blob: 9544e4c4135901ee177393c6e2845a18e231fffb [file] [log] [blame]
/* QLogic qede NIC Driver
* Copyright (c) 2015 QLogic Corporation
*
* This software is available under the terms of the GNU General Public License
* (GPL) Version 2, available from the file COPYING in the main directory of
* this source tree.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/version.h>
#include <linux/device.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <asm/byteorder.h>
#include <asm/param.h>
#include <linux/io.h>
#include <linux/netdev_features.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <net/udp_tunnel.h>
#include <linux/ip.h>
#include <net/ipv6.h>
#include <net/tcp.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/pkt_sched.h>
#include <linux/ethtool.h>
#include <linux/in.h>
#include <linux/random.h>
#include <net/ip6_checksum.h>
#include <linux/bitops.h>
#include "qede.h"
static char version[] =
"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
static uint debug;
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, " Default debug msglevel");
static const struct qed_eth_ops *qed_ops;
#define CHIP_NUM_57980S_40 0x1634
#define CHIP_NUM_57980S_10 0x1666
#define CHIP_NUM_57980S_MF 0x1636
#define CHIP_NUM_57980S_100 0x1644
#define CHIP_NUM_57980S_50 0x1654
#define CHIP_NUM_57980S_25 0x1656
#define CHIP_NUM_57980S_IOV 0x1664
#ifndef PCI_DEVICE_ID_NX2_57980E
#define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
#define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
#define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
#define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
#define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
#define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
#define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
#endif
enum qede_pci_private {
QEDE_PRIVATE_PF,
QEDE_PRIVATE_VF
};
static const struct pci_device_id qede_pci_tbl[] = {
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
#ifdef CONFIG_QED_SRIOV
{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
#endif
{ 0 }
};
MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
#define TX_TIMEOUT (5 * HZ)
static void qede_remove(struct pci_dev *pdev);
static int qede_alloc_rx_buffer(struct qede_dev *edev,
struct qede_rx_queue *rxq);
static void qede_link_update(void *dev, struct qed_link_output *link);
#ifdef CONFIG_QED_SRIOV
static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
{
struct qede_dev *edev = netdev_priv(ndev);
if (vlan > 4095) {
DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
return -EINVAL;
}
DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
vlan, vf);
return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
}
static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
{
struct qede_dev *edev = netdev_priv(ndev);
DP_VERBOSE(edev, QED_MSG_IOV,
"Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
if (!is_valid_ether_addr(mac)) {
DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
return -EINVAL;
}
return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
}
static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
{
struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
struct qed_dev_info *qed_info = &edev->dev_info.common;
int rc;
DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
/* Enable/Disable Tx switching for PF */
if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
struct qed_update_vport_params params;
memset(&params, 0, sizeof(params));
params.vport_id = 0;
params.update_tx_switching_flg = 1;
params.tx_switching_flg = num_vfs_param ? 1 : 0;
edev->ops->vport_update(edev->cdev, &params);
}
return rc;
}
#endif
static struct pci_driver qede_pci_driver = {
.name = "qede",
.id_table = qede_pci_tbl,
.probe = qede_probe,
.remove = qede_remove,
#ifdef CONFIG_QED_SRIOV
.sriov_configure = qede_sriov_configure,
#endif
};
static void qede_force_mac(void *dev, u8 *mac)
{
struct qede_dev *edev = dev;
ether_addr_copy(edev->ndev->dev_addr, mac);
ether_addr_copy(edev->primary_mac, mac);
}
static struct qed_eth_cb_ops qede_ll_ops = {
{
.link_update = qede_link_update,
},
.force_mac = qede_force_mac,
};
static int qede_netdev_event(struct notifier_block *this, unsigned long event,
void *ptr)
{
struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
struct ethtool_drvinfo drvinfo;
struct qede_dev *edev;
/* Currently only support name change */
if (event != NETDEV_CHANGENAME)
goto done;
/* Check whether this is a qede device */
if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
goto done;
memset(&drvinfo, 0, sizeof(drvinfo));
ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
if (strcmp(drvinfo.driver, "qede"))
goto done;
edev = netdev_priv(ndev);
/* Notify qed of the name change */
if (!edev->ops || !edev->ops->common)
goto done;
edev->ops->common->set_id(edev->cdev, edev->ndev->name,
"qede");
done:
return NOTIFY_DONE;
}
static struct notifier_block qede_netdev_notifier = {
.notifier_call = qede_netdev_event,
};
static
int __init qede_init(void)
{
int ret;
pr_notice("qede_init: %s\n", version);
qed_ops = qed_get_eth_ops();
if (!qed_ops) {
pr_notice("Failed to get qed ethtool operations\n");
return -EINVAL;
}
/* Must register notifier before pci ops, since we might miss
* interface rename after pci probe and netdev registeration.
*/
ret = register_netdevice_notifier(&qede_netdev_notifier);
if (ret) {
pr_notice("Failed to register netdevice_notifier\n");
qed_put_eth_ops();
return -EINVAL;
}
ret = pci_register_driver(&qede_pci_driver);
if (ret) {
pr_notice("Failed to register driver\n");
unregister_netdevice_notifier(&qede_netdev_notifier);
qed_put_eth_ops();
return -EINVAL;
}
return 0;
}
static void __exit qede_cleanup(void)
{
pr_notice("qede_cleanup called\n");
unregister_netdevice_notifier(&qede_netdev_notifier);
pci_unregister_driver(&qede_pci_driver);
qed_put_eth_ops();
}
module_init(qede_init);
module_exit(qede_cleanup);
/* -------------------------------------------------------------------------
* START OF FAST-PATH
* -------------------------------------------------------------------------
*/
/* Unmap the data and free skb */
static int qede_free_tx_pkt(struct qede_dev *edev,
struct qede_tx_queue *txq,
int *len)
{
u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
struct eth_tx_1st_bd *first_bd;
struct eth_tx_bd *tx_data_bd;
int bds_consumed = 0;
int nbds;
bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
int i, split_bd_len = 0;
if (unlikely(!skb)) {
DP_ERR(edev,
"skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
idx, txq->sw_tx_cons, txq->sw_tx_prod);
return -1;
}
*len = skb->len;
first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
bds_consumed++;
nbds = first_bd->data.nbds;
if (data_split) {
struct eth_tx_bd *split = (struct eth_tx_bd *)
qed_chain_consume(&txq->tx_pbl);
split_bd_len = BD_UNMAP_LEN(split);
bds_consumed++;
}
dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
/* Unmap the data of the skb frags */
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
tx_data_bd = (struct eth_tx_bd *)
qed_chain_consume(&txq->tx_pbl);
dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
}
while (bds_consumed++ < nbds)
qed_chain_consume(&txq->tx_pbl);
/* Free skb */
dev_kfree_skb_any(skb);
txq->sw_tx_ring[idx].skb = NULL;
txq->sw_tx_ring[idx].flags = 0;
return 0;
}
/* Unmap the data and free skb when mapping failed during start_xmit */
static void qede_free_failed_tx_pkt(struct qede_dev *edev,
struct qede_tx_queue *txq,
struct eth_tx_1st_bd *first_bd,
int nbd,
bool data_split)
{
u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
struct eth_tx_bd *tx_data_bd;
int i, split_bd_len = 0;
/* Return prod to its position before this skb was handled */
qed_chain_set_prod(&txq->tx_pbl,
le16_to_cpu(txq->tx_db.data.bd_prod),
first_bd);
first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
if (data_split) {
struct eth_tx_bd *split = (struct eth_tx_bd *)
qed_chain_produce(&txq->tx_pbl);
split_bd_len = BD_UNMAP_LEN(split);
nbd--;
}
dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
/* Unmap the data of the skb frags */
for (i = 0; i < nbd; i++) {
tx_data_bd = (struct eth_tx_bd *)
qed_chain_produce(&txq->tx_pbl);
if (tx_data_bd->nbytes)
dma_unmap_page(&edev->pdev->dev,
BD_UNMAP_ADDR(tx_data_bd),
BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
}
/* Return again prod to its position before this skb was handled */
qed_chain_set_prod(&txq->tx_pbl,
le16_to_cpu(txq->tx_db.data.bd_prod),
first_bd);
/* Free skb */
dev_kfree_skb_any(skb);
txq->sw_tx_ring[idx].skb = NULL;
txq->sw_tx_ring[idx].flags = 0;
}
static u32 qede_xmit_type(struct qede_dev *edev,
struct sk_buff *skb,
int *ipv6_ext)
{
u32 rc = XMIT_L4_CSUM;
__be16 l3_proto;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return XMIT_PLAIN;
l3_proto = vlan_get_protocol(skb);
if (l3_proto == htons(ETH_P_IPV6) &&
(ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
*ipv6_ext = 1;
if (skb->encapsulation)
rc |= XMIT_ENC;
if (skb_is_gso(skb))
rc |= XMIT_LSO;
return rc;
}
static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
struct eth_tx_2nd_bd *second_bd,
struct eth_tx_3rd_bd *third_bd)
{
u8 l4_proto;
u16 bd2_bits1 = 0, bd2_bits2 = 0;
bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
<< ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
l4_proto = ipv6_hdr(skb)->nexthdr;
else
l4_proto = ip_hdr(skb)->protocol;
if (l4_proto == IPPROTO_UDP)
bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
if (third_bd)
third_bd->data.bitfields |=
cpu_to_le16(((tcp_hdrlen(skb) / 4) &
ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
}
static int map_frag_to_bd(struct qede_dev *edev,
skb_frag_t *frag,
struct eth_tx_bd *bd)
{
dma_addr_t mapping;
/* Map skb non-linear frag data for DMA */
mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
skb_frag_size(frag),
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
return -ENOMEM;
}
/* Setup the data pointer of the frag data */
BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
return 0;
}
static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
{
if (is_encap_pkt)
return (skb_inner_transport_header(skb) +
inner_tcp_hdrlen(skb) - skb->data);
else
return (skb_transport_header(skb) +
tcp_hdrlen(skb) - skb->data);
}
/* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
u8 xmit_type)
{
int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
if (xmit_type & XMIT_LSO) {
int hlen;
hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
/* linear payload would require its own BD */
if (skb_headlen(skb) > hlen)
allowed_frags--;
}
return (skb_shinfo(skb)->nr_frags > allowed_frags);
}
#endif
static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
{
/* wmb makes sure that the BDs data is updated before updating the
* producer, otherwise FW may read old data from the BDs.
*/
wmb();
barrier();
writel(txq->tx_db.raw, txq->doorbell_addr);
/* mmiowb is needed to synchronize doorbell writes from more than one
* processor. It guarantees that the write arrives to the device before
* the queue lock is released and another start_xmit is called (possibly
* on another CPU). Without this barrier, the next doorbell can bypass
* this doorbell. This is applicable to IA64/Altix systems.
*/
mmiowb();
}
/* Main transmit function */
static
netdev_tx_t qede_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct qede_dev *edev = netdev_priv(ndev);
struct netdev_queue *netdev_txq;
struct qede_tx_queue *txq;
struct eth_tx_1st_bd *first_bd;
struct eth_tx_2nd_bd *second_bd = NULL;
struct eth_tx_3rd_bd *third_bd = NULL;
struct eth_tx_bd *tx_data_bd = NULL;
u16 txq_index;
u8 nbd = 0;
dma_addr_t mapping;
int rc, frag_idx = 0, ipv6_ext = 0;
u8 xmit_type;
u16 idx;
u16 hlen;
bool data_split = false;
/* Get tx-queue context and netdev index */
txq_index = skb_get_queue_mapping(skb);
WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
txq = QEDE_TX_QUEUE(edev, txq_index);
netdev_txq = netdev_get_tx_queue(ndev, txq_index);
WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
(MAX_SKB_FRAGS + 1));
xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
if (qede_pkt_req_lin(edev, skb, xmit_type)) {
if (skb_linearize(skb)) {
DP_NOTICE(edev,
"SKB linearization failed - silently dropping this SKB\n");
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
}
#endif
/* Fill the entry in the SW ring and the BDs in the FW ring */
idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
txq->sw_tx_ring[idx].skb = skb;
first_bd = (struct eth_tx_1st_bd *)
qed_chain_produce(&txq->tx_pbl);
memset(first_bd, 0, sizeof(*first_bd));
first_bd->data.bd_flags.bitfields =
1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
/* Map skb linear data for DMA and set in the first BD */
mapping = dma_map_single(&edev->pdev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
DP_NOTICE(edev, "SKB mapping failed\n");
qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
qede_update_tx_producer(txq);
return NETDEV_TX_OK;
}
nbd++;
BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
/* In case there is IPv6 with extension headers or LSO we need 2nd and
* 3rd BDs.
*/
if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
second_bd = (struct eth_tx_2nd_bd *)
qed_chain_produce(&txq->tx_pbl);
memset(second_bd, 0, sizeof(*second_bd));
nbd++;
third_bd = (struct eth_tx_3rd_bd *)
qed_chain_produce(&txq->tx_pbl);
memset(third_bd, 0, sizeof(*third_bd));
nbd++;
/* We need to fill in additional data in second_bd... */
tx_data_bd = (struct eth_tx_bd *)second_bd;
}
if (skb_vlan_tag_present(skb)) {
first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
}
/* Fill the parsing flags & params according to the requested offload */
if (xmit_type & XMIT_L4_CSUM) {
/* We don't re-calculate IP checksum as it is already done by
* the upper stack
*/
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
if (xmit_type & XMIT_ENC) {
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
first_bd->data.bitfields |=
1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
}
/* If the packet is IPv6 with extension header, indicate that
* to FW and pass few params, since the device cracker doesn't
* support parsing IPv6 with extension header/s.
*/
if (unlikely(ipv6_ext))
qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
}
if (xmit_type & XMIT_LSO) {
first_bd->data.bd_flags.bitfields |=
(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
third_bd->data.lso_mss =
cpu_to_le16(skb_shinfo(skb)->gso_size);
if (unlikely(xmit_type & XMIT_ENC)) {
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
hlen = qede_get_skb_hlen(skb, true);
} else {
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
hlen = qede_get_skb_hlen(skb, false);
}
/* @@@TBD - if will not be removed need to check */
third_bd->data.bitfields |=
cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
/* Make life easier for FW guys who can't deal with header and
* data on same BD. If we need to split, use the second bd...
*/
if (unlikely(skb_headlen(skb) > hlen)) {
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
"TSO split header size is %d (%x:%x)\n",
first_bd->nbytes, first_bd->addr.hi,
first_bd->addr.lo);
mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
le32_to_cpu(first_bd->addr.lo)) +
hlen;
BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
le16_to_cpu(first_bd->nbytes) -
hlen);
/* this marks the BD as one that has no
* individual mapping
*/
txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
first_bd->nbytes = cpu_to_le16(hlen);
tx_data_bd = (struct eth_tx_bd *)third_bd;
data_split = true;
}
} else {
first_bd->data.bitfields |=
(skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
}
/* Handle fragmented skb */
/* special handle for frags inside 2nd and 3rd bds.. */
while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
rc = map_frag_to_bd(edev,
&skb_shinfo(skb)->frags[frag_idx],
tx_data_bd);
if (rc) {
qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
data_split);
qede_update_tx_producer(txq);
return NETDEV_TX_OK;
}
if (tx_data_bd == (struct eth_tx_bd *)second_bd)
tx_data_bd = (struct eth_tx_bd *)third_bd;
else
tx_data_bd = NULL;
frag_idx++;
}
/* map last frags into 4th, 5th .... */
for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
tx_data_bd = (struct eth_tx_bd *)
qed_chain_produce(&txq->tx_pbl);
memset(tx_data_bd, 0, sizeof(*tx_data_bd));
rc = map_frag_to_bd(edev,
&skb_shinfo(skb)->frags[frag_idx],
tx_data_bd);
if (rc) {
qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
data_split);
qede_update_tx_producer(txq);
return NETDEV_TX_OK;
}
}
/* update the first BD with the actual num BDs */
first_bd->data.nbds = nbd;
netdev_tx_sent_queue(netdev_txq, skb->len);
skb_tx_timestamp(skb);
/* Advance packet producer only before sending the packet since mapping
* of pages may fail.
*/
txq->sw_tx_prod++;
/* 'next page' entries are counted in the producer value */
txq->tx_db.data.bd_prod =
cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
qede_update_tx_producer(txq);
if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
< (MAX_SKB_FRAGS + 1))) {
if (skb->xmit_more)
qede_update_tx_producer(txq);
netif_tx_stop_queue(netdev_txq);
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
"Stop queue was called\n");
/* paired memory barrier is in qede_tx_int(), we have to keep
* ordering of set_bit() in netif_tx_stop_queue() and read of
* fp->bd_tx_cons
*/
smp_mb();
if (qed_chain_get_elem_left(&txq->tx_pbl)
>= (MAX_SKB_FRAGS + 1) &&
(edev->state == QEDE_STATE_OPEN)) {
netif_tx_wake_queue(netdev_txq);
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
"Wake queue was called\n");
}
}
return NETDEV_TX_OK;
}
int qede_txq_has_work(struct qede_tx_queue *txq)
{
u16 hw_bd_cons;
/* Tell compiler that consumer and producer can change */
barrier();
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
return 0;
return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
}
static int qede_tx_int(struct qede_dev *edev,
struct qede_tx_queue *txq)
{
struct netdev_queue *netdev_txq;
u16 hw_bd_cons;
unsigned int pkts_compl = 0, bytes_compl = 0;
int rc;
netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
barrier();
while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
int len = 0;
rc = qede_free_tx_pkt(edev, txq, &len);
if (rc) {
DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
hw_bd_cons,
qed_chain_get_cons_idx(&txq->tx_pbl));
break;
}
bytes_compl += len;
pkts_compl++;
txq->sw_tx_cons++;
}
netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
/* Need to make the tx_bd_cons update visible to start_xmit()
* before checking for netif_tx_queue_stopped(). Without the
* memory barrier, there is a small possibility that
* start_xmit() will miss it and cause the queue to be stopped
* forever.
* On the other hand we need an rmb() here to ensure the proper
* ordering of bit testing in the following
* netif_tx_queue_stopped(txq) call.
*/
smp_mb();
if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
/* Taking tx_lock is needed to prevent reenabling the queue
* while it's empty. This could have happen if rx_action() gets
* suspended in qede_tx_int() after the condition before
* netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
*
* stops the queue->sees fresh tx_bd_cons->releases the queue->
* sends some packets consuming the whole queue again->
* stops the queue
*/
__netif_tx_lock(netdev_txq, smp_processor_id());
if ((netif_tx_queue_stopped(netdev_txq)) &&
(edev->state == QEDE_STATE_OPEN) &&
(qed_chain_get_elem_left(&txq->tx_pbl)
>= (MAX_SKB_FRAGS + 1))) {
netif_tx_wake_queue(netdev_txq);
DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
"Wake queue was called\n");
}
__netif_tx_unlock(netdev_txq);
}
return 0;
}
bool qede_has_rx_work(struct qede_rx_queue *rxq)
{
u16 hw_comp_cons, sw_comp_cons;
/* Tell compiler that status block fields can change */
barrier();
hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
return hw_comp_cons != sw_comp_cons;
}
static bool qede_has_tx_work(struct qede_fastpath *fp)
{
u8 tc;
for (tc = 0; tc < fp->edev->num_tc; tc++)
if (qede_txq_has_work(&fp->txqs[tc]))
return true;
return false;
}
static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
{
qed_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons++;
}
/* This function reuses the buffer(from an offset) from
* consumer index to producer index in the bd ring
*/
static inline void qede_reuse_page(struct qede_dev *edev,
struct qede_rx_queue *rxq,
struct sw_rx_data *curr_cons)
{
struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
struct sw_rx_data *curr_prod;
dma_addr_t new_mapping;
curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
*curr_prod = *curr_cons;
new_mapping = curr_prod->mapping + curr_prod->page_offset;
rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
rxq->sw_rx_prod++;
curr_cons->data = NULL;
}
/* In case of allocation failures reuse buffers
* from consumer index to produce buffers for firmware
*/
void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
struct qede_dev *edev, u8 count)
{
struct sw_rx_data *curr_cons;
for (; count > 0; count--) {
curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
qede_reuse_page(edev, rxq, curr_cons);
qede_rx_bd_ring_consume(rxq);
}
}
static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
struct qede_rx_queue *rxq,
struct sw_rx_data *curr_cons)
{
/* Move to the next segment in the page */
curr_cons->page_offset += rxq->rx_buf_seg_size;
if (curr_cons->page_offset == PAGE_SIZE) {
if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
/* Since we failed to allocate new buffer
* current buffer can be used again.
*/
curr_cons->page_offset -= rxq->rx_buf_seg_size;
return -ENOMEM;
}
dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
PAGE_SIZE, DMA_FROM_DEVICE);
} else {
/* Increment refcount of the page as we don't want
* network stack to take the ownership of the page
* which can be recycled multiple times by the driver.
*/
page_ref_inc(curr_cons->data);
qede_reuse_page(edev, rxq, curr_cons);
}
return 0;
}
static inline void qede_update_rx_prod(struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
struct eth_rx_prod_data rx_prods = {0};
/* Update producers */
rx_prods.bd_prod = cpu_to_le16(bd_prod);
rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
/* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
*/
wmb();
internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
(u32 *)&rx_prods);
/* mmiowb is needed to synchronize doorbell writes from more than one
* processor. It guarantees that the write arrives to the device before
* the napi lock is released and another qede_poll is called (possibly
* on another CPU). Without this barrier, the next doorbell can bypass
* this doorbell. This is applicable to IA64/Altix systems.
*/
mmiowb();
}
static u32 qede_get_rxhash(struct qede_dev *edev,
u8 bitfields,
__le32 rss_hash,
enum pkt_hash_types *rxhash_type)
{
enum rss_hash_type htype;
htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
*rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
(htype == RSS_HASH_TYPE_IPV6)) ?
PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
return le32_to_cpu(rss_hash);
}
*rxhash_type = PKT_HASH_TYPE_NONE;
return 0;
}
static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
{
skb_checksum_none_assert(skb);
if (csum_flag & QEDE_CSUM_UNNECESSARY)
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
skb->csum_level = 1;
}
static inline void qede_skb_receive(struct qede_dev *edev,
struct qede_fastpath *fp,
struct sk_buff *skb,
u16 vlan_tag)
{
if (vlan_tag)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
vlan_tag);
napi_gro_receive(&fp->napi, skb);
}
static void qede_set_gro_params(struct qede_dev *edev,
struct sk_buff *skb,
struct eth_fast_path_rx_tpa_start_cqe *cqe)
{
u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
else
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
cqe->header_len;
}
static int qede_fill_frag_skb(struct qede_dev *edev,
struct qede_rx_queue *rxq,
u8 tpa_agg_index,
u16 len_on_bd)
{
struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
NUM_RX_BDS_MAX];
struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
struct sk_buff *skb = tpa_info->skb;
if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
goto out;
/* Add one frag and update the appropriate fields in the skb */
skb_fill_page_desc(skb, tpa_info->frag_id++,
current_bd->data, current_bd->page_offset,
len_on_bd);
if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
/* Incr page ref count to reuse on allocation failure
* so that it doesn't get freed while freeing SKB.
*/
page_ref_inc(current_bd->data);
goto out;
}
qed_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons++;
skb->data_len += len_on_bd;
skb->truesize += rxq->rx_buf_seg_size;
skb->len += len_on_bd;
return 0;
out:
tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
qede_recycle_rx_bd_ring(rxq, edev, 1);
return -ENOMEM;
}
static void qede_tpa_start(struct qede_dev *edev,
struct qede_rx_queue *rxq,
struct eth_fast_path_rx_tpa_start_cqe *cqe)
{
struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
dma_addr_t mapping = tpa_info->replace_buf_mapping;
struct sw_rx_data *sw_rx_data_cons;
struct sw_rx_data *sw_rx_data_prod;
enum pkt_hash_types rxhash_type;
u32 rxhash;
sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
/* Use pre-allocated replacement buffer - we can't release the agg.
* start until its over and we don't want to risk allocation failing
* here, so re-allocate when aggregation will be over.
*/
sw_rx_data_prod->mapping = replace_buf->mapping;
sw_rx_data_prod->data = replace_buf->data;
rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
sw_rx_data_prod->page_offset = replace_buf->page_offset;
rxq->sw_rx_prod++;
/* move partial skb from cons to pool (don't unmap yet)
* save mapping, incase we drop the packet later on.
*/
tpa_info->start_buf = *sw_rx_data_cons;
mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
le32_to_cpu(rx_bd_cons->addr.lo));
tpa_info->start_buf_mapping = mapping;
rxq->sw_rx_cons++;
/* set tpa state to start only if we are able to allocate skb
* for this aggregation, otherwise mark as error and aggregation will
* be dropped
*/
tpa_info->skb = netdev_alloc_skb(edev->ndev,
le16_to_cpu(cqe->len_on_first_bd));
if (unlikely(!tpa_info->skb)) {
DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
goto cons_buf;
}
skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
/* Start filling in the aggregation info */
tpa_info->frag_id = 0;
tpa_info->agg_state = QEDE_AGG_STATE_START;
rxhash = qede_get_rxhash(edev, cqe->bitfields,
cqe->rss_hash, &rxhash_type);
skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
if ((le16_to_cpu(cqe->pars_flags.flags) >>
PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
else
tpa_info->vlan_tag = 0;
/* This is needed in order to enable forwarding support */
qede_set_gro_params(edev, tpa_info->skb, cqe);
cons_buf: /* We still need to handle bd_len_list to consume buffers */
if (likely(cqe->ext_bd_len_list[0]))
qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
le16_to_cpu(cqe->ext_bd_len_list[0]));
if (unlikely(cqe->ext_bd_len_list[1])) {
DP_ERR(edev,
"Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
}
}
#ifdef CONFIG_INET
static void qede_gro_ip_csum(struct sk_buff *skb)
{
const struct iphdr *iph = ip_hdr(skb);
struct tcphdr *th;
skb_set_transport_header(skb, sizeof(struct iphdr));
th = tcp_hdr(skb);
th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
iph->saddr, iph->daddr, 0);
tcp_gro_complete(skb);
}
static void qede_gro_ipv6_csum(struct sk_buff *skb)
{
struct ipv6hdr *iph = ipv6_hdr(skb);
struct tcphdr *th;
skb_set_transport_header(skb, sizeof(struct ipv6hdr));
th = tcp_hdr(skb);
th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
&iph->saddr, &iph->daddr, 0);
tcp_gro_complete(skb);
}
#endif
static void qede_gro_receive(struct qede_dev *edev,
struct qede_fastpath *fp,
struct sk_buff *skb,
u16 vlan_tag)
{
/* FW can send a single MTU sized packet from gro flow
* due to aggregation timeout/last segment etc. which
* is not expected to be a gro packet. If a skb has zero
* frags then simply push it in the stack as non gso skb.
*/
if (unlikely(!skb->data_len)) {
skb_shinfo(skb)->gso_type = 0;
skb_shinfo(skb)->gso_size = 0;
goto send_skb;
}
#ifdef CONFIG_INET
if (skb_shinfo(skb)->gso_size) {
skb_set_network_header(skb, 0);
switch (skb->protocol) {
case htons(ETH_P_IP):
qede_gro_ip_csum(skb);
break;
case htons(ETH_P_IPV6):
qede_gro_ipv6_csum(skb);
break;
default:
DP_ERR(edev,
"Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
ntohs(skb->protocol));
}
}
#endif
send_skb:
skb_record_rx_queue(skb, fp->rss_id);
qede_skb_receive(edev, fp, skb, vlan_tag);
}
static inline void qede_tpa_cont(struct qede_dev *edev,
struct qede_rx_queue *rxq,
struct eth_fast_path_rx_tpa_cont_cqe *cqe)
{
int i;
for (i = 0; cqe->len_list[i]; i++)
qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
le16_to_cpu(cqe->len_list[i]));
if (unlikely(i > 1))
DP_ERR(edev,
"Strange - TPA cont with more than a single len_list entry\n");
}
static void qede_tpa_end(struct qede_dev *edev,
struct qede_fastpath *fp,
struct eth_fast_path_rx_tpa_end_cqe *cqe)
{
struct qede_rx_queue *rxq = fp->rxq;
struct qede_agg_info *tpa_info;
struct sk_buff *skb;
int i;
tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
skb = tpa_info->skb;
for (i = 0; cqe->len_list[i]; i++)
qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
le16_to_cpu(cqe->len_list[i]));
if (unlikely(i > 1))
DP_ERR(edev,
"Strange - TPA emd with more than a single len_list entry\n");
if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
goto err;
/* Sanity */
if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
DP_ERR(edev,
"Strange - TPA had %02x BDs, but SKB has only %d frags\n",
cqe->num_of_bds, tpa_info->frag_id);
if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
DP_ERR(edev,
"Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
le16_to_cpu(cqe->total_packet_len), skb->len);
memcpy(skb->data,
page_address(tpa_info->start_buf.data) +
tpa_info->start_cqe.placement_offset +
tpa_info->start_buf.page_offset,
le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
/* Recycle [mapped] start buffer for the next replacement */
tpa_info->replace_buf = tpa_info->start_buf;
tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
/* Finalize the SKB */
skb->protocol = eth_type_trans(skb, edev->ndev);
skb->ip_summed = CHECKSUM_UNNECESSARY;
/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
* to skb_shinfo(skb)->gso_segs
*/
NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
tpa_info->agg_state = QEDE_AGG_STATE_NONE;
return;
err:
/* The BD starting the aggregation is still mapped; Re-use it for
* future aggregations [as replacement buffer]
*/
memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
sizeof(struct sw_rx_data));
tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
tpa_info->start_buf.data = NULL;
tpa_info->agg_state = QEDE_AGG_STATE_NONE;
dev_kfree_skb_any(tpa_info->skb);
tpa_info->skb = NULL;
}
static bool qede_tunn_exist(u16 flag)
{
return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
}
static u8 qede_check_tunn_csum(u16 flag)
{
u16 csum_flag = 0;
u8 tcsum = 0;
if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
}
csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
if (csum_flag & flag)
return QEDE_CSUM_ERROR;
return QEDE_CSUM_UNNECESSARY | tcsum;
}
static u8 qede_check_notunn_csum(u16 flag)
{
u16 csum_flag = 0;
u8 csum = 0;
if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
csum = QEDE_CSUM_UNNECESSARY;
}
csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
if (csum_flag & flag)
return QEDE_CSUM_ERROR;
return csum;
}
static u8 qede_check_csum(u16 flag)
{
if (!qede_tunn_exist(flag))
return qede_check_notunn_csum(flag);
else
return qede_check_tunn_csum(flag);
}
static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
u16 flag)
{
u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
(flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
return true;
return false;
}
static int qede_rx_int(struct qede_fastpath *fp, int budget)
{
struct qede_dev *edev = fp->edev;
struct qede_rx_queue *rxq = fp->rxq;
u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
int rx_pkt = 0;
u8 csum_flag;
hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
/* Memory barrier to prevent the CPU from doing speculative reads of CQE
* / BD in the while-loop before reading hw_comp_cons. If the CQE is
* read before it is written by FW, then FW writes CQE and SB, and then
* the CPU reads the hw_comp_cons, it will use an old CQE.
*/
rmb();
/* Loop to complete all indicated BDs */
while (sw_comp_cons != hw_comp_cons) {
struct eth_fast_path_rx_reg_cqe *fp_cqe;
enum pkt_hash_types rxhash_type;
enum eth_rx_cqe_type cqe_type;
struct sw_rx_data *sw_rx_data;
union eth_rx_cqe *cqe;
struct sk_buff *skb;
struct page *data;
__le16 flags;
u16 len, pad;
u32 rx_hash;
/* Get the CQE from the completion ring */
cqe = (union eth_rx_cqe *)
qed_chain_consume(&rxq->rx_comp_ring);
cqe_type = cqe->fast_path_regular.type;
if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
edev->ops->eth_cqe_completion(
edev->cdev, fp->rss_id,
(struct eth_slow_path_rx_cqe *)cqe);
goto next_cqe;
}
if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
switch (cqe_type) {
case ETH_RX_CQE_TYPE_TPA_START:
qede_tpa_start(edev, rxq,
&cqe->fast_path_tpa_start);
goto next_cqe;
case ETH_RX_CQE_TYPE_TPA_CONT:
qede_tpa_cont(edev, rxq,
&cqe->fast_path_tpa_cont);
goto next_cqe;
case ETH_RX_CQE_TYPE_TPA_END:
qede_tpa_end(edev, fp,
&cqe->fast_path_tpa_end);
goto next_rx_only;
default:
break;
}
}
/* Get the data from the SW ring */
sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
data = sw_rx_data->data;
fp_cqe = &cqe->fast_path_regular;
len = le16_to_cpu(fp_cqe->len_on_first_bd);
pad = fp_cqe->placement_offset;
flags = cqe->fast_path_regular.pars_flags.flags;
/* If this is an error packet then drop it */
parse_flag = le16_to_cpu(flags);
csum_flag = qede_check_csum(parse_flag);
if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
if (qede_pkt_is_ip_fragmented(&cqe->fast_path_regular,
parse_flag)) {
rxq->rx_ip_frags++;
goto alloc_skb;
}
DP_NOTICE(edev,
"CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
sw_comp_cons, parse_flag);
rxq->rx_hw_errors++;
qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
goto next_cqe;
}
alloc_skb:
skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
if (unlikely(!skb)) {
DP_NOTICE(edev,
"Build_skb failed, dropping incoming packet\n");
qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
rxq->rx_alloc_errors++;
goto next_cqe;
}
/* Copy data into SKB */
if (len + pad <= edev->rx_copybreak) {
memcpy(skb_put(skb, len),
page_address(data) + pad +
sw_rx_data->page_offset, len);
qede_reuse_page(edev, rxq, sw_rx_data);
} else {
struct skb_frag_struct *frag;
unsigned int pull_len;
unsigned char *va;
frag = &skb_shinfo(skb)->frags[0];
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
pad + sw_rx_data->page_offset,
len, rxq->rx_buf_seg_size);
va = skb_frag_address(frag);
pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
/* Align the pull_len to optimize memcpy */
memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
skb_frag_size_sub(frag, pull_len);
frag->page_offset += pull_len;
skb->data_len -= pull_len;
skb->tail += pull_len;
if (unlikely(qede_realloc_rx_buffer(edev, rxq,
sw_rx_data))) {
DP_ERR(edev, "Failed to allocate rx buffer\n");
/* Incr page ref count to reuse on allocation
* failure so that it doesn't get freed while
* freeing SKB.
*/
page_ref_inc(sw_rx_data->data);
rxq->rx_alloc_errors++;
qede_recycle_rx_bd_ring(rxq, edev,
fp_cqe->bd_num);
dev_kfree_skb_any(skb);
goto next_cqe;
}
}
qede_rx_bd_ring_consume(rxq);
if (fp_cqe->bd_num != 1) {
u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
u8 num_frags;
pkt_len -= len;
for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
num_frags--) {
u16 cur_size = pkt_len > rxq->rx_buf_size ?
rxq->rx_buf_size : pkt_len;
if (unlikely(!cur_size)) {
DP_ERR(edev,
"Still got %d BDs for mapping jumbo, but length became 0\n",
num_frags);
qede_recycle_rx_bd_ring(rxq, edev,
num_frags);
dev_kfree_skb_any(skb);
goto next_cqe;
}
if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
qede_recycle_rx_bd_ring(rxq, edev,
num_frags);
dev_kfree_skb_any(skb);
goto next_cqe;
}
sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
qede_rx_bd_ring_consume(rxq);
dma_unmap_page(&edev->pdev->dev,
sw_rx_data->mapping,
PAGE_SIZE, DMA_FROM_DEVICE);
skb_fill_page_desc(skb,
skb_shinfo(skb)->nr_frags++,
sw_rx_data->data, 0,
cur_size);
skb->truesize += PAGE_SIZE;
skb->data_len += cur_size;
skb->len += cur_size;
pkt_len -= cur_size;
}
if (unlikely(pkt_len))
DP_ERR(edev,
"Mapped all BDs of jumbo, but still have %d bytes\n",
pkt_len);
}
skb->protocol = eth_type_trans(skb, edev->ndev);
rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
fp_cqe->rss_hash,
&rxhash_type);
skb_set_hash(skb, rx_hash, rxhash_type);
qede_set_skb_csum(skb, csum_flag);
skb_record_rx_queue(skb, fp->rss_id);
qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
next_rx_only:
rx_pkt++;
next_cqe: /* don't consume bd rx buffer */
qed_chain_recycle_consumed(&rxq->rx_comp_ring);
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
/* CR TPA - revisit how to handle budget in TPA perhaps
* increase on "end"
*/
if (rx_pkt == budget)
break;
} /* repeat while sw_comp_cons != hw_comp_cons... */
/* Update producers */
qede_update_rx_prod(edev, rxq);
return rx_pkt;
}
static int qede_poll(struct napi_struct *napi, int budget)
{
struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
napi);
struct qede_dev *edev = fp->edev;
int rx_work_done = 0;
u8 tc;
for (tc = 0; tc < edev->num_tc; tc++)
if (qede_txq_has_work(&fp->txqs[tc]))
qede_tx_int(edev, &fp->txqs[tc]);
rx_work_done = qede_has_rx_work(fp->rxq) ?
qede_rx_int(fp, budget) : 0;
if (rx_work_done < budget) {
qed_sb_update_sb_idx(fp->sb_info);
/* *_has_*_work() reads the status block,
* thus we need to ensure that status block indices
* have been actually read (qed_sb_update_sb_idx)
* prior to this check (*_has_*_work) so that
* we won't write the "newer" value of the status block
* to HW (if there was a DMA right after
* qede_has_rx_work and if there is no rmb, the memory
* reading (qed_sb_update_sb_idx) may be postponed
* to right before *_ack_sb). In this case there
* will never be another interrupt until there is
* another update of the status block, while there
* is still unhandled work.
*/
rmb();
/* Fall out from the NAPI loop if needed */
if (!(qede_has_rx_work(fp->rxq) ||
qede_has_tx_work(fp))) {
napi_complete(napi);
/* Update and reenable interrupts */
qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1 /*update*/);
} else {
rx_work_done = budget;
}
}
return rx_work_done;
}
static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
{
struct qede_fastpath *fp = fp_cookie;
qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
napi_schedule_irqoff(&fp->napi);
return IRQ_HANDLED;
}
/* -------------------------------------------------------------------------
* END OF FAST-PATH
* -------------------------------------------------------------------------
*/
static int qede_open(struct net_device *ndev);
static int qede_close(struct net_device *ndev);
static int qede_set_mac_addr(struct net_device *ndev, void *p);
static void qede_set_rx_mode(struct net_device *ndev);
static void qede_config_rx_mode(struct net_device *ndev);
static int qede_set_ucast_rx_mac(struct qede_dev *edev,
enum qed_filter_xcast_params_type opcode,
unsigned char mac[ETH_ALEN])
{
struct qed_filter_params filter_cmd;
memset(&filter_cmd, 0, sizeof(filter_cmd));
filter_cmd.type = QED_FILTER_TYPE_UCAST;
filter_cmd.filter.ucast.type = opcode;
filter_cmd.filter.ucast.mac_valid = 1;
ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
return edev->ops->filter_config(edev->cdev, &filter_cmd);
}
static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
enum qed_filter_xcast_params_type opcode,
u16 vid)
{
struct qed_filter_params filter_cmd;
memset(&filter_cmd, 0, sizeof(filter_cmd));
filter_cmd.type = QED_FILTER_TYPE_UCAST;
filter_cmd.filter.ucast.type = opcode;
filter_cmd.filter.ucast.vlan_valid = 1;
filter_cmd.filter.ucast.vlan = vid;
return edev->ops->filter_config(edev->cdev, &filter_cmd);
}
void qede_fill_by_demand_stats(struct qede_dev *edev)
{
struct qed_eth_stats stats;
edev->ops->get_vport_stats(edev->cdev, &stats);
edev->stats.no_buff_discards = stats.no_buff_discards;
edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
edev->stats.mac_filter_discards = stats.mac_filter_discards;
edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
edev->stats.coalesced_events = stats.tpa_coalesced_events;
edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
edev->stats.rx_128_to_255_byte_packets =
stats.rx_128_to_255_byte_packets;
edev->stats.rx_256_to_511_byte_packets =
stats.rx_256_to_511_byte_packets;
edev->stats.rx_512_to_1023_byte_packets =
stats.rx_512_to_1023_byte_packets;
edev->stats.rx_1024_to_1518_byte_packets =
stats.rx_1024_to_1518_byte_packets;
edev->stats.rx_1519_to_1522_byte_packets =
stats.rx_1519_to_1522_byte_packets;
edev->stats.rx_1519_to_2047_byte_packets =
stats.rx_1519_to_2047_byte_packets;
edev->stats.rx_2048_to_4095_byte_packets =
stats.rx_2048_to_4095_byte_packets;
edev->stats.rx_4096_to_9216_byte_packets =
stats.rx_4096_to_9216_byte_packets;
edev->stats.rx_9217_to_16383_byte_packets =
stats.rx_9217_to_16383_byte_packets;
edev->stats.rx_crc_errors = stats.rx_crc_errors;
edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
edev->stats.rx_pause_frames = stats.rx_pause_frames;
edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
edev->stats.rx_align_errors = stats.rx_align_errors;
edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
edev->stats.rx_jabbers = stats.rx_jabbers;
edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
edev->stats.rx_fragments = stats.rx_fragments;
edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
edev->stats.tx_128_to_255_byte_packets =
stats.tx_128_to_255_byte_packets;
edev->stats.tx_256_to_511_byte_packets =
stats.tx_256_to_511_byte_packets;
edev->stats.tx_512_to_1023_byte_packets =
stats.tx_512_to_1023_byte_packets;
edev->stats.tx_1024_to_1518_byte_packets =
stats.tx_1024_to_1518_byte_packets;
edev->stats.tx_1519_to_2047_byte_packets =
stats.tx_1519_to_2047_byte_packets;
edev->stats.tx_2048_to_4095_byte_packets =
stats.tx_2048_to_4095_byte_packets;
edev->stats.tx_4096_to_9216_byte_packets =
stats.tx_4096_to_9216_byte_packets;
edev->stats.tx_9217_to_16383_byte_packets =
stats.tx_9217_to_16383_byte_packets;
edev->stats.tx_pause_frames = stats.tx_pause_frames;
edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
edev->stats.tx_total_collisions = stats.tx_total_collisions;
edev->stats.brb_truncates = stats.brb_truncates;
edev->stats.brb_discards = stats.brb_discards;
edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
}
static struct rtnl_link_stats64 *qede_get_stats64(
struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct qede_dev *edev = netdev_priv(dev);
qede_fill_by_demand_stats(edev);
stats->rx_packets = edev->stats.rx_ucast_pkts +
edev->stats.rx_mcast_pkts +
edev->stats.rx_bcast_pkts;
stats->tx_packets = edev->stats.tx_ucast_pkts +
edev->stats.tx_mcast_pkts +
edev->stats.tx_bcast_pkts;
stats->rx_bytes = edev->stats.rx_ucast_bytes +
edev->stats.rx_mcast_bytes +
edev->stats.rx_bcast_bytes;
stats->tx_bytes = edev->stats.tx_ucast_bytes +
edev->stats.tx_mcast_bytes +
edev->stats.tx_bcast_bytes;
stats->tx_errors = edev->stats.tx_err_drop_pkts;
stats->multicast = edev->stats.rx_mcast_pkts +
edev->stats.rx_bcast_pkts;
stats->rx_fifo_errors = edev->stats.no_buff_discards;
stats->collisions = edev->stats.tx_total_collisions;
stats->rx_crc_errors = edev->stats.rx_crc_errors;
stats->rx_frame_errors = edev->stats.rx_align_errors;
return stats;
}
#ifdef CONFIG_QED_SRIOV
static int qede_get_vf_config(struct net_device *dev, int vfidx,
struct ifla_vf_info *ivi)
{
struct qede_dev *edev = netdev_priv(dev);
if (!edev->ops)
return -EINVAL;
return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
}
static int qede_set_vf_rate(struct net_device *dev, int vfidx,
int min_tx_rate, int max_tx_rate)
{
struct qede_dev *edev = netdev_priv(dev);
return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
max_tx_rate);
}
static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
{
struct qede_dev *edev = netdev_priv(dev);
if (!edev->ops)
return -EINVAL;
return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
}
static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
int link_state)
{
struct qede_dev *edev = netdev_priv(dev);
if (!edev->ops)
return -EINVAL;
return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
}
#endif
static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
{
struct qed_update_vport_params params;
int rc;
/* Proceed only if action actually needs to be performed */
if (edev->accept_any_vlan == action)
return;
memset(&params, 0, sizeof(params));
params.vport_id = 0;
params.accept_any_vlan = action;
params.update_accept_any_vlan_flg = 1;
rc = edev->ops->vport_update(edev->cdev, &params);
if (rc) {
DP_ERR(edev, "Failed to %s accept-any-vlan\n",
action ? "enable" : "disable");
} else {
DP_INFO(edev, "%s accept-any-vlan\n",
action ? "enabled" : "disabled");
edev->accept_any_vlan = action;
}
}
static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
{
struct qede_dev *edev = netdev_priv(dev);
struct qede_vlan *vlan, *tmp;
int rc;
DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
if (!vlan) {
DP_INFO(edev, "Failed to allocate struct for vlan\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&vlan->list);
vlan->vid = vid;
vlan->configured = false;
/* Verify vlan isn't already configured */
list_for_each_entry(tmp, &edev->vlan_list, list) {
if (tmp->vid == vlan->vid) {
DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
"vlan already configured\n");
kfree(vlan);
return -EEXIST;
}
}
/* If interface is down, cache this VLAN ID and return */
if (edev->state != QEDE_STATE_OPEN) {
DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
"Interface is down, VLAN %d will be configured when interface is up\n",
vid);
if (vid != 0)
edev->non_configured_vlans++;
list_add(&vlan->list, &edev->vlan_list);
return 0;
}
/* Check for the filter limit.
* Note - vlan0 has a reserved filter and can be added without
* worrying about quota
*/
if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
(vlan->vid == 0)) {
rc = qede_set_ucast_rx_vlan(edev,
QED_FILTER_XCAST_TYPE_ADD,
vlan->vid);
if (rc) {
DP_ERR(edev, "Failed to configure VLAN %d\n",
vlan->vid);
kfree(vlan);
return -EINVAL;
}
vlan->configured = true;
/* vlan0 filter isn't consuming out of our quota */
if (vlan->vid != 0)
edev->configured_vlans++;
} else {
/* Out of quota; Activate accept-any-VLAN mode */
if (!edev->non_configured_vlans)
qede_config_accept_any_vlan(edev, true);
edev->non_configured_vlans++;
}
list_add(&vlan->list, &edev->vlan_list);
return 0;
}
static void qede_del_vlan_from_list(struct qede_dev *edev,
struct qede_vlan *vlan)
{
/* vlan0 filter isn't consuming out of our quota */
if (vlan->vid != 0) {
if (vlan->configured)
edev->configured_vlans--;
else
edev->non_configured_vlans--;
}
list_del(&vlan->list);
kfree(vlan);
}
static int qede_configure_vlan_filters(struct qede_dev *edev)
{
int rc = 0, real_rc = 0, accept_any_vlan = 0;
struct qed_dev_eth_info *dev_info;
struct qede_vlan *vlan = NULL;
if (list_empty(&edev->vlan_list))
return 0;
dev_info = &edev->dev_info;
/* Configure non-configured vlans */
list_for_each_entry(vlan, &edev->vlan_list, list) {
if (vlan->configured)
continue;
/* We have used all our credits, now enable accept_any_vlan */
if ((vlan->vid != 0) &&
(edev->configured_vlans == dev_info->num_vlan_filters)) {
accept_any_vlan = 1;
continue;
}
DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
vlan->vid);
if (rc) {
DP_ERR(edev, "Failed to configure VLAN %u\n",
vlan->vid);
real_rc = rc;
continue;
}
vlan->configured = true;
/* vlan0 filter doesn't consume our VLAN filter's quota */
if (vlan->vid != 0) {
edev->non_configured_vlans--;
edev->configured_vlans++;
}
}
/* enable accept_any_vlan mode if we have more VLANs than credits,
* or remove accept_any_vlan mode if we've actually removed
* a non-configured vlan, and all remaining vlans are truly configured.
*/
if (accept_any_vlan)
qede_config_accept_any_vlan(edev, true);
else if (!edev->non_configured_vlans)
qede_config_accept_any_vlan(edev, false);
return real_rc;
}
static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
{
struct qede_dev *edev = netdev_priv(dev);
struct qede_vlan *vlan = NULL;
int rc;
DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
/* Find whether entry exists */
list_for_each_entry(vlan, &edev->vlan_list, list)
if (vlan->vid == vid)
break;
if (!vlan || (vlan->vid != vid)) {
DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
"Vlan isn't configured\n");
return 0;
}
if (edev->state != QEDE_STATE_OPEN) {
/* As interface is already down, we don't have a VPORT
* instance to remove vlan filter. So just update vlan list
*/
DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
"Interface is down, removing VLAN from list only\n");
qede_del_vlan_from_list(edev, vlan);
return 0;
}
/* Remove vlan */
if (vlan->configured) {
rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
vid);
if (rc) {
DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
return -EINVAL;
}
}
qede_del_vlan_from_list(edev, vlan);
/* We have removed a VLAN - try to see if we can
* configure non-configured VLAN from the list.
*/
rc = qede_configure_vlan_filters(edev);
return rc;
}
static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
{
struct qede_vlan *vlan = NULL;
if (list_empty(&edev->vlan_list))
return;
list_for_each_entry(vlan, &edev->vlan_list, list) {
if (!vlan->configured)
continue;
vlan->configured = false;
/* vlan0 filter isn't consuming out of our quota */
if (vlan->vid != 0) {
edev->non_configured_vlans++;
edev->configured_vlans--;
}
DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
"marked vlan %d as non-configured\n",
vlan->vid);
}
edev->accept_any_vlan = false;
}
int qede_set_features(struct net_device *dev, netdev_features_t features)
{
struct qede_dev *edev = netdev_priv(dev);
netdev_features_t changes = features ^ dev->features;
bool need_reload = false;
/* No action needed if hardware GRO is disabled during driver load */
if (changes & NETIF_F_GRO) {
if (dev->features & NETIF_F_GRO)
need_reload = !edev->gro_disable;
else
need_reload = edev->gro_disable;
}
if (need_reload && netif_running(edev->ndev)) {
dev->features = features;
qede_reload(edev, NULL, NULL);
return 1;
}
return 0;
}
static void qede_udp_tunnel_add(struct net_device *dev,
struct udp_tunnel_info *ti)
{
struct qede_dev *edev = netdev_priv(dev);
u16 t_port = ntohs(ti->port);
switch (ti->type) {
case UDP_TUNNEL_TYPE_VXLAN:
if (edev->vxlan_dst_port)
return;
edev->vxlan_dst_port = t_port;
DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d",
t_port);
set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
break;
case UDP_TUNNEL_TYPE_GENEVE:
if (edev->geneve_dst_port)
return;
edev->geneve_dst_port = t_port;
DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d",
t_port);
set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
break;
default:
return;
}
schedule_delayed_work(&edev->sp_task, 0);
}
static void qede_udp_tunnel_del(struct net_device *dev,
struct udp_tunnel_info *ti)
{
struct qede_dev *edev = netdev_priv(dev);
u16 t_port = ntohs(ti->port);
switch (ti->type) {
case UDP_TUNNEL_TYPE_VXLAN:
if (t_port != edev->vxlan_dst_port)
return;
edev->vxlan_dst_port = 0;
DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d",
t_port);
set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
break;
case UDP_TUNNEL_TYPE_GENEVE:
if (t_port != edev->geneve_dst_port)
return;
edev->geneve_dst_port = 0;
DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d",
t_port);
set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
break;
default:
return;
}
schedule_delayed_work(&edev->sp_task, 0);
}
static const struct net_device_ops qede_netdev_ops = {
.ndo_open = qede_open,
.ndo_stop = qede_close,
.ndo_start_xmit = qede_start_xmit,
.ndo_set_rx_mode = qede_set_rx_mode,
.ndo_set_mac_address = qede_set_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = qede_change_mtu,
#ifdef CONFIG_QED_SRIOV
.ndo_set_vf_mac = qede_set_vf_mac,
.ndo_set_vf_vlan = qede_set_vf_vlan,
#endif
.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
.ndo_set_features = qede_set_features,
.ndo_get_stats64 = qede_get_stats64,
#ifdef CONFIG_QED_SRIOV
.ndo_set_vf_link_state = qede_set_vf_link_state,
.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
.ndo_get_vf_config = qede_get_vf_config,
.ndo_set_vf_rate = qede_set_vf_rate,
#endif
.ndo_udp_tunnel_add = qede_udp_tunnel_add,
.ndo_udp_tunnel_del = qede_udp_tunnel_del,
};
/* -------------------------------------------------------------------------
* START OF PROBE / REMOVE
* -------------------------------------------------------------------------
*/
static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
struct pci_dev *pdev,
struct qed_dev_eth_info *info,
u32 dp_module,
u8 dp_level)
{
struct net_device *ndev;
struct qede_dev *edev;
ndev = alloc_etherdev_mqs(sizeof(*edev),
info->num_queues,
info->num_queues);
if (!ndev) {
pr_err("etherdev allocation failed\n");
return NULL;
}
edev = netdev_priv(ndev);
edev->ndev = ndev;
edev->cdev = cdev;
edev->pdev = pdev;
edev->dp_module = dp_module;
edev->dp_level = dp_level;
edev->ops = qed_ops;
edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
SET_NETDEV_DEV(ndev, &pdev->dev);
memset(&edev->stats, 0, sizeof(edev->stats));
memcpy(&edev->dev_info, info, sizeof(*info));
edev->num_tc = edev->dev_info.num_tc;
INIT_LIST_HEAD(&edev->vlan_list);
return edev;
}
static void qede_init_ndev(struct qede_dev *edev)
{
struct net_device *ndev = edev->ndev;
struct pci_dev *pdev = edev->pdev;
u32 hw_features;
pci_set_drvdata(pdev, ndev);
ndev->mem_start = edev->dev_info.common.pci_mem_start;
ndev->base_addr = ndev->mem_start;
ndev->mem_end = edev->dev_info.common.pci_mem_end;
ndev->irq = edev->dev_info.common.pci_irq;
ndev->watchdog_timeo = TX_TIMEOUT;
ndev->netdev_ops = &qede_netdev_ops;
qede_set_ethtool_ops(ndev);
/* user-changeble features */
hw_features = NETIF_F_GRO | NETIF_F_SG |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_TSO | NETIF_F_TSO6;
/* Encap features*/
hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_TSO_ECN;
ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
NETIF_F_TSO6 | NETIF_F_GSO_GRE |
NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
NETIF_F_HIGHDMA;
ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
ndev->hw_features = hw_features;
/* Set network device HW mac */
ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
}
/* This function converts from 32b param to two params of level and module
* Input 32b decoding:
* b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
* 'happy' flow, e.g. memory allocation failed.
* b30 - enable all INFO prints. INFO prints are for major steps in the flow
* and provide important parameters.
* b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
* module. VERBOSE prints are for tracking the specific flow in low level.
*
* Notice that the level should be that of the lowest required logs.
*/
void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
{
*p_dp_level = QED_LEVEL_NOTICE;
*p_dp_module = 0;
if (debug & QED_LOG_VERBOSE_MASK) {
*p_dp_level = QED_LEVEL_VERBOSE;
*p_dp_module = (debug & 0x3FFFFFFF);
} else if (debug & QED_LOG_INFO_MASK) {
*p_dp_level = QED_LEVEL_INFO;
} else if (debug & QED_LOG_NOTICE_MASK) {
*p_dp_level = QED_LEVEL_NOTICE;
}
}
static void qede_free_fp_array(struct qede_dev *edev)
{
if (edev->fp_array) {
struct qede_fastpath *fp;
int i;
for_each_rss(i) {
fp = &edev->fp_array[i];
kfree(fp->sb_info);
kfree(fp->rxq);
kfree(fp->txqs);
}
kfree(edev->fp_array);
}
edev->num_rss = 0;
}
static int qede_alloc_fp_array(struct qede_dev *edev)
{
struct qede_fastpath *fp;
int i;
edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
sizeof(*edev->fp_array), GFP_KERNEL);
if (!edev->fp_array) {
DP_NOTICE(edev, "fp array allocation failed\n");
goto err;
}
for_each_rss(i) {
fp = &edev->fp_array[i];
fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
if (!fp->sb_info) {
DP_NOTICE(edev, "sb info struct allocation failed\n");
goto err;
}
fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
if (!fp->rxq) {
DP_NOTICE(edev, "RXQ struct allocation failed\n");
goto err;
}
fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
if (!fp->txqs) {
DP_NOTICE(edev, "TXQ array allocation failed\n");
goto err;
}
}
return 0;
err:
qede_free_fp_array(edev);
return -ENOMEM;
}
static void qede_sp_task(struct work_struct *work)
{
struct qede_dev *edev = container_of(work, struct qede_dev,
sp_task.work);
struct qed_dev *cdev = edev->cdev;
mutex_lock(&edev->qede_lock);
if (edev->state == QEDE_STATE_OPEN) {
if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
qede_config_rx_mode(edev->ndev);
}
if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
struct qed_tunn_params tunn_params;
memset(&tunn_params, 0, sizeof(tunn_params));
tunn_params.update_vxlan_port = 1;
tunn_params.vxlan_port = edev->vxlan_dst_port;
qed_ops->tunn_config(cdev, &tunn_params);
}
if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
struct qed_tunn_params tunn_params;
memset(&tunn_params, 0, sizeof(tunn_params));
tunn_params.update_geneve_port = 1;
tunn_params.geneve_port = edev->geneve_dst_port;
qed_ops->tunn_config(cdev, &tunn_params);
}
mutex_unlock(&edev->qede_lock);
}
static void qede_update_pf_params(struct qed_dev *cdev)
{
struct qed_pf_params pf_params;
/* 64 rx + 64 tx */
memset(&pf_params, 0, sizeof(struct qed_pf_params));
pf_params.eth_pf_params.num_cons = 128;
qed_ops->common->update_pf_params(cdev, &pf_params);
}
enum qede_probe_mode {
QEDE_PROBE_NORMAL,
};
static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
bool is_vf, enum qede_probe_mode mode)
{
struct qed_probe_params probe_params;
struct qed_slowpath_params params;
struct qed_dev_eth_info dev_info;
struct qede_dev *edev;
struct qed_dev *cdev;
int rc;
if (unlikely(dp_level & QED_LEVEL_INFO))
pr_notice("Starting qede probe\n");
memset(&probe_params, 0, sizeof(probe_params));
probe_params.protocol = QED_PROTOCOL_ETH;
probe_params.dp_module = dp_module;
probe_params.dp_level = dp_level;
probe_params.is_vf = is_vf;
cdev = qed_ops->common->probe(pdev, &probe_params);
if (!cdev) {
rc = -ENODEV;
goto err0;
}
qede_update_pf_params(cdev);
/* Start the Slowpath-process */
memset(&params, 0, sizeof(struct qed_slowpath_params));
params.int_mode = QED_INT_MODE_MSIX;
params.drv_major = QEDE_MAJOR_VERSION;
params.drv_minor = QEDE_MINOR_VERSION;
params.drv_rev = QEDE_REVISION_VERSION;
params.drv_eng = QEDE_ENGINEERING_VERSION;
strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
rc = qed_ops->common->slowpath_start(cdev, &params);
if (rc) {
pr_notice("Cannot start slowpath\n");
goto err1;
}
/* Learn information crucial for qede to progress */
rc = qed_ops->fill_dev_info(cdev, &dev_info);
if (rc)
goto err2;
edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
dp_level);
if (!edev) {
rc = -ENOMEM;
goto err2;
}
if (is_vf)
edev->flags |= QEDE_FLAG_IS_VF;
qede_init_ndev(edev);
rc = register_netdev(edev->ndev);
if (rc) {
DP_NOTICE(edev, "Cannot register net-device\n");
goto err3;
}
edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
edev->ops->register_ops(cdev, &qede_ll_ops, edev);
#ifdef CONFIG_DCB
if (!IS_VF(edev))
qede_set_dcbnl_ops(edev->ndev);
#endif
INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
mutex_init(&edev->qede_lock);
edev->rx_copybreak = QEDE_RX_HDR_SIZE;
DP_INFO(edev, "Ending successfully qede probe\n");
return 0;
err3:
free_netdev(edev->ndev);
err2:
qed_ops->common->slowpath_stop(cdev);
err1:
qed_ops->common->remove(cdev);
err0:
return rc;
}
static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
bool is_vf = false;
u32 dp_module = 0;
u8 dp_level = 0;
switch ((enum qede_pci_private)id->driver_data) {
case QEDE_PRIVATE_VF:
if (debug & QED_LOG_VERBOSE_MASK)
dev_err(&pdev->dev, "Probing a VF\n");
is_vf = true;
break;
default:
if (debug & QED_LOG_VERBOSE_MASK)
dev_err(&pdev->dev, "Probing a PF\n");
}
qede_config_debug(debug, &dp_module, &dp_level);
return __qede_probe(pdev, dp_module, dp_level, is_vf,
QEDE_PROBE_NORMAL);
}
enum qede_remove_mode {
QEDE_REMOVE_NORMAL,
};
static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct qede_dev *edev = netdev_priv(ndev);
struct qed_dev *cdev = edev->cdev;
DP_INFO(edev, "Starting qede_remove\n");
cancel_delayed_work_sync(&edev->sp_task);
unregister_netdev(ndev);
edev->ops->common->set_power_state(cdev, PCI_D0);
pci_set_drvdata(pdev, NULL);
free_netdev(ndev);
/* Use global ops since we've freed edev */
qed_ops->common->slowpath_stop(cdev);
qed_ops->common->remove(cdev);
pr_notice("Ending successfully qede_remove\n");
}
static void qede_remove(struct pci_dev *pdev)
{
__qede_remove(pdev, QEDE_REMOVE_NORMAL);
}
/* -------------------------------------------------------------------------
* START OF LOAD / UNLOAD
* -------------------------------------------------------------------------
*/
static int qede_set_num_queues(struct qede_dev *edev)
{
int rc;
u16 rss_num;
/* Setup queues according to possible resources*/
if (edev->req_rss)
rss_num = edev->req_rss;
else
rss_num = netif_get_num_default_rss_queues() *
edev->dev_info.common.num_hwfns;
rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
if (rc > 0) {
/* Managed to request interrupts for our queues */
edev->num_rss = rc;
DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
QEDE_RSS_CNT(edev), rss_num);
rc = 0;
}
return rc;
}
static void qede_free_mem_sb(struct qede_dev *edev,
struct qed_sb_info *sb_info)
{
if (sb_info->sb_virt)
dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
(void *)sb_info->sb_virt, sb_info->sb_phys);
}
/* This function allocates fast-path status block memory */
static int qede_alloc_mem_sb(struct qede_dev *edev,
struct qed_sb_info *sb_info,
u16 sb_id)
{
struct status_block *sb_virt;
dma_addr_t sb_phys;
int rc;
sb_virt = dma_alloc_coherent(&edev->pdev->dev,
sizeof(*sb_virt),
&sb_phys, GFP_KERNEL);
if (!sb_virt) {
DP_ERR(edev, "Status block allocation failed\n");
return -ENOMEM;
}
rc = edev->ops->common->sb_init(edev->cdev, sb_info,
sb_virt, sb_phys, sb_id,
QED_SB_TYPE_L2_QUEUE);
if (rc) {
DP_ERR(edev, "Status block initialization failed\n");
dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
sb_virt, sb_phys);
return rc;
}
return 0;
}
static void qede_free_rx_buffers(struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
u16 i;
for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
struct sw_rx_data *rx_buf;
struct page *data;
rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
data = rx_buf->data;
dma_unmap_page(&edev->pdev->dev,
rx_buf->mapping,
PAGE_SIZE, DMA_FROM_DEVICE);
rx_buf->data = NULL;
__free_page(data);
}
}
static void qede_free_sge_mem(struct qede_dev *edev,
struct qede_rx_queue *rxq) {
int i;
if (edev->gro_disable)
return;
for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
if (replace_buf->data) {
dma_unmap_page(&edev->pdev->dev,
replace_buf->mapping,
PAGE_SIZE, DMA_FROM_DEVICE);
__free_page(replace_buf->data);
}
}
}
static void qede_free_mem_rxq(struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
qede_free_sge_mem(edev, rxq);
/* Free rx buffers */
qede_free_rx_buffers(edev, rxq);
/* Free the parallel SW ring */
kfree(rxq->sw_rx_ring);
/* Free the real RQ ring used by FW */
edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
}
static int qede_alloc_rx_buffer(struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
struct sw_rx_data *sw_rx_data;
struct eth_rx_bd *rx_bd;
dma_addr_t mapping;
struct page *data;
u16 rx_buf_size;
rx_buf_size = rxq->rx_buf_size;
data = alloc_pages(GFP_ATOMIC, 0);
if (unlikely(!data)) {
DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
return -ENOMEM;
}
/* Map the entire page as it would be used
* for multiple RX buffer segment size mapping.
*/
mapping = dma_map_page(&edev->pdev->dev, data, 0,
PAGE_SIZE, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
__free_page(data);
DP_NOTICE(edev, "Failed to map Rx buffer\n");
return -ENOMEM;
}
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
sw_rx_data->page_offset = 0;
sw_rx_data->data = data;
sw_rx_data->mapping = mapping;
/* Advance PROD and get BD pointer */
rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
WARN_ON(!rx_bd);
rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
rxq->sw_rx_prod++;
return 0;
}
static int qede_alloc_sge_mem(struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
dma_addr_t mapping;
int i;
if (edev->gro_disable)
return 0;
if (edev->ndev->mtu > PAGE_SIZE) {
edev->gro_disable = 1;
return 0;
}
for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
if (unlikely(!replace_buf->data)) {
DP_NOTICE(edev,
"Failed to allocate TPA skb pool [replacement buffer]\n");
goto err;
}
mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
rxq->rx_buf_size, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
DP_NOTICE(edev,
"Failed to map TPA replacement buffer\n");
goto err;
}
replace_buf->mapping = mapping;
tpa_info->replace_buf.page_offset = 0;
tpa_info->replace_buf_mapping = mapping;
tpa_info->agg_state = QEDE_AGG_STATE_NONE;
}
return 0;
err:
qede_free_sge_mem(edev, rxq);
edev->gro_disable = 1;
return -ENOMEM;
}
/* This function allocates all memory needed per Rx queue */
static int qede_alloc_mem_rxq(struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
int i, rc, size;
rxq->num_rx_buffers = edev->q_num_rx_buffers;
rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
edev->ndev->mtu;
if (rxq->rx_buf_size > PAGE_SIZE)
rxq->rx_buf_size = PAGE_SIZE;
/* Segment size to spilt a page in multiple equal parts */
rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
/* Allocate the parallel driver ring for Rx buffers */
size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
if (!rxq->sw_rx_ring) {
DP_ERR(edev, "Rx buffers ring allocation failed\n");
rc = -ENOMEM;
goto err;
}
/* Allocate FW Rx ring */
rc = edev->ops->common->chain_alloc(edev->cdev,
QED_CHAIN_USE_TO_CONSUME_PRODUCE,
QED_CHAIN_MODE_NEXT_PTR,
QED_CHAIN_CNT_TYPE_U16,
RX_RING_SIZE,
sizeof(struct eth_rx_bd),
&rxq->rx_bd_ring);
if (rc)
goto err;
/* Allocate FW completion ring */
rc = edev->ops->common->chain_alloc(edev->cdev,
QED_CHAIN_USE_TO_CONSUME,
QED_CHAIN_MODE_PBL,
QED_CHAIN_CNT_TYPE_U16,
RX_RING_SIZE,
sizeof(union eth_rx_cqe),
&rxq->rx_comp_ring);
if (rc)
goto err;
/* Allocate buffers for the Rx ring */
for (i = 0; i < rxq->num_rx_buffers; i++) {
rc = qede_alloc_rx_buffer(edev, rxq);
if (rc) {
DP_ERR(edev,
"Rx buffers allocation failed at index %d\n", i);
goto err;
}
}
rc = qede_alloc_sge_mem(edev, rxq);
err:
return rc;
}
static void qede_free_mem_txq(struct qede_dev *edev,
struct qede_tx_queue *txq)
{
/* Free the parallel SW ring */
kfree(txq->sw_tx_ring);
/* Free the real RQ ring used by FW */
edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
}
/* This function allocates all memory needed per Tx queue */
static int qede_alloc_mem_txq(struct qede_dev *edev,
struct qede_tx_queue *txq)
{
int size, rc;
union eth_tx_bd_types *p_virt;
txq->num_tx_buffers = edev->q_num_tx_buffers;
/* Allocate the parallel driver ring for Tx buffers */
size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
if (!txq->sw_tx_ring) {
DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
goto err;
}
rc = edev->ops->common->chain_alloc(edev->cdev,
QED_CHAIN_USE_TO_CONSUME_PRODUCE,
QED_CHAIN_MODE_PBL,
QED_CHAIN_CNT_TYPE_U16,
NUM_TX_BDS_MAX,
sizeof(*p_virt), &txq->tx_pbl);
if (rc)
goto err;
return 0;
err:
qede_free_mem_txq(edev, txq);
return -ENOMEM;
}
/* This function frees all memory of a single fp */
static void qede_free_mem_fp(struct qede_dev *edev,
struct qede_fastpath *fp)
{
int tc;
qede_free_mem_sb(edev, fp->sb_info);
qede_free_mem_rxq(edev, fp->rxq);
for (tc = 0; tc < edev->num_tc; tc++)
qede_free_mem_txq(edev, &fp->txqs[tc]);
}
/* This function allocates all memory needed for a single fp (i.e. an entity
* which contains status block, one rx queue and multiple per-TC tx queues.
*/
static int qede_alloc_mem_fp(struct qede_dev *edev,
struct qede_fastpath *fp)
{
int rc, tc;
rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
if (rc)
goto err;
rc = qede_alloc_mem_rxq(edev, fp->rxq);
if (rc)
goto err;
for (tc = 0; tc < edev->num_tc; tc++) {
rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
if (rc)
goto err;
}
return 0;
err:
return rc;
}
static void qede_free_mem_load(struct qede_dev *edev)
{
int i;
for_each_rss(i) {
struct qede_fastpath *fp = &edev->fp_array[i];
qede_free_mem_fp(edev, fp);
}
}
/* This function allocates all qede memory at NIC load. */
static int qede_alloc_mem_load(struct qede_dev *edev)
{
int rc = 0, rss_id;
for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
struct qede_fastpath *fp = &edev->fp_array[rss_id];
rc = qede_alloc_mem_fp(edev, fp);
if (rc) {
DP_ERR(edev,
"Failed to allocate memory for fastpath - rss id = %d\n",
rss_id);
qede_free_mem_load(edev);
return rc;
}
}
return 0;
}
/* This function inits fp content and resets the SB, RXQ and TXQ structures */
static void qede_init_fp(struct qede_dev *edev)
{
int rss_id, txq_index, tc;
struct qede_fastpath *fp;
for_each_rss(rss_id) {
fp = &edev->fp_array[rss_id];
fp->edev = edev;
fp->rss_id = rss_id;
memset((void *)&fp->napi, 0, sizeof(fp->napi));
memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
fp->rxq->rxq_id = rss_id;
memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
for (tc = 0; tc < edev->num_tc; tc++) {
txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
fp->txqs[tc].index = txq_index;
}
snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
edev->ndev->name, rss_id);
}
edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
}
static int qede_set_real_num_queues(struct qede_dev *edev)
{
int rc = 0;
rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
if (rc) {
DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
return rc;
}
rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
if (rc) {
DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
return rc;
}
return 0;
}
static void qede_napi_disable_remove(struct qede_dev *edev)
{
int i;
for_each_rss(i) {
napi_disable(&edev->fp_array[i].napi);
netif_napi_del(&edev->fp_array[i].napi);
}
}
static void qede_napi_add_enable(struct qede_dev *edev)
{
int i;
/* Add NAPI objects */
for_each_rss(i) {
netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
qede_poll, NAPI_POLL_WEIGHT);
napi_enable(&edev->fp_array[i].napi);
}
}
static void qede_sync_free_irqs(struct qede_dev *edev)
{
int i;
for (i = 0; i < edev->int_info.used_cnt; i++) {
if (edev->int_info.msix_cnt) {
synchronize_irq(edev->int_info.msix[i].vector);
free_irq(edev->int_info.msix[i].vector,
&edev->fp_array[i]);
} else {
edev->ops->common->simd_handler_clean(edev->cdev, i);
}
}
edev->int_info.used_cnt = 0;
}
static int qede_req_msix_irqs(struct qede_dev *edev)
{
int i, rc;
/* Sanitize number of interrupts == number of prepared RSS queues */
if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
DP_ERR(edev,
"Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
return -EINVAL;
}
for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
rc = request_irq(edev->int_info.msix[i].vector,
qede_msix_fp_int, 0, edev->fp_array[i].name,
&edev->fp_array[i]);
if (rc) {
DP_ERR(edev, "Request fp %d irq failed\n", i);
qede_sync_free_irqs(edev);
return rc;
}
DP_VERBOSE(edev, NETIF_MSG_INTR,
"Requested fp irq for %s [entry %d]. Cookie is at %p\n",
edev->fp_array[i].name, i,
&edev->fp_array[i]);
edev->int_info.used_cnt++;
}
return 0;
}
static void qede_simd_fp_handler(void *cookie)
{
struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
napi_schedule_irqoff(&fp->napi);
}
static int qede_setup_irqs(struct qede_dev *edev)
{
int i, rc = 0;
/* Learn Interrupt configuration */
rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
if (rc)
return rc;
if (edev->int_info.msix_cnt) {
rc = qede_req_msix_irqs(edev);
if (rc)
return rc;
edev->ndev->irq = edev->int_info.msix[0].vector;
} else {
const struct qed_common_ops *ops;
/* qed should learn receive the RSS ids and callbacks */
ops = edev->ops->common;
for (i = 0; i < QEDE_RSS_CNT(edev); i++)
ops->simd_handler_config(edev->cdev,
&edev->fp_array[i], i,
qede_simd_fp_handler);
edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
}
return 0;
}
static int qede_drain_txq(struct qede_dev *edev,
struct qede_tx_queue *txq,
bool allow_drain)
{
int rc, cnt = 1000;
while (txq->sw_tx_cons != txq->sw_tx_prod) {
if (!cnt) {
if (allow_drain) {
DP_NOTICE(edev,
"Tx queue[%d] is stuck, requesting MCP to drain\n",
txq->index);
rc = edev->ops->common->drain(edev->cdev);
if (rc)
return rc;
return qede_drain_txq(edev, txq, false);
}
DP_NOTICE(edev,
"Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
txq->index, txq->sw_tx_prod,
txq->sw_tx_cons);
return -ENODEV;
}
cnt--;
usleep_range(1000, 2000);
barrier();
}
/* FW finished processing, wait for HW to transmit all tx packets */
usleep_range(1000, 2000);
return 0;
}
static int qede_stop_queues(struct qede_dev *edev)
{
struct qed_update_vport_params vport_update_params;
struct qed_dev *cdev = edev->cdev;
int rc, tc, i;
/* Disable the vport */
memset(&vport_update_params, 0, sizeof(vport_update_params));
vport_update_params.vport_id = 0;
vport_update_params.update_vport_active_flg = 1;
vport_update_params.vport_active_flg = 0;
vport_update_params.update_rss_flg = 0;
rc = edev->ops->vport_update(cdev, &vport_update_params);
if (rc) {
DP_ERR(edev, "Failed to update vport\n");
return rc;
}
/* Flush Tx queues. If needed, request drain from MCP */
for_each_rss(i) {
struct qede_fastpath *fp = &edev->fp_array[i];
for (tc = 0; tc < edev->num_tc; tc++) {
struct qede_tx_queue *txq = &fp->txqs[tc];
rc = qede_drain_txq(edev, txq, true);
if (rc)
return rc;
}
}
/* Stop all Queues in reverse order*/
for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
struct qed_stop_rxq_params rx_params;
/* Stop the Tx Queue(s)*/
for (tc = 0; tc < edev->num_tc; tc++) {
struct qed_stop_txq_params tx_params;
tx_params.rss_id = i;
tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
rc = edev->ops->q_tx_stop(cdev, &tx_params);
if (rc) {
DP_ERR(edev, "Failed to stop TXQ #%d\n",
tx_params.tx_queue_id);
return rc;
}
}
/* Stop the Rx Queue*/
memset(&rx_params, 0, sizeof(rx_params));
rx_params.rss_id = i;
rx_params.rx_queue_id = i;
rc = edev->ops->q_rx_stop(cdev, &rx_params);
if (rc) {
DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
return rc;
}
}
/* Stop the vport */
rc = edev->ops->vport_stop(cdev, 0);
if (rc)
DP_ERR(edev, "Failed to stop VPORT\n");
return rc;
}
static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
{
int rc, tc, i;
int vlan_removal_en = 1;
struct qed_dev *cdev = edev->cdev;
struct qed_update_vport_params vport_update_params;
struct qed_queue_start_common_params q_params;
struct qed_dev_info *qed_info = &edev->dev_info.common;
struct qed_start_vport_params start = {0};
bool reset_rss_indir = false;
if (!edev->num_rss) {
DP_ERR(edev,
"Cannot update V-VPORT as active as there are no Rx queues\n");
return -EINVAL;
}
start.gro_enable = !edev->gro_disable;
start.mtu = edev->ndev->mtu;
start.vport_id = 0;
start.drop_ttl0 = true;
start.remove_inner_vlan = vlan_removal_en;
start.clear_stats = clear_stats;
rc = edev->ops->vport_start(cdev, &start);
if (rc) {
DP_ERR(edev, "Start V-PORT failed %d\n", rc);
return rc;
}
DP_VERBOSE(edev, NETIF_MSG_IFUP,
"Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
for_each_rss(i) {
struct qede_fastpath *fp = &edev->fp_array[i];
dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
memset(&q_params, 0, sizeof(q_params));
q_params.rss_id = i;
q_params.queue_id = i;
q_params.vport_id = 0;
q_params.sb = fp->sb_info->igu_sb_id;
q_params.sb_idx = RX_PI;
rc = edev->ops->q_rx_start(cdev, &q_params,
fp->rxq->rx_buf_size,
fp->rxq->rx_bd_ring.p_phys_addr,
phys_table,
fp->rxq->rx_comp_ring.page_cnt,
&fp->rxq->hw_rxq_prod_addr);
if (rc) {
DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
return rc;
}
fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
qede_update_rx_prod(edev, fp->rxq);
for (tc = 0; tc < edev->num_tc; tc++) {
struct qede_tx_queue *txq = &fp->txqs[tc];
int txq_index = tc * QEDE_RSS_CNT(edev) + i;
memset(&q_params, 0, sizeof(q_params));
q_params.rss_id = i;
q_params.queue_id = txq_index;
q_params.vport_id = 0;
q_params.sb = fp->sb_info->igu_sb_id;
q_params.sb_idx = TX_PI(tc);
rc = edev->ops->q_tx_start(cdev, &q_params,
txq->tx_pbl.pbl.p_phys_table,
txq->tx_pbl.page_cnt,
&txq->doorbell_addr);
if (rc) {
DP_ERR(edev, "Start TXQ #%d failed %d\n",
txq_index, rc);
return rc;
}
txq->hw_cons_ptr =
&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
SET_FIELD(txq->tx_db.data.params,
ETH_DB_DATA_DEST, DB_DEST_XCM);
SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
DB_AGG_CMD_SET);
SET_FIELD(txq->tx_db.data.params,
ETH_DB_DATA_AGG_VAL_SEL,
DQ_XCM_ETH_TX_BD_PROD_CMD);
txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
}
}
/* Prepare and send the vport enable */
memset(&vport_update_params, 0, sizeof(vport_update_params));
vport_update_params.vport_id = start.vport_id;
vport_update_params.update_vport_active_flg = 1;
vport_update_params.vport_active_flg = 1;
if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
qed_info->tx_switching) {
vport_update_params.update_tx_switching_flg = 1;
vport_update_params.tx_switching_flg = 1;
}
/* Fill struct with RSS params */
if (QEDE_RSS_CNT(edev) > 1) {
vport_update_params.update_rss_flg = 1;
/* Need to validate current RSS config uses valid entries */
for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
if (edev->rss_params.rss_ind_table[i] >=
edev->num_rss) {
reset_rss_indir = true;
break;
}
}
if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
reset_rss_indir) {
u16 val;
for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
u16 indir_val;
val = QEDE_RSS_CNT(edev);
indir_val = ethtool_rxfh_indir_default(i, val);
edev->rss_params.rss_ind_table[i] = indir_val;
}
edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
}
if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
netdev_rss_key_fill(edev->rss_params.rss_key,
sizeof(edev->rss_params.rss_key));
edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
}
if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
edev->rss_params.rss_caps = QED_RSS_IPV4 |
QED_RSS_IPV6 |
QED_RSS_IPV4_TCP |
QED_RSS_IPV6_TCP;
edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
}
memcpy(&vport_update_params.rss_params, &edev->rss_params,
sizeof(vport_update_params.rss_params));
} else {
memset(&vport_update_params.rss_params, 0,
sizeof(vport_update_params.rss_params));
}
rc = edev->ops->vport_update(cdev, &vport_update_params);
if (rc) {
DP_ERR(edev, "Update V-PORT failed %d\n", rc);
return rc;
}
return 0;
}
static int qede_set_mcast_rx_mac(struct qede_dev *edev,
enum qed_filter_xcast_params_type opcode,
unsigned char *mac, int num_macs)
{
struct qed_filter_params filter_cmd;
int i;
memset(&filter_cmd, 0, sizeof(filter_cmd));
filter_cmd.type = QED_FILTER_TYPE_MCAST;
filter_cmd.filter.mcast.type = opcode;
filter_cmd.filter.mcast.num = num_macs;
for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
return edev->ops->filter_config(edev->cdev, &filter_cmd);
}
enum qede_unload_mode {
QEDE_UNLOAD_NORMAL,
};
static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
{
struct qed_link_params link_params;
int rc;
DP_INFO(edev, "Starting qede unload\n");
mutex_lock(&edev->qede_lock);
edev->state = QEDE_STATE_CLOSED;
/* Close OS Tx */
netif_tx_disable(edev->ndev);
netif_carrier_off(edev->ndev);
/* Reset the link */
memset(&link_params, 0, sizeof(link_params));
link_params.link_up = false;
edev->ops->common->set_link(edev->cdev, &link_params);
rc = qede_stop_queues(edev);
if (rc) {
qede_sync_free_irqs(edev);
goto out;
}
DP_INFO(edev, "Stopped Queues\n");
qede_vlan_mark_nonconfigured(edev);
edev->ops->fastpath_stop(edev->cdev);
/* Release the interrupts */
qede_sync_free_irqs(edev);
edev->ops->common->set_fp_int(edev->cdev, 0);
qede_napi_disable_remove(edev);
qede_free_mem_load(edev);
qede_free_fp_array(edev);
out:
mutex_unlock(&edev->qede_lock);
DP_INFO(edev, "Ending qede unload\n");
}
enum qede_load_mode {
QEDE_LOAD_NORMAL,
QEDE_LOAD_RELOAD,
};
static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
{
struct qed_link_params link_params;
struct qed_link_output link_output;
int rc;
DP_INFO(edev, "Starting qede load\n");
rc = qede_set_num_queues(edev);
if (rc)
goto err0;
rc = qede_alloc_fp_array(edev);
if (rc)
goto err0;
qede_init_fp(edev);
rc = qede_alloc_mem_load(edev);
if (rc)
goto err1;
DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
QEDE_RSS_CNT(edev), edev->num_tc);
rc = qede_set_real_num_queues(edev);
if (rc)
goto err2;
qede_napi_add_enable(edev);
DP_INFO(edev, "Napi added and enabled\n");
rc = qede_setup_irqs(edev);
if (rc)
goto err3;
DP_INFO(edev, "Setup IRQs succeeded\n");
rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
if (rc)
goto err4;
DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
/* Add primary mac and set Rx filters */
ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
mutex_lock(&edev->qede_lock);
edev->state = QEDE_STATE_OPEN;
mutex_unlock(&edev->qede_lock);
/* Program un-configured VLANs */
qede_configure_vlan_filters(edev);
/* Ask for link-up using current configuration */
memset(&link_params, 0, sizeof(link_params));
link_params.link_up = true;
edev->ops->common->set_link(edev->cdev, &link_params);
/* Query whether link is already-up */
memset(&link_output, 0, sizeof(link_output));
edev->ops->common->get_link(edev->cdev, &link_output);
qede_link_update(edev, &link_output);
DP_INFO(edev, "Ending successfully qede load\n");
return 0;
err4:
qede_sync_free_irqs(edev);
memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
err3:
qede_napi_disable_remove(edev);
err2:
qede_free_mem_load(edev);
err1:
edev->ops->common->set_fp_int(edev->cdev, 0);
qede_free_fp_array(edev);
edev->num_rss = 0;
err0:
return rc;
}
void qede_reload(struct qede_dev *edev,
void (*func)(struct qede_dev *, union qede_reload_args *),
union qede_reload_args *args)
{
qede_unload(edev, QEDE_UNLOAD_NORMAL);
/* Call function handler to update parameters
* needed for function load.
*/
if (func)
func(edev, args);
qede_load(edev, QEDE_LOAD_RELOAD);
mutex_lock(&edev->qede_lock);
qede_config_rx_mode(edev->ndev);
mutex_unlock(&edev->qede_lock);
}
/* called with rtnl_lock */
static int qede_open(struct net_device *ndev)
{
struct qede_dev *edev = netdev_priv(ndev);
int rc;
netif_carrier_off(ndev);
edev->ops->common->set_power_state(edev->cdev, PCI_D0);
rc = qede_load(edev, QEDE_LOAD_NORMAL);
if (rc)
return rc;
udp_tunnel_get_rx_info(ndev);
return 0;
}
static int qede_close(struct net_device *ndev)
{
struct qede_dev *edev = netdev_priv(ndev);
qede_unload(edev, QEDE_UNLOAD_NORMAL);
return 0;
}
static void qede_link_update(void *dev, struct qed_link_output *link)
{
struct qede_dev *edev = dev;
if (!netif_running(edev->ndev)) {
DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
return;
}
if (link->link_up) {
if (!netif_carrier_ok(edev->ndev)) {
DP_NOTICE(edev, "Link is up\n");
netif_tx_start_all_queues(edev->ndev);
netif_carrier_on(edev->ndev);
}
} else {
if (netif_carrier_ok(edev->ndev)) {
DP_NOTICE(edev, "Link is down\n");
netif_tx_disable(edev->ndev);
netif_carrier_off(edev->ndev);
}
}
}
static int qede_set_mac_addr(struct net_device *ndev, void *p)
{
struct qede_dev *edev = netdev_priv(ndev);
struct sockaddr *addr = p;
int rc;
ASSERT_RTNL(); /* @@@TBD To be removed */
DP_INFO(edev, "Set_mac_addr called\n");
if (!is_valid_ether_addr(addr->sa_data)) {
DP_NOTICE(edev, "The MAC address is not valid\n");
return -EFAULT;
}
if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
DP_NOTICE(edev, "qed prevents setting MAC\n");
return -EINVAL;
}
ether_addr_copy(ndev->dev_addr, addr->sa_data);
if (!netif_running(ndev)) {
DP_NOTICE(edev, "The device is currently down\n");
return 0;
}
/* Remove the previous primary mac */
rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
edev->primary_mac);
if (rc)
return rc;
/* Add MAC filter according to the new unicast HW MAC address */
ether_addr_copy(edev->primary_mac, ndev->dev_addr);
return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
edev->primary_mac);
}
static int
qede_configure_mcast_filtering(struct net_device *ndev,
enum qed_filter_rx_mode_type *accept_flags)
{
struct qede_dev *edev = netdev_priv(ndev);
unsigned char *mc_macs, *temp;
struct netdev_hw_addr *ha;
int rc = 0, mc_count;
size_t size;
size = 64 * ETH_ALEN;
mc_macs = kzalloc(size, GFP_KERNEL);
if (!mc_macs) {
DP_NOTICE(edev,
"Failed to allocate memory for multicast MACs\n");
rc = -ENOMEM;
goto exit;
}
temp = mc_macs;
/* Remove all previously configured MAC filters */
rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
mc_macs, 1);
if (rc)
goto exit;
netif_addr_lock_bh(ndev);
mc_count = netdev_mc_count(ndev);
if (mc_count < 64) {
netdev_for_each_mc_addr(ha, ndev) {
ether_addr_copy(temp, ha->addr);
temp += ETH_ALEN;
}
}
netif_addr_unlock_bh(ndev);
/* Check for all multicast @@@TBD resource allocation */
if ((ndev->flags & IFF_ALLMULTI) ||
(mc_count > 64)) {
if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
} else {
/* Add all multicast MAC filters */
rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
mc_macs, mc_count);
}
exit:
kfree(mc_macs);
return rc;
}
static void qede_set_rx_mode(struct net_device *ndev)
{
struct qede_dev *edev = netdev_priv(ndev);
DP_INFO(edev, "qede_set_rx_mode called\n");
if (edev->state != QEDE_STATE_OPEN) {
DP_INFO(edev,
"qede_set_rx_mode called while interface is down\n");
} else {
set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
schedule_delayed_work(&edev->sp_task, 0);
}
}
/* Must be called with qede_lock held */
static void qede_config_rx_mode(struct net_device *ndev)
{
enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
struct qede_dev *edev = netdev_priv(ndev);
struct qed_filter_params rx_mode;
unsigned char *uc_macs, *temp;
struct netdev_hw_addr *ha;
int rc, uc_count;
size_t size;
netif_addr_lock_bh(ndev);
uc_count = netdev_uc_count(ndev);
size = uc_count * ETH_ALEN;
uc_macs = kzalloc(size, GFP_ATOMIC);
if (!uc_macs) {
DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
netif_addr_unlock_bh(ndev);
return;
}
temp = uc_macs;
netdev_for_each_uc_addr(ha, ndev) {
ether_addr_copy(temp, ha->addr);
temp += ETH_ALEN;
}
netif_addr_unlock_bh(ndev);
/* Configure the struct for the Rx mode */
memset(&rx_mode, 0, sizeof(struct qed_filter_params));
rx_mode.type = QED_FILTER_TYPE_RX_MODE;
/* Remove all previous unicast secondary macs and multicast macs
* (configrue / leave the primary mac)
*/
rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
edev->primary_mac);
if (rc)
goto out;
/* Check for promiscuous */
if ((ndev->flags & IFF_PROMISC) ||
(uc_count > 15)) { /* @@@TBD resource allocation - 1 */
accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
} else {
/* Add MAC filters according to the unicast secondary macs */
int i;
temp = uc_macs;
for (i = 0; i < uc_count; i++) {
rc = qede_set_ucast_rx_mac(edev,
QED_FILTER_XCAST_TYPE_ADD,
temp);
if (rc)
goto out;
temp += ETH_ALEN;
}
rc = qede_configure_mcast_filtering(ndev, &accept_flags);
if (rc)
goto out;
}
/* take care of VLAN mode */
if (ndev->flags & IFF_PROMISC) {
qede_config_accept_any_vlan(edev, true);
} else if (!edev->non_configured_vlans) {
/* It's possible that accept_any_vlan mode is set due to a
* previous setting of IFF_PROMISC. If vlan credits are
* sufficient, disable accept_any_vlan.
*/
qede_config_accept_any_vlan(edev, false);
}
rx_mode.filter.accept_flags = accept_flags;
edev->ops->filter_config(edev->cdev, &rx_mode);
out:
kfree(uc_macs);
}