| /* |
| * Copyright © 2012 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eugeni Dodonov <eugeni.dodonov@intel.com> |
| * |
| */ |
| |
| #include <linux/cpufreq.h> |
| #include <drm/drm_plane_helper.h> |
| #include "i915_drv.h" |
| #include "intel_drv.h" |
| #include "../../../platform/x86/intel_ips.h" |
| #include <linux/module.h> |
| #include <drm/drm_atomic_helper.h> |
| |
| /** |
| * DOC: RC6 |
| * |
| * RC6 is a special power stage which allows the GPU to enter an very |
| * low-voltage mode when idle, using down to 0V while at this stage. This |
| * stage is entered automatically when the GPU is idle when RC6 support is |
| * enabled, and as soon as new workload arises GPU wakes up automatically as well. |
| * |
| * There are different RC6 modes available in Intel GPU, which differentiate |
| * among each other with the latency required to enter and leave RC6 and |
| * voltage consumed by the GPU in different states. |
| * |
| * The combination of the following flags define which states GPU is allowed |
| * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and |
| * RC6pp is deepest RC6. Their support by hardware varies according to the |
| * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one |
| * which brings the most power savings; deeper states save more power, but |
| * require higher latency to switch to and wake up. |
| */ |
| #define INTEL_RC6_ENABLE (1<<0) |
| #define INTEL_RC6p_ENABLE (1<<1) |
| #define INTEL_RC6pp_ENABLE (1<<2) |
| |
| static void gen9_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */ |
| I915_WRITE(CHICKEN_PAR1_1, |
| I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP); |
| |
| /* |
| * Display WA#0390: skl,bxt,kbl,glk |
| * |
| * Must match Sampler, Pixel Back End, and Media |
| * (0xE194 bit 8, 0x7014 bit 13, 0x4DDC bits 27 and 31). |
| * |
| * Including bits outside the page in the hash would |
| * require 2 (or 4?) MiB alignment of resources. Just |
| * assume the defaul hashing mode which only uses bits |
| * within the page. |
| */ |
| I915_WRITE(CHICKEN_PAR1_1, |
| I915_READ(CHICKEN_PAR1_1) & ~SKL_RC_HASH_OUTSIDE); |
| |
| I915_WRITE(GEN8_CONFIG0, |
| I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES); |
| |
| /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */ |
| I915_WRITE(GEN8_CHICKEN_DCPR_1, |
| I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM); |
| |
| /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */ |
| /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */ |
| I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | |
| DISP_FBC_WM_DIS | |
| DISP_FBC_MEMORY_WAKE); |
| |
| /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */ |
| I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | |
| ILK_DPFC_DISABLE_DUMMY0); |
| |
| if (IS_SKYLAKE(dev_priv)) { |
| /* WaDisableDopClockGating */ |
| I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL) |
| & ~GEN7_DOP_CLOCK_GATE_ENABLE); |
| } |
| } |
| |
| static void bxt_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| gen9_init_clock_gating(dev_priv); |
| |
| /* WaDisableSDEUnitClockGating:bxt */ |
| I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | |
| GEN8_SDEUNIT_CLOCK_GATE_DISABLE); |
| |
| /* |
| * FIXME: |
| * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only. |
| */ |
| I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | |
| GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ); |
| |
| /* |
| * Wa: Backlight PWM may stop in the asserted state, causing backlight |
| * to stay fully on. |
| */ |
| I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | |
| PWM1_GATING_DIS | PWM2_GATING_DIS); |
| } |
| |
| static void glk_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| gen9_init_clock_gating(dev_priv); |
| |
| /* |
| * WaDisablePWMClockGating:glk |
| * Backlight PWM may stop in the asserted state, causing backlight |
| * to stay fully on. |
| */ |
| I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | |
| PWM1_GATING_DIS | PWM2_GATING_DIS); |
| |
| /* WaDDIIOTimeout:glk */ |
| if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) { |
| u32 val = I915_READ(CHICKEN_MISC_2); |
| val &= ~(GLK_CL0_PWR_DOWN | |
| GLK_CL1_PWR_DOWN | |
| GLK_CL2_PWR_DOWN); |
| I915_WRITE(CHICKEN_MISC_2, val); |
| } |
| |
| } |
| |
| static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv) |
| { |
| u32 tmp; |
| |
| tmp = I915_READ(CLKCFG); |
| |
| switch (tmp & CLKCFG_FSB_MASK) { |
| case CLKCFG_FSB_533: |
| dev_priv->fsb_freq = 533; /* 133*4 */ |
| break; |
| case CLKCFG_FSB_800: |
| dev_priv->fsb_freq = 800; /* 200*4 */ |
| break; |
| case CLKCFG_FSB_667: |
| dev_priv->fsb_freq = 667; /* 167*4 */ |
| break; |
| case CLKCFG_FSB_400: |
| dev_priv->fsb_freq = 400; /* 100*4 */ |
| break; |
| } |
| |
| switch (tmp & CLKCFG_MEM_MASK) { |
| case CLKCFG_MEM_533: |
| dev_priv->mem_freq = 533; |
| break; |
| case CLKCFG_MEM_667: |
| dev_priv->mem_freq = 667; |
| break; |
| case CLKCFG_MEM_800: |
| dev_priv->mem_freq = 800; |
| break; |
| } |
| |
| /* detect pineview DDR3 setting */ |
| tmp = I915_READ(CSHRDDR3CTL); |
| dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0; |
| } |
| |
| static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv) |
| { |
| u16 ddrpll, csipll; |
| |
| ddrpll = I915_READ16(DDRMPLL1); |
| csipll = I915_READ16(CSIPLL0); |
| |
| switch (ddrpll & 0xff) { |
| case 0xc: |
| dev_priv->mem_freq = 800; |
| break; |
| case 0x10: |
| dev_priv->mem_freq = 1066; |
| break; |
| case 0x14: |
| dev_priv->mem_freq = 1333; |
| break; |
| case 0x18: |
| dev_priv->mem_freq = 1600; |
| break; |
| default: |
| DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n", |
| ddrpll & 0xff); |
| dev_priv->mem_freq = 0; |
| break; |
| } |
| |
| dev_priv->ips.r_t = dev_priv->mem_freq; |
| |
| switch (csipll & 0x3ff) { |
| case 0x00c: |
| dev_priv->fsb_freq = 3200; |
| break; |
| case 0x00e: |
| dev_priv->fsb_freq = 3733; |
| break; |
| case 0x010: |
| dev_priv->fsb_freq = 4266; |
| break; |
| case 0x012: |
| dev_priv->fsb_freq = 4800; |
| break; |
| case 0x014: |
| dev_priv->fsb_freq = 5333; |
| break; |
| case 0x016: |
| dev_priv->fsb_freq = 5866; |
| break; |
| case 0x018: |
| dev_priv->fsb_freq = 6400; |
| break; |
| default: |
| DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n", |
| csipll & 0x3ff); |
| dev_priv->fsb_freq = 0; |
| break; |
| } |
| |
| if (dev_priv->fsb_freq == 3200) { |
| dev_priv->ips.c_m = 0; |
| } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) { |
| dev_priv->ips.c_m = 1; |
| } else { |
| dev_priv->ips.c_m = 2; |
| } |
| } |
| |
| static const struct cxsr_latency cxsr_latency_table[] = { |
| {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ |
| {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ |
| {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ |
| {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ |
| {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ |
| |
| {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ |
| {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ |
| {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ |
| {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ |
| {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ |
| |
| {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ |
| {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ |
| {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ |
| {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ |
| {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ |
| |
| {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ |
| {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ |
| {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ |
| {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ |
| {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ |
| |
| {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ |
| {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ |
| {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ |
| {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ |
| {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ |
| |
| {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ |
| {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ |
| {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ |
| {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ |
| {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ |
| }; |
| |
| static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop, |
| bool is_ddr3, |
| int fsb, |
| int mem) |
| { |
| const struct cxsr_latency *latency; |
| int i; |
| |
| if (fsb == 0 || mem == 0) |
| return NULL; |
| |
| for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { |
| latency = &cxsr_latency_table[i]; |
| if (is_desktop == latency->is_desktop && |
| is_ddr3 == latency->is_ddr3 && |
| fsb == latency->fsb_freq && mem == latency->mem_freq) |
| return latency; |
| } |
| |
| DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); |
| |
| return NULL; |
| } |
| |
| static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable) |
| { |
| u32 val; |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); |
| if (enable) |
| val &= ~FORCE_DDR_HIGH_FREQ; |
| else |
| val |= FORCE_DDR_HIGH_FREQ; |
| val &= ~FORCE_DDR_LOW_FREQ; |
| val |= FORCE_DDR_FREQ_REQ_ACK; |
| vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); |
| |
| if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & |
| FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) |
| DRM_ERROR("timed out waiting for Punit DDR DVFS request\n"); |
| |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| } |
| |
| static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable) |
| { |
| u32 val; |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); |
| if (enable) |
| val |= DSP_MAXFIFO_PM5_ENABLE; |
| else |
| val &= ~DSP_MAXFIFO_PM5_ENABLE; |
| vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); |
| |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| } |
| |
| #define FW_WM(value, plane) \ |
| (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK) |
| |
| static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) |
| { |
| bool was_enabled; |
| u32 val; |
| |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { |
| was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; |
| I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0); |
| POSTING_READ(FW_BLC_SELF_VLV); |
| } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) { |
| was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; |
| I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0); |
| POSTING_READ(FW_BLC_SELF); |
| } else if (IS_PINEVIEW(dev_priv)) { |
| val = I915_READ(DSPFW3); |
| was_enabled = val & PINEVIEW_SELF_REFRESH_EN; |
| if (enable) |
| val |= PINEVIEW_SELF_REFRESH_EN; |
| else |
| val &= ~PINEVIEW_SELF_REFRESH_EN; |
| I915_WRITE(DSPFW3, val); |
| POSTING_READ(DSPFW3); |
| } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) { |
| was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; |
| val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) : |
| _MASKED_BIT_DISABLE(FW_BLC_SELF_EN); |
| I915_WRITE(FW_BLC_SELF, val); |
| POSTING_READ(FW_BLC_SELF); |
| } else if (IS_I915GM(dev_priv)) { |
| /* |
| * FIXME can't find a bit like this for 915G, and |
| * and yet it does have the related watermark in |
| * FW_BLC_SELF. What's going on? |
| */ |
| was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; |
| val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) : |
| _MASKED_BIT_DISABLE(INSTPM_SELF_EN); |
| I915_WRITE(INSTPM, val); |
| POSTING_READ(INSTPM); |
| } else { |
| return false; |
| } |
| |
| trace_intel_memory_cxsr(dev_priv, was_enabled, enable); |
| |
| DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n", |
| enableddisabled(enable), |
| enableddisabled(was_enabled)); |
| |
| return was_enabled; |
| } |
| |
| /** |
| * intel_set_memory_cxsr - Configure CxSR state |
| * @dev_priv: i915 device |
| * @enable: Allow vs. disallow CxSR |
| * |
| * Allow or disallow the system to enter a special CxSR |
| * (C-state self refresh) state. What typically happens in CxSR mode |
| * is that several display FIFOs may get combined into a single larger |
| * FIFO for a particular plane (so called max FIFO mode) to allow the |
| * system to defer memory fetches longer, and the memory will enter |
| * self refresh. |
| * |
| * Note that enabling CxSR does not guarantee that the system enter |
| * this special mode, nor does it guarantee that the system stays |
| * in that mode once entered. So this just allows/disallows the system |
| * to autonomously utilize the CxSR mode. Other factors such as core |
| * C-states will affect when/if the system actually enters/exits the |
| * CxSR mode. |
| * |
| * Note that on VLV/CHV this actually only controls the max FIFO mode, |
| * and the system is free to enter/exit memory self refresh at any time |
| * even when the use of CxSR has been disallowed. |
| * |
| * While the system is actually in the CxSR/max FIFO mode, some plane |
| * control registers will not get latched on vblank. Thus in order to |
| * guarantee the system will respond to changes in the plane registers |
| * we must always disallow CxSR prior to making changes to those registers. |
| * Unfortunately the system will re-evaluate the CxSR conditions at |
| * frame start which happens after vblank start (which is when the plane |
| * registers would get latched), so we can't proceed with the plane update |
| * during the same frame where we disallowed CxSR. |
| * |
| * Certain platforms also have a deeper HPLL SR mode. Fortunately the |
| * HPLL SR mode depends on CxSR itself, so we don't have to hand hold |
| * the hardware w.r.t. HPLL SR when writing to plane registers. |
| * Disallowing just CxSR is sufficient. |
| */ |
| bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) |
| { |
| bool ret; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| ret = _intel_set_memory_cxsr(dev_priv, enable); |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| dev_priv->wm.vlv.cxsr = enable; |
| else if (IS_G4X(dev_priv)) |
| dev_priv->wm.g4x.cxsr = enable; |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| |
| return ret; |
| } |
| |
| /* |
| * Latency for FIFO fetches is dependent on several factors: |
| * - memory configuration (speed, channels) |
| * - chipset |
| * - current MCH state |
| * It can be fairly high in some situations, so here we assume a fairly |
| * pessimal value. It's a tradeoff between extra memory fetches (if we |
| * set this value too high, the FIFO will fetch frequently to stay full) |
| * and power consumption (set it too low to save power and we might see |
| * FIFO underruns and display "flicker"). |
| * |
| * A value of 5us seems to be a good balance; safe for very low end |
| * platforms but not overly aggressive on lower latency configs. |
| */ |
| static const int pessimal_latency_ns = 5000; |
| |
| #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \ |
| ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8)) |
| |
| static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; |
| enum pipe pipe = crtc->pipe; |
| int sprite0_start, sprite1_start; |
| |
| switch (pipe) { |
| uint32_t dsparb, dsparb2, dsparb3; |
| case PIPE_A: |
| dsparb = I915_READ(DSPARB); |
| dsparb2 = I915_READ(DSPARB2); |
| sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0); |
| sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4); |
| break; |
| case PIPE_B: |
| dsparb = I915_READ(DSPARB); |
| dsparb2 = I915_READ(DSPARB2); |
| sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8); |
| sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12); |
| break; |
| case PIPE_C: |
| dsparb2 = I915_READ(DSPARB2); |
| dsparb3 = I915_READ(DSPARB3); |
| sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16); |
| sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20); |
| break; |
| default: |
| MISSING_CASE(pipe); |
| return; |
| } |
| |
| fifo_state->plane[PLANE_PRIMARY] = sprite0_start; |
| fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start; |
| fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start; |
| fifo_state->plane[PLANE_CURSOR] = 63; |
| } |
| |
| static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane) |
| { |
| uint32_t dsparb = I915_READ(DSPARB); |
| int size; |
| |
| size = dsparb & 0x7f; |
| if (plane) |
| size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; |
| |
| DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, |
| plane ? "B" : "A", size); |
| |
| return size; |
| } |
| |
| static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane) |
| { |
| uint32_t dsparb = I915_READ(DSPARB); |
| int size; |
| |
| size = dsparb & 0x1ff; |
| if (plane) |
| size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; |
| size >>= 1; /* Convert to cachelines */ |
| |
| DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, |
| plane ? "B" : "A", size); |
| |
| return size; |
| } |
| |
| static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane) |
| { |
| uint32_t dsparb = I915_READ(DSPARB); |
| int size; |
| |
| size = dsparb & 0x7f; |
| size >>= 2; /* Convert to cachelines */ |
| |
| DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, |
| plane ? "B" : "A", |
| size); |
| |
| return size; |
| } |
| |
| /* Pineview has different values for various configs */ |
| static const struct intel_watermark_params pineview_display_wm = { |
| .fifo_size = PINEVIEW_DISPLAY_FIFO, |
| .max_wm = PINEVIEW_MAX_WM, |
| .default_wm = PINEVIEW_DFT_WM, |
| .guard_size = PINEVIEW_GUARD_WM, |
| .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params pineview_display_hplloff_wm = { |
| .fifo_size = PINEVIEW_DISPLAY_FIFO, |
| .max_wm = PINEVIEW_MAX_WM, |
| .default_wm = PINEVIEW_DFT_HPLLOFF_WM, |
| .guard_size = PINEVIEW_GUARD_WM, |
| .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params pineview_cursor_wm = { |
| .fifo_size = PINEVIEW_CURSOR_FIFO, |
| .max_wm = PINEVIEW_CURSOR_MAX_WM, |
| .default_wm = PINEVIEW_CURSOR_DFT_WM, |
| .guard_size = PINEVIEW_CURSOR_GUARD_WM, |
| .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params pineview_cursor_hplloff_wm = { |
| .fifo_size = PINEVIEW_CURSOR_FIFO, |
| .max_wm = PINEVIEW_CURSOR_MAX_WM, |
| .default_wm = PINEVIEW_CURSOR_DFT_WM, |
| .guard_size = PINEVIEW_CURSOR_GUARD_WM, |
| .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params i965_cursor_wm_info = { |
| .fifo_size = I965_CURSOR_FIFO, |
| .max_wm = I965_CURSOR_MAX_WM, |
| .default_wm = I965_CURSOR_DFT_WM, |
| .guard_size = 2, |
| .cacheline_size = I915_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params i945_wm_info = { |
| .fifo_size = I945_FIFO_SIZE, |
| .max_wm = I915_MAX_WM, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I915_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params i915_wm_info = { |
| .fifo_size = I915_FIFO_SIZE, |
| .max_wm = I915_MAX_WM, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I915_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params i830_a_wm_info = { |
| .fifo_size = I855GM_FIFO_SIZE, |
| .max_wm = I915_MAX_WM, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I830_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params i830_bc_wm_info = { |
| .fifo_size = I855GM_FIFO_SIZE, |
| .max_wm = I915_MAX_WM/2, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I830_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params i845_wm_info = { |
| .fifo_size = I830_FIFO_SIZE, |
| .max_wm = I915_MAX_WM, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I830_FIFO_LINE_SIZE, |
| }; |
| |
| /** |
| * intel_wm_method1 - Method 1 / "small buffer" watermark formula |
| * @pixel_rate: Pipe pixel rate in kHz |
| * @cpp: Plane bytes per pixel |
| * @latency: Memory wakeup latency in 0.1us units |
| * |
| * Compute the watermark using the method 1 or "small buffer" |
| * formula. The caller may additonally add extra cachelines |
| * to account for TLB misses and clock crossings. |
| * |
| * This method is concerned with the short term drain rate |
| * of the FIFO, ie. it does not account for blanking periods |
| * which would effectively reduce the average drain rate across |
| * a longer period. The name "small" refers to the fact the |
| * FIFO is relatively small compared to the amount of data |
| * fetched. |
| * |
| * The FIFO level vs. time graph might look something like: |
| * |
| * |\ |\ |
| * | \ | \ |
| * __---__---__ (- plane active, _ blanking) |
| * -> time |
| * |
| * or perhaps like this: |
| * |
| * |\|\ |\|\ |
| * __----__----__ (- plane active, _ blanking) |
| * -> time |
| * |
| * Returns: |
| * The watermark in bytes |
| */ |
| static unsigned int intel_wm_method1(unsigned int pixel_rate, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| uint64_t ret; |
| |
| ret = (uint64_t) pixel_rate * cpp * latency; |
| ret = DIV_ROUND_UP_ULL(ret, 10000); |
| |
| return ret; |
| } |
| |
| /** |
| * intel_wm_method2 - Method 2 / "large buffer" watermark formula |
| * @pixel_rate: Pipe pixel rate in kHz |
| * @htotal: Pipe horizontal total |
| * @width: Plane width in pixels |
| * @cpp: Plane bytes per pixel |
| * @latency: Memory wakeup latency in 0.1us units |
| * |
| * Compute the watermark using the method 2 or "large buffer" |
| * formula. The caller may additonally add extra cachelines |
| * to account for TLB misses and clock crossings. |
| * |
| * This method is concerned with the long term drain rate |
| * of the FIFO, ie. it does account for blanking periods |
| * which effectively reduce the average drain rate across |
| * a longer period. The name "large" refers to the fact the |
| * FIFO is relatively large compared to the amount of data |
| * fetched. |
| * |
| * The FIFO level vs. time graph might look something like: |
| * |
| * |\___ |\___ |
| * | \___ | \___ |
| * | \ | \ |
| * __ --__--__--__--__--__--__ (- plane active, _ blanking) |
| * -> time |
| * |
| * Returns: |
| * The watermark in bytes |
| */ |
| static unsigned int intel_wm_method2(unsigned int pixel_rate, |
| unsigned int htotal, |
| unsigned int width, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| unsigned int ret; |
| |
| /* |
| * FIXME remove once all users are computing |
| * watermarks in the correct place. |
| */ |
| if (WARN_ON_ONCE(htotal == 0)) |
| htotal = 1; |
| |
| ret = (latency * pixel_rate) / (htotal * 10000); |
| ret = (ret + 1) * width * cpp; |
| |
| return ret; |
| } |
| |
| /** |
| * intel_calculate_wm - calculate watermark level |
| * @pixel_rate: pixel clock |
| * @wm: chip FIFO params |
| * @cpp: bytes per pixel |
| * @latency_ns: memory latency for the platform |
| * |
| * Calculate the watermark level (the level at which the display plane will |
| * start fetching from memory again). Each chip has a different display |
| * FIFO size and allocation, so the caller needs to figure that out and pass |
| * in the correct intel_watermark_params structure. |
| * |
| * As the pixel clock runs, the FIFO will be drained at a rate that depends |
| * on the pixel size. When it reaches the watermark level, it'll start |
| * fetching FIFO line sized based chunks from memory until the FIFO fills |
| * past the watermark point. If the FIFO drains completely, a FIFO underrun |
| * will occur, and a display engine hang could result. |
| */ |
| static unsigned int intel_calculate_wm(int pixel_rate, |
| const struct intel_watermark_params *wm, |
| int fifo_size, int cpp, |
| unsigned int latency_ns) |
| { |
| int entries, wm_size; |
| |
| /* |
| * Note: we need to make sure we don't overflow for various clock & |
| * latency values. |
| * clocks go from a few thousand to several hundred thousand. |
| * latency is usually a few thousand |
| */ |
| entries = intel_wm_method1(pixel_rate, cpp, |
| latency_ns / 100); |
| entries = DIV_ROUND_UP(entries, wm->cacheline_size) + |
| wm->guard_size; |
| DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries); |
| |
| wm_size = fifo_size - entries; |
| DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size); |
| |
| /* Don't promote wm_size to unsigned... */ |
| if (wm_size > wm->max_wm) |
| wm_size = wm->max_wm; |
| if (wm_size <= 0) |
| wm_size = wm->default_wm; |
| |
| /* |
| * Bspec seems to indicate that the value shouldn't be lower than |
| * 'burst size + 1'. Certainly 830 is quite unhappy with low values. |
| * Lets go for 8 which is the burst size since certain platforms |
| * already use a hardcoded 8 (which is what the spec says should be |
| * done). |
| */ |
| if (wm_size <= 8) |
| wm_size = 8; |
| |
| return wm_size; |
| } |
| |
| static bool is_disabling(int old, int new, int threshold) |
| { |
| return old >= threshold && new < threshold; |
| } |
| |
| static bool is_enabling(int old, int new, int threshold) |
| { |
| return old < threshold && new >= threshold; |
| } |
| |
| static int intel_wm_num_levels(struct drm_i915_private *dev_priv) |
| { |
| return dev_priv->wm.max_level + 1; |
| } |
| |
| static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->base.plane); |
| |
| /* FIXME check the 'enable' instead */ |
| if (!crtc_state->base.active) |
| return false; |
| |
| /* |
| * Treat cursor with fb as always visible since cursor updates |
| * can happen faster than the vrefresh rate, and the current |
| * watermark code doesn't handle that correctly. Cursor updates |
| * which set/clear the fb or change the cursor size are going |
| * to get throttled by intel_legacy_cursor_update() to work |
| * around this problem with the watermark code. |
| */ |
| if (plane->id == PLANE_CURSOR) |
| return plane_state->base.fb != NULL; |
| else |
| return plane_state->base.visible; |
| } |
| |
| static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv) |
| { |
| struct intel_crtc *crtc, *enabled = NULL; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| if (intel_crtc_active(crtc)) { |
| if (enabled) |
| return NULL; |
| enabled = crtc; |
| } |
| } |
| |
| return enabled; |
| } |
| |
| static void pineview_update_wm(struct intel_crtc *unused_crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); |
| struct intel_crtc *crtc; |
| const struct cxsr_latency *latency; |
| u32 reg; |
| unsigned int wm; |
| |
| latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv), |
| dev_priv->is_ddr3, |
| dev_priv->fsb_freq, |
| dev_priv->mem_freq); |
| if (!latency) { |
| DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); |
| intel_set_memory_cxsr(dev_priv, false); |
| return; |
| } |
| |
| crtc = single_enabled_crtc(dev_priv); |
| if (crtc) { |
| const struct drm_display_mode *adjusted_mode = |
| &crtc->config->base.adjusted_mode; |
| const struct drm_framebuffer *fb = |
| crtc->base.primary->state->fb; |
| int cpp = fb->format->cpp[0]; |
| int clock = adjusted_mode->crtc_clock; |
| |
| /* Display SR */ |
| wm = intel_calculate_wm(clock, &pineview_display_wm, |
| pineview_display_wm.fifo_size, |
| cpp, latency->display_sr); |
| reg = I915_READ(DSPFW1); |
| reg &= ~DSPFW_SR_MASK; |
| reg |= FW_WM(wm, SR); |
| I915_WRITE(DSPFW1, reg); |
| DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg); |
| |
| /* cursor SR */ |
| wm = intel_calculate_wm(clock, &pineview_cursor_wm, |
| pineview_display_wm.fifo_size, |
| 4, latency->cursor_sr); |
| reg = I915_READ(DSPFW3); |
| reg &= ~DSPFW_CURSOR_SR_MASK; |
| reg |= FW_WM(wm, CURSOR_SR); |
| I915_WRITE(DSPFW3, reg); |
| |
| /* Display HPLL off SR */ |
| wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm, |
| pineview_display_hplloff_wm.fifo_size, |
| cpp, latency->display_hpll_disable); |
| reg = I915_READ(DSPFW3); |
| reg &= ~DSPFW_HPLL_SR_MASK; |
| reg |= FW_WM(wm, HPLL_SR); |
| I915_WRITE(DSPFW3, reg); |
| |
| /* cursor HPLL off SR */ |
| wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, |
| pineview_display_hplloff_wm.fifo_size, |
| 4, latency->cursor_hpll_disable); |
| reg = I915_READ(DSPFW3); |
| reg &= ~DSPFW_HPLL_CURSOR_MASK; |
| reg |= FW_WM(wm, HPLL_CURSOR); |
| I915_WRITE(DSPFW3, reg); |
| DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg); |
| |
| intel_set_memory_cxsr(dev_priv, true); |
| } else { |
| intel_set_memory_cxsr(dev_priv, false); |
| } |
| } |
| |
| /* |
| * Documentation says: |
| * "If the line size is small, the TLB fetches can get in the way of the |
| * data fetches, causing some lag in the pixel data return which is not |
| * accounted for in the above formulas. The following adjustment only |
| * needs to be applied if eight whole lines fit in the buffer at once. |
| * The WM is adjusted upwards by the difference between the FIFO size |
| * and the size of 8 whole lines. This adjustment is always performed |
| * in the actual pixel depth regardless of whether FBC is enabled or not." |
| */ |
| static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp) |
| { |
| int tlb_miss = fifo_size * 64 - width * cpp * 8; |
| |
| return max(0, tlb_miss); |
| } |
| |
| static void g4x_write_wm_values(struct drm_i915_private *dev_priv, |
| const struct g4x_wm_values *wm) |
| { |
| enum pipe pipe; |
| |
| for_each_pipe(dev_priv, pipe) |
| trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm); |
| |
| I915_WRITE(DSPFW1, |
| FW_WM(wm->sr.plane, SR) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); |
| I915_WRITE(DSPFW2, |
| (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) | |
| FW_WM(wm->sr.fbc, FBC_SR) | |
| FW_WM(wm->hpll.fbc, FBC_HPLL_SR) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); |
| I915_WRITE(DSPFW3, |
| (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) | |
| FW_WM(wm->sr.cursor, CURSOR_SR) | |
| FW_WM(wm->hpll.cursor, HPLL_CURSOR) | |
| FW_WM(wm->hpll.plane, HPLL_SR)); |
| |
| POSTING_READ(DSPFW1); |
| } |
| |
| #define FW_WM_VLV(value, plane) \ |
| (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV) |
| |
| static void vlv_write_wm_values(struct drm_i915_private *dev_priv, |
| const struct vlv_wm_values *wm) |
| { |
| enum pipe pipe; |
| |
| for_each_pipe(dev_priv, pipe) { |
| trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm); |
| |
| I915_WRITE(VLV_DDL(pipe), |
| (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) | |
| (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) | |
| (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) | |
| (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT)); |
| } |
| |
| /* |
| * Zero the (unused) WM1 watermarks, and also clear all the |
| * high order bits so that there are no out of bounds values |
| * present in the registers during the reprogramming. |
| */ |
| I915_WRITE(DSPHOWM, 0); |
| I915_WRITE(DSPHOWM1, 0); |
| I915_WRITE(DSPFW4, 0); |
| I915_WRITE(DSPFW5, 0); |
| I915_WRITE(DSPFW6, 0); |
| |
| I915_WRITE(DSPFW1, |
| FW_WM(wm->sr.plane, SR) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | |
| FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); |
| I915_WRITE(DSPFW2, |
| FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | |
| FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); |
| I915_WRITE(DSPFW3, |
| FW_WM(wm->sr.cursor, CURSOR_SR)); |
| |
| if (IS_CHERRYVIEW(dev_priv)) { |
| I915_WRITE(DSPFW7_CHV, |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); |
| I915_WRITE(DSPFW8_CHV, |
| FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) | |
| FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE)); |
| I915_WRITE(DSPFW9_CHV, |
| FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) | |
| FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC)); |
| I915_WRITE(DSPHOWM, |
| FW_WM(wm->sr.plane >> 9, SR_HI) | |
| FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) | |
| FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) | |
| FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); |
| } else { |
| I915_WRITE(DSPFW7, |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); |
| I915_WRITE(DSPHOWM, |
| FW_WM(wm->sr.plane >> 9, SR_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); |
| } |
| |
| POSTING_READ(DSPFW1); |
| } |
| |
| #undef FW_WM_VLV |
| |
| static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv) |
| { |
| /* all latencies in usec */ |
| dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5; |
| dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12; |
| dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35; |
| |
| dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL; |
| } |
| |
| static int g4x_plane_fifo_size(enum plane_id plane_id, int level) |
| { |
| /* |
| * DSPCNTR[13] supposedly controls whether the |
| * primary plane can use the FIFO space otherwise |
| * reserved for the sprite plane. It's not 100% clear |
| * what the actual FIFO size is, but it looks like we |
| * can happily set both primary and sprite watermarks |
| * up to 127 cachelines. So that would seem to mean |
| * that either DSPCNTR[13] doesn't do anything, or that |
| * the total FIFO is >= 256 cachelines in size. Either |
| * way, we don't seem to have to worry about this |
| * repartitioning as the maximum watermark value the |
| * register can hold for each plane is lower than the |
| * minimum FIFO size. |
| */ |
| switch (plane_id) { |
| case PLANE_CURSOR: |
| return 63; |
| case PLANE_PRIMARY: |
| return level == G4X_WM_LEVEL_NORMAL ? 127 : 511; |
| case PLANE_SPRITE0: |
| return level == G4X_WM_LEVEL_NORMAL ? 127 : 0; |
| default: |
| MISSING_CASE(plane_id); |
| return 0; |
| } |
| } |
| |
| static int g4x_fbc_fifo_size(int level) |
| { |
| switch (level) { |
| case G4X_WM_LEVEL_SR: |
| return 7; |
| case G4X_WM_LEVEL_HPLL: |
| return 15; |
| default: |
| MISSING_CASE(level); |
| return 0; |
| } |
| } |
| |
| static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| int level) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->base.plane); |
| struct drm_i915_private *dev_priv = to_i915(plane->base.dev); |
| const struct drm_display_mode *adjusted_mode = |
| &crtc_state->base.adjusted_mode; |
| int clock, htotal, cpp, width, wm; |
| int latency = dev_priv->wm.pri_latency[level] * 10; |
| |
| if (latency == 0) |
| return USHRT_MAX; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) |
| return 0; |
| |
| /* |
| * Not 100% sure which way ELK should go here as the |
| * spec only says CL/CTG should assume 32bpp and BW |
| * doesn't need to. But as these things followed the |
| * mobile vs. desktop lines on gen3 as well, let's |
| * assume ELK doesn't need this. |
| * |
| * The spec also fails to list such a restriction for |
| * the HPLL watermark, which seems a little strange. |
| * Let's use 32bpp for the HPLL watermark as well. |
| */ |
| if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY && |
| level != G4X_WM_LEVEL_NORMAL) |
| cpp = 4; |
| else |
| cpp = plane_state->base.fb->format->cpp[0]; |
| |
| clock = adjusted_mode->crtc_clock; |
| htotal = adjusted_mode->crtc_htotal; |
| |
| if (plane->id == PLANE_CURSOR) |
| width = plane_state->base.crtc_w; |
| else |
| width = drm_rect_width(&plane_state->base.dst); |
| |
| if (plane->id == PLANE_CURSOR) { |
| wm = intel_wm_method2(clock, htotal, width, cpp, latency); |
| } else if (plane->id == PLANE_PRIMARY && |
| level == G4X_WM_LEVEL_NORMAL) { |
| wm = intel_wm_method1(clock, cpp, latency); |
| } else { |
| int small, large; |
| |
| small = intel_wm_method1(clock, cpp, latency); |
| large = intel_wm_method2(clock, htotal, width, cpp, latency); |
| |
| wm = min(small, large); |
| } |
| |
| wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level), |
| width, cpp); |
| |
| wm = DIV_ROUND_UP(wm, 64) + 2; |
| |
| return min_t(int, wm, USHRT_MAX); |
| } |
| |
| static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state, |
| int level, enum plane_id plane_id, u16 value) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| bool dirty = false; |
| |
| for (; level < intel_wm_num_levels(dev_priv); level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; |
| |
| dirty |= raw->plane[plane_id] != value; |
| raw->plane[plane_id] = value; |
| } |
| |
| return dirty; |
| } |
| |
| static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state, |
| int level, u16 value) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| bool dirty = false; |
| |
| /* NORMAL level doesn't have an FBC watermark */ |
| level = max(level, G4X_WM_LEVEL_SR); |
| |
| for (; level < intel_wm_num_levels(dev_priv); level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; |
| |
| dirty |= raw->fbc != value; |
| raw->fbc = value; |
| } |
| |
| return dirty; |
| } |
| |
| static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate, |
| const struct intel_plane_state *pstate, |
| uint32_t pri_val); |
| |
| static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->base.plane); |
| int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); |
| enum plane_id plane_id = plane->id; |
| bool dirty = false; |
| int level; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) { |
| dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0); |
| if (plane_id == PLANE_PRIMARY) |
| dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0); |
| goto out; |
| } |
| |
| for (level = 0; level < num_levels; level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; |
| int wm, max_wm; |
| |
| wm = g4x_compute_wm(crtc_state, plane_state, level); |
| max_wm = g4x_plane_fifo_size(plane_id, level); |
| |
| if (wm > max_wm) |
| break; |
| |
| dirty |= raw->plane[plane_id] != wm; |
| raw->plane[plane_id] = wm; |
| |
| if (plane_id != PLANE_PRIMARY || |
| level == G4X_WM_LEVEL_NORMAL) |
| continue; |
| |
| wm = ilk_compute_fbc_wm(crtc_state, plane_state, |
| raw->plane[plane_id]); |
| max_wm = g4x_fbc_fifo_size(level); |
| |
| /* |
| * FBC wm is not mandatory as we |
| * can always just disable its use. |
| */ |
| if (wm > max_wm) |
| wm = USHRT_MAX; |
| |
| dirty |= raw->fbc != wm; |
| raw->fbc = wm; |
| } |
| |
| /* mark watermarks as invalid */ |
| dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); |
| |
| if (plane_id == PLANE_PRIMARY) |
| dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); |
| |
| out: |
| if (dirty) { |
| DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n", |
| plane->base.name, |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id], |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id], |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]); |
| |
| if (plane_id == PLANE_PRIMARY) |
| DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n", |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc, |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc); |
| } |
| |
| return dirty; |
| } |
| |
| static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, |
| enum plane_id plane_id, int level) |
| { |
| const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; |
| |
| return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level); |
| } |
| |
| static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, |
| int level) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| |
| if (level > dev_priv->wm.max_level) |
| return false; |
| |
| return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && |
| g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && |
| g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); |
| } |
| |
| /* mark all levels starting from 'level' as invalid */ |
| static void g4x_invalidate_wms(struct intel_crtc *crtc, |
| struct g4x_wm_state *wm_state, int level) |
| { |
| if (level <= G4X_WM_LEVEL_NORMAL) { |
| enum plane_id plane_id; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| wm_state->wm.plane[plane_id] = USHRT_MAX; |
| } |
| |
| if (level <= G4X_WM_LEVEL_SR) { |
| wm_state->cxsr = false; |
| wm_state->sr.cursor = USHRT_MAX; |
| wm_state->sr.plane = USHRT_MAX; |
| wm_state->sr.fbc = USHRT_MAX; |
| } |
| |
| if (level <= G4X_WM_LEVEL_HPLL) { |
| wm_state->hpll_en = false; |
| wm_state->hpll.cursor = USHRT_MAX; |
| wm_state->hpll.plane = USHRT_MAX; |
| wm_state->hpll.fbc = USHRT_MAX; |
| } |
| } |
| |
| static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct intel_atomic_state *state = |
| to_intel_atomic_state(crtc_state->base.state); |
| struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; |
| int num_active_planes = hweight32(crtc_state->active_planes & |
| ~BIT(PLANE_CURSOR)); |
| const struct g4x_pipe_wm *raw; |
| struct intel_plane_state *plane_state; |
| struct intel_plane *plane; |
| enum plane_id plane_id; |
| int i, level; |
| unsigned int dirty = 0; |
| |
| for_each_intel_plane_in_state(state, plane, plane_state, i) { |
| const struct intel_plane_state *old_plane_state = |
| to_intel_plane_state(plane->base.state); |
| |
| if (plane_state->base.crtc != &crtc->base && |
| old_plane_state->base.crtc != &crtc->base) |
| continue; |
| |
| if (g4x_raw_plane_wm_compute(crtc_state, plane_state)) |
| dirty |= BIT(plane->id); |
| } |
| |
| if (!dirty) |
| return 0; |
| |
| level = G4X_WM_LEVEL_NORMAL; |
| if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| wm_state->wm.plane[plane_id] = raw->plane[plane_id]; |
| |
| level = G4X_WM_LEVEL_SR; |
| |
| if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| wm_state->sr.plane = raw->plane[PLANE_PRIMARY]; |
| wm_state->sr.cursor = raw->plane[PLANE_CURSOR]; |
| wm_state->sr.fbc = raw->fbc; |
| |
| wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY); |
| |
| level = G4X_WM_LEVEL_HPLL; |
| |
| if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| wm_state->hpll.plane = raw->plane[PLANE_PRIMARY]; |
| wm_state->hpll.cursor = raw->plane[PLANE_CURSOR]; |
| wm_state->hpll.fbc = raw->fbc; |
| |
| wm_state->hpll_en = wm_state->cxsr; |
| |
| level++; |
| |
| out: |
| if (level == G4X_WM_LEVEL_NORMAL) |
| return -EINVAL; |
| |
| /* invalidate the higher levels */ |
| g4x_invalidate_wms(crtc, wm_state, level); |
| |
| /* |
| * Determine if the FBC watermark(s) can be used. IF |
| * this isn't the case we prefer to disable the FBC |
| ( watermark(s) rather than disable the SR/HPLL |
| * level(s) entirely. |
| */ |
| wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL; |
| |
| if (level >= G4X_WM_LEVEL_SR && |
| wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR)) |
| wm_state->fbc_en = false; |
| else if (level >= G4X_WM_LEVEL_HPLL && |
| wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL)) |
| wm_state->fbc_en = false; |
| |
| return 0; |
| } |
| |
| static int g4x_compute_intermediate_wm(struct drm_device *dev, |
| struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate; |
| const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal; |
| const struct g4x_wm_state *active = &crtc->wm.active.g4x; |
| enum plane_id plane_id; |
| |
| intermediate->cxsr = optimal->cxsr && active->cxsr && |
| !crtc_state->disable_cxsr; |
| intermediate->hpll_en = optimal->hpll_en && active->hpll_en && |
| !crtc_state->disable_cxsr; |
| intermediate->fbc_en = optimal->fbc_en && active->fbc_en; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| intermediate->wm.plane[plane_id] = |
| max(optimal->wm.plane[plane_id], |
| active->wm.plane[plane_id]); |
| |
| WARN_ON(intermediate->wm.plane[plane_id] > |
| g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL)); |
| } |
| |
| intermediate->sr.plane = max(optimal->sr.plane, |
| active->sr.plane); |
| intermediate->sr.cursor = max(optimal->sr.cursor, |
| active->sr.cursor); |
| intermediate->sr.fbc = max(optimal->sr.fbc, |
| active->sr.fbc); |
| |
| intermediate->hpll.plane = max(optimal->hpll.plane, |
| active->hpll.plane); |
| intermediate->hpll.cursor = max(optimal->hpll.cursor, |
| active->hpll.cursor); |
| intermediate->hpll.fbc = max(optimal->hpll.fbc, |
| active->hpll.fbc); |
| |
| WARN_ON((intermediate->sr.plane > |
| g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) || |
| intermediate->sr.cursor > |
| g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) && |
| intermediate->cxsr); |
| WARN_ON((intermediate->sr.plane > |
| g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) || |
| intermediate->sr.cursor > |
| g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) && |
| intermediate->hpll_en); |
| |
| WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) && |
| intermediate->fbc_en && intermediate->cxsr); |
| WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) && |
| intermediate->fbc_en && intermediate->hpll_en); |
| |
| /* |
| * If our intermediate WM are identical to the final WM, then we can |
| * omit the post-vblank programming; only update if it's different. |
| */ |
| if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) |
| crtc_state->wm.need_postvbl_update = true; |
| |
| return 0; |
| } |
| |
| static void g4x_merge_wm(struct drm_i915_private *dev_priv, |
| struct g4x_wm_values *wm) |
| { |
| struct intel_crtc *crtc; |
| int num_active_crtcs = 0; |
| |
| wm->cxsr = true; |
| wm->hpll_en = true; |
| wm->fbc_en = true; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; |
| |
| if (!crtc->active) |
| continue; |
| |
| if (!wm_state->cxsr) |
| wm->cxsr = false; |
| if (!wm_state->hpll_en) |
| wm->hpll_en = false; |
| if (!wm_state->fbc_en) |
| wm->fbc_en = false; |
| |
| num_active_crtcs++; |
| } |
| |
| if (num_active_crtcs != 1) { |
| wm->cxsr = false; |
| wm->hpll_en = false; |
| wm->fbc_en = false; |
| } |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; |
| enum pipe pipe = crtc->pipe; |
| |
| wm->pipe[pipe] = wm_state->wm; |
| if (crtc->active && wm->cxsr) |
| wm->sr = wm_state->sr; |
| if (crtc->active && wm->hpll_en) |
| wm->hpll = wm_state->hpll; |
| } |
| } |
| |
| static void g4x_program_watermarks(struct drm_i915_private *dev_priv) |
| { |
| struct g4x_wm_values *old_wm = &dev_priv->wm.g4x; |
| struct g4x_wm_values new_wm = {}; |
| |
| g4x_merge_wm(dev_priv, &new_wm); |
| |
| if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) |
| return; |
| |
| if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) |
| _intel_set_memory_cxsr(dev_priv, false); |
| |
| g4x_write_wm_values(dev_priv, &new_wm); |
| |
| if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) |
| _intel_set_memory_cxsr(dev_priv, true); |
| |
| *old_wm = new_wm; |
| } |
| |
| static void g4x_initial_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate; |
| g4x_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void g4x_optimize_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); |
| |
| if (!crtc_state->wm.need_postvbl_update) |
| return; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; |
| g4x_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| /* latency must be in 0.1us units. */ |
| static unsigned int vlv_wm_method2(unsigned int pixel_rate, |
| unsigned int htotal, |
| unsigned int width, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| unsigned int ret; |
| |
| ret = intel_wm_method2(pixel_rate, htotal, |
| width, cpp, latency); |
| ret = DIV_ROUND_UP(ret, 64); |
| |
| return ret; |
| } |
| |
| static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv) |
| { |
| /* all latencies in usec */ |
| dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3; |
| |
| dev_priv->wm.max_level = VLV_WM_LEVEL_PM2; |
| |
| if (IS_CHERRYVIEW(dev_priv)) { |
| dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12; |
| dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33; |
| |
| dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS; |
| } |
| } |
| |
| static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| int level) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->base.plane); |
| struct drm_i915_private *dev_priv = to_i915(plane->base.dev); |
| const struct drm_display_mode *adjusted_mode = |
| &crtc_state->base.adjusted_mode; |
| int clock, htotal, cpp, width, wm; |
| |
| if (dev_priv->wm.pri_latency[level] == 0) |
| return USHRT_MAX; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) |
| return 0; |
| |
| cpp = plane_state->base.fb->format->cpp[0]; |
| clock = adjusted_mode->crtc_clock; |
| htotal = adjusted_mode->crtc_htotal; |
| width = crtc_state->pipe_src_w; |
| |
| if (plane->id == PLANE_CURSOR) { |
| /* |
| * FIXME the formula gives values that are |
| * too big for the cursor FIFO, and hence we |
| * would never be able to use cursors. For |
| * now just hardcode the watermark. |
| */ |
| wm = 63; |
| } else { |
| wm = vlv_wm_method2(clock, htotal, width, cpp, |
| dev_priv->wm.pri_latency[level] * 10); |
| } |
| |
| return min_t(int, wm, USHRT_MAX); |
| } |
| |
| static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes) |
| { |
| return (active_planes & (BIT(PLANE_SPRITE0) | |
| BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1); |
| } |
| |
| static int vlv_compute_fifo(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| const struct g4x_pipe_wm *raw = |
| &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2]; |
| struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; |
| unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); |
| int num_active_planes = hweight32(active_planes); |
| const int fifo_size = 511; |
| int fifo_extra, fifo_left = fifo_size; |
| int sprite0_fifo_extra = 0; |
| unsigned int total_rate; |
| enum plane_id plane_id; |
| |
| /* |
| * When enabling sprite0 after sprite1 has already been enabled |
| * we tend to get an underrun unless sprite0 already has some |
| * FIFO space allcoated. Hence we always allocate at least one |
| * cacheline for sprite0 whenever sprite1 is enabled. |
| * |
| * All other plane enable sequences appear immune to this problem. |
| */ |
| if (vlv_need_sprite0_fifo_workaround(active_planes)) |
| sprite0_fifo_extra = 1; |
| |
| total_rate = raw->plane[PLANE_PRIMARY] + |
| raw->plane[PLANE_SPRITE0] + |
| raw->plane[PLANE_SPRITE1] + |
| sprite0_fifo_extra; |
| |
| if (total_rate > fifo_size) |
| return -EINVAL; |
| |
| if (total_rate == 0) |
| total_rate = 1; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| unsigned int rate; |
| |
| if ((active_planes & BIT(plane_id)) == 0) { |
| fifo_state->plane[plane_id] = 0; |
| continue; |
| } |
| |
| rate = raw->plane[plane_id]; |
| fifo_state->plane[plane_id] = fifo_size * rate / total_rate; |
| fifo_left -= fifo_state->plane[plane_id]; |
| } |
| |
| fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra; |
| fifo_left -= sprite0_fifo_extra; |
| |
| fifo_state->plane[PLANE_CURSOR] = 63; |
| |
| fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1); |
| |
| /* spread the remainder evenly */ |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| int plane_extra; |
| |
| if (fifo_left == 0) |
| break; |
| |
| if ((active_planes & BIT(plane_id)) == 0) |
| continue; |
| |
| plane_extra = min(fifo_extra, fifo_left); |
| fifo_state->plane[plane_id] += plane_extra; |
| fifo_left -= plane_extra; |
| } |
| |
| WARN_ON(active_planes != 0 && fifo_left != 0); |
| |
| /* give it all to the first plane if none are active */ |
| if (active_planes == 0) { |
| WARN_ON(fifo_left != fifo_size); |
| fifo_state->plane[PLANE_PRIMARY] = fifo_left; |
| } |
| |
| return 0; |
| } |
| |
| /* mark all levels starting from 'level' as invalid */ |
| static void vlv_invalidate_wms(struct intel_crtc *crtc, |
| struct vlv_wm_state *wm_state, int level) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| |
| for (; level < intel_wm_num_levels(dev_priv); level++) { |
| enum plane_id plane_id; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| wm_state->wm[level].plane[plane_id] = USHRT_MAX; |
| |
| wm_state->sr[level].cursor = USHRT_MAX; |
| wm_state->sr[level].plane = USHRT_MAX; |
| } |
| } |
| |
| static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size) |
| { |
| if (wm > fifo_size) |
| return USHRT_MAX; |
| else |
| return fifo_size - wm; |
| } |
| |
| /* |
| * Starting from 'level' set all higher |
| * levels to 'value' in the "raw" watermarks. |
| */ |
| static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state, |
| int level, enum plane_id plane_id, u16 value) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| int num_levels = intel_wm_num_levels(dev_priv); |
| bool dirty = false; |
| |
| for (; level < num_levels; level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; |
| |
| dirty |= raw->plane[plane_id] != value; |
| raw->plane[plane_id] = value; |
| } |
| |
| return dirty; |
| } |
| |
| static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->base.plane); |
| enum plane_id plane_id = plane->id; |
| int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); |
| int level; |
| bool dirty = false; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) { |
| dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0); |
| goto out; |
| } |
| |
| for (level = 0; level < num_levels; level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; |
| int wm = vlv_compute_wm_level(crtc_state, plane_state, level); |
| int max_wm = plane_id == PLANE_CURSOR ? 63 : 511; |
| |
| if (wm > max_wm) |
| break; |
| |
| dirty |= raw->plane[plane_id] != wm; |
| raw->plane[plane_id] = wm; |
| } |
| |
| /* mark all higher levels as invalid */ |
| dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); |
| |
| out: |
| if (dirty) |
| DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n", |
| plane->base.name, |
| crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id], |
| crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id], |
| crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]); |
| |
| return dirty; |
| } |
| |
| static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, |
| enum plane_id plane_id, int level) |
| { |
| const struct g4x_pipe_wm *raw = |
| &crtc_state->wm.vlv.raw[level]; |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| |
| return raw->plane[plane_id] <= fifo_state->plane[plane_id]; |
| } |
| |
| static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) |
| { |
| return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && |
| vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && |
| vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) && |
| vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); |
| } |
| |
| static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_atomic_state *state = |
| to_intel_atomic_state(crtc_state->base.state); |
| struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| int num_active_planes = hweight32(crtc_state->active_planes & |
| ~BIT(PLANE_CURSOR)); |
| bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base); |
| struct intel_plane_state *plane_state; |
| struct intel_plane *plane; |
| enum plane_id plane_id; |
| int level, ret, i; |
| unsigned int dirty = 0; |
| |
| for_each_intel_plane_in_state(state, plane, plane_state, i) { |
| const struct intel_plane_state *old_plane_state = |
| to_intel_plane_state(plane->base.state); |
| |
| if (plane_state->base.crtc != &crtc->base && |
| old_plane_state->base.crtc != &crtc->base) |
| continue; |
| |
| if (vlv_raw_plane_wm_compute(crtc_state, plane_state)) |
| dirty |= BIT(plane->id); |
| } |
| |
| /* |
| * DSPARB registers may have been reset due to the |
| * power well being turned off. Make sure we restore |
| * them to a consistent state even if no primary/sprite |
| * planes are initially active. |
| */ |
| if (needs_modeset) |
| crtc_state->fifo_changed = true; |
| |
| if (!dirty) |
| return 0; |
| |
| /* cursor changes don't warrant a FIFO recompute */ |
| if (dirty & ~BIT(PLANE_CURSOR)) { |
| const struct intel_crtc_state *old_crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| const struct vlv_fifo_state *old_fifo_state = |
| &old_crtc_state->wm.vlv.fifo_state; |
| |
| ret = vlv_compute_fifo(crtc_state); |
| if (ret) |
| return ret; |
| |
| if (needs_modeset || |
| memcmp(old_fifo_state, fifo_state, |
| sizeof(*fifo_state)) != 0) |
| crtc_state->fifo_changed = true; |
| } |
| |
| /* initially allow all levels */ |
| wm_state->num_levels = intel_wm_num_levels(dev_priv); |
| /* |
| * Note that enabling cxsr with no primary/sprite planes |
| * enabled can wedge the pipe. Hence we only allow cxsr |
| * with exactly one enabled primary/sprite plane. |
| */ |
| wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1; |
| |
| for (level = 0; level < wm_state->num_levels; level++) { |
| const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; |
| const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1; |
| |
| if (!vlv_raw_crtc_wm_is_valid(crtc_state, level)) |
| break; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| wm_state->wm[level].plane[plane_id] = |
| vlv_invert_wm_value(raw->plane[plane_id], |
| fifo_state->plane[plane_id]); |
| } |
| |
| wm_state->sr[level].plane = |
| vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY], |
| raw->plane[PLANE_SPRITE0], |
| raw->plane[PLANE_SPRITE1]), |
| sr_fifo_size); |
| |
| wm_state->sr[level].cursor = |
| vlv_invert_wm_value(raw->plane[PLANE_CURSOR], |
| 63); |
| } |
| |
| if (level == 0) |
| return -EINVAL; |
| |
| /* limit to only levels we can actually handle */ |
| wm_state->num_levels = level; |
| |
| /* invalidate the higher levels */ |
| vlv_invalidate_wms(crtc, wm_state, level); |
| |
| return 0; |
| } |
| |
| #define VLV_FIFO(plane, value) \ |
| (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV) |
| |
| static void vlv_atomic_update_fifo(struct intel_atomic_state *state, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| int sprite0_start, sprite1_start, fifo_size; |
| |
| if (!crtc_state->fifo_changed) |
| return; |
| |
| sprite0_start = fifo_state->plane[PLANE_PRIMARY]; |
| sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start; |
| fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start; |
| |
| WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63); |
| WARN_ON(fifo_size != 511); |
| |
| trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size); |
| |
| /* |
| * uncore.lock serves a double purpose here. It allows us to |
| * use the less expensive I915_{READ,WRITE}_FW() functions, and |
| * it protects the DSPARB registers from getting clobbered by |
| * parallel updates from multiple pipes. |
| * |
| * intel_pipe_update_start() has already disabled interrupts |
| * for us, so a plain spin_lock() is sufficient here. |
| */ |
| spin_lock(&dev_priv->uncore.lock); |
| |
| switch (crtc->pipe) { |
| uint32_t dsparb, dsparb2, dsparb3; |
| case PIPE_A: |
| dsparb = I915_READ_FW(DSPARB); |
| dsparb2 = I915_READ_FW(DSPARB2); |
| |
| dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) | |
| VLV_FIFO(SPRITEB, 0xff)); |
| dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) | |
| VLV_FIFO(SPRITEB, sprite1_start)); |
| |
| dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) | |
| VLV_FIFO(SPRITEB_HI, 0x1)); |
| dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) | |
| VLV_FIFO(SPRITEB_HI, sprite1_start >> 8)); |
| |
| I915_WRITE_FW(DSPARB, dsparb); |
| I915_WRITE_FW(DSPARB2, dsparb2); |
| break; |
| case PIPE_B: |
| dsparb = I915_READ_FW(DSPARB); |
| dsparb2 = I915_READ_FW(DSPARB2); |
| |
| dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) | |
| VLV_FIFO(SPRITED, 0xff)); |
| dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) | |
| VLV_FIFO(SPRITED, sprite1_start)); |
| |
| dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) | |
| VLV_FIFO(SPRITED_HI, 0xff)); |
| dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) | |
| VLV_FIFO(SPRITED_HI, sprite1_start >> 8)); |
| |
| I915_WRITE_FW(DSPARB, dsparb); |
| I915_WRITE_FW(DSPARB2, dsparb2); |
| break; |
| case PIPE_C: |
| dsparb3 = I915_READ_FW(DSPARB3); |
| dsparb2 = I915_READ_FW(DSPARB2); |
| |
| dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) | |
| VLV_FIFO(SPRITEF, 0xff)); |
| dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) | |
| VLV_FIFO(SPRITEF, sprite1_start)); |
| |
| dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) | |
| VLV_FIFO(SPRITEF_HI, 0xff)); |
| dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) | |
| VLV_FIFO(SPRITEF_HI, sprite1_start >> 8)); |
| |
| I915_WRITE_FW(DSPARB3, dsparb3); |
| I915_WRITE_FW(DSPARB2, dsparb2); |
| break; |
| default: |
| break; |
| } |
| |
| POSTING_READ_FW(DSPARB); |
| |
| spin_unlock(&dev_priv->uncore.lock); |
| } |
| |
| #undef VLV_FIFO |
| |
| static int vlv_compute_intermediate_wm(struct drm_device *dev, |
| struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate; |
| const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal; |
| const struct vlv_wm_state *active = &crtc->wm.active.vlv; |
| int level; |
| |
| intermediate->num_levels = min(optimal->num_levels, active->num_levels); |
| intermediate->cxsr = optimal->cxsr && active->cxsr && |
| !crtc_state->disable_cxsr; |
| |
| for (level = 0; level < intermediate->num_levels; level++) { |
| enum plane_id plane_id; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| intermediate->wm[level].plane[plane_id] = |
| min(optimal->wm[level].plane[plane_id], |
| active->wm[level].plane[plane_id]); |
| } |
| |
| intermediate->sr[level].plane = min(optimal->sr[level].plane, |
| active->sr[level].plane); |
| intermediate->sr[level].cursor = min(optimal->sr[level].cursor, |
| active->sr[level].cursor); |
| } |
| |
| vlv_invalidate_wms(crtc, intermediate, level); |
| |
| /* |
| * If our intermediate WM are identical to the final WM, then we can |
| * omit the post-vblank programming; only update if it's different. |
| */ |
| if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) |
| crtc_state->wm.need_postvbl_update = true; |
| |
| return 0; |
| } |
| |
| static void vlv_merge_wm(struct drm_i915_private *dev_priv, |
| struct vlv_wm_values *wm) |
| { |
| struct intel_crtc *crtc; |
| int num_active_crtcs = 0; |
| |
| wm->level = dev_priv->wm.max_level; |
| wm->cxsr = true; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; |
| |
| if (!crtc->active) |
| continue; |
| |
| if (!wm_state->cxsr) |
| wm->cxsr = false; |
| |
| num_active_crtcs++; |
| wm->level = min_t(int, wm->level, wm_state->num_levels - 1); |
| } |
| |
| if (num_active_crtcs != 1) |
| wm->cxsr = false; |
| |
| if (num_active_crtcs > 1) |
| wm->level = VLV_WM_LEVEL_PM2; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; |
| enum pipe pipe = crtc->pipe; |
| |
| wm->pipe[pipe] = wm_state->wm[wm->level]; |
| if (crtc->active && wm->cxsr) |
| wm->sr = wm_state->sr[wm->level]; |
| |
| wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2; |
| wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2; |
| wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2; |
| wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2; |
| } |
| } |
| |
| static void vlv_program_watermarks(struct drm_i915_private *dev_priv) |
| { |
| struct vlv_wm_values *old_wm = &dev_priv->wm.vlv; |
| struct vlv_wm_values new_wm = {}; |
| |
| vlv_merge_wm(dev_priv, &new_wm); |
| |
| if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) |
| return; |
| |
| if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) |
| chv_set_memory_dvfs(dev_priv, false); |
| |
| if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) |
| chv_set_memory_pm5(dev_priv, false); |
| |
| if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) |
| _intel_set_memory_cxsr(dev_priv, false); |
| |
| vlv_write_wm_values(dev_priv, &new_wm); |
| |
| if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) |
| _intel_set_memory_cxsr(dev_priv, true); |
| |
| if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) |
| chv_set_memory_pm5(dev_priv, true); |
| |
| if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) |
| chv_set_memory_dvfs(dev_priv, true); |
| |
| *old_wm = new_wm; |
| } |
| |
| static void vlv_initial_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate; |
| vlv_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void vlv_optimize_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); |
| |
| if (!crtc_state->wm.need_postvbl_update) |
| return; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; |
| vlv_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void i965_update_wm(struct intel_crtc *unused_crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); |
| struct intel_crtc *crtc; |
| int srwm = 1; |
| int cursor_sr = 16; |
| bool cxsr_enabled; |
| |
| /* Calc sr entries for one plane configs */ |
| crtc = single_enabled_crtc(dev_priv); |
| if (crtc) { |
| /* self-refresh has much higher latency */ |
| static const int sr_latency_ns = 12000; |
| const struct drm_display_mode *adjusted_mode = |
| &crtc->config->base.adjusted_mode; |
| const struct drm_framebuffer *fb = |
| crtc->base.primary->state->fb; |
| int clock = adjusted_mode->crtc_clock; |
| int htotal = adjusted_mode->crtc_htotal; |
| int hdisplay = crtc->config->pipe_src_w; |
| int cpp = fb->format->cpp[0]; |
| int entries; |
| |
| entries = intel_wm_method2(clock, htotal, |
| hdisplay, cpp, sr_latency_ns / 100); |
| entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); |
| srwm = I965_FIFO_SIZE - entries; |
| if (srwm < 0) |
| srwm = 1; |
| srwm &= 0x1ff; |
| DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n", |
| entries, srwm); |
| |
| entries = intel_wm_method2(clock, htotal, |
| crtc->base.cursor->state->crtc_w, 4, |
| sr_latency_ns / 100); |
| entries = DIV_ROUND_UP(entries, |
| i965_cursor_wm_info.cacheline_size) + |
| i965_cursor_wm_info.guard_size; |
| |
| cursor_sr = i965_cursor_wm_info.fifo_size - entries; |
| if (cursor_sr > i965_cursor_wm_info.max_wm) |
| cursor_sr = i965_cursor_wm_info.max_wm; |
| |
| DRM_DEBUG_KMS("self-refresh watermark: display plane %d " |
| "cursor %d\n", srwm, cursor_sr); |
| |
| cxsr_enabled = true; |
| } else { |
| cxsr_enabled = false; |
| /* Turn off self refresh if both pipes are enabled */ |
| intel_set_memory_cxsr(dev_priv, false); |
| } |
| |
| DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", |
| srwm); |
| |
| /* 965 has limitations... */ |
| I915_WRITE(DSPFW1, FW_WM(srwm, SR) | |
| FW_WM(8, CURSORB) | |
| FW_WM(8, PLANEB) | |
| FW_WM(8, PLANEA)); |
| I915_WRITE(DSPFW2, FW_WM(8, CURSORA) | |
| FW_WM(8, PLANEC_OLD)); |
| /* update cursor SR watermark */ |
| I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR)); |
| |
| if (cxsr_enabled) |
| intel_set_memory_cxsr(dev_priv, true); |
| } |
| |
| #undef FW_WM |
| |
| static void i9xx_update_wm(struct intel_crtc *unused_crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); |
| const struct intel_watermark_params *wm_info; |
| uint32_t fwater_lo; |
| uint32_t fwater_hi; |
| int cwm, srwm = 1; |
| int fifo_size; |
| int planea_wm, planeb_wm; |
| struct intel_crtc *crtc, *enabled = NULL; |
| |
| if (IS_I945GM(dev_priv)) |
| wm_info = &i945_wm_info; |
| else if (!IS_GEN2(dev_priv)) |
| wm_info = &i915_wm_info; |
| else |
| wm_info = &i830_a_wm_info; |
| |
| fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0); |
| crtc = intel_get_crtc_for_plane(dev_priv, 0); |
| if (intel_crtc_active(crtc)) { |
| const struct drm_display_mode *adjusted_mode = |
| &crtc->config->base.adjusted_mode; |
| const struct drm_framebuffer *fb = |
| crtc->base.primary->state->fb; |
| int cpp; |
| |
| if (IS_GEN2(dev_priv)) |
| cpp = 4; |
| else |
| cpp = fb->format->cpp[0]; |
| |
| planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock, |
| wm_info, fifo_size, cpp, |
| pessimal_latency_ns); |
| enabled = crtc; |
| } else { |
| planea_wm = fifo_size - wm_info->guard_size; |
| if (planea_wm > (long)wm_info->max_wm) |
| planea_wm = wm_info->max_wm; |
| } |
| |
| if (IS_GEN2(dev_priv)) |
| wm_info = &i830_bc_wm_info; |
| |
| fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1); |
| crtc = intel_get_crtc_for_plane(dev_priv, 1); |
| if (intel_crtc_active(crtc)) { |
| const struct drm_display_mode *adjusted_mode = |
| &crtc->config->base.adjusted_mode; |
| const struct drm_framebuffer *fb = |
| crtc->base.primary->state->fb; |
| int cpp; |
| |
| if (IS_GEN2(dev_priv)) |
| cpp = 4; |
| else |
| cpp = fb->format->cpp[0]; |
| |
| planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock, |
| wm_info, fifo_size, cpp, |
| pessimal_latency_ns); |
| if (enabled == NULL) |
| enabled = crtc; |
| else |
| enabled = NULL; |
| } else { |
| planeb_wm = fifo_size - wm_info->guard_size; |
| if (planeb_wm > (long)wm_info->max_wm) |
| planeb_wm = wm_info->max_wm; |
| } |
| |
| DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); |
| |
| if (IS_I915GM(dev_priv) && enabled) { |
| struct drm_i915_gem_object *obj; |
| |
| obj = intel_fb_obj(enabled->base.primary->state->fb); |
| |
| /* self-refresh seems busted with untiled */ |
| if (!i915_gem_object_is_tiled(obj)) |
| enabled = NULL; |
| } |
| |
| /* |
| * Overlay gets an aggressive default since video jitter is bad. |
| */ |
| cwm = 2; |
| |
| /* Play safe and disable self-refresh before adjusting watermarks. */ |
| intel_set_memory_cxsr(dev_priv, false); |
| |
| /* Calc sr entries for one plane configs */ |
| if (HAS_FW_BLC(dev_priv) && enabled) { |
| /* self-refresh has much higher latency */ |
| static const int sr_latency_ns = 6000; |
| const struct drm_display_mode *adjusted_mode = |
| &enabled->config->base.adjusted_mode; |
| const struct drm_framebuffer *fb = |
| enabled->base.primary->state->fb; |
| int clock = adjusted_mode->crtc_clock; |
| int htotal = adjusted_mode->crtc_htotal; |
| int hdisplay = enabled->config->pipe_src_w; |
| int cpp; |
| int entries; |
| |
| if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv)) |
| cpp = 4; |
| else |
| cpp = fb->format->cpp[0]; |
| |
| entries = intel_wm_method2(clock, htotal, hdisplay, cpp, |
| sr_latency_ns / 100); |
| entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); |
| DRM_DEBUG_KMS("self-refresh entries: %d\n", entries); |
| srwm = wm_info->fifo_size - entries; |
| if (srwm < 0) |
| srwm = 1; |
| |
| if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) |
| I915_WRITE(FW_BLC_SELF, |
| FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); |
| else |
| I915_WRITE(FW_BLC_SELF, srwm & 0x3f); |
| } |
| |
| DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", |
| planea_wm, planeb_wm, cwm, srwm); |
| |
| fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); |
| fwater_hi = (cwm & 0x1f); |
| |
| /* Set request length to 8 cachelines per fetch */ |
| fwater_lo = fwater_lo | (1 << 24) | (1 << 8); |
| fwater_hi = fwater_hi | (1 << 8); |
| |
| I915_WRITE(FW_BLC, fwater_lo); |
| I915_WRITE(FW_BLC2, fwater_hi); |
| |
| if (enabled) |
| intel_set_memory_cxsr(dev_priv, true); |
| } |
| |
| static void i845_update_wm(struct intel_crtc *unused_crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); |
| struct intel_crtc *crtc; |
| const struct drm_display_mode *adjusted_mode; |
| uint32_t fwater_lo; |
| int planea_wm; |
| |
| crtc = single_enabled_crtc(dev_priv); |
| if (crtc == NULL) |
| return; |
| |
| adjusted_mode = &crtc->config->base.adjusted_mode; |
| planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock, |
| &i845_wm_info, |
| dev_priv->display.get_fifo_size(dev_priv, 0), |
| 4, pessimal_latency_ns); |
| fwater_lo = I915_READ(FW_BLC) & ~0xfff; |
| fwater_lo |= (3<<8) | planea_wm; |
| |
| DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm); |
| |
| I915_WRITE(FW_BLC, fwater_lo); |
| } |
| |
| /* latency must be in 0.1us units. */ |
| static unsigned int ilk_wm_method1(unsigned int pixel_rate, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| unsigned int ret; |
| |
| ret = intel_wm_method1(pixel_rate, cpp, latency); |
| ret = DIV_ROUND_UP(ret, 64) + 2; |
| |
| return ret; |
| } |
| |
| /* latency must be in 0.1us units. */ |
| static unsigned int ilk_wm_method2(unsigned int pixel_rate, |
| unsigned int htotal, |
| unsigned int width, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| unsigned int ret; |
| |
| ret = intel_wm_method2(pixel_rate, htotal, |
| width, cpp, latency); |
| ret = DIV_ROUND_UP(ret, 64) + 2; |
| |
| return ret; |
| } |
| |
| static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels, |
| uint8_t cpp) |
| { |
| /* |
| * Neither of these should be possible since this function shouldn't be |
| * called if the CRTC is off or the plane is invisible. But let's be |
| * extra paranoid to avoid a potential divide-by-zero if we screw up |
| * elsewhere in the driver. |
| */ |
| if (WARN_ON(!cpp)) |
| return 0; |
| if (WARN_ON(!horiz_pixels)) |
| return 0; |
| |
| return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2; |
| } |
| |
| struct ilk_wm_maximums { |
| uint16_t pri; |
| uint16_t spr; |
| uint16_t cur; |
| uint16_t fbc; |
| }; |
| |
| /* |
| * For both WM_PIPE and WM_LP. |
| * mem_value must be in 0.1us units. |
| */ |
| static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate, |
| const struct intel_plane_state *pstate, |
| uint32_t mem_value, |
| bool is_lp) |
| { |
| uint32_t method1, method2; |
| int cpp; |
| |
| if (!intel_wm_plane_visible(cstate, pstate)) |
| return 0; |
| |
| cpp = pstate->base.fb->format->cpp[0]; |
| |
| method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value); |
| |
| if (!is_lp) |
| return method1; |
| |
| method2 = ilk_wm_method2(cstate->pixel_rate, |
| cstate->base.adjusted_mode.crtc_htotal, |
| drm_rect_width(&pstate->base.dst), |
| cpp, mem_value); |
| |
| return min(method1, method2); |
| } |
| |
| /* |
| * For both WM_PIPE and WM_LP. |
| * mem_value must be in 0.1us units. |
| */ |
| static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate, |
| const struct intel_plane_state *pstate, |
| uint32_t mem_value) |
| { |
| uint32_t method1, method2; |
| int cpp; |
| |
| if (!intel_wm_plane_visible(cstate, pstate)) |
| return 0; |
| |
| cpp = pstate->base.fb->format->cpp[0]; |
| |
| method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value); |
| method2 = ilk_wm_method2(cstate->pixel_rate, |
| cstate->base.adjusted_mode.crtc_htotal, |
| drm_rect_width(&pstate->base.dst), |
| cpp, mem_value); |
| return min(method1, method2); |
| } |
| |
| /* |
| * For both WM_PIPE and WM_LP. |
| * mem_value must be in 0.1us units. |
| */ |
| static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate, |
| const struct intel_plane_state *pstate, |
| uint32_t mem_value) |
| { |
| int cpp; |
| |
| if (!intel_wm_plane_visible(cstate, pstate)) |
| return 0; |
| |
| cpp = pstate->base.fb->format->cpp[0]; |
| |
| return ilk_wm_method2(cstate->pixel_rate, |
| cstate->base.adjusted_mode.crtc_htotal, |
| pstate->base.crtc_w, cpp, mem_value); |
| } |
| |
| /* Only for WM_LP. */ |
| static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate, |
| const struct intel_plane_state *pstate, |
| uint32_t pri_val) |
| { |
| int cpp; |
| |
| if (!intel_wm_plane_visible(cstate, pstate)) |
| return 0; |
| |
| cpp = pstate->base.fb->format->cpp[0]; |
| |
| return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp); |
| } |
| |
| static unsigned int |
| ilk_display_fifo_size(const struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_GEN(dev_priv) >= 8) |
| return 3072; |
| else if (INTEL_GEN(dev_priv) >= 7) |
| return 768; |
| else |
| return 512; |
| } |
| |
| static unsigned int |
| ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv, |
| int level, bool is_sprite) |
| { |
| if (INTEL_GEN(dev_priv) >= 8) |
| /* BDW primary/sprite plane watermarks */ |
| return level == 0 ? 255 : 2047; |
| else if (INTEL_GEN(dev_priv) >= 7) |
| /* IVB/HSW primary/sprite plane watermarks */ |
| return level == 0 ? 127 : 1023; |
| else if (!is_sprite) |
| /* ILK/SNB primary plane watermarks */ |
| return level == 0 ? 127 : 511; |
| else |
| /* ILK/SNB sprite plane watermarks */ |
| return level == 0 ? 63 : 255; |
| } |
| |
| static unsigned int |
| ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level) |
| { |
| if (INTEL_GEN(dev_priv) >= 7) |
| return level == 0 ? 63 : 255; |
| else |
| return level == 0 ? 31 : 63; |
| } |
| |
| static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_GEN(dev_priv) >= 8) |
| return 31; |
| else |
| return 15; |
| } |
| |
| /* Calculate the maximum primary/sprite plane watermark */ |
| static unsigned int ilk_plane_wm_max(const struct drm_device *dev, |
| int level, |
| const struct intel_wm_config *config, |
| enum intel_ddb_partitioning ddb_partitioning, |
| bool is_sprite) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| unsigned int fifo_size = ilk_display_fifo_size(dev_priv); |
| |
| /* if sprites aren't enabled, sprites get nothing */ |
| if (is_sprite && !config->sprites_enabled) |
| return 0; |
| |
| /* HSW allows LP1+ watermarks even with multiple pipes */ |
| if (level == 0 || config->num_pipes_active > 1) { |
| fifo_size /= INTEL_INFO(dev_priv)->num_pipes; |
| |
| /* |
| * For some reason the non self refresh |
| * FIFO size is only half of the self |
| * refresh FIFO size on ILK/SNB. |
| */ |
| if (INTEL_GEN(dev_priv) <= 6) |
| fifo_size /= 2; |
| } |
| |
| if (config->sprites_enabled) { |
| /* level 0 is always calculated with 1:1 split */ |
| if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) { |
| if (is_sprite) |
| fifo_size *= 5; |
| fifo_size /= 6; |
| } else { |
| fifo_size /= 2; |
| } |
| } |
| |
| /* clamp to max that the registers can hold */ |
| return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite)); |
| } |
| |
| /* Calculate the maximum cursor plane watermark */ |
| static unsigned int ilk_cursor_wm_max(const struct drm_device *dev, |
| int level, |
| const struct intel_wm_config *config) |
| { |
| /* HSW LP1+ watermarks w/ multiple pipes */ |
| if (level > 0 && config->num_pipes_active > 1) |
| return 64; |
| |
| /* otherwise just report max that registers can hold */ |
| return ilk_cursor_wm_reg_max(to_i915(dev), level); |
| } |
| |
| static void ilk_compute_wm_maximums(const struct drm_device *dev, |
| int level, |
| const struct intel_wm_config *config, |
| enum intel_ddb_partitioning ddb_partitioning, |
| struct ilk_wm_maximums *max) |
| { |
| max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false); |
| max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true); |
| max->cur = ilk_cursor_wm_max(dev, level, config); |
| max->fbc = ilk_fbc_wm_reg_max(to_i915(dev)); |
| } |
| |
| static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv, |
| int level, |
| struct ilk_wm_maximums *max) |
| { |
| max->pri = ilk_plane_wm_reg_max(dev_priv, level, false); |
| max->spr = ilk_plane_wm_reg_max(dev_priv, level, true); |
| max->cur = ilk_cursor_wm_reg_max(dev_priv, level); |
| max->fbc = ilk_fbc_wm_reg_max(dev_priv); |
| } |
| |
| static bool ilk_validate_wm_level(int level, |
| const struct ilk_wm_maximums *max, |
| struct intel_wm_level *result) |
| { |
| bool ret; |
| |
| /* already determined to be invalid? */ |
| if (!result->enable) |
| return false; |
| |
| result->enable = result->pri_val <= max->pri && |
| result->spr_val <= max->spr && |
| result->cur_val <= max->cur; |
| |
| ret = result->enable; |
| |
| /* |
| * HACK until we can pre-compute everything, |
| * and thus fail gracefully if LP0 watermarks |
| * are exceeded... |
| */ |
| if (level == 0 && !result->enable) { |
| if (result->pri_val > max->pri) |
| DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n", |
| level, result->pri_val, max->pri); |
| if (result->spr_val > max->spr) |
| DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n", |
| level, result->spr_val, max->spr); |
| if (result->cur_val > max->cur) |
| DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n", |
| level, result->cur_val, max->cur); |
| |
| result->pri_val = min_t(uint32_t, result->pri_val, max->pri); |
| result->spr_val = min_t(uint32_t, result->spr_val, max->spr); |
| result->cur_val = min_t(uint32_t, result->cur_val, max->cur); |
| result->enable = true; |
| } |
| |
| return ret; |
| } |
| |
| static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv, |
| const struct intel_crtc *intel_crtc, |
| int level, |
| struct intel_crtc_state *cstate, |
| struct intel_plane_state *pristate, |
| struct intel_plane_state *sprstate, |
| struct intel_plane_state *curstate, |
| struct intel_wm_level *result) |
| { |
| uint16_t pri_latency = dev_priv->wm.pri_latency[level]; |
| uint16_t spr_latency = dev_priv->wm.spr_latency[level]; |
| uint16_t cur_latency = dev_priv->wm.cur_latency[level]; |
| |
| /* WM1+ latency values stored in 0.5us units */ |
| if (level > 0) { |
| pri_latency *= 5; |
| spr_latency *= 5; |
| cur_latency *= 5; |
| } |
| |
| if (pristate) { |
| result->pri_val = ilk_compute_pri_wm(cstate, pristate, |
| pri_latency, level); |
| result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val); |
| } |
| |
| if (sprstate) |
| result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency); |
| |
| if (curstate) |
| result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency); |
| |
| result->enable = true; |
| } |
| |
| static uint32_t |
| hsw_compute_linetime_wm(const struct intel_crtc_state *cstate) |
| { |
| const struct intel_atomic_state *intel_state = |
| to_intel_atomic_state(cstate->base.state); |
| const struct drm_display_mode *adjusted_mode = |
| &cstate->base.adjusted_mode; |
| u32 linetime, ips_linetime; |
| |
| if (!cstate->base.active) |
| return 0; |
| if (WARN_ON(adjusted_mode->crtc_clock == 0)) |
| return 0; |
| if (WARN_ON(intel_state->cdclk.logical.cdclk == 0)) |
| return 0; |
| |
| /* The WM are computed with base on how long it takes to fill a single |
| * row at the given clock rate, multiplied by 8. |
| * */ |
| linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, |
| adjusted_mode->crtc_clock); |
| ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, |
| intel_state->cdclk.logical.cdclk); |
| |
| return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) | |
| PIPE_WM_LINETIME_TIME(linetime); |
| } |
| |
| static void intel_read_wm_latency(struct drm_i915_private *dev_priv, |
| uint16_t wm[8]) |
| { |
| if (INTEL_GEN(dev_priv) >= 9) { |
| uint32_t val; |
| int ret, i; |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| |
| /* read the first set of memory latencies[0:3] */ |
| val = 0; /* data0 to be programmed to 0 for first set */ |
| mutex_lock(&dev_priv->rps.hw_lock); |
| ret = sandybridge_pcode_read(dev_priv, |
| GEN9_PCODE_READ_MEM_LATENCY, |
| &val); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| if (ret) { |
| DRM_ERROR("SKL Mailbox read error = %d\n", ret); |
| return; |
| } |
| |
| wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK; |
| wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK; |
| wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK; |
| wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK; |
| |
| /* read the second set of memory latencies[4:7] */ |
| val = 1; /* data0 to be programmed to 1 for second set */ |
| mutex_lock(&dev_priv->rps.hw_lock); |
| ret = sandybridge_pcode_read(dev_priv, |
| GEN9_PCODE_READ_MEM_LATENCY, |
| &val); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| if (ret) { |
| DRM_ERROR("SKL Mailbox read error = %d\n", ret); |
| return; |
| } |
| |
| wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK; |
| wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK; |
| wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK; |
| wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK; |
| |
| /* |
| * If a level n (n > 1) has a 0us latency, all levels m (m >= n) |
| * need to be disabled. We make sure to sanitize the values out |
| * of the punit to satisfy this requirement. |
| */ |
| for (level = 1; level <= max_level; level++) { |
| if (wm[level] == 0) { |
| for (i = level + 1; i <= max_level; i++) |
| wm[i] = 0; |
| break; |
| } |
| } |
| |
| /* |
| * WaWmMemoryReadLatency:skl+,glk |
| * |
| * punit doesn't take into account the read latency so we need |
| * to add 2us to the various latency levels we retrieve from the |
| * punit when level 0 response data us 0us. |
| */ |
| if (wm[0] == 0) { |
| wm[0] += 2; |
| for (level = 1; level <= max_level; level++) { |
| if (wm[level] == 0) |
| break; |
| wm[level] += 2; |
| } |
| } |
| |
| } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { |
| uint64_t sskpd = I915_READ64(MCH_SSKPD); |
| |
| wm[0] = (sskpd >> 56) & 0xFF; |
| if (wm[0] == 0) |
| wm[0] = sskpd & 0xF; |
| wm[1] = (sskpd >> 4) & 0xFF; |
| wm[2] = (sskpd >> 12) & 0xFF; |
| wm[3] = (sskpd >> 20) & 0x1FF; |
| wm[4] = (sskpd >> 32) & 0x1FF; |
| } else if (INTEL_GEN(dev_priv) >= 6) { |
| uint32_t sskpd = I915_READ(MCH_SSKPD); |
| |
| wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK; |
| wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK; |
| wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK; |
| wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK; |
| } else if (INTEL_GEN(dev_priv) >= 5) { |
| uint32_t mltr = I915_READ(MLTR_ILK); |
| |
| /* ILK primary LP0 latency is 700 ns */ |
| wm[0] = 7; |
| wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK; |
| wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK; |
| } else { |
| MISSING_CASE(INTEL_DEVID(dev_priv)); |
| } |
| } |
| |
| static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv, |
| uint16_t wm[5]) |
| { |
| /* ILK sprite LP0 latency is 1300 ns */ |
| if (IS_GEN5(dev_priv)) |
| wm[0] = 13; |
| } |
| |
| static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv, |
| uint16_t wm[5]) |
| { |
| /* ILK cursor LP0 latency is 1300 ns */ |
| if (IS_GEN5(dev_priv)) |
| wm[0] = 13; |
| |
| /* WaDoubleCursorLP3Latency:ivb */ |
| if (IS_IVYBRIDGE(dev_priv)) |
| wm[3] *= 2; |
| } |
| |
| int ilk_wm_max_level(const struct drm_i915_private *dev_priv) |
| { |
| |