, &to->si_pid); |
| err |= __put_user(from->si_uid, &to->si_uid); |
| break; |
| } |
| return err; |
| } |
| |
| #endif |
| |
| asmlinkage long |
| sys_rt_sigtimedwait(const sigset_t __user *uthese, |
| siginfo_t __user *uinfo, |
| const struct timespec __user *uts, |
| size_t sigsetsize) |
| { |
| int ret, sig; |
| sigset_t these; |
| struct timespec ts; |
| siginfo_t info; |
| long timeout = 0; |
| |
| /* XXX: Don't preclude handling different sized sigset_t's. */ |
| if (sigsetsize != sizeof(sigset_t)) |
| return -EINVAL; |
| |
| if (copy_from_user(&these, uthese, sizeof(these))) |
| return -EFAULT; |
| |
| /* |
| * Invert the set of allowed signals to get those we |
| * want to block. |
| */ |
| sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| signotset(&these); |
| |
| if (uts) { |
| if (copy_from_user(&ts, uts, sizeof(ts))) |
| return -EFAULT; |
| if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 |
| || ts.tv_sec < 0) |
| return -EINVAL; |
| } |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| sig = dequeue_signal(current, &these, &info); |
| if (!sig) { |
| timeout = MAX_SCHEDULE_TIMEOUT; |
| if (uts) |
| timeout = (timespec_to_jiffies(&ts) |
| + (ts.tv_sec || ts.tv_nsec)); |
| |
| if (timeout) { |
| /* None ready -- temporarily unblock those we're |
| * interested while we are sleeping in so that we'll |
| * be awakened when they arrive. */ |
| current->real_blocked = current->blocked; |
| sigandsets(¤t->blocked, ¤t->blocked, &these); |
| recalc_sigpending(); |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| current->state = TASK_INTERRUPTIBLE; |
| timeout = schedule_timeout(timeout); |
| |
| if (current->flags & PF_FREEZE) |
| refrigerator(PF_FREEZE); |
| spin_lock_irq(¤t->sighand->siglock); |
| sig = dequeue_signal(current, &these, &info); |
| current->blocked = current->real_blocked; |
| siginitset(¤t->real_blocked, 0); |
| recalc_sigpending(); |
| } |
| } |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| if (sig) { |
| ret = sig; |
| if (uinfo) { |
| if (copy_siginfo_to_user(uinfo, &info)) |
| ret = -EFAULT; |
| } |
| } else { |
| ret = -EAGAIN; |
| if (timeout) |
| ret = -EINTR; |
| } |
| |
| return ret; |
| } |
| |
| asmlinkage long |
| sys_kill(int pid, int sig) |
| { |
| struct siginfo info; |
| |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = SI_USER; |
| info.si_pid = current->tgid; |
| info.si_uid = current->uid; |
| |
| return kill_something_info(sig, &info, pid); |
| } |
| |
| /** |
| * sys_tgkill - send signal to one specific thread |
| * @tgid: the thread group ID of the thread |
| * @pid: the PID of the thread |
| * @sig: signal to be sent |
| * |
| * This syscall also checks the tgid and returns -ESRCH even if the PID |
| * exists but it's not belonging to the target process anymore. This |
| * method solves the problem of threads exiting and PIDs getting reused. |
| */ |
| asmlinkage long sys_tgkill(int tgid, int pid, int sig) |
| { |
| struct siginfo info; |
| int error; |
| struct task_struct *p; |
| |
| /* This is only valid for single tasks */ |
| if (pid <= 0 || tgid <= 0) |
| return -EINVAL; |
| |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = SI_TKILL; |
| info.si_pid = current->tgid; |
| info.si_uid = current->uid; |
| |
| read_lock(&tasklist_lock); |
| p = find_task_by_pid(pid); |
| error = -ESRCH; |
| if (p && (p->tgid == tgid)) { |
| error = check_kill_permission(sig, &info, p); |
| /* |
| * The null signal is a permissions and process existence |
| * probe. No signal is actually delivered. |
| */ |
| if (!error && sig && p->sighand) { |
| spin_lock_irq(&p->sighand->siglock); |
| handle_stop_signal(sig, p); |
| error = specific_send_sig_info(sig, &info, p); |
| spin_unlock_irq(&p->sighand->siglock); |
| } |
| } |
| read_unlock(&tasklist_lock); |
| return error; |
| } |
| |
| /* |
| * Send a signal to only one task, even if it's a CLONE_THREAD task. |
| */ |
| asmlinkage long |
| sys_tkill(int pid, int sig) |
| { |
| struct siginfo info; |
| int error; |
| struct task_struct *p; |
| |
| /* This is only valid for single tasks */ |
| if (pid <= 0) |
| return -EINVAL; |
| |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = SI_TKILL; |
| info.si_pid = current->tgid; |
| info.si_uid = current->uid; |
| |
| read_lock(&tasklist_lock); |
| p = find_task_by_pid(pid); |
| error = -ESRCH; |
| if (p) { |
| error = check_kill_permission(sig, &info, p); |
| /* |
| * The null signal is a permissions and process existence |
| * probe. No signal is actually delivered. |
| */ |
| if (!error && sig && p->sighand) { |
| spin_lock_irq(&p->sighand->siglock); |
| handle_stop_signal(sig, p); |
| error = specific_send_sig_info(sig, &info, p); |
| spin_unlock_irq(&p->sighand->siglock); |
| } |
| } |
| read_unlock(&tasklist_lock); |
| return error; |
| } |
| |
| asmlinkage long |
| sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) |
| { |
| siginfo_t info; |
| |
| if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) |
| return -EFAULT; |
| |
| /* Not even root can pretend to send signals from the kernel. |
| Nor can they impersonate a kill(), which adds source info. */ |
| if (info.si_code >= 0) |
| return -EPERM; |
| info.si_signo = sig; |
| |
| /* POSIX.1b doesn't mention process groups. */ |
| return kill_proc_info(sig, &info, pid); |
| } |
| |
| int |
| do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact) |
| { |
| struct k_sigaction *k; |
| |
| if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) |
| return -EINVAL; |
| |
| k = ¤t->sighand->action[sig-1]; |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| if (signal_pending(current)) { |
| /* |
| * If there might be a fatal signal pending on multiple |
| * threads, make sure we take it before changing the action. |
| */ |
| spin_unlock_irq(¤t->sighand->siglock); |
| return -ERESTARTNOINTR; |
| } |
| |
| if (oact) |
| *oact = *k; |
| |
| if (act) { |
| /* |
| * POSIX 3.3.1.3: |
| * "Setting a signal action to SIG_IGN for a signal that is |
| * pending shall cause the pending signal to be discarded, |
| * whether or not it is blocked." |
| * |
| * "Setting a signal action to SIG_DFL for a signal that is |
| * pending and whose default action is to ignore the signal |
| * (for example, SIGCHLD), shall cause the pending signal to |
| * be discarded, whether or not it is blocked" |
| */ |
| if (act->sa.sa_handler == SIG_IGN || |
| (act->sa.sa_handler == SIG_DFL && |
| sig_kernel_ignore(sig))) { |
| /* |
| * This is a fairly rare case, so we only take the |
| * tasklist_lock once we're sure we'll need it. |
| * Now we must do this little unlock and relock |
| * dance to maintain the lock hierarchy. |
| */ |
| struct task_struct *t = current; |
| spin_unlock_irq(&t->sighand->siglock); |
| read_lock(&tasklist_lock); |
| spin_lock_irq(&t->sighand->siglock); |
| *k = *act; |
| sigdelsetmask(&k->sa.sa_mask, |
| sigmask(SIGKILL) | sigmask(SIGSTOP)); |
| rm_from_queue(sigmask(sig), &t->signal->shared_pending); |
| do { |
| rm_from_queue(sigmask(sig), &t->pending); |
| recalc_sigpending_tsk(t); |
| t = next_thread(t); |
| } while (t != current); |
| spin_unlock_irq(¤t->sighand->siglock); |
| read_unlock(&tasklist_lock); |
| return 0; |
| } |
| |
| *k = *act; |
| sigdelsetmask(&k->sa.sa_mask, |
| sigmask(SIGKILL) | sigmask(SIGSTOP)); |
| } |
| |
| spin_unlock_irq(¤t->sighand->siglock); |
| return 0; |
| } |
| |
| int |
| do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) |
| { |
| stack_t oss; |
| int error; |
| |
| if (uoss) { |
| oss.ss_sp = (void __user *) current->sas_ss_sp; |
| oss.ss_size = current->sas_ss_size; |
| oss.ss_flags = sas_ss_flags(sp); |
| } |
| |
| if (uss) { |
| void __user *ss_sp; |
| size_t ss_size; |
| int ss_flags; |
| |
| error = -EFAULT; |
| if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) |
| || __get_user(ss_sp, &uss->ss_sp) |
| || __get_user(ss_flags, &uss->ss_flags) |
| || __get_user(ss_size, &uss->ss_size)) |
| goto out; |
| |
| error = -EPERM; |
| if (on_sig_stack(sp)) |
| goto out; |
| |
| error = -EINVAL; |
| /* |
| * |
| * Note - this code used to test ss_flags incorrectly |
| * old code may have been written using ss_flags==0 |
| * to mean ss_flags==SS_ONSTACK (as this was the only |
| * way that worked) - this fix preserves that older |
| * mechanism |
| */ |
| if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) |
| goto out; |
| |
| if (ss_flags == SS_DISABLE) { |
| ss_size = 0; |
| ss_sp = NULL; |
| } else { |
| error = -ENOMEM; |
| if (ss_size < MINSIGSTKSZ) |
| goto out; |
| } |
| |
| current->sas_ss_sp = (unsigned long) ss_sp; |
| current->sas_ss_size = ss_size; |
| } |
| |
| if (uoss) { |
| error = -EFAULT; |
| if (copy_to_user(uoss, &oss, sizeof(oss))) |
| goto out; |
| } |
| |
| error = 0; |
| out: |
| return error; |
| } |
| |
| #ifdef __ARCH_WANT_SYS_SIGPENDING |
| |
| asmlinkage long |
| sys_sigpending(old_sigset_t __user *set) |
| { |
| return do_sigpending(set, sizeof(*set)); |
| } |
| |
| #endif |
| |
| #ifdef __ARCH_WANT_SYS_SIGPROCMASK |
| /* Some platforms have their own version with special arguments others |
| support only sys_rt_sigprocmask. */ |
| |
| asmlinkage long |
| sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) |
| { |
| int error; |
| old_sigset_t old_set, new_set; |
| |
| if (set) { |
| error = -EFAULT; |
| if (copy_from_user(&new_set, set, sizeof(*set))) |
| goto out; |
| new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| old_set = current->blocked.sig[0]; |
| |
| error = 0; |
| switch (how) { |
| default: |
| error = -EINVAL; |
| break; |
| case SIG_BLOCK: |
| sigaddsetmask(¤t->blocked, new_set); |
| break; |
| case SIG_UNBLOCK: |
| sigdelsetmask(¤t->blocked, new_set); |
| break; |
| case SIG_SETMASK: |
| current->blocked.sig[0] = new_set; |
| break; |
| } |
| |
| recalc_sigpending(); |
| spin_unlock_irq(¤t->sighand->siglock); |
| if (error) |
| goto out; |
| if (oset) |
| goto set_old; |
| } else if (oset) { |
| old_set = current->blocked.sig[0]; |
| set_old: |
| error = -EFAULT; |
| if (copy_to_user(oset, &old_set, sizeof(*oset))) |
| goto out; |
| } |
| error = 0; |
| out: |
| return error; |
| } |
| #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ |
| |
| #ifdef __ARCH_WANT_SYS_RT_SIGACTION |
| asmlinkage long |
| sys_rt_sigaction(int sig, |
| const struct sigaction __user *act, |
| struct sigaction __user *oact, |
| size_t sigsetsize) |
| { |
| struct k_sigaction new_sa, old_sa; |
| int ret = -EINVAL; |
| |
| /* XXX: Don't preclude handling different sized sigset_t's. */ |
| if (sigsetsize != sizeof(sigset_t)) |
| goto out; |
| |
| if (act) { |
| if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) |
| return -EFAULT; |
| } |
| |
| ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); |
| |
| if (!ret && oact) { |
| if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) |
| return -EFAULT; |
| } |
| out: |
| return ret; |
| } |
| #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ |
| |
| #ifdef __ARCH_WANT_SYS_SGETMASK |
| |
| /* |
| * For backwards compatibility. Functionality superseded by sigprocmask. |
| */ |
| asmlinkage long |
| sys_sgetmask(void) |
| { |
| /* SMP safe */ |
| return current->blocked.sig[0]; |
| } |
| |
| asmlinkage long |
| sys_ssetmask(int newmask) |
| { |
| int old; |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| old = current->blocked.sig[0]; |
| |
| siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| |
| sigmask(SIGSTOP))); |
| recalc_sigpending(); |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| return old; |
| } |
| #endif /* __ARCH_WANT_SGETMASK */ |
| |
| #ifdef __ARCH_WANT_SYS_SIGNAL |
| /* |
| * For backwards compatibility. Functionality superseded by sigaction. |
| */ |
| asmlinkage unsigned long |
| sys_signal(int sig, __sighandler_t handler) |
| { |
| struct k_sigaction new_sa, old_sa; |
| int ret; |
| |
| new_sa.sa.sa_handler = handler; |
| new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; |
| |
| ret = do_sigaction(sig, &new_sa, &old_sa); |
| |
| return ret ? ret : (unsigned long)old_sa.sa.sa_handler; |
| } |
| #endif /* __ARCH_WANT_SYS_SIGNAL */ |
| |
| #ifdef __ARCH_WANT_SYS_PAUSE |
| |
| asmlinkage long |
| sys_pause(void) |
| { |
| current->state = TASK_INTERRUPTIBLE; |
| schedule(); |
| return -ERESTARTNOHAND; |
| } |
| |
| #endif |
| |
| void __init signals_init(void) |
| { |
| sigqueue_cachep = |
| kmem_cache_create("sigqueue", |
| sizeof(struct sigqueue), |
| __alignof__(struct sigqueue), |
| SLAB_PANIC, NULL, NULL); |
| } |