| /* | 
 |  * Resizable virtual memory filesystem for Linux. | 
 |  * | 
 |  * Copyright (C) 2000 Linus Torvalds. | 
 |  *		 2000 Transmeta Corp. | 
 |  *		 2000-2001 Christoph Rohland | 
 |  *		 2000-2001 SAP AG | 
 |  *		 2002 Red Hat Inc. | 
 |  * Copyright (C) 2002-2011 Hugh Dickins. | 
 |  * Copyright (C) 2011 Google Inc. | 
 |  * Copyright (C) 2002-2005 VERITAS Software Corporation. | 
 |  * Copyright (C) 2004 Andi Kleen, SuSE Labs | 
 |  * | 
 |  * Extended attribute support for tmpfs: | 
 |  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> | 
 |  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> | 
 |  * | 
 |  * tiny-shmem: | 
 |  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> | 
 |  * | 
 |  * This file is released under the GPL. | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/init.h> | 
 | #include <linux/vfs.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/ramfs.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/file.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/export.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/khugepaged.h> | 
 |  | 
 | #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ | 
 |  | 
 | static struct vfsmount *shm_mnt; | 
 |  | 
 | #ifdef CONFIG_SHMEM | 
 | /* | 
 |  * This virtual memory filesystem is heavily based on the ramfs. It | 
 |  * extends ramfs by the ability to use swap and honor resource limits | 
 |  * which makes it a completely usable filesystem. | 
 |  */ | 
 |  | 
 | #include <linux/xattr.h> | 
 | #include <linux/exportfs.h> | 
 | #include <linux/posix_acl.h> | 
 | #include <linux/posix_acl_xattr.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/string.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/shmem_fs.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/percpu_counter.h> | 
 | #include <linux/falloc.h> | 
 | #include <linux/splice.h> | 
 | #include <linux/security.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/magic.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/fcntl.h> | 
 | #include <uapi/linux/memfd.h> | 
 | #include <linux/userfaultfd_k.h> | 
 | #include <linux/rmap.h> | 
 |  | 
 | #include <linux/uaccess.h> | 
 | #include <asm/pgtable.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | #define BLOCKS_PER_PAGE  (PAGE_SIZE/512) | 
 | #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT) | 
 |  | 
 | /* Pretend that each entry is of this size in directory's i_size */ | 
 | #define BOGO_DIRENT_SIZE 20 | 
 |  | 
 | /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ | 
 | #define SHORT_SYMLINK_LEN 128 | 
 |  | 
 | /* | 
 |  * shmem_fallocate communicates with shmem_fault or shmem_writepage via | 
 |  * inode->i_private (with i_mutex making sure that it has only one user at | 
 |  * a time): we would prefer not to enlarge the shmem inode just for that. | 
 |  */ | 
 | struct shmem_falloc { | 
 | 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ | 
 | 	pgoff_t start;		/* start of range currently being fallocated */ | 
 | 	pgoff_t next;		/* the next page offset to be fallocated */ | 
 | 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */ | 
 | 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */ | 
 | }; | 
 |  | 
 | #ifdef CONFIG_TMPFS | 
 | static unsigned long shmem_default_max_blocks(void) | 
 | { | 
 | 	return totalram_pages / 2; | 
 | } | 
 |  | 
 | static unsigned long shmem_default_max_inodes(void) | 
 | { | 
 | 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2); | 
 | } | 
 | #endif | 
 |  | 
 | static bool shmem_should_replace_page(struct page *page, gfp_t gfp); | 
 | static int shmem_replace_page(struct page **pagep, gfp_t gfp, | 
 | 				struct shmem_inode_info *info, pgoff_t index); | 
 | static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, | 
 | 		struct page **pagep, enum sgp_type sgp, | 
 | 		gfp_t gfp, struct vm_area_struct *vma, | 
 | 		struct vm_fault *vmf, int *fault_type); | 
 |  | 
 | int shmem_getpage(struct inode *inode, pgoff_t index, | 
 | 		struct page **pagep, enum sgp_type sgp) | 
 | { | 
 | 	return shmem_getpage_gfp(inode, index, pagep, sgp, | 
 | 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); | 
 | } | 
 |  | 
 | static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) | 
 | { | 
 | 	return sb->s_fs_info; | 
 | } | 
 |  | 
 | /* | 
 |  * shmem_file_setup pre-accounts the whole fixed size of a VM object, | 
 |  * for shared memory and for shared anonymous (/dev/zero) mappings | 
 |  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), | 
 |  * consistent with the pre-accounting of private mappings ... | 
 |  */ | 
 | static inline int shmem_acct_size(unsigned long flags, loff_t size) | 
 | { | 
 | 	return (flags & VM_NORESERVE) ? | 
 | 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); | 
 | } | 
 |  | 
 | static inline void shmem_unacct_size(unsigned long flags, loff_t size) | 
 | { | 
 | 	if (!(flags & VM_NORESERVE)) | 
 | 		vm_unacct_memory(VM_ACCT(size)); | 
 | } | 
 |  | 
 | static inline int shmem_reacct_size(unsigned long flags, | 
 | 		loff_t oldsize, loff_t newsize) | 
 | { | 
 | 	if (!(flags & VM_NORESERVE)) { | 
 | 		if (VM_ACCT(newsize) > VM_ACCT(oldsize)) | 
 | 			return security_vm_enough_memory_mm(current->mm, | 
 | 					VM_ACCT(newsize) - VM_ACCT(oldsize)); | 
 | 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) | 
 | 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * ... whereas tmpfs objects are accounted incrementally as | 
 |  * pages are allocated, in order to allow large sparse files. | 
 |  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, | 
 |  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. | 
 |  */ | 
 | static inline int shmem_acct_block(unsigned long flags, long pages) | 
 | { | 
 | 	if (!(flags & VM_NORESERVE)) | 
 | 		return 0; | 
 |  | 
 | 	return security_vm_enough_memory_mm(current->mm, | 
 | 			pages * VM_ACCT(PAGE_SIZE)); | 
 | } | 
 |  | 
 | static inline void shmem_unacct_blocks(unsigned long flags, long pages) | 
 | { | 
 | 	if (flags & VM_NORESERVE) | 
 | 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); | 
 | } | 
 |  | 
 | static const struct super_operations shmem_ops; | 
 | static const struct address_space_operations shmem_aops; | 
 | static const struct file_operations shmem_file_operations; | 
 | static const struct inode_operations shmem_inode_operations; | 
 | static const struct inode_operations shmem_dir_inode_operations; | 
 | static const struct inode_operations shmem_special_inode_operations; | 
 | static const struct vm_operations_struct shmem_vm_ops; | 
 | static struct file_system_type shmem_fs_type; | 
 |  | 
 | bool vma_is_shmem(struct vm_area_struct *vma) | 
 | { | 
 | 	return vma->vm_ops == &shmem_vm_ops; | 
 | } | 
 |  | 
 | static LIST_HEAD(shmem_swaplist); | 
 | static DEFINE_MUTEX(shmem_swaplist_mutex); | 
 |  | 
 | static int shmem_reserve_inode(struct super_block *sb) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
 | 	if (sbinfo->max_inodes) { | 
 | 		spin_lock(&sbinfo->stat_lock); | 
 | 		if (!sbinfo->free_inodes) { | 
 | 			spin_unlock(&sbinfo->stat_lock); | 
 | 			return -ENOSPC; | 
 | 		} | 
 | 		sbinfo->free_inodes--; | 
 | 		spin_unlock(&sbinfo->stat_lock); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void shmem_free_inode(struct super_block *sb) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
 | 	if (sbinfo->max_inodes) { | 
 | 		spin_lock(&sbinfo->stat_lock); | 
 | 		sbinfo->free_inodes++; | 
 | 		spin_unlock(&sbinfo->stat_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * shmem_recalc_inode - recalculate the block usage of an inode | 
 |  * @inode: inode to recalc | 
 |  * | 
 |  * We have to calculate the free blocks since the mm can drop | 
 |  * undirtied hole pages behind our back. | 
 |  * | 
 |  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped | 
 |  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) | 
 |  * | 
 |  * It has to be called with the spinlock held. | 
 |  */ | 
 | static void shmem_recalc_inode(struct inode *inode) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	long freed; | 
 |  | 
 | 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages; | 
 | 	if (freed > 0) { | 
 | 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
 | 		if (sbinfo->max_blocks) | 
 | 			percpu_counter_add(&sbinfo->used_blocks, -freed); | 
 | 		info->alloced -= freed; | 
 | 		inode->i_blocks -= freed * BLOCKS_PER_PAGE; | 
 | 		shmem_unacct_blocks(info->flags, freed); | 
 | 	} | 
 | } | 
 |  | 
 | bool shmem_charge(struct inode *inode, long pages) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (shmem_acct_block(info->flags, pages)) | 
 | 		return false; | 
 | 	spin_lock_irqsave(&info->lock, flags); | 
 | 	info->alloced += pages; | 
 | 	inode->i_blocks += pages * BLOCKS_PER_PAGE; | 
 | 	shmem_recalc_inode(inode); | 
 | 	spin_unlock_irqrestore(&info->lock, flags); | 
 | 	inode->i_mapping->nrpages += pages; | 
 |  | 
 | 	if (!sbinfo->max_blocks) | 
 | 		return true; | 
 | 	if (percpu_counter_compare(&sbinfo->used_blocks, | 
 | 				sbinfo->max_blocks - pages) > 0) { | 
 | 		inode->i_mapping->nrpages -= pages; | 
 | 		spin_lock_irqsave(&info->lock, flags); | 
 | 		info->alloced -= pages; | 
 | 		shmem_recalc_inode(inode); | 
 | 		spin_unlock_irqrestore(&info->lock, flags); | 
 | 		shmem_unacct_blocks(info->flags, pages); | 
 | 		return false; | 
 | 	} | 
 | 	percpu_counter_add(&sbinfo->used_blocks, pages); | 
 | 	return true; | 
 | } | 
 |  | 
 | void shmem_uncharge(struct inode *inode, long pages) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&info->lock, flags); | 
 | 	info->alloced -= pages; | 
 | 	inode->i_blocks -= pages * BLOCKS_PER_PAGE; | 
 | 	shmem_recalc_inode(inode); | 
 | 	spin_unlock_irqrestore(&info->lock, flags); | 
 |  | 
 | 	if (sbinfo->max_blocks) | 
 | 		percpu_counter_sub(&sbinfo->used_blocks, pages); | 
 | 	shmem_unacct_blocks(info->flags, pages); | 
 | } | 
 |  | 
 | /* | 
 |  * Replace item expected in radix tree by a new item, while holding tree lock. | 
 |  */ | 
 | static int shmem_radix_tree_replace(struct address_space *mapping, | 
 | 			pgoff_t index, void *expected, void *replacement) | 
 | { | 
 | 	struct radix_tree_node *node; | 
 | 	void **pslot; | 
 | 	void *item; | 
 |  | 
 | 	VM_BUG_ON(!expected); | 
 | 	VM_BUG_ON(!replacement); | 
 | 	item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot); | 
 | 	if (!item) | 
 | 		return -ENOENT; | 
 | 	if (item != expected) | 
 | 		return -ENOENT; | 
 | 	__radix_tree_replace(&mapping->page_tree, node, pslot, | 
 | 			     replacement, NULL, NULL); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Sometimes, before we decide whether to proceed or to fail, we must check | 
 |  * that an entry was not already brought back from swap by a racing thread. | 
 |  * | 
 |  * Checking page is not enough: by the time a SwapCache page is locked, it | 
 |  * might be reused, and again be SwapCache, using the same swap as before. | 
 |  */ | 
 | static bool shmem_confirm_swap(struct address_space *mapping, | 
 | 			       pgoff_t index, swp_entry_t swap) | 
 | { | 
 | 	void *item; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	item = radix_tree_lookup(&mapping->page_tree, index); | 
 | 	rcu_read_unlock(); | 
 | 	return item == swp_to_radix_entry(swap); | 
 | } | 
 |  | 
 | /* | 
 |  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option | 
 |  * | 
 |  * SHMEM_HUGE_NEVER: | 
 |  *	disables huge pages for the mount; | 
 |  * SHMEM_HUGE_ALWAYS: | 
 |  *	enables huge pages for the mount; | 
 |  * SHMEM_HUGE_WITHIN_SIZE: | 
 |  *	only allocate huge pages if the page will be fully within i_size, | 
 |  *	also respect fadvise()/madvise() hints; | 
 |  * SHMEM_HUGE_ADVISE: | 
 |  *	only allocate huge pages if requested with fadvise()/madvise(); | 
 |  */ | 
 |  | 
 | #define SHMEM_HUGE_NEVER	0 | 
 | #define SHMEM_HUGE_ALWAYS	1 | 
 | #define SHMEM_HUGE_WITHIN_SIZE	2 | 
 | #define SHMEM_HUGE_ADVISE	3 | 
 |  | 
 | /* | 
 |  * Special values. | 
 |  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: | 
 |  * | 
 |  * SHMEM_HUGE_DENY: | 
 |  *	disables huge on shm_mnt and all mounts, for emergency use; | 
 |  * SHMEM_HUGE_FORCE: | 
 |  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing; | 
 |  * | 
 |  */ | 
 | #define SHMEM_HUGE_DENY		(-1) | 
 | #define SHMEM_HUGE_FORCE	(-2) | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE | 
 | /* ifdef here to avoid bloating shmem.o when not necessary */ | 
 |  | 
 | int shmem_huge __read_mostly; | 
 |  | 
 | #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) | 
 | static int shmem_parse_huge(const char *str) | 
 | { | 
 | 	if (!strcmp(str, "never")) | 
 | 		return SHMEM_HUGE_NEVER; | 
 | 	if (!strcmp(str, "always")) | 
 | 		return SHMEM_HUGE_ALWAYS; | 
 | 	if (!strcmp(str, "within_size")) | 
 | 		return SHMEM_HUGE_WITHIN_SIZE; | 
 | 	if (!strcmp(str, "advise")) | 
 | 		return SHMEM_HUGE_ADVISE; | 
 | 	if (!strcmp(str, "deny")) | 
 | 		return SHMEM_HUGE_DENY; | 
 | 	if (!strcmp(str, "force")) | 
 | 		return SHMEM_HUGE_FORCE; | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static const char *shmem_format_huge(int huge) | 
 | { | 
 | 	switch (huge) { | 
 | 	case SHMEM_HUGE_NEVER: | 
 | 		return "never"; | 
 | 	case SHMEM_HUGE_ALWAYS: | 
 | 		return "always"; | 
 | 	case SHMEM_HUGE_WITHIN_SIZE: | 
 | 		return "within_size"; | 
 | 	case SHMEM_HUGE_ADVISE: | 
 | 		return "advise"; | 
 | 	case SHMEM_HUGE_DENY: | 
 | 		return "deny"; | 
 | 	case SHMEM_HUGE_FORCE: | 
 | 		return "force"; | 
 | 	default: | 
 | 		VM_BUG_ON(1); | 
 | 		return "bad_val"; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, | 
 | 		struct shrink_control *sc, unsigned long nr_to_split) | 
 | { | 
 | 	LIST_HEAD(list), *pos, *next; | 
 | 	LIST_HEAD(to_remove); | 
 | 	struct inode *inode; | 
 | 	struct shmem_inode_info *info; | 
 | 	struct page *page; | 
 | 	unsigned long batch = sc ? sc->nr_to_scan : 128; | 
 | 	int removed = 0, split = 0; | 
 |  | 
 | 	if (list_empty(&sbinfo->shrinklist)) | 
 | 		return SHRINK_STOP; | 
 |  | 
 | 	spin_lock(&sbinfo->shrinklist_lock); | 
 | 	list_for_each_safe(pos, next, &sbinfo->shrinklist) { | 
 | 		info = list_entry(pos, struct shmem_inode_info, shrinklist); | 
 |  | 
 | 		/* pin the inode */ | 
 | 		inode = igrab(&info->vfs_inode); | 
 |  | 
 | 		/* inode is about to be evicted */ | 
 | 		if (!inode) { | 
 | 			list_del_init(&info->shrinklist); | 
 | 			removed++; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		/* Check if there's anything to gain */ | 
 | 		if (round_up(inode->i_size, PAGE_SIZE) == | 
 | 				round_up(inode->i_size, HPAGE_PMD_SIZE)) { | 
 | 			list_move(&info->shrinklist, &to_remove); | 
 | 			removed++; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		list_move(&info->shrinklist, &list); | 
 | next: | 
 | 		if (!--batch) | 
 | 			break; | 
 | 	} | 
 | 	spin_unlock(&sbinfo->shrinklist_lock); | 
 |  | 
 | 	list_for_each_safe(pos, next, &to_remove) { | 
 | 		info = list_entry(pos, struct shmem_inode_info, shrinklist); | 
 | 		inode = &info->vfs_inode; | 
 | 		list_del_init(&info->shrinklist); | 
 | 		iput(inode); | 
 | 	} | 
 |  | 
 | 	list_for_each_safe(pos, next, &list) { | 
 | 		int ret; | 
 |  | 
 | 		info = list_entry(pos, struct shmem_inode_info, shrinklist); | 
 | 		inode = &info->vfs_inode; | 
 |  | 
 | 		if (nr_to_split && split >= nr_to_split) { | 
 | 			iput(inode); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		page = find_lock_page(inode->i_mapping, | 
 | 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); | 
 | 		if (!page) | 
 | 			goto drop; | 
 |  | 
 | 		if (!PageTransHuge(page)) { | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 			goto drop; | 
 | 		} | 
 |  | 
 | 		ret = split_huge_page(page); | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 |  | 
 | 		if (ret) { | 
 | 			/* split failed: leave it on the list */ | 
 | 			iput(inode); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		split++; | 
 | drop: | 
 | 		list_del_init(&info->shrinklist); | 
 | 		removed++; | 
 | 		iput(inode); | 
 | 	} | 
 |  | 
 | 	spin_lock(&sbinfo->shrinklist_lock); | 
 | 	list_splice_tail(&list, &sbinfo->shrinklist); | 
 | 	sbinfo->shrinklist_len -= removed; | 
 | 	spin_unlock(&sbinfo->shrinklist_lock); | 
 |  | 
 | 	return split; | 
 | } | 
 |  | 
 | static long shmem_unused_huge_scan(struct super_block *sb, | 
 | 		struct shrink_control *sc) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
 |  | 
 | 	if (!READ_ONCE(sbinfo->shrinklist_len)) | 
 | 		return SHRINK_STOP; | 
 |  | 
 | 	return shmem_unused_huge_shrink(sbinfo, sc, 0); | 
 | } | 
 |  | 
 | static long shmem_unused_huge_count(struct super_block *sb, | 
 | 		struct shrink_control *sc) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
 | 	return READ_ONCE(sbinfo->shrinklist_len); | 
 | } | 
 | #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ | 
 |  | 
 | #define shmem_huge SHMEM_HUGE_DENY | 
 |  | 
 | static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, | 
 | 		struct shrink_control *sc, unsigned long nr_to_split) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ | 
 |  | 
 | /* | 
 |  * Like add_to_page_cache_locked, but error if expected item has gone. | 
 |  */ | 
 | static int shmem_add_to_page_cache(struct page *page, | 
 | 				   struct address_space *mapping, | 
 | 				   pgoff_t index, void *expected) | 
 | { | 
 | 	int error, nr = hpage_nr_pages(page); | 
 |  | 
 | 	VM_BUG_ON_PAGE(PageTail(page), page); | 
 | 	VM_BUG_ON_PAGE(index != round_down(index, nr), page); | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | 
 | 	VM_BUG_ON(expected && PageTransHuge(page)); | 
 |  | 
 | 	page_ref_add(page, nr); | 
 | 	page->mapping = mapping; | 
 | 	page->index = index; | 
 |  | 
 | 	spin_lock_irq(&mapping->tree_lock); | 
 | 	if (PageTransHuge(page)) { | 
 | 		void __rcu **results; | 
 | 		pgoff_t idx; | 
 | 		int i; | 
 |  | 
 | 		error = 0; | 
 | 		if (radix_tree_gang_lookup_slot(&mapping->page_tree, | 
 | 					&results, &idx, index, 1) && | 
 | 				idx < index + HPAGE_PMD_NR) { | 
 | 			error = -EEXIST; | 
 | 		} | 
 |  | 
 | 		if (!error) { | 
 | 			for (i = 0; i < HPAGE_PMD_NR; i++) { | 
 | 				error = radix_tree_insert(&mapping->page_tree, | 
 | 						index + i, page + i); | 
 | 				VM_BUG_ON(error); | 
 | 			} | 
 | 			count_vm_event(THP_FILE_ALLOC); | 
 | 		} | 
 | 	} else if (!expected) { | 
 | 		error = radix_tree_insert(&mapping->page_tree, index, page); | 
 | 	} else { | 
 | 		error = shmem_radix_tree_replace(mapping, index, expected, | 
 | 								 page); | 
 | 	} | 
 |  | 
 | 	if (!error) { | 
 | 		mapping->nrpages += nr; | 
 | 		if (PageTransHuge(page)) | 
 | 			__inc_node_page_state(page, NR_SHMEM_THPS); | 
 | 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); | 
 | 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); | 
 | 		spin_unlock_irq(&mapping->tree_lock); | 
 | 	} else { | 
 | 		page->mapping = NULL; | 
 | 		spin_unlock_irq(&mapping->tree_lock); | 
 | 		page_ref_sub(page, nr); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Like delete_from_page_cache, but substitutes swap for page. | 
 |  */ | 
 | static void shmem_delete_from_page_cache(struct page *page, void *radswap) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 | 	int error; | 
 |  | 
 | 	VM_BUG_ON_PAGE(PageCompound(page), page); | 
 |  | 
 | 	spin_lock_irq(&mapping->tree_lock); | 
 | 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap); | 
 | 	page->mapping = NULL; | 
 | 	mapping->nrpages--; | 
 | 	__dec_node_page_state(page, NR_FILE_PAGES); | 
 | 	__dec_node_page_state(page, NR_SHMEM); | 
 | 	spin_unlock_irq(&mapping->tree_lock); | 
 | 	put_page(page); | 
 | 	BUG_ON(error); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove swap entry from radix tree, free the swap and its page cache. | 
 |  */ | 
 | static int shmem_free_swap(struct address_space *mapping, | 
 | 			   pgoff_t index, void *radswap) | 
 | { | 
 | 	void *old; | 
 |  | 
 | 	spin_lock_irq(&mapping->tree_lock); | 
 | 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap); | 
 | 	spin_unlock_irq(&mapping->tree_lock); | 
 | 	if (old != radswap) | 
 | 		return -ENOENT; | 
 | 	free_swap_and_cache(radix_to_swp_entry(radswap)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine (in bytes) how many of the shmem object's pages mapped by the | 
 |  * given offsets are swapped out. | 
 |  * | 
 |  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, | 
 |  * as long as the inode doesn't go away and racy results are not a problem. | 
 |  */ | 
 | unsigned long shmem_partial_swap_usage(struct address_space *mapping, | 
 | 						pgoff_t start, pgoff_t end) | 
 | { | 
 | 	struct radix_tree_iter iter; | 
 | 	void **slot; | 
 | 	struct page *page; | 
 | 	unsigned long swapped = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { | 
 | 		if (iter.index >= end) | 
 | 			break; | 
 |  | 
 | 		page = radix_tree_deref_slot(slot); | 
 |  | 
 | 		if (radix_tree_deref_retry(page)) { | 
 | 			slot = radix_tree_iter_retry(&iter); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (radix_tree_exceptional_entry(page)) | 
 | 			swapped++; | 
 |  | 
 | 		if (need_resched()) { | 
 | 			slot = radix_tree_iter_resume(slot, &iter); | 
 | 			cond_resched_rcu(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return swapped << PAGE_SHIFT; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine (in bytes) how many of the shmem object's pages mapped by the | 
 |  * given vma is swapped out. | 
 |  * | 
 |  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, | 
 |  * as long as the inode doesn't go away and racy results are not a problem. | 
 |  */ | 
 | unsigned long shmem_swap_usage(struct vm_area_struct *vma) | 
 | { | 
 | 	struct inode *inode = file_inode(vma->vm_file); | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	unsigned long swapped; | 
 |  | 
 | 	/* Be careful as we don't hold info->lock */ | 
 | 	swapped = READ_ONCE(info->swapped); | 
 |  | 
 | 	/* | 
 | 	 * The easier cases are when the shmem object has nothing in swap, or | 
 | 	 * the vma maps it whole. Then we can simply use the stats that we | 
 | 	 * already track. | 
 | 	 */ | 
 | 	if (!swapped) | 
 | 		return 0; | 
 |  | 
 | 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) | 
 | 		return swapped << PAGE_SHIFT; | 
 |  | 
 | 	/* Here comes the more involved part */ | 
 | 	return shmem_partial_swap_usage(mapping, | 
 | 			linear_page_index(vma, vma->vm_start), | 
 | 			linear_page_index(vma, vma->vm_end)); | 
 | } | 
 |  | 
 | /* | 
 |  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. | 
 |  */ | 
 | void shmem_unlock_mapping(struct address_space *mapping) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	pgoff_t indices[PAGEVEC_SIZE]; | 
 | 	pgoff_t index = 0; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	/* | 
 | 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it. | 
 | 	 */ | 
 | 	while (!mapping_unevictable(mapping)) { | 
 | 		/* | 
 | 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it | 
 | 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. | 
 | 		 */ | 
 | 		pvec.nr = find_get_entries(mapping, index, | 
 | 					   PAGEVEC_SIZE, pvec.pages, indices); | 
 | 		if (!pvec.nr) | 
 | 			break; | 
 | 		index = indices[pvec.nr - 1] + 1; | 
 | 		pagevec_remove_exceptionals(&pvec); | 
 | 		check_move_unevictable_pages(pvec.pages, pvec.nr); | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Remove range of pages and swap entries from radix tree, and free them. | 
 |  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. | 
 |  */ | 
 | static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, | 
 | 								 bool unfalloc) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 	pgoff_t end = (lend + 1) >> PAGE_SHIFT; | 
 | 	unsigned int partial_start = lstart & (PAGE_SIZE - 1); | 
 | 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); | 
 | 	struct pagevec pvec; | 
 | 	pgoff_t indices[PAGEVEC_SIZE]; | 
 | 	long nr_swaps_freed = 0; | 
 | 	pgoff_t index; | 
 | 	int i; | 
 |  | 
 | 	if (lend == -1) | 
 | 		end = -1;	/* unsigned, so actually very big */ | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	index = start; | 
 | 	while (index < end) { | 
 | 		pvec.nr = find_get_entries(mapping, index, | 
 | 			min(end - index, (pgoff_t)PAGEVEC_SIZE), | 
 | 			pvec.pages, indices); | 
 | 		if (!pvec.nr) | 
 | 			break; | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			index = indices[i]; | 
 | 			if (index >= end) | 
 | 				break; | 
 |  | 
 | 			if (radix_tree_exceptional_entry(page)) { | 
 | 				if (unfalloc) | 
 | 					continue; | 
 | 				nr_swaps_freed += !shmem_free_swap(mapping, | 
 | 								index, page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); | 
 |  | 
 | 			if (!trylock_page(page)) | 
 | 				continue; | 
 |  | 
 | 			if (PageTransTail(page)) { | 
 | 				/* Middle of THP: zero out the page */ | 
 | 				clear_highpage(page); | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} else if (PageTransHuge(page)) { | 
 | 				if (index == round_down(end, HPAGE_PMD_NR)) { | 
 | 					/* | 
 | 					 * Range ends in the middle of THP: | 
 | 					 * zero out the page | 
 | 					 */ | 
 | 					clear_highpage(page); | 
 | 					unlock_page(page); | 
 | 					continue; | 
 | 				} | 
 | 				index += HPAGE_PMD_NR - 1; | 
 | 				i += HPAGE_PMD_NR - 1; | 
 | 			} | 
 |  | 
 | 			if (!unfalloc || !PageUptodate(page)) { | 
 | 				VM_BUG_ON_PAGE(PageTail(page), page); | 
 | 				if (page_mapping(page) == mapping) { | 
 | 					VM_BUG_ON_PAGE(PageWriteback(page), page); | 
 | 					truncate_inode_page(mapping, page); | 
 | 				} | 
 | 			} | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		pagevec_remove_exceptionals(&pvec); | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	if (partial_start) { | 
 | 		struct page *page = NULL; | 
 | 		shmem_getpage(inode, start - 1, &page, SGP_READ); | 
 | 		if (page) { | 
 | 			unsigned int top = PAGE_SIZE; | 
 | 			if (start > end) { | 
 | 				top = partial_end; | 
 | 				partial_end = 0; | 
 | 			} | 
 | 			zero_user_segment(page, partial_start, top); | 
 | 			set_page_dirty(page); | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 		} | 
 | 	} | 
 | 	if (partial_end) { | 
 | 		struct page *page = NULL; | 
 | 		shmem_getpage(inode, end, &page, SGP_READ); | 
 | 		if (page) { | 
 | 			zero_user_segment(page, 0, partial_end); | 
 | 			set_page_dirty(page); | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 		} | 
 | 	} | 
 | 	if (start >= end) | 
 | 		return; | 
 |  | 
 | 	index = start; | 
 | 	while (index < end) { | 
 | 		cond_resched(); | 
 |  | 
 | 		pvec.nr = find_get_entries(mapping, index, | 
 | 				min(end - index, (pgoff_t)PAGEVEC_SIZE), | 
 | 				pvec.pages, indices); | 
 | 		if (!pvec.nr) { | 
 | 			/* If all gone or hole-punch or unfalloc, we're done */ | 
 | 			if (index == start || end != -1) | 
 | 				break; | 
 | 			/* But if truncating, restart to make sure all gone */ | 
 | 			index = start; | 
 | 			continue; | 
 | 		} | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			index = indices[i]; | 
 | 			if (index >= end) | 
 | 				break; | 
 |  | 
 | 			if (radix_tree_exceptional_entry(page)) { | 
 | 				if (unfalloc) | 
 | 					continue; | 
 | 				if (shmem_free_swap(mapping, index, page)) { | 
 | 					/* Swap was replaced by page: retry */ | 
 | 					index--; | 
 | 					break; | 
 | 				} | 
 | 				nr_swaps_freed++; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			lock_page(page); | 
 |  | 
 | 			if (PageTransTail(page)) { | 
 | 				/* Middle of THP: zero out the page */ | 
 | 				clear_highpage(page); | 
 | 				unlock_page(page); | 
 | 				/* | 
 | 				 * Partial thp truncate due 'start' in middle | 
 | 				 * of THP: don't need to look on these pages | 
 | 				 * again on !pvec.nr restart. | 
 | 				 */ | 
 | 				if (index != round_down(end, HPAGE_PMD_NR)) | 
 | 					start++; | 
 | 				continue; | 
 | 			} else if (PageTransHuge(page)) { | 
 | 				if (index == round_down(end, HPAGE_PMD_NR)) { | 
 | 					/* | 
 | 					 * Range ends in the middle of THP: | 
 | 					 * zero out the page | 
 | 					 */ | 
 | 					clear_highpage(page); | 
 | 					unlock_page(page); | 
 | 					continue; | 
 | 				} | 
 | 				index += HPAGE_PMD_NR - 1; | 
 | 				i += HPAGE_PMD_NR - 1; | 
 | 			} | 
 |  | 
 | 			if (!unfalloc || !PageUptodate(page)) { | 
 | 				VM_BUG_ON_PAGE(PageTail(page), page); | 
 | 				if (page_mapping(page) == mapping) { | 
 | 					VM_BUG_ON_PAGE(PageWriteback(page), page); | 
 | 					truncate_inode_page(mapping, page); | 
 | 				} else { | 
 | 					/* Page was replaced by swap: retry */ | 
 | 					unlock_page(page); | 
 | 					index--; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		pagevec_remove_exceptionals(&pvec); | 
 | 		pagevec_release(&pvec); | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&info->lock); | 
 | 	info->swapped -= nr_swaps_freed; | 
 | 	shmem_recalc_inode(inode); | 
 | 	spin_unlock_irq(&info->lock); | 
 | } | 
 |  | 
 | void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) | 
 | { | 
 | 	shmem_undo_range(inode, lstart, lend, false); | 
 | 	inode->i_ctime = inode->i_mtime = current_time(inode); | 
 | } | 
 | EXPORT_SYMBOL_GPL(shmem_truncate_range); | 
 |  | 
 | static int shmem_getattr(const struct path *path, struct kstat *stat, | 
 | 			 u32 request_mask, unsigned int query_flags) | 
 | { | 
 | 	struct inode *inode = path->dentry->d_inode; | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 |  | 
 | 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) { | 
 | 		spin_lock_irq(&info->lock); | 
 | 		shmem_recalc_inode(inode); | 
 | 		spin_unlock_irq(&info->lock); | 
 | 	} | 
 | 	generic_fillattr(inode, stat); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int shmem_setattr(struct dentry *dentry, struct iattr *attr) | 
 | { | 
 | 	struct inode *inode = d_inode(dentry); | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
 | 	int error; | 
 |  | 
 | 	error = setattr_prepare(dentry, attr); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { | 
 | 		loff_t oldsize = inode->i_size; | 
 | 		loff_t newsize = attr->ia_size; | 
 |  | 
 | 		/* protected by i_mutex */ | 
 | 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || | 
 | 		    (newsize > oldsize && (info->seals & F_SEAL_GROW))) | 
 | 			return -EPERM; | 
 |  | 
 | 		if (newsize != oldsize) { | 
 | 			error = shmem_reacct_size(SHMEM_I(inode)->flags, | 
 | 					oldsize, newsize); | 
 | 			if (error) | 
 | 				return error; | 
 | 			i_size_write(inode, newsize); | 
 | 			inode->i_ctime = inode->i_mtime = current_time(inode); | 
 | 		} | 
 | 		if (newsize <= oldsize) { | 
 | 			loff_t holebegin = round_up(newsize, PAGE_SIZE); | 
 | 			if (oldsize > holebegin) | 
 | 				unmap_mapping_range(inode->i_mapping, | 
 | 							holebegin, 0, 1); | 
 | 			if (info->alloced) | 
 | 				shmem_truncate_range(inode, | 
 | 							newsize, (loff_t)-1); | 
 | 			/* unmap again to remove racily COWed private pages */ | 
 | 			if (oldsize > holebegin) | 
 | 				unmap_mapping_range(inode->i_mapping, | 
 | 							holebegin, 0, 1); | 
 |  | 
 | 			/* | 
 | 			 * Part of the huge page can be beyond i_size: subject | 
 | 			 * to shrink under memory pressure. | 
 | 			 */ | 
 | 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { | 
 | 				spin_lock(&sbinfo->shrinklist_lock); | 
 | 				if (list_empty(&info->shrinklist)) { | 
 | 					list_add_tail(&info->shrinklist, | 
 | 							&sbinfo->shrinklist); | 
 | 					sbinfo->shrinklist_len++; | 
 | 				} | 
 | 				spin_unlock(&sbinfo->shrinklist_lock); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	setattr_copy(inode, attr); | 
 | 	if (attr->ia_valid & ATTR_MODE) | 
 | 		error = posix_acl_chmod(inode, inode->i_mode); | 
 | 	return error; | 
 | } | 
 |  | 
 | static void shmem_evict_inode(struct inode *inode) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
 |  | 
 | 	if (inode->i_mapping->a_ops == &shmem_aops) { | 
 | 		shmem_unacct_size(info->flags, inode->i_size); | 
 | 		inode->i_size = 0; | 
 | 		shmem_truncate_range(inode, 0, (loff_t)-1); | 
 | 		if (!list_empty(&info->shrinklist)) { | 
 | 			spin_lock(&sbinfo->shrinklist_lock); | 
 | 			if (!list_empty(&info->shrinklist)) { | 
 | 				list_del_init(&info->shrinklist); | 
 | 				sbinfo->shrinklist_len--; | 
 | 			} | 
 | 			spin_unlock(&sbinfo->shrinklist_lock); | 
 | 		} | 
 | 		if (!list_empty(&info->swaplist)) { | 
 | 			mutex_lock(&shmem_swaplist_mutex); | 
 | 			list_del_init(&info->swaplist); | 
 | 			mutex_unlock(&shmem_swaplist_mutex); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	simple_xattrs_free(&info->xattrs); | 
 | 	WARN_ON(inode->i_blocks); | 
 | 	shmem_free_inode(inode->i_sb); | 
 | 	clear_inode(inode); | 
 | } | 
 |  | 
 | static unsigned long find_swap_entry(struct radix_tree_root *root, void *item) | 
 | { | 
 | 	struct radix_tree_iter iter; | 
 | 	void **slot; | 
 | 	unsigned long found = -1; | 
 | 	unsigned int checked = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	radix_tree_for_each_slot(slot, root, &iter, 0) { | 
 | 		if (*slot == item) { | 
 | 			found = iter.index; | 
 | 			break; | 
 | 		} | 
 | 		checked++; | 
 | 		if ((checked % 4096) != 0) | 
 | 			continue; | 
 | 		slot = radix_tree_iter_resume(slot, &iter); | 
 | 		cond_resched_rcu(); | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 | 	return found; | 
 | } | 
 |  | 
 | /* | 
 |  * If swap found in inode, free it and move page from swapcache to filecache. | 
 |  */ | 
 | static int shmem_unuse_inode(struct shmem_inode_info *info, | 
 | 			     swp_entry_t swap, struct page **pagep) | 
 | { | 
 | 	struct address_space *mapping = info->vfs_inode.i_mapping; | 
 | 	void *radswap; | 
 | 	pgoff_t index; | 
 | 	gfp_t gfp; | 
 | 	int error = 0; | 
 |  | 
 | 	radswap = swp_to_radix_entry(swap); | 
 | 	index = find_swap_entry(&mapping->page_tree, radswap); | 
 | 	if (index == -1) | 
 | 		return -EAGAIN;	/* tell shmem_unuse we found nothing */ | 
 |  | 
 | 	/* | 
 | 	 * Move _head_ to start search for next from here. | 
 | 	 * But be careful: shmem_evict_inode checks list_empty without taking | 
 | 	 * mutex, and there's an instant in list_move_tail when info->swaplist | 
 | 	 * would appear empty, if it were the only one on shmem_swaplist. | 
 | 	 */ | 
 | 	if (shmem_swaplist.next != &info->swaplist) | 
 | 		list_move_tail(&shmem_swaplist, &info->swaplist); | 
 |  | 
 | 	gfp = mapping_gfp_mask(mapping); | 
 | 	if (shmem_should_replace_page(*pagep, gfp)) { | 
 | 		mutex_unlock(&shmem_swaplist_mutex); | 
 | 		error = shmem_replace_page(pagep, gfp, info, index); | 
 | 		mutex_lock(&shmem_swaplist_mutex); | 
 | 		/* | 
 | 		 * We needed to drop mutex to make that restrictive page | 
 | 		 * allocation, but the inode might have been freed while we | 
 | 		 * dropped it: although a racing shmem_evict_inode() cannot | 
 | 		 * complete without emptying the radix_tree, our page lock | 
 | 		 * on this swapcache page is not enough to prevent that - | 
 | 		 * free_swap_and_cache() of our swap entry will only | 
 | 		 * trylock_page(), removing swap from radix_tree whatever. | 
 | 		 * | 
 | 		 * We must not proceed to shmem_add_to_page_cache() if the | 
 | 		 * inode has been freed, but of course we cannot rely on | 
 | 		 * inode or mapping or info to check that.  However, we can | 
 | 		 * safely check if our swap entry is still in use (and here | 
 | 		 * it can't have got reused for another page): if it's still | 
 | 		 * in use, then the inode cannot have been freed yet, and we | 
 | 		 * can safely proceed (if it's no longer in use, that tells | 
 | 		 * nothing about the inode, but we don't need to unuse swap). | 
 | 		 */ | 
 | 		if (!page_swapcount(*pagep)) | 
 | 			error = -ENOENT; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, | 
 | 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed | 
 | 	 * beneath us (pagelock doesn't help until the page is in pagecache). | 
 | 	 */ | 
 | 	if (!error) | 
 | 		error = shmem_add_to_page_cache(*pagep, mapping, index, | 
 | 						radswap); | 
 | 	if (error != -ENOMEM) { | 
 | 		/* | 
 | 		 * Truncation and eviction use free_swap_and_cache(), which | 
 | 		 * only does trylock page: if we raced, best clean up here. | 
 | 		 */ | 
 | 		delete_from_swap_cache(*pagep); | 
 | 		set_page_dirty(*pagep); | 
 | 		if (!error) { | 
 | 			spin_lock_irq(&info->lock); | 
 | 			info->swapped--; | 
 | 			spin_unlock_irq(&info->lock); | 
 | 			swap_free(swap); | 
 | 		} | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Search through swapped inodes to find and replace swap by page. | 
 |  */ | 
 | int shmem_unuse(swp_entry_t swap, struct page *page) | 
 | { | 
 | 	struct list_head *this, *next; | 
 | 	struct shmem_inode_info *info; | 
 | 	struct mem_cgroup *memcg; | 
 | 	int error = 0; | 
 |  | 
 | 	/* | 
 | 	 * There's a faint possibility that swap page was replaced before | 
 | 	 * caller locked it: caller will come back later with the right page. | 
 | 	 */ | 
 | 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Charge page using GFP_KERNEL while we can wait, before taking | 
 | 	 * the shmem_swaplist_mutex which might hold up shmem_writepage(). | 
 | 	 * Charged back to the user (not to caller) when swap account is used. | 
 | 	 */ | 
 | 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, | 
 | 			false); | 
 | 	if (error) | 
 | 		goto out; | 
 | 	/* No radix_tree_preload: swap entry keeps a place for page in tree */ | 
 | 	error = -EAGAIN; | 
 |  | 
 | 	mutex_lock(&shmem_swaplist_mutex); | 
 | 	list_for_each_safe(this, next, &shmem_swaplist) { | 
 | 		info = list_entry(this, struct shmem_inode_info, swaplist); | 
 | 		if (info->swapped) | 
 | 			error = shmem_unuse_inode(info, swap, &page); | 
 | 		else | 
 | 			list_del_init(&info->swaplist); | 
 | 		cond_resched(); | 
 | 		if (error != -EAGAIN) | 
 | 			break; | 
 | 		/* found nothing in this: move on to search the next */ | 
 | 	} | 
 | 	mutex_unlock(&shmem_swaplist_mutex); | 
 |  | 
 | 	if (error) { | 
 | 		if (error != -ENOMEM) | 
 | 			error = 0; | 
 | 		mem_cgroup_cancel_charge(page, memcg, false); | 
 | 	} else | 
 | 		mem_cgroup_commit_charge(page, memcg, true, false); | 
 | out: | 
 | 	unlock_page(page); | 
 | 	put_page(page); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Move the page from the page cache to the swap cache. | 
 |  */ | 
 | static int shmem_writepage(struct page *page, struct writeback_control *wbc) | 
 | { | 
 | 	struct shmem_inode_info *info; | 
 | 	struct address_space *mapping; | 
 | 	struct inode *inode; | 
 | 	swp_entry_t swap; | 
 | 	pgoff_t index; | 
 |  | 
 | 	VM_BUG_ON_PAGE(PageCompound(page), page); | 
 | 	BUG_ON(!PageLocked(page)); | 
 | 	mapping = page->mapping; | 
 | 	index = page->index; | 
 | 	inode = mapping->host; | 
 | 	info = SHMEM_I(inode); | 
 | 	if (info->flags & VM_LOCKED) | 
 | 		goto redirty; | 
 | 	if (!total_swap_pages) | 
 | 		goto redirty; | 
 |  | 
 | 	/* | 
 | 	 * Our capabilities prevent regular writeback or sync from ever calling | 
 | 	 * shmem_writepage; but a stacking filesystem might use ->writepage of | 
 | 	 * its underlying filesystem, in which case tmpfs should write out to | 
 | 	 * swap only in response to memory pressure, and not for the writeback | 
 | 	 * threads or sync. | 
 | 	 */ | 
 | 	if (!wbc->for_reclaim) { | 
 | 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */ | 
 | 		goto redirty; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC | 
 | 	 * value into swapfile.c, the only way we can correctly account for a | 
 | 	 * fallocated page arriving here is now to initialize it and write it. | 
 | 	 * | 
 | 	 * That's okay for a page already fallocated earlier, but if we have | 
 | 	 * not yet completed the fallocation, then (a) we want to keep track | 
 | 	 * of this page in case we have to undo it, and (b) it may not be a | 
 | 	 * good idea to continue anyway, once we're pushing into swap.  So | 
 | 	 * reactivate the page, and let shmem_fallocate() quit when too many. | 
 | 	 */ | 
 | 	if (!PageUptodate(page)) { | 
 | 		if (inode->i_private) { | 
 | 			struct shmem_falloc *shmem_falloc; | 
 | 			spin_lock(&inode->i_lock); | 
 | 			shmem_falloc = inode->i_private; | 
 | 			if (shmem_falloc && | 
 | 			    !shmem_falloc->waitq && | 
 | 			    index >= shmem_falloc->start && | 
 | 			    index < shmem_falloc->next) | 
 | 				shmem_falloc->nr_unswapped++; | 
 | 			else | 
 | 				shmem_falloc = NULL; | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			if (shmem_falloc) | 
 | 				goto redirty; | 
 | 		} | 
 | 		clear_highpage(page); | 
 | 		flush_dcache_page(page); | 
 | 		SetPageUptodate(page); | 
 | 	} | 
 |  | 
 | 	swap = get_swap_page(); | 
 | 	if (!swap.val) | 
 | 		goto redirty; | 
 |  | 
 | 	if (mem_cgroup_try_charge_swap(page, swap)) | 
 | 		goto free_swap; | 
 |  | 
 | 	/* | 
 | 	 * Add inode to shmem_unuse()'s list of swapped-out inodes, | 
 | 	 * if it's not already there.  Do it now before the page is | 
 | 	 * moved to swap cache, when its pagelock no longer protects | 
 | 	 * the inode from eviction.  But don't unlock the mutex until | 
 | 	 * we've incremented swapped, because shmem_unuse_inode() will | 
 | 	 * prune a !swapped inode from the swaplist under this mutex. | 
 | 	 */ | 
 | 	mutex_lock(&shmem_swaplist_mutex); | 
 | 	if (list_empty(&info->swaplist)) | 
 | 		list_add_tail(&info->swaplist, &shmem_swaplist); | 
 |  | 
 | 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { | 
 | 		spin_lock_irq(&info->lock); | 
 | 		shmem_recalc_inode(inode); | 
 | 		info->swapped++; | 
 | 		spin_unlock_irq(&info->lock); | 
 |  | 
 | 		swap_shmem_alloc(swap); | 
 | 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); | 
 |  | 
 | 		mutex_unlock(&shmem_swaplist_mutex); | 
 | 		BUG_ON(page_mapped(page)); | 
 | 		swap_writepage(page, wbc); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&shmem_swaplist_mutex); | 
 | free_swap: | 
 | 	swapcache_free(swap); | 
 | redirty: | 
 | 	set_page_dirty(page); | 
 | 	if (wbc->for_reclaim) | 
 | 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */ | 
 | 	unlock_page(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) | 
 | static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) | 
 | { | 
 | 	char buffer[64]; | 
 |  | 
 | 	if (!mpol || mpol->mode == MPOL_DEFAULT) | 
 | 		return;		/* show nothing */ | 
 |  | 
 | 	mpol_to_str(buffer, sizeof(buffer), mpol); | 
 |  | 
 | 	seq_printf(seq, ",mpol=%s", buffer); | 
 | } | 
 |  | 
 | static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) | 
 | { | 
 | 	struct mempolicy *mpol = NULL; | 
 | 	if (sbinfo->mpol) { | 
 | 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */ | 
 | 		mpol = sbinfo->mpol; | 
 | 		mpol_get(mpol); | 
 | 		spin_unlock(&sbinfo->stat_lock); | 
 | 	} | 
 | 	return mpol; | 
 | } | 
 | #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ | 
 | static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) | 
 | { | 
 | } | 
 | static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif /* CONFIG_NUMA && CONFIG_TMPFS */ | 
 | #ifndef CONFIG_NUMA | 
 | #define vm_policy vm_private_data | 
 | #endif | 
 |  | 
 | static void shmem_pseudo_vma_init(struct vm_area_struct *vma, | 
 | 		struct shmem_inode_info *info, pgoff_t index) | 
 | { | 
 | 	/* Create a pseudo vma that just contains the policy */ | 
 | 	vma->vm_start = 0; | 
 | 	/* Bias interleave by inode number to distribute better across nodes */ | 
 | 	vma->vm_pgoff = index + info->vfs_inode.i_ino; | 
 | 	vma->vm_ops = NULL; | 
 | 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); | 
 | } | 
 |  | 
 | static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) | 
 | { | 
 | 	/* Drop reference taken by mpol_shared_policy_lookup() */ | 
 | 	mpol_cond_put(vma->vm_policy); | 
 | } | 
 |  | 
 | static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, | 
 | 			struct shmem_inode_info *info, pgoff_t index) | 
 | { | 
 | 	struct vm_area_struct pvma; | 
 | 	struct page *page; | 
 |  | 
 | 	shmem_pseudo_vma_init(&pvma, info, index); | 
 | 	page = swapin_readahead(swap, gfp, &pvma, 0); | 
 | 	shmem_pseudo_vma_destroy(&pvma); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *shmem_alloc_hugepage(gfp_t gfp, | 
 | 		struct shmem_inode_info *info, pgoff_t index) | 
 | { | 
 | 	struct vm_area_struct pvma; | 
 | 	struct inode *inode = &info->vfs_inode; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	pgoff_t idx, hindex; | 
 | 	void __rcu **results; | 
 | 	struct page *page; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) | 
 | 		return NULL; | 
 |  | 
 | 	hindex = round_down(index, HPAGE_PMD_NR); | 
 | 	rcu_read_lock(); | 
 | 	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx, | 
 | 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) { | 
 | 		rcu_read_unlock(); | 
 | 		return NULL; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	shmem_pseudo_vma_init(&pvma, info, hindex); | 
 | 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, | 
 | 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); | 
 | 	shmem_pseudo_vma_destroy(&pvma); | 
 | 	if (page) | 
 | 		prep_transhuge_page(page); | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *shmem_alloc_page(gfp_t gfp, | 
 | 			struct shmem_inode_info *info, pgoff_t index) | 
 | { | 
 | 	struct vm_area_struct pvma; | 
 | 	struct page *page; | 
 |  | 
 | 	shmem_pseudo_vma_init(&pvma, info, index); | 
 | 	page = alloc_page_vma(gfp, &pvma, 0); | 
 | 	shmem_pseudo_vma_destroy(&pvma); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *shmem_alloc_and_acct_page(gfp_t gfp, | 
 | 		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo, | 
 | 		pgoff_t index, bool huge) | 
 | { | 
 | 	struct page *page; | 
 | 	int nr; | 
 | 	int err = -ENOSPC; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) | 
 | 		huge = false; | 
 | 	nr = huge ? HPAGE_PMD_NR : 1; | 
 |  | 
 | 	if (shmem_acct_block(info->flags, nr)) | 
 | 		goto failed; | 
 | 	if (sbinfo->max_blocks) { | 
 | 		if (percpu_counter_compare(&sbinfo->used_blocks, | 
 | 					sbinfo->max_blocks - nr) > 0) | 
 | 			goto unacct; | 
 | 		percpu_counter_add(&sbinfo->used_blocks, nr); | 
 | 	} | 
 |  | 
 | 	if (huge) | 
 | 		page = shmem_alloc_hugepage(gfp, info, index); | 
 | 	else | 
 | 		page = shmem_alloc_page(gfp, info, index); | 
 | 	if (page) { | 
 | 		__SetPageLocked(page); | 
 | 		__SetPageSwapBacked(page); | 
 | 		return page; | 
 | 	} | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	if (sbinfo->max_blocks) | 
 | 		percpu_counter_add(&sbinfo->used_blocks, -nr); | 
 | unacct: | 
 | 	shmem_unacct_blocks(info->flags, nr); | 
 | failed: | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /* | 
 |  * When a page is moved from swapcache to shmem filecache (either by the | 
 |  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of | 
 |  * shmem_unuse_inode()), it may have been read in earlier from swap, in | 
 |  * ignorance of the mapping it belongs to.  If that mapping has special | 
 |  * constraints (like the gma500 GEM driver, which requires RAM below 4GB), | 
 |  * we may need to copy to a suitable page before moving to filecache. | 
 |  * | 
 |  * In a future release, this may well be extended to respect cpuset and | 
 |  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); | 
 |  * but for now it is a simple matter of zone. | 
 |  */ | 
 | static bool shmem_should_replace_page(struct page *page, gfp_t gfp) | 
 | { | 
 | 	return page_zonenum(page) > gfp_zone(gfp); | 
 | } | 
 |  | 
 | static int shmem_replace_page(struct page **pagep, gfp_t gfp, | 
 | 				struct shmem_inode_info *info, pgoff_t index) | 
 | { | 
 | 	struct page *oldpage, *newpage; | 
 | 	struct address_space *swap_mapping; | 
 | 	pgoff_t swap_index; | 
 | 	int error; | 
 |  | 
 | 	oldpage = *pagep; | 
 | 	swap_index = page_private(oldpage); | 
 | 	swap_mapping = page_mapping(oldpage); | 
 |  | 
 | 	/* | 
 | 	 * We have arrived here because our zones are constrained, so don't | 
 | 	 * limit chance of success by further cpuset and node constraints. | 
 | 	 */ | 
 | 	gfp &= ~GFP_CONSTRAINT_MASK; | 
 | 	newpage = shmem_alloc_page(gfp, info, index); | 
 | 	if (!newpage) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	get_page(newpage); | 
 | 	copy_highpage(newpage, oldpage); | 
 | 	flush_dcache_page(newpage); | 
 |  | 
 | 	__SetPageLocked(newpage); | 
 | 	__SetPageSwapBacked(newpage); | 
 | 	SetPageUptodate(newpage); | 
 | 	set_page_private(newpage, swap_index); | 
 | 	SetPageSwapCache(newpage); | 
 |  | 
 | 	/* | 
 | 	 * Our caller will very soon move newpage out of swapcache, but it's | 
 | 	 * a nice clean interface for us to replace oldpage by newpage there. | 
 | 	 */ | 
 | 	spin_lock_irq(&swap_mapping->tree_lock); | 
 | 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, | 
 | 								   newpage); | 
 | 	if (!error) { | 
 | 		__inc_node_page_state(newpage, NR_FILE_PAGES); | 
 | 		__dec_node_page_state(oldpage, NR_FILE_PAGES); | 
 | 	} | 
 | 	spin_unlock_irq(&swap_mapping->tree_lock); | 
 |  | 
 | 	if (unlikely(error)) { | 
 | 		/* | 
 | 		 * Is this possible?  I think not, now that our callers check | 
 | 		 * both PageSwapCache and page_private after getting page lock; | 
 | 		 * but be defensive.  Reverse old to newpage for clear and free. | 
 | 		 */ | 
 | 		oldpage = newpage; | 
 | 	} else { | 
 | 		mem_cgroup_migrate(oldpage, newpage); | 
 | 		lru_cache_add_anon(newpage); | 
 | 		*pagep = newpage; | 
 | 	} | 
 |  | 
 | 	ClearPageSwapCache(oldpage); | 
 | 	set_page_private(oldpage, 0); | 
 |  | 
 | 	unlock_page(oldpage); | 
 | 	put_page(oldpage); | 
 | 	put_page(oldpage); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate | 
 |  * | 
 |  * If we allocate a new one we do not mark it dirty. That's up to the | 
 |  * vm. If we swap it in we mark it dirty since we also free the swap | 
 |  * entry since a page cannot live in both the swap and page cache. | 
 |  * | 
 |  * fault_mm and fault_type are only supplied by shmem_fault: | 
 |  * otherwise they are NULL. | 
 |  */ | 
 | static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, | 
 | 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, | 
 | 	struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	struct shmem_sb_info *sbinfo; | 
 | 	struct mm_struct *charge_mm; | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct page *page; | 
 | 	swp_entry_t swap; | 
 | 	enum sgp_type sgp_huge = sgp; | 
 | 	pgoff_t hindex = index; | 
 | 	int error; | 
 | 	int once = 0; | 
 | 	int alloced = 0; | 
 |  | 
 | 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) | 
 | 		return -EFBIG; | 
 | 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) | 
 | 		sgp = SGP_CACHE; | 
 | repeat: | 
 | 	swap.val = 0; | 
 | 	page = find_lock_entry(mapping, index); | 
 | 	if (radix_tree_exceptional_entry(page)) { | 
 | 		swap = radix_to_swp_entry(page); | 
 | 		page = NULL; | 
 | 	} | 
 |  | 
 | 	if (sgp <= SGP_CACHE && | 
 | 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { | 
 | 		error = -EINVAL; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	if (page && sgp == SGP_WRITE) | 
 | 		mark_page_accessed(page); | 
 |  | 
 | 	/* fallocated page? */ | 
 | 	if (page && !PageUptodate(page)) { | 
 | 		if (sgp != SGP_READ) | 
 | 			goto clear; | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 		page = NULL; | 
 | 	} | 
 | 	if (page || (sgp == SGP_READ && !swap.val)) { | 
 | 		*pagep = page; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Fast cache lookup did not find it: | 
 | 	 * bring it back from swap or allocate. | 
 | 	 */ | 
 | 	sbinfo = SHMEM_SB(inode->i_sb); | 
 | 	charge_mm = vma ? vma->vm_mm : current->mm; | 
 |  | 
 | 	if (swap.val) { | 
 | 		/* Look it up and read it in.. */ | 
 | 		page = lookup_swap_cache(swap); | 
 | 		if (!page) { | 
 | 			/* Or update major stats only when swapin succeeds?? */ | 
 | 			if (fault_type) { | 
 | 				*fault_type |= VM_FAULT_MAJOR; | 
 | 				count_vm_event(PGMAJFAULT); | 
 | 				mem_cgroup_count_vm_event(charge_mm, | 
 | 							  PGMAJFAULT); | 
 | 			} | 
 | 			/* Here we actually start the io */ | 
 | 			page = shmem_swapin(swap, gfp, info, index); | 
 | 			if (!page) { | 
 | 				error = -ENOMEM; | 
 | 				goto failed; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* We have to do this with page locked to prevent races */ | 
 | 		lock_page(page); | 
 | 		if (!PageSwapCache(page) || page_private(page) != swap.val || | 
 | 		    !shmem_confirm_swap(mapping, index, swap)) { | 
 | 			error = -EEXIST;	/* try again */ | 
 | 			goto unlock; | 
 | 		} | 
 | 		if (!PageUptodate(page)) { | 
 | 			error = -EIO; | 
 | 			goto failed; | 
 | 		} | 
 | 		wait_on_page_writeback(page); | 
 |  | 
 | 		if (shmem_should_replace_page(page, gfp)) { | 
 | 			error = shmem_replace_page(&page, gfp, info, index); | 
 | 			if (error) | 
 | 				goto failed; | 
 | 		} | 
 |  | 
 | 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, | 
 | 				false); | 
 | 		if (!error) { | 
 | 			error = shmem_add_to_page_cache(page, mapping, index, | 
 | 						swp_to_radix_entry(swap)); | 
 | 			/* | 
 | 			 * We already confirmed swap under page lock, and make | 
 | 			 * no memory allocation here, so usually no possibility | 
 | 			 * of error; but free_swap_and_cache() only trylocks a | 
 | 			 * page, so it is just possible that the entry has been | 
 | 			 * truncated or holepunched since swap was confirmed. | 
 | 			 * shmem_undo_range() will have done some of the | 
 | 			 * unaccounting, now delete_from_swap_cache() will do | 
 | 			 * the rest. | 
 | 			 * Reset swap.val? No, leave it so "failed" goes back to | 
 | 			 * "repeat": reading a hole and writing should succeed. | 
 | 			 */ | 
 | 			if (error) { | 
 | 				mem_cgroup_cancel_charge(page, memcg, false); | 
 | 				delete_from_swap_cache(page); | 
 | 			} | 
 | 		} | 
 | 		if (error) | 
 | 			goto failed; | 
 |  | 
 | 		mem_cgroup_commit_charge(page, memcg, true, false); | 
 |  | 
 | 		spin_lock_irq(&info->lock); | 
 | 		info->swapped--; | 
 | 		shmem_recalc_inode(inode); | 
 | 		spin_unlock_irq(&info->lock); | 
 |  | 
 | 		if (sgp == SGP_WRITE) | 
 | 			mark_page_accessed(page); | 
 |  | 
 | 		delete_from_swap_cache(page); | 
 | 		set_page_dirty(page); | 
 | 		swap_free(swap); | 
 |  | 
 | 	} else { | 
 | 		if (vma && userfaultfd_missing(vma)) { | 
 | 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* shmem_symlink() */ | 
 | 		if (mapping->a_ops != &shmem_aops) | 
 | 			goto alloc_nohuge; | 
 | 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) | 
 | 			goto alloc_nohuge; | 
 | 		if (shmem_huge == SHMEM_HUGE_FORCE) | 
 | 			goto alloc_huge; | 
 | 		switch (sbinfo->huge) { | 
 | 			loff_t i_size; | 
 | 			pgoff_t off; | 
 | 		case SHMEM_HUGE_NEVER: | 
 | 			goto alloc_nohuge; | 
 | 		case SHMEM_HUGE_WITHIN_SIZE: | 
 | 			off = round_up(index, HPAGE_PMD_NR); | 
 | 			i_size = round_up(i_size_read(inode), PAGE_SIZE); | 
 | 			if (i_size >= HPAGE_PMD_SIZE && | 
 | 					i_size >> PAGE_SHIFT >= off) | 
 | 				goto alloc_huge; | 
 | 			/* fallthrough */ | 
 | 		case SHMEM_HUGE_ADVISE: | 
 | 			if (sgp_huge == SGP_HUGE) | 
 | 				goto alloc_huge; | 
 | 			/* TODO: implement fadvise() hints */ | 
 | 			goto alloc_nohuge; | 
 | 		} | 
 |  | 
 | alloc_huge: | 
 | 		page = shmem_alloc_and_acct_page(gfp, info, sbinfo, | 
 | 				index, true); | 
 | 		if (IS_ERR(page)) { | 
 | alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo, | 
 | 					index, false); | 
 | 		} | 
 | 		if (IS_ERR(page)) { | 
 | 			int retry = 5; | 
 | 			error = PTR_ERR(page); | 
 | 			page = NULL; | 
 | 			if (error != -ENOSPC) | 
 | 				goto failed; | 
 | 			/* | 
 | 			 * Try to reclaim some spece by splitting a huge page | 
 | 			 * beyond i_size on the filesystem. | 
 | 			 */ | 
 | 			while (retry--) { | 
 | 				int ret; | 
 | 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); | 
 | 				if (ret == SHRINK_STOP) | 
 | 					break; | 
 | 				if (ret) | 
 | 					goto alloc_nohuge; | 
 | 			} | 
 | 			goto failed; | 
 | 		} | 
 |  | 
 | 		if (PageTransHuge(page)) | 
 | 			hindex = round_down(index, HPAGE_PMD_NR); | 
 | 		else | 
 | 			hindex = index; | 
 |  | 
 | 		if (sgp == SGP_WRITE) | 
 | 			__SetPageReferenced(page); | 
 |  | 
 | 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, | 
 | 				PageTransHuge(page)); | 
 | 		if (error) | 
 | 			goto unacct; | 
 | 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, | 
 | 				compound_order(page)); | 
 | 		if (!error) { | 
 | 			error = shmem_add_to_page_cache(page, mapping, hindex, | 
 | 							NULL); | 
 | 			radix_tree_preload_end(); | 
 | 		} | 
 | 		if (error) { | 
 | 			mem_cgroup_cancel_charge(page, memcg, | 
 | 					PageTransHuge(page)); | 
 | 			goto unacct; | 
 | 		} | 
 | 		mem_cgroup_commit_charge(page, memcg, false, | 
 | 				PageTransHuge(page)); | 
 | 		lru_cache_add_anon(page); | 
 |  | 
 | 		spin_lock_irq(&info->lock); | 
 | 		info->alloced += 1 << compound_order(page); | 
 | 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); | 
 | 		shmem_recalc_inode(inode); | 
 | 		spin_unlock_irq(&info->lock); | 
 | 		alloced = true; | 
 |  | 
 | 		if (PageTransHuge(page) && | 
 | 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < | 
 | 				hindex + HPAGE_PMD_NR - 1) { | 
 | 			/* | 
 | 			 * Part of the huge page is beyond i_size: subject | 
 | 			 * to shrink under memory pressure. | 
 | 			 */ | 
 | 			spin_lock(&sbinfo->shrinklist_lock); | 
 | 			if (list_empty(&info->shrinklist)) { | 
 | 				list_add_tail(&info->shrinklist, | 
 | 						&sbinfo->shrinklist); | 
 | 				sbinfo->shrinklist_len++; | 
 | 			} | 
 | 			spin_unlock(&sbinfo->shrinklist_lock); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. | 
 | 		 */ | 
 | 		if (sgp == SGP_FALLOC) | 
 | 			sgp = SGP_WRITE; | 
 | clear: | 
 | 		/* | 
 | 		 * Let SGP_WRITE caller clear ends if write does not fill page; | 
 | 		 * but SGP_FALLOC on a page fallocated earlier must initialize | 
 | 		 * it now, lest undo on failure cancel our earlier guarantee. | 
 | 		 */ | 
 | 		if (sgp != SGP_WRITE && !PageUptodate(page)) { | 
 | 			struct page *head = compound_head(page); | 
 | 			int i; | 
 |  | 
 | 			for (i = 0; i < (1 << compound_order(head)); i++) { | 
 | 				clear_highpage(head + i); | 
 | 				flush_dcache_page(head + i); | 
 | 			} | 
 | 			SetPageUptodate(head); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Perhaps the file has been truncated since we checked */ | 
 | 	if (sgp <= SGP_CACHE && | 
 | 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { | 
 | 		if (alloced) { | 
 | 			ClearPageDirty(page); | 
 | 			delete_from_page_cache(page); | 
 | 			spin_lock_irq(&info->lock); | 
 | 			shmem_recalc_inode(inode); | 
 | 			spin_unlock_irq(&info->lock); | 
 | 		} | 
 | 		error = -EINVAL; | 
 | 		goto unlock; | 
 | 	} | 
 | 	*pagep = page + index - hindex; | 
 | 	return 0; | 
 |  | 
 | 	/* | 
 | 	 * Error recovery. | 
 | 	 */ | 
 | unacct: | 
 | 	if (sbinfo->max_blocks) | 
 | 		percpu_counter_sub(&sbinfo->used_blocks, | 
 | 				1 << compound_order(page)); | 
 | 	shmem_unacct_blocks(info->flags, 1 << compound_order(page)); | 
 |  | 
 | 	if (PageTransHuge(page)) { | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 		goto alloc_nohuge; | 
 | 	} | 
 | failed: | 
 | 	if (swap.val && !shmem_confirm_swap(mapping, index, swap)) | 
 | 		error = -EEXIST; | 
 | unlock: | 
 | 	if (page) { | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 	} | 
 | 	if (error == -ENOSPC && !once++) { | 
 | 		spin_lock_irq(&info->lock); | 
 | 		shmem_recalc_inode(inode); | 
 | 		spin_unlock_irq(&info->lock); | 
 | 		goto repeat; | 
 | 	} | 
 | 	if (error == -EEXIST)	/* from above or from radix_tree_insert */ | 
 | 		goto repeat; | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * This is like autoremove_wake_function, but it removes the wait queue | 
 |  * entry unconditionally - even if something else had already woken the | 
 |  * target. | 
 |  */ | 
 | static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) | 
 | { | 
 | 	int ret = default_wake_function(wait, mode, sync, key); | 
 | 	list_del_init(&wait->task_list); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int shmem_fault(struct vm_fault *vmf) | 
 | { | 
 | 	struct vm_area_struct *vma = vmf->vma; | 
 | 	struct inode *inode = file_inode(vma->vm_file); | 
 | 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping); | 
 | 	enum sgp_type sgp; | 
 | 	int error; | 
 | 	int ret = VM_FAULT_LOCKED; | 
 |  | 
 | 	/* | 
 | 	 * Trinity finds that probing a hole which tmpfs is punching can | 
 | 	 * prevent the hole-punch from ever completing: which in turn | 
 | 	 * locks writers out with its hold on i_mutex.  So refrain from | 
 | 	 * faulting pages into the hole while it's being punched.  Although | 
 | 	 * shmem_undo_range() does remove the additions, it may be unable to | 
 | 	 * keep up, as each new page needs its own unmap_mapping_range() call, | 
 | 	 * and the i_mmap tree grows ever slower to scan if new vmas are added. | 
 | 	 * | 
 | 	 * It does not matter if we sometimes reach this check just before the | 
 | 	 * hole-punch begins, so that one fault then races with the punch: | 
 | 	 * we just need to make racing faults a rare case. | 
 | 	 * | 
 | 	 * The implementation below would be much simpler if we just used a | 
 | 	 * standard mutex or completion: but we cannot take i_mutex in fault, | 
 | 	 * and bloating every shmem inode for this unlikely case would be sad. | 
 | 	 */ | 
 | 	if (unlikely(inode->i_private)) { | 
 | 		struct shmem_falloc *shmem_falloc; | 
 |  | 
 | 		spin_lock(&inode->i_lock); | 
 | 		shmem_falloc = inode->i_private; | 
 | 		if (shmem_falloc && | 
 | 		    shmem_falloc->waitq && | 
 | 		    vmf->pgoff >= shmem_falloc->start && | 
 | 		    vmf->pgoff < shmem_falloc->next) { | 
 | 			wait_queue_head_t *shmem_falloc_waitq; | 
 | 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); | 
 |  | 
 | 			ret = VM_FAULT_NOPAGE; | 
 | 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && | 
 | 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { | 
 | 				/* It's polite to up mmap_sem if we can */ | 
 | 				up_read(&vma->vm_mm->mmap_sem); | 
 | 				ret = VM_FAULT_RETRY; | 
 | 			} | 
 |  | 
 | 			shmem_falloc_waitq = shmem_falloc->waitq; | 
 | 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, | 
 | 					TASK_UNINTERRUPTIBLE); | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			schedule(); | 
 |  | 
 | 			/* | 
 | 			 * shmem_falloc_waitq points into the shmem_fallocate() | 
 | 			 * stack of the hole-punching task: shmem_falloc_waitq | 
 | 			 * is usually invalid by the time we reach here, but | 
 | 			 * finish_wait() does not dereference it in that case; | 
 | 			 * though i_lock needed lest racing with wake_up_all(). | 
 | 			 */ | 
 | 			spin_lock(&inode->i_lock); | 
 | 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait); | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			return ret; | 
 | 		} | 
 | 		spin_unlock(&inode->i_lock); | 
 | 	} | 
 |  | 
 | 	sgp = SGP_CACHE; | 
 | 	if (vma->vm_flags & VM_HUGEPAGE) | 
 | 		sgp = SGP_HUGE; | 
 | 	else if (vma->vm_flags & VM_NOHUGEPAGE) | 
 | 		sgp = SGP_NOHUGE; | 
 |  | 
 | 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, | 
 | 				  gfp, vma, vmf, &ret); | 
 | 	if (error) | 
 | 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); | 
 | 	return ret; | 
 | } | 
 |  | 
 | unsigned long shmem_get_unmapped_area(struct file *file, | 
 | 				      unsigned long uaddr, unsigned long len, | 
 | 				      unsigned long pgoff, unsigned long flags) | 
 | { | 
 | 	unsigned long (*get_area)(struct file *, | 
 | 		unsigned long, unsigned long, unsigned long, unsigned long); | 
 | 	unsigned long addr; | 
 | 	unsigned long offset; | 
 | 	unsigned long inflated_len; | 
 | 	unsigned long inflated_addr; | 
 | 	unsigned long inflated_offset; | 
 |  | 
 | 	if (len > TASK_SIZE) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	get_area = current->mm->get_unmapped_area; | 
 | 	addr = get_area(file, uaddr, len, pgoff, flags); | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) | 
 | 		return addr; | 
 | 	if (IS_ERR_VALUE(addr)) | 
 | 		return addr; | 
 | 	if (addr & ~PAGE_MASK) | 
 | 		return addr; | 
 | 	if (addr > TASK_SIZE - len) | 
 | 		return addr; | 
 |  | 
 | 	if (shmem_huge == SHMEM_HUGE_DENY) | 
 | 		return addr; | 
 | 	if (len < HPAGE_PMD_SIZE) | 
 | 		return addr; | 
 | 	if (flags & MAP_FIXED) | 
 | 		return addr; | 
 | 	/* | 
 | 	 * Our priority is to support MAP_SHARED mapped hugely; | 
 | 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed. | 
 | 	 * But if caller specified an address hint, respect that as before. | 
 | 	 */ | 
 | 	if (uaddr) | 
 | 		return addr; | 
 |  | 
 | 	if (shmem_huge != SHMEM_HUGE_FORCE) { | 
 | 		struct super_block *sb; | 
 |  | 
 | 		if (file) { | 
 | 			VM_BUG_ON(file->f_op != &shmem_file_operations); | 
 | 			sb = file_inode(file)->i_sb; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Called directly from mm/mmap.c, or drivers/char/mem.c | 
 | 			 * for "/dev/zero", to create a shared anonymous object. | 
 | 			 */ | 
 | 			if (IS_ERR(shm_mnt)) | 
 | 				return addr; | 
 | 			sb = shm_mnt->mnt_sb; | 
 | 		} | 
 | 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) | 
 | 			return addr; | 
 | 	} | 
 |  | 
 | 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); | 
 | 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE) | 
 | 		return addr; | 
 | 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset) | 
 | 		return addr; | 
 |  | 
 | 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; | 
 | 	if (inflated_len > TASK_SIZE) | 
 | 		return addr; | 
 | 	if (inflated_len < len) | 
 | 		return addr; | 
 |  | 
 | 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); | 
 | 	if (IS_ERR_VALUE(inflated_addr)) | 
 | 		return addr; | 
 | 	if (inflated_addr & ~PAGE_MASK) | 
 | 		return addr; | 
 |  | 
 | 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); | 
 | 	inflated_addr += offset - inflated_offset; | 
 | 	if (inflated_offset > offset) | 
 | 		inflated_addr += HPAGE_PMD_SIZE; | 
 |  | 
 | 	if (inflated_addr > TASK_SIZE - len) | 
 | 		return addr; | 
 | 	return inflated_addr; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) | 
 | { | 
 | 	struct inode *inode = file_inode(vma->vm_file); | 
 | 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); | 
 | } | 
 |  | 
 | static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, | 
 | 					  unsigned long addr) | 
 | { | 
 | 	struct inode *inode = file_inode(vma->vm_file); | 
 | 	pgoff_t index; | 
 |  | 
 | 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; | 
 | 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); | 
 | } | 
 | #endif | 
 |  | 
 | int shmem_lock(struct file *file, int lock, struct user_struct *user) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	int retval = -ENOMEM; | 
 |  | 
 | 	spin_lock_irq(&info->lock); | 
 | 	if (lock && !(info->flags & VM_LOCKED)) { | 
 | 		if (!user_shm_lock(inode->i_size, user)) | 
 | 			goto out_nomem; | 
 | 		info->flags |= VM_LOCKED; | 
 | 		mapping_set_unevictable(file->f_mapping); | 
 | 	} | 
 | 	if (!lock && (info->flags & VM_LOCKED) && user) { | 
 | 		user_shm_unlock(inode->i_size, user); | 
 | 		info->flags &= ~VM_LOCKED; | 
 | 		mapping_clear_unevictable(file->f_mapping); | 
 | 	} | 
 | 	retval = 0; | 
 |  | 
 | out_nomem: | 
 | 	spin_unlock_irq(&info->lock); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int shmem_mmap(struct file *file, struct vm_area_struct *vma) | 
 | { | 
 | 	file_accessed(file); | 
 | 	vma->vm_ops = &shmem_vm_ops; | 
 | 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && | 
 | 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < | 
 | 			(vma->vm_end & HPAGE_PMD_MASK)) { | 
 | 		khugepaged_enter(vma, vma->vm_flags); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, | 
 | 				     umode_t mode, dev_t dev, unsigned long flags) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct shmem_inode_info *info; | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
 |  | 
 | 	if (shmem_reserve_inode(sb)) | 
 | 		return NULL; | 
 |  | 
 | 	inode = new_inode(sb); | 
 | 	if (inode) { | 
 | 		inode->i_ino = get_next_ino(); | 
 | 		inode_init_owner(inode, dir, mode); | 
 | 		inode->i_blocks = 0; | 
 | 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); | 
 | 		inode->i_generation = get_seconds(); | 
 | 		info = SHMEM_I(inode); | 
 | 		memset(info, 0, (char *)inode - (char *)info); | 
 | 		spin_lock_init(&info->lock); | 
 | 		info->seals = F_SEAL_SEAL; | 
 | 		info->flags = flags & VM_NORESERVE; | 
 | 		INIT_LIST_HEAD(&info->shrinklist); | 
 | 		INIT_LIST_HEAD(&info->swaplist); | 
 | 		simple_xattrs_init(&info->xattrs); | 
 | 		cache_no_acl(inode); | 
 |  | 
 | 		switch (mode & S_IFMT) { | 
 | 		default: | 
 | 			inode->i_op = &shmem_special_inode_operations; | 
 | 			init_special_inode(inode, mode, dev); | 
 | 			break; | 
 | 		case S_IFREG: | 
 | 			inode->i_mapping->a_ops = &shmem_aops; | 
 | 			inode->i_op = &shmem_inode_operations; | 
 | 			inode->i_fop = &shmem_file_operations; | 
 | 			mpol_shared_policy_init(&info->policy, | 
 | 						 shmem_get_sbmpol(sbinfo)); | 
 | 			break; | 
 | 		case S_IFDIR: | 
 | 			inc_nlink(inode); | 
 | 			/* Some things misbehave if size == 0 on a directory */ | 
 | 			inode->i_size = 2 * BOGO_DIRENT_SIZE; | 
 | 			inode->i_op = &shmem_dir_inode_operations; | 
 | 			inode->i_fop = &simple_dir_operations; | 
 | 			break; | 
 | 		case S_IFLNK: | 
 | 			/* | 
 | 			 * Must not load anything in the rbtree, | 
 | 			 * mpol_free_shared_policy will not be called. | 
 | 			 */ | 
 | 			mpol_shared_policy_init(&info->policy, NULL); | 
 | 			break; | 
 | 		} | 
 | 	} else | 
 | 		shmem_free_inode(sb); | 
 | 	return inode; | 
 | } | 
 |  | 
 | bool shmem_mapping(struct address_space *mapping) | 
 | { | 
 | 	return mapping->a_ops == &shmem_aops; | 
 | } | 
 |  | 
 | int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, | 
 | 			   pmd_t *dst_pmd, | 
 | 			   struct vm_area_struct *dst_vma, | 
 | 			   unsigned long dst_addr, | 
 | 			   unsigned long src_addr, | 
 | 			   struct page **pagep) | 
 | { | 
 | 	struct inode *inode = file_inode(dst_vma->vm_file); | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	gfp_t gfp = mapping_gfp_mask(mapping); | 
 | 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); | 
 | 	struct mem_cgroup *memcg; | 
 | 	spinlock_t *ptl; | 
 | 	void *page_kaddr; | 
 | 	struct page *page; | 
 | 	pte_t _dst_pte, *dst_pte; | 
 | 	int ret; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	if (shmem_acct_block(info->flags, 1)) | 
 | 		goto out; | 
 | 	if (sbinfo->max_blocks) { | 
 | 		if (percpu_counter_compare(&sbinfo->used_blocks, | 
 | 					   sbinfo->max_blocks) >= 0) | 
 | 			goto out_unacct_blocks; | 
 | 		percpu_counter_inc(&sbinfo->used_blocks); | 
 | 	} | 
 |  | 
 | 	if (!*pagep) { | 
 | 		page = shmem_alloc_page(gfp, info, pgoff); | 
 | 		if (!page) | 
 | 			goto out_dec_used_blocks; | 
 |  | 
 | 		page_kaddr = kmap_atomic(page); | 
 | 		ret = copy_from_user(page_kaddr, (const void __user *)src_addr, | 
 | 				     PAGE_SIZE); | 
 | 		kunmap_atomic(page_kaddr); | 
 |  | 
 | 		/* fallback to copy_from_user outside mmap_sem */ | 
 | 		if (unlikely(ret)) { | 
 | 			*pagep = page; | 
 | 			if (sbinfo->max_blocks) | 
 | 				percpu_counter_add(&sbinfo->used_blocks, -1); | 
 | 			shmem_unacct_blocks(info->flags, 1); | 
 | 			/* don't free the page */ | 
 | 			return -EFAULT; | 
 | 		} | 
 | 	} else { | 
 | 		page = *pagep; | 
 | 		*pagep = NULL; | 
 | 	} | 
 |  | 
 | 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); | 
 | 	__SetPageLocked(page); | 
 | 	__SetPageSwapBacked(page); | 
 | 	__SetPageUptodate(page); | 
 |  | 
 | 	ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false); | 
 | 	if (ret) | 
 | 		goto out_release; | 
 |  | 
 | 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); | 
 | 	if (!ret) { | 
 | 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL); | 
 | 		radix_tree_preload_end(); | 
 | 	} | 
 | 	if (ret) | 
 | 		goto out_release_uncharge; | 
 |  | 
 | 	mem_cgroup_commit_charge(page, memcg, false, false); | 
 |  | 
 | 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot); | 
 | 	if (dst_vma->vm_flags & VM_WRITE) | 
 | 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); | 
 |  | 
 | 	ret = -EEXIST; | 
 | 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); | 
 | 	if (!pte_none(*dst_pte)) | 
 | 		goto out_release_uncharge_unlock; | 
 |  | 
 | 	lru_cache_add_anon(page); | 
 |  | 
 | 	spin_lock(&info->lock); | 
 | 	info->alloced++; | 
 | 	inode->i_blocks += BLOCKS_PER_PAGE; | 
 | 	shmem_recalc_inode(inode); | 
 | 	spin_unlock(&info->lock); | 
 |  | 
 | 	inc_mm_counter(dst_mm, mm_counter_file(page)); | 
 | 	page_add_file_rmap(page, false); | 
 | 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); | 
 |  | 
 | 	/* No need to invalidate - it was non-present before */ | 
 | 	update_mmu_cache(dst_vma, dst_addr, dst_pte); | 
 | 	unlock_page(page); | 
 | 	pte_unmap_unlock(dst_pte, ptl); | 
 | 	ret = 0; | 
 | out: | 
 | 	return ret; | 
 | out_release_uncharge_unlock: | 
 | 	pte_unmap_unlock(dst_pte, ptl); | 
 | out_release_uncharge: | 
 | 	mem_cgroup_cancel_charge(page, memcg, false); | 
 | out_release: | 
 | 	unlock_page(page); | 
 | 	put_page(page); | 
 | out_dec_used_blocks: | 
 | 	if (sbinfo->max_blocks) | 
 | 		percpu_counter_add(&sbinfo->used_blocks, -1); | 
 | out_unacct_blocks: | 
 | 	shmem_unacct_blocks(info->flags, 1); | 
 | 	goto out; | 
 | } | 
 |  | 
 | #ifdef CONFIG_TMPFS | 
 | static const struct inode_operations shmem_symlink_inode_operations; | 
 | static const struct inode_operations shmem_short_symlink_operations; | 
 |  | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | static int shmem_initxattrs(struct inode *, const struct xattr *, void *); | 
 | #else | 
 | #define shmem_initxattrs NULL | 
 | #endif | 
 |  | 
 | static int | 
 | shmem_write_begin(struct file *file, struct address_space *mapping, | 
 | 			loff_t pos, unsigned len, unsigned flags, | 
 | 			struct page **pagep, void **fsdata) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	pgoff_t index = pos >> PAGE_SHIFT; | 
 |  | 
 | 	/* i_mutex is held by caller */ | 
 | 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) { | 
 | 		if (info->seals & F_SEAL_WRITE) | 
 | 			return -EPERM; | 
 | 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) | 
 | 			return -EPERM; | 
 | 	} | 
 |  | 
 | 	return shmem_getpage(inode, index, pagep, SGP_WRITE); | 
 | } | 
 |  | 
 | static int | 
 | shmem_write_end(struct file *file, struct address_space *mapping, | 
 | 			loff_t pos, unsigned len, unsigned copied, | 
 | 			struct page *page, void *fsdata) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 |  | 
 | 	if (pos + copied > inode->i_size) | 
 | 		i_size_write(inode, pos + copied); | 
 |  | 
 | 	if (!PageUptodate(page)) { | 
 | 		struct page *head = compound_head(page); | 
 | 		if (PageTransCompound(page)) { | 
 | 			int i; | 
 |  | 
 | 			for (i = 0; i < HPAGE_PMD_NR; i++) { | 
 | 				if (head + i == page) | 
 | 					continue; | 
 | 				clear_highpage(head + i); | 
 | 				flush_dcache_page(head + i); | 
 | 			} | 
 | 		} | 
 | 		if (copied < PAGE_SIZE) { | 
 | 			unsigned from = pos & (PAGE_SIZE - 1); | 
 | 			zero_user_segments(page, 0, from, | 
 | 					from + copied, PAGE_SIZE); | 
 | 		} | 
 | 		SetPageUptodate(head); | 
 | 	} | 
 | 	set_page_dirty(page); | 
 | 	unlock_page(page); | 
 | 	put_page(page); | 
 |  | 
 | 	return copied; | 
 | } | 
 |  | 
 | static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	pgoff_t index; | 
 | 	unsigned long offset; | 
 | 	enum sgp_type sgp = SGP_READ; | 
 | 	int error = 0; | 
 | 	ssize_t retval = 0; | 
 | 	loff_t *ppos = &iocb->ki_pos; | 
 |  | 
 | 	/* | 
 | 	 * Might this read be for a stacking filesystem?  Then when reading | 
 | 	 * holes of a sparse file, we actually need to allocate those pages, | 
 | 	 * and even mark them dirty, so it cannot exceed the max_blocks limit. | 
 | 	 */ | 
 | 	if (!iter_is_iovec(to)) | 
 | 		sgp = SGP_CACHE; | 
 |  | 
 | 	index = *ppos >> PAGE_SHIFT; | 
 | 	offset = *ppos & ~PAGE_MASK; | 
 |  | 
 | 	for (;;) { | 
 | 		struct page *page = NULL; | 
 | 		pgoff_t end_index; | 
 | 		unsigned long nr, ret; | 
 | 		loff_t i_size = i_size_read(inode); | 
 |  | 
 | 		end_index = i_size >> PAGE_SHIFT; | 
 | 		if (index > end_index) | 
 | 			break; | 
 | 		if (index == end_index) { | 
 | 			nr = i_size & ~PAGE_MASK; | 
 | 			if (nr <= offset) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		error = shmem_getpage(inode, index, &page, sgp); | 
 | 		if (error) { | 
 | 			if (error == -EINVAL) | 
 | 				error = 0; | 
 | 			break; | 
 | 		} | 
 | 		if (page) { | 
 | 			if (sgp == SGP_CACHE) | 
 | 				set_page_dirty(page); | 
 | 			unlock_page(page); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We must evaluate after, since reads (unlike writes) | 
 | 		 * are called without i_mutex protection against truncate | 
 | 		 */ | 
 | 		nr = PAGE_SIZE; | 
 | 		i_size = i_size_read(inode); | 
 | 		end_index = i_size >> PAGE_SHIFT; | 
 | 		if (index == end_index) { | 
 | 			nr = i_size & ~PAGE_MASK; | 
 | 			if (nr <= offset) { | 
 | 				if (page) | 
 | 					put_page(page); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		nr -= offset; | 
 |  | 
 | 		if (page) { | 
 | 			/* | 
 | 			 * If users can be writing to this page using arbitrary | 
 | 			 * virtual addresses, take care about potential aliasing | 
 | 			 * before reading the page on the kernel side. | 
 | 			 */ | 
 | 			if (mapping_writably_mapped(mapping)) | 
 | 				flush_dcache_page(page); | 
 | 			/* | 
 | 			 * Mark the page accessed if we read the beginning. | 
 | 			 */ | 
 | 			if (!offset) | 
 | 				mark_page_accessed(page); | 
 | 		} else { | 
 | 			page = ZERO_PAGE(0); | 
 | 			get_page(page); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Ok, we have the page, and it's up-to-date, so | 
 | 		 * now we can copy it to user space... | 
 | 		 */ | 
 | 		ret = copy_page_to_iter(page, offset, nr, to); | 
 | 		retval += ret; | 
 | 		offset += ret; | 
 | 		index += offset >> PAGE_SHIFT; | 
 | 		offset &= ~PAGE_MASK; | 
 |  | 
 | 		put_page(page); | 
 | 		if (!iov_iter_count(to)) | 
 | 			break; | 
 | 		if (ret < nr) { | 
 | 			error = -EFAULT; | 
 | 			break; | 
 | 		} | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset; | 
 | 	file_accessed(file); | 
 | 	return retval ? retval : error; | 
 | } | 
 |  | 
 | /* | 
 |  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. | 
 |  */ | 
 | static pgoff_t shmem_seek_hole_data(struct address_space *mapping, | 
 | 				    pgoff_t index, pgoff_t end, int whence) | 
 | { | 
 | 	struct page *page; | 
 | 	struct pagevec pvec; | 
 | 	pgoff_t indices[PAGEVEC_SIZE]; | 
 | 	bool done = false; | 
 | 	int i; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	pvec.nr = 1;		/* start small: we may be there already */ | 
 | 	while (!done) { | 
 | 		pvec.nr = find_get_entries(mapping, index, | 
 | 					pvec.nr, pvec.pages, indices); | 
 | 		if (!pvec.nr) { | 
 | 			if (whence == SEEK_DATA) | 
 | 				index = end; | 
 | 			break; | 
 | 		} | 
 | 		for (i = 0; i < pvec.nr; i++, index++) { | 
 | 			if (index < indices[i]) { | 
 | 				if (whence == SEEK_HOLE) { | 
 | 					done = true; | 
 | 					break; | 
 | 				} | 
 | 				index = indices[i]; | 
 | 			} | 
 | 			page = pvec.pages[i]; | 
 | 			if (page && !radix_tree_exceptional_entry(page)) { | 
 | 				if (!PageUptodate(page)) | 
 | 					page = NULL; | 
 | 			} | 
 | 			if (index >= end || | 
 | 			    (page && whence == SEEK_DATA) || | 
 | 			    (!page && whence == SEEK_HOLE)) { | 
 | 				done = true; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		pagevec_remove_exceptionals(&pvec); | 
 | 		pagevec_release(&pvec); | 
 | 		pvec.nr = PAGEVEC_SIZE; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return index; | 
 | } | 
 |  | 
 | static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) | 
 | { | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	pgoff_t start, end; | 
 | 	loff_t new_offset; | 
 |  | 
 | 	if (whence != SEEK_DATA && whence != SEEK_HOLE) | 
 | 		return generic_file_llseek_size(file, offset, whence, | 
 | 					MAX_LFS_FILESIZE, i_size_read(inode)); | 
 | 	inode_lock(inode); | 
 | 	/* We're holding i_mutex so we can access i_size directly */ | 
 |  | 
 | 	if (offset < 0) | 
 | 		offset = -EINVAL; | 
 | 	else if (offset >= inode->i_size) | 
 | 		offset = -ENXIO; | 
 | 	else { | 
 | 		start = offset >> PAGE_SHIFT; | 
 | 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 		new_offset = shmem_seek_hole_data(mapping, start, end, whence); | 
 | 		new_offset <<= PAGE_SHIFT; | 
 | 		if (new_offset > offset) { | 
 | 			if (new_offset < inode->i_size) | 
 | 				offset = new_offset; | 
 | 			else if (whence == SEEK_DATA) | 
 | 				offset = -ENXIO; | 
 | 			else | 
 | 				offset = inode->i_size; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (offset >= 0) | 
 | 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); | 
 | 	inode_unlock(inode); | 
 | 	return offset; | 
 | } | 
 |  | 
 | /* | 
 |  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, | 
 |  * so reuse a tag which we firmly believe is never set or cleared on shmem. | 
 |  */ | 
 | #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE | 
 | #define LAST_SCAN               4       /* about 150ms max */ | 
 |  | 
 | static void shmem_tag_pins(struct address_space *mapping) | 
 | { | 
 | 	struct radix_tree_iter iter; | 
 | 	void **slot; | 
 | 	pgoff_t start; | 
 | 	struct page *page; | 
 |  | 
 | 	lru_add_drain(); | 
 | 	start = 0; | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { | 
 | 		page = radix_tree_deref_slot(slot); | 
 | 		if (!page || radix_tree_exception(page)) { | 
 | 			if (radix_tree_deref_retry(page)) { | 
 | 				slot = radix_tree_iter_retry(&iter); | 
 | 				continue; | 
 | 			} | 
 | 		} else if (page_count(page) - page_mapcount(page) > 1) { | 
 | 			spin_lock_irq(&mapping->tree_lock); | 
 | 			radix_tree_tag_set(&mapping->page_tree, iter.index, | 
 | 					   SHMEM_TAG_PINNED); | 
 | 			spin_unlock_irq(&mapping->tree_lock); | 
 | 		} | 
 |  | 
 | 		if (need_resched()) { | 
 | 			slot = radix_tree_iter_resume(slot, &iter); | 
 | 			cond_resched_rcu(); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * Setting SEAL_WRITE requires us to verify there's no pending writer. However, | 
 |  * via get_user_pages(), drivers might have some pending I/O without any active | 
 |  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages | 
 |  * and see whether it has an elevated ref-count. If so, we tag them and wait for | 
 |  * them to be dropped. | 
 |  * The caller must guarantee that no new user will acquire writable references | 
 |  * to those pages to avoid races. | 
 |  */ | 
 | static int shmem_wait_for_pins(struct address_space *mapping) | 
 | { | 
 | 	struct radix_tree_iter iter; | 
 | 	void **slot; | 
 | 	pgoff_t start; | 
 | 	struct page *page; | 
 | 	int error, scan; | 
 |  | 
 | 	shmem_tag_pins(mapping); | 
 |  | 
 | 	error = 0; | 
 | 	for (scan = 0; scan <= LAST_SCAN; scan++) { | 
 | 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) | 
 | 			break; | 
 |  | 
 | 		if (!scan) | 
 | 			lru_add_drain_all(); | 
 | 		else if (schedule_timeout_killable((HZ << scan) / 200)) | 
 | 			scan = LAST_SCAN; | 
 |  | 
 | 		start = 0; | 
 | 		rcu_read_lock(); | 
 | 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, | 
 | 					   start, SHMEM_TAG_PINNED) { | 
 |  | 
 | 			page = radix_tree_deref_slot(slot); | 
 | 			if (radix_tree_exception(page)) { | 
 | 				if (radix_tree_deref_retry(page)) { | 
 | 					slot = radix_tree_iter_retry(&iter); | 
 | 					continue; | 
 | 				} | 
 |  | 
 | 				page = NULL; | 
 | 			} | 
 |  | 
 | 			if (page && | 
 | 			    page_count(page) - page_mapcount(page) != 1) { | 
 | 				if (scan < LAST_SCAN) | 
 | 					goto continue_resched; | 
 |  | 
 | 				/* | 
 | 				 * On the last scan, we clean up all those tags | 
 | 				 * we inserted; but make a note that we still | 
 | 				 * found pages pinned. | 
 | 				 */ | 
 | 				error = -EBUSY; | 
 | 			} | 
 |  | 
 | 			spin_lock_irq(&mapping->tree_lock); | 
 | 			radix_tree_tag_clear(&mapping->page_tree, | 
 | 					     iter.index, SHMEM_TAG_PINNED); | 
 | 			spin_unlock_irq(&mapping->tree_lock); | 
 | continue_resched: | 
 | 			if (need_resched()) { | 
 | 				slot = radix_tree_iter_resume(slot, &iter); | 
 | 				cond_resched_rcu(); | 
 | 			} | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | #define F_ALL_SEALS (F_SEAL_SEAL | \ | 
 | 		     F_SEAL_SHRINK | \ | 
 | 		     F_SEAL_GROW | \ | 
 | 		     F_SEAL_WRITE) | 
 |  | 
 | int shmem_add_seals(struct file *file, unsigned int seals) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	int error; | 
 |  | 
 | 	/* | 
 | 	 * SEALING | 
 | 	 * Sealing allows multiple parties to share a shmem-file but restrict | 
 | 	 * access to a specific subset of file operations. Seals can only be | 
 | 	 * added, but never removed. This way, mutually untrusted parties can | 
 | 	 * share common memory regions with a well-defined policy. A malicious | 
 | 	 * peer can thus never perform unwanted operations on a shared object. | 
 | 	 * | 
 | 	 * Seals are only supported on special shmem-files and always affect | 
 | 	 * the whole underlying inode. Once a seal is set, it may prevent some | 
 | 	 * kinds of access to the file. Currently, the following seals are | 
 | 	 * defined: | 
 | 	 *   SEAL_SEAL: Prevent further seals from being set on this file | 
 | 	 *   SEAL_SHRINK: Prevent the file from shrinking | 
 | 	 *   SEAL_GROW: Prevent the file from growing | 
 | 	 *   SEAL_WRITE: Prevent write access to the file | 
 | 	 * | 
 | 	 * As we don't require any trust relationship between two parties, we | 
 | 	 * must prevent seals from being removed. Therefore, sealing a file | 
 | 	 * only adds a given set of seals to the file, it never touches | 
 | 	 * existing seals. Furthermore, the "setting seals"-operation can be | 
 | 	 * sealed itself, which basically prevents any further seal from being | 
 | 	 * added. | 
 | 	 * | 
 | 	 * Semantics of sealing are only defined on volatile files. Only | 
 | 	 * anonymous shmem files support sealing. More importantly, seals are | 
 | 	 * never written to disk. Therefore, there's no plan to support it on | 
 | 	 * other file types. | 
 | 	 */ | 
 |  | 
 | 	if (file->f_op != &shmem_file_operations) | 
 | 		return -EINVAL; | 
 | 	if (!(file->f_mode & FMODE_WRITE)) | 
 | 		return -EPERM; | 
 | 	if (seals & ~(unsigned int)F_ALL_SEALS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	inode_lock(inode); | 
 |  | 
 | 	if (info->seals & F_SEAL_SEAL) { | 
 | 		error = -EPERM; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { | 
 | 		error = mapping_deny_writable(file->f_mapping); | 
 | 		if (error) | 
 | 			goto unlock; | 
 |  | 
 | 		error = shmem_wait_for_pins(file->f_mapping); | 
 | 		if (error) { | 
 | 			mapping_allow_writable(file->f_mapping); | 
 | 			goto unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	info->seals |= seals; | 
 | 	error = 0; | 
 |  | 
 | unlock: | 
 | 	inode_unlock(inode); | 
 | 	return error; | 
 | } | 
 | EXPORT_SYMBOL_GPL(shmem_add_seals); | 
 |  | 
 | int shmem_get_seals(struct file *file) | 
 | { | 
 | 	if (file->f_op != &shmem_file_operations) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return SHMEM_I(file_inode(file))->seals; | 
 | } | 
 | EXPORT_SYMBOL_GPL(shmem_get_seals); | 
 |  | 
 | long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	long error; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case F_ADD_SEALS: | 
 | 		/* disallow upper 32bit */ | 
 | 		if (arg > UINT_MAX) | 
 | 			return -EINVAL; | 
 |  | 
 | 		error = shmem_add_seals(file, arg); | 
 | 		break; | 
 | 	case F_GET_SEALS: | 
 | 		error = shmem_get_seals(file); | 
 | 		break; | 
 | 	default: | 
 | 		error = -EINVAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static long shmem_fallocate(struct file *file, int mode, loff_t offset, | 
 | 							 loff_t len) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	struct shmem_falloc shmem_falloc; | 
 | 	pgoff_t start, index, end; | 
 | 	int error; | 
 |  | 
 | 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	inode_lock(inode); | 
 |  | 
 | 	if (mode & FALLOC_FL_PUNCH_HOLE) { | 
 | 		struct address_space *mapping = file->f_mapping; | 
 | 		loff_t unmap_start = round_up(offset, PAGE_SIZE); | 
 | 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; | 
 | 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); | 
 |  | 
 | 		/* protected by i_mutex */ | 
 | 		if (info->seals & F_SEAL_WRITE) { | 
 | 			error = -EPERM; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		shmem_falloc.waitq = &shmem_falloc_waitq; | 
 | 		shmem_falloc.start = unmap_start >> PAGE_SHIFT; | 
 | 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; | 
 | 		spin_lock(&inode->i_lock); | 
 | 		inode->i_private = &shmem_falloc; | 
 | 		spin_unlock(&inode->i_lock); | 
 |  | 
 | 		if ((u64)unmap_end > (u64)unmap_start) | 
 | 			unmap_mapping_range(mapping, unmap_start, | 
 | 					    1 + unmap_end - unmap_start, 0); | 
 | 		shmem_truncate_range(inode, offset, offset + len - 1); | 
 | 		/* No need to unmap again: hole-punching leaves COWed pages */ | 
 |  | 
 | 		spin_lock(&inode->i_lock); | 
 | 		inode->i_private = NULL; | 
 | 		wake_up_all(&shmem_falloc_waitq); | 
 | 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list)); | 
 | 		spin_unlock(&inode->i_lock); | 
 | 		error = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ | 
 | 	error = inode_newsize_ok(inode, offset + len); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { | 
 | 		error = -EPERM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	start = offset >> PAGE_SHIFT; | 
 | 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 	/* Try to avoid a swapstorm if len is impossible to satisfy */ | 
 | 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { | 
 | 		error = -ENOSPC; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	shmem_falloc.waitq = NULL; | 
 | 	shmem_falloc.start = start; | 
 | 	shmem_falloc.next  = start; | 
 | 	shmem_falloc.nr_falloced = 0; | 
 | 	shmem_falloc.nr_unswapped = 0; | 
 | 	spin_lock(&inode->i_lock); | 
 | 	inode->i_private = &shmem_falloc; | 
 | 	spin_unlock(&inode->i_lock); | 
 |  | 
 | 	for (index = start; index < end; index++) { | 
 | 		struct page *page; | 
 |  | 
 | 		/* | 
 | 		 * Good, the fallocate(2) manpage permits EINTR: we may have | 
 | 		 * been interrupted because we are using up too much memory. | 
 | 		 */ | 
 | 		if (signal_pending(current)) | 
 | 			error = -EINTR; | 
 | 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) | 
 | 			error = -ENOMEM; | 
 | 		else | 
 | 			error = shmem_getpage(inode, index, &page, SGP_FALLOC); | 
 | 		if (error) { | 
 | 			/* Remove the !PageUptodate pages we added */ | 
 | 			if (index > start) { | 
 | 				shmem_undo_range(inode, | 
 | 				    (loff_t)start << PAGE_SHIFT, | 
 | 				    ((loff_t)index << PAGE_SHIFT) - 1, true); | 
 | 			} | 
 | 			goto undone; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Inform shmem_writepage() how far we have reached. | 
 | 		 * No need for lock or barrier: we have the page lock. | 
 | 		 */ | 
 | 		shmem_falloc.next++; | 
 | 		if (!PageUptodate(page)) | 
 | 			shmem_falloc.nr_falloced++; | 
 |  | 
 | 		/* | 
 | 		 * If !PageUptodate, leave it that way so that freeable pages | 
 | 		 * can be recognized if we need to rollback on error later. | 
 | 		 * But set_page_dirty so that memory pressure will swap rather | 
 | 		 * than free the pages we are allocating (and SGP_CACHE pages | 
 | 		 * might still be clean: we now need to mark those dirty too). | 
 | 		 */ | 
 | 		set_page_dirty(page); | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) | 
 | 		i_size_write(inode, offset + len); | 
 | 	inode->i_ctime = current_time(inode); | 
 | undone: | 
 | 	spin_lock(&inode->i_lock); | 
 | 	inode->i_private = NULL; | 
 | 	spin_unlock(&inode->i_lock); | 
 | out: | 
 | 	inode_unlock(inode); | 
 | 	return error; | 
 | } | 
 |  | 
 | static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); | 
 |  | 
 | 	buf->f_type = TMPFS_MAGIC; | 
 | 	buf->f_bsize = PAGE_SIZE; | 
 | 	buf->f_namelen = NAME_MAX; | 
 | 	if (sbinfo->max_blocks) { | 
 | 		buf->f_blocks = sbinfo->max_blocks; | 
 | 		buf->f_bavail = | 
 | 		buf->f_bfree  = sbinfo->max_blocks - | 
 | 				percpu_counter_sum(&sbinfo->used_blocks); | 
 | 	} | 
 | 	if (sbinfo->max_inodes) { | 
 | 		buf->f_files = sbinfo->max_inodes; | 
 | 		buf->f_ffree = sbinfo->free_inodes; | 
 | 	} | 
 | 	/* else leave those fields 0 like simple_statfs */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * File creation. Allocate an inode, and we're done.. | 
 |  */ | 
 | static int | 
 | shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) | 
 | { | 
 | 	struct inode *inode; | 
 | 	int error = -ENOSPC; | 
 |  | 
 | 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); | 
 | 	if (inode) { | 
 | 		error = simple_acl_create(dir, inode); | 
 | 		if (error) | 
 | 			goto out_iput; | 
 | 		error = security_inode_init_security(inode, dir, | 
 | 						     &dentry->d_name, | 
 | 						     shmem_initxattrs, NULL); | 
 | 		if (error && error != -EOPNOTSUPP) | 
 | 			goto out_iput; | 
 |  | 
 | 		error = 0; | 
 | 		dir->i_size += BOGO_DIRENT_SIZE; | 
 | 		dir->i_ctime = dir->i_mtime = current_time(dir); | 
 | 		d_instantiate(dentry, inode); | 
 | 		dget(dentry); /* Extra count - pin the dentry in core */ | 
 | 	} | 
 | 	return error; | 
 | out_iput: | 
 | 	iput(inode); | 
 | 	return error; | 
 | } | 
 |  | 
 | static int | 
 | shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) | 
 | { | 
 | 	struct inode *inode; | 
 | 	int error = -ENOSPC; | 
 |  | 
 | 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); | 
 | 	if (inode) { | 
 | 		error = security_inode_init_security(inode, dir, | 
 | 						     NULL, | 
 | 						     shmem_initxattrs, NULL); | 
 | 		if (error && error != -EOPNOTSUPP) | 
 | 			goto out_iput; | 
 | 		error = simple_acl_create(dir, inode); | 
 | 		if (error) | 
 | 			goto out_iput; | 
 | 		d_tmpfile(dentry, inode); | 
 | 	} | 
 | 	return error; | 
 | out_iput: | 
 | 	iput(inode); | 
 | 	return error; | 
 | } | 
 |  | 
 | static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) | 
 | 		return error; | 
 | 	inc_nlink(dir); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, | 
 | 		bool excl) | 
 | { | 
 | 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Link a file.. | 
 |  */ | 
 | static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) | 
 | { | 
 | 	struct inode *inode = d_inode(old_dentry); | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * No ordinary (disk based) filesystem counts links as inodes; | 
 | 	 * but each new link needs a new dentry, pinning lowmem, and | 
 | 	 * tmpfs dentries cannot be pruned until they are unlinked. | 
 | 	 */ | 
 | 	ret = shmem_reserve_inode(inode->i_sb); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	dir->i_size += BOGO_DIRENT_SIZE; | 
 | 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); | 
 | 	inc_nlink(inode); | 
 | 	ihold(inode);	/* New dentry reference */ | 
 | 	dget(dentry);		/* Extra pinning count for the created dentry */ | 
 | 	d_instantiate(dentry, inode); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int shmem_unlink(struct inode *dir, struct dentry *dentry) | 
 | { | 
 | 	struct inode *inode = d_inode(dentry); | 
 |  | 
 | 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) | 
 | 		shmem_free_inode(inode->i_sb); | 
 |  | 
 | 	dir->i_size -= BOGO_DIRENT_SIZE; | 
 | 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); | 
 | 	drop_nlink(inode); | 
 | 	dput(dentry);	/* Undo the count from "create" - this does all the work */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int shmem_rmdir(struct inode *dir, struct dentry *dentry) | 
 | { | 
 | 	if (!simple_empty(dentry)) | 
 | 		return -ENOTEMPTY; | 
 |  | 
 | 	drop_nlink(d_inode(dentry)); | 
 | 	drop_nlink(dir); | 
 | 	return shmem_unlink(dir, dentry); | 
 | } | 
 |  | 
 | static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) | 
 | { | 
 | 	bool old_is_dir = d_is_dir(old_dentry); | 
 | 	bool new_is_dir = d_is_dir(new_dentry); | 
 |  | 
 | 	if (old_dir != new_dir && old_is_dir != new_is_dir) { | 
 | 		if (old_is_dir) { | 
 | 			drop_nlink(old_dir); | 
 | 			inc_nlink(new_dir); | 
 | 		} else { | 
 | 			drop_nlink(new_dir); | 
 | 			inc_nlink(old_dir); | 
 | 		} | 
 | 	} | 
 | 	old_dir->i_ctime = old_dir->i_mtime = | 
 | 	new_dir->i_ctime = new_dir->i_mtime = | 
 | 	d_inode(old_dentry)->i_ctime = | 
 | 	d_inode(new_dentry)->i_ctime = current_time(old_dir); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) | 
 | { | 
 | 	struct dentry *whiteout; | 
 | 	int error; | 
 |  | 
 | 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); | 
 | 	if (!whiteout) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	error = shmem_mknod(old_dir, whiteout, | 
 | 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); | 
 | 	dput(whiteout); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* | 
 | 	 * Cheat and hash the whiteout while the old dentry is still in | 
 | 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. | 
 | 	 * | 
 | 	 * d_lookup() will consistently find one of them at this point, | 
 | 	 * not sure which one, but that isn't even important. | 
 | 	 */ | 
 | 	d_rehash(whiteout); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The VFS layer already does all the dentry stuff for rename, | 
 |  * we just have to decrement the usage count for the target if | 
 |  * it exists so that the VFS layer correctly free's it when it | 
 |  * gets overwritten. | 
 |  */ | 
 | static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) | 
 | { | 
 | 	struct inode *inode = d_inode(old_dentry); | 
 | 	int they_are_dirs = S_ISDIR(inode->i_mode); | 
 |  | 
 | 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (flags & RENAME_EXCHANGE) | 
 | 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); | 
 |  | 
 | 	if (!simple_empty(new_dentry)) | 
 | 		return -ENOTEMPTY; | 
 |  | 
 | 	if (flags & RENAME_WHITEOUT) { | 
 | 		int error; | 
 |  | 
 | 		error = shmem_whiteout(old_dir, old_dentry); | 
 | 		if (error) | 
 | 			return error; | 
 | 	} | 
 |  | 
 | 	if (d_really_is_positive(new_dentry)) { | 
 | 		(void) shmem_unlink(new_dir, new_dentry); | 
 | 		if (they_are_dirs) { | 
 | 			drop_nlink(d_inode(new_dentry)); | 
 | 			drop_nlink(old_dir); | 
 | 		} | 
 | 	} else if (they_are_dirs) { | 
 | 		drop_nlink(old_dir); | 
 | 		inc_nlink(new_dir); | 
 | 	} | 
 |  | 
 | 	old_dir->i_size -= BOGO_DIRENT_SIZE; | 
 | 	new_dir->i_size += BOGO_DIRENT_SIZE; | 
 | 	old_dir->i_ctime = old_dir->i_mtime = | 
 | 	new_dir->i_ctime = new_dir->i_mtime = | 
 | 	inode->i_ctime = current_time(old_dir); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) | 
 | { | 
 | 	int error; | 
 | 	int len; | 
 | 	struct inode *inode; | 
 | 	struct page *page; | 
 | 	struct shmem_inode_info *info; | 
 |  | 
 | 	len = strlen(symname) + 1; | 
 | 	if (len > PAGE_SIZE) | 
 | 		return -ENAMETOOLONG; | 
 |  | 
 | 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); | 
 | 	if (!inode) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	error = security_inode_init_security(inode, dir, &dentry->d_name, | 
 | 					     shmem_initxattrs, NULL); | 
 | 	if (error) { | 
 | 		if (error != -EOPNOTSUPP) { | 
 | 			iput(inode); | 
 | 			return error; | 
 | 		} | 
 | 		error = 0; | 
 | 	} | 
 |  | 
 | 	info = SHMEM_I(inode); | 
 | 	inode->i_size = len-1; | 
 | 	if (len <= SHORT_SYMLINK_LEN) { | 
 | 		inode->i_link = kmemdup(symname, len, GFP_KERNEL); | 
 | 		if (!inode->i_link) { | 
 | 			iput(inode); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		inode->i_op = &shmem_short_symlink_operations; | 
 | 	} else { | 
 | 		inode_nohighmem(inode); | 
 | 		error = shmem_getpage(inode, 0, &page, SGP_WRITE); | 
 | 		if (error) { | 
 | 			iput(inode); | 
 | 			return error; | 
 | 		} | 
 | 		inode->i_mapping->a_ops = &shmem_aops; | 
 | 		inode->i_op = &shmem_symlink_inode_operations; | 
 | 		memcpy(page_address(page), symname, len); | 
 | 		SetPageUptodate(page); | 
 | 		set_page_dirty(page); | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 	} | 
 | 	dir->i_size += BOGO_DIRENT_SIZE; | 
 | 	dir->i_ctime = dir->i_mtime = current_time(dir); | 
 | 	d_instantiate(dentry, inode); | 
 | 	dget(dentry); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void shmem_put_link(void *arg) | 
 | { | 
 | 	mark_page_accessed(arg); | 
 | 	put_page(arg); | 
 | } | 
 |  | 
 | static const char *shmem_get_link(struct dentry *dentry, | 
 | 				  struct inode *inode, | 
 | 				  struct delayed_call *done) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	int error; | 
 | 	if (!dentry) { | 
 | 		page = find_get_page(inode->i_mapping, 0); | 
 | 		if (!page) | 
 | 			return ERR_PTR(-ECHILD); | 
 | 		if (!PageUptodate(page)) { | 
 | 			put_page(page); | 
 | 			return ERR_PTR(-ECHILD); | 
 | 		} | 
 | 	} else { | 
 | 		error = shmem_getpage(inode, 0, &page, SGP_READ); | 
 | 		if (error) | 
 | 			return ERR_PTR(error); | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	set_delayed_call(done, shmem_put_link, page); | 
 | 	return page_address(page); | 
 | } | 
 |  | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | /* | 
 |  * Superblocks without xattr inode operations may get some security.* xattr | 
 |  * support from the LSM "for free". As soon as we have any other xattrs | 
 |  * like ACLs, we also need to implement the security.* handlers at | 
 |  * filesystem level, though. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Callback for security_inode_init_security() for acquiring xattrs. | 
 |  */ | 
 | static int shmem_initxattrs(struct inode *inode, | 
 | 			    const struct xattr *xattr_array, | 
 | 			    void *fs_info) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	const struct xattr *xattr; | 
 | 	struct simple_xattr *new_xattr; | 
 | 	size_t len; | 
 |  | 
 | 	for (xattr = xattr_array; xattr->name != NULL; xattr++) { | 
 | 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); | 
 | 		if (!new_xattr) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		len = strlen(xattr->name) + 1; | 
 | 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, | 
 | 					  GFP_KERNEL); | 
 | 		if (!new_xattr->name) { | 
 | 			kfree(new_xattr); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, | 
 | 		       XATTR_SECURITY_PREFIX_LEN); | 
 | 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, | 
 | 		       xattr->name, len); | 
 |  | 
 | 		simple_xattr_list_add(&info->xattrs, new_xattr); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int shmem_xattr_handler_get(const struct xattr_handler *handler, | 
 | 				   struct dentry *unused, struct inode *inode, | 
 | 				   const char *name, void *buffer, size_t size) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 |  | 
 | 	name = xattr_full_name(handler, name); | 
 | 	return simple_xattr_get(&info->xattrs, name, buffer, size); | 
 | } | 
 |  | 
 | static int shmem_xattr_handler_set(const struct xattr_handler *handler, | 
 | 				   struct dentry *unused, struct inode *inode, | 
 | 				   const char *name, const void *value, | 
 | 				   size_t size, int flags) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 |  | 
 | 	name = xattr_full_name(handler, name); | 
 | 	return simple_xattr_set(&info->xattrs, name, value, size, flags); | 
 | } | 
 |  | 
 | static const struct xattr_handler shmem_security_xattr_handler = { | 
 | 	.prefix = XATTR_SECURITY_PREFIX, | 
 | 	.get = shmem_xattr_handler_get, | 
 | 	.set = shmem_xattr_handler_set, | 
 | }; | 
 |  | 
 | static const struct xattr_handler shmem_trusted_xattr_handler = { | 
 | 	.prefix = XATTR_TRUSTED_PREFIX, | 
 | 	.get = shmem_xattr_handler_get, | 
 | 	.set = shmem_xattr_handler_set, | 
 | }; | 
 |  | 
 | static const struct xattr_handler *shmem_xattr_handlers[] = { | 
 | #ifdef CONFIG_TMPFS_POSIX_ACL | 
 | 	&posix_acl_access_xattr_handler, | 
 | 	&posix_acl_default_xattr_handler, | 
 | #endif | 
 | 	&shmem_security_xattr_handler, | 
 | 	&shmem_trusted_xattr_handler, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); | 
 | 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); | 
 | } | 
 | #endif /* CONFIG_TMPFS_XATTR */ | 
 |  | 
 | static const struct inode_operations shmem_short_symlink_operations = { | 
 | 	.get_link	= simple_get_link, | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | 	.listxattr	= shmem_listxattr, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct inode_operations shmem_symlink_inode_operations = { | 
 | 	.get_link	= shmem_get_link, | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | 	.listxattr	= shmem_listxattr, | 
 | #endif | 
 | }; | 
 |  | 
 | static struct dentry *shmem_get_parent(struct dentry *child) | 
 | { | 
 | 	return ERR_PTR(-ESTALE); | 
 | } | 
 |  | 
 | static int shmem_match(struct inode *ino, void *vfh) | 
 | { | 
 | 	__u32 *fh = vfh; | 
 | 	__u64 inum = fh[2]; | 
 | 	inum = (inum << 32) | fh[1]; | 
 | 	return ino->i_ino == inum && fh[0] == ino->i_generation; | 
 | } | 
 |  | 
 | static struct dentry *shmem_fh_to_dentry(struct super_block *sb, | 
 | 		struct fid *fid, int fh_len, int fh_type) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct dentry *dentry = NULL; | 
 | 	u64 inum; | 
 |  | 
 | 	if (fh_len < 3) | 
 | 		return NULL; | 
 |  | 
 | 	inum = fid->raw[2]; | 
 | 	inum = (inum << 32) | fid->raw[1]; | 
 |  | 
 | 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), | 
 | 			shmem_match, fid->raw); | 
 | 	if (inode) { | 
 | 		dentry = d_find_alias(inode); | 
 | 		iput(inode); | 
 | 	} | 
 |  | 
 | 	return dentry; | 
 | } | 
 |  | 
 | static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, | 
 | 				struct inode *parent) | 
 | { | 
 | 	if (*len < 3) { | 
 | 		*len = 3; | 
 | 		return FILEID_INVALID; | 
 | 	} | 
 |  | 
 | 	if (inode_unhashed(inode)) { | 
 | 		/* Unfortunately insert_inode_hash is not idempotent, | 
 | 		 * so as we hash inodes here rather than at creation | 
 | 		 * time, we need a lock to ensure we only try | 
 | 		 * to do it once | 
 | 		 */ | 
 | 		static DEFINE_SPINLOCK(lock); | 
 | 		spin_lock(&lock); | 
 | 		if (inode_unhashed(inode)) | 
 | 			__insert_inode_hash(inode, | 
 | 					    inode->i_ino + inode->i_generation); | 
 | 		spin_unlock(&lock); | 
 | 	} | 
 |  | 
 | 	fh[0] = inode->i_generation; | 
 | 	fh[1] = inode->i_ino; | 
 | 	fh[2] = ((__u64)inode->i_ino) >> 32; | 
 |  | 
 | 	*len = 3; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static const struct export_operations shmem_export_ops = { | 
 | 	.get_parent     = shmem_get_parent, | 
 | 	.encode_fh      = shmem_encode_fh, | 
 | 	.fh_to_dentry	= shmem_fh_to_dentry, | 
 | }; | 
 |  | 
 | static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, | 
 | 			       bool remount) | 
 | { | 
 | 	char *this_char, *value, *rest; | 
 | 	struct mempolicy *mpol = NULL; | 
 | 	uid_t uid; | 
 | 	gid_t gid; | 
 |  | 
 | 	while (options != NULL) { | 
 | 		this_char = options; | 
 | 		for (;;) { | 
 | 			/* | 
 | 			 * NUL-terminate this option: unfortunately, | 
 | 			 * mount options form a comma-separated list, | 
 | 			 * but mpol's nodelist may also contain commas. | 
 | 			 */ | 
 | 			options = strchr(options, ','); | 
 | 			if (options == NULL) | 
 | 				break; | 
 | 			options++; | 
 | 			if (!isdigit(*options)) { | 
 | 				options[-1] = '\0'; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (!*this_char) | 
 | 			continue; | 
 | 		if ((value = strchr(this_char,'=')) != NULL) { | 
 | 			*value++ = 0; | 
 | 		} else { | 
 | 			pr_err("tmpfs: No value for mount option '%s'\n", | 
 | 			       this_char); | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		if (!strcmp(this_char,"size")) { | 
 | 			unsigned long long size; | 
 | 			size = memparse(value,&rest); | 
 | 			if (*rest == '%') { | 
 | 				size <<= PAGE_SHIFT; | 
 | 				size *= totalram_pages; | 
 | 				do_div(size, 100); | 
 | 				rest++; | 
 | 			} | 
 | 			if (*rest) | 
 | 				goto bad_val; | 
 | 			sbinfo->max_blocks = | 
 | 				DIV_ROUND_UP(size, PAGE_SIZE); | 
 | 		} else if (!strcmp(this_char,"nr_blocks")) { | 
 | 			sbinfo->max_blocks = memparse(value, &rest); | 
 | 			if (*rest) | 
 | 				goto bad_val; | 
 | 		} else if (!strcmp(this_char,"nr_inodes")) { | 
 | 			sbinfo->max_inodes = memparse(value, &rest); | 
 | 			if (*rest) | 
 | 				goto bad_val; | 
 | 		} else if (!strcmp(this_char,"mode")) { | 
 | 			if (remount) | 
 | 				continue; | 
 | 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; | 
 | 			if (*rest) | 
 | 				goto bad_val; | 
 | 		} else if (!strcmp(this_char,"uid")) { | 
 | 			if (remount) | 
 | 				continue; | 
 | 			uid = simple_strtoul(value, &rest, 0); | 
 | 			if (*rest) | 
 | 				goto bad_val; | 
 | 			sbinfo->uid = make_kuid(current_user_ns(), uid); | 
 | 			if (!uid_valid(sbinfo->uid)) | 
 | 				goto bad_val; | 
 | 		} else if (!strcmp(this_char,"gid")) { | 
 | 			if (remount) | 
 | 				continue; | 
 | 			gid = simple_strtoul(value, &rest, 0); | 
 | 			if (*rest) | 
 | 				goto bad_val; | 
 | 			sbinfo->gid = make_kgid(current_user_ns(), gid); | 
 | 			if (!gid_valid(sbinfo->gid)) | 
 | 				goto bad_val; | 
 | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE | 
 | 		} else if (!strcmp(this_char, "huge")) { | 
 | 			int huge; | 
 | 			huge = shmem_parse_huge(value); | 
 | 			if (huge < 0) | 
 | 				goto bad_val; | 
 | 			if (!has_transparent_hugepage() && | 
 | 					huge != SHMEM_HUGE_NEVER) | 
 | 				goto bad_val; | 
 | 			sbinfo->huge = huge; | 
 | #endif | 
 | #ifdef CONFIG_NUMA | 
 | 		} else if (!strcmp(this_char,"mpol")) { | 
 | 			mpol_put(mpol); | 
 | 			mpol = NULL; | 
 | 			if (mpol_parse_str(value, &mpol)) | 
 | 				goto bad_val; | 
 | #endif | 
 | 		} else { | 
 | 			pr_err("tmpfs: Bad mount option %s\n", this_char); | 
 | 			goto error; | 
 | 		} | 
 | 	} | 
 | 	sbinfo->mpol = mpol; | 
 | 	return 0; | 
 |  | 
 | bad_val: | 
 | 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", | 
 | 	       value, this_char); | 
 | error: | 
 | 	mpol_put(mpol); | 
 | 	return 1; | 
 |  | 
 | } | 
 |  | 
 | static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
 | 	struct shmem_sb_info config = *sbinfo; | 
 | 	unsigned long inodes; | 
 | 	int error = -EINVAL; | 
 |  | 
 | 	config.mpol = NULL; | 
 | 	if (shmem_parse_options(data, &config, true)) | 
 | 		return error; | 
 |  | 
 | 	spin_lock(&sbinfo->stat_lock); | 
 | 	inodes = sbinfo->max_inodes - sbinfo->free_inodes; | 
 | 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) | 
 | 		goto out; | 
 | 	if (config.max_inodes < inodes) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * Those tests disallow limited->unlimited while any are in use; | 
 | 	 * but we must separately disallow unlimited->limited, because | 
 | 	 * in that case we have no record of how much is already in use. | 
 | 	 */ | 
 | 	if (config.max_blocks && !sbinfo->max_blocks) | 
 | 		goto out; | 
 | 	if (config.max_inodes && !sbinfo->max_inodes) | 
 | 		goto out; | 
 |  | 
 | 	error = 0; | 
 | 	sbinfo->huge = config.huge; | 
 | 	sbinfo->max_blocks  = config.max_blocks; | 
 | 	sbinfo->max_inodes  = config.max_inodes; | 
 | 	sbinfo->free_inodes = config.max_inodes - inodes; | 
 |  | 
 | 	/* | 
 | 	 * Preserve previous mempolicy unless mpol remount option was specified. | 
 | 	 */ | 
 | 	if (config.mpol) { | 
 | 		mpol_put(sbinfo->mpol); | 
 | 		sbinfo->mpol = config.mpol;	/* transfers initial ref */ | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&sbinfo->stat_lock); | 
 | 	return error; | 
 | } | 
 |  | 
 | static int shmem_show_options(struct seq_file *seq, struct dentry *root) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); | 
 |  | 
 | 	if (sbinfo->max_blocks != shmem_default_max_blocks()) | 
 | 		seq_printf(seq, ",size=%luk", | 
 | 			sbinfo->max_blocks << (PAGE_SHIFT - 10)); | 
 | 	if (sbinfo->max_inodes != shmem_default_max_inodes()) | 
 | 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); | 
 | 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) | 
 | 		seq_printf(seq, ",mode=%03ho", sbinfo->mode); | 
 | 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) | 
 | 		seq_printf(seq, ",uid=%u", | 
 | 				from_kuid_munged(&init_user_ns, sbinfo->uid)); | 
 | 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) | 
 | 		seq_printf(seq, ",gid=%u", | 
 | 				from_kgid_munged(&init_user_ns, sbinfo->gid)); | 
 | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE | 
 | 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ | 
 | 	if (sbinfo->huge) | 
 | 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); | 
 | #endif | 
 | 	shmem_show_mpol(seq, sbinfo->mpol); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define MFD_NAME_PREFIX "memfd:" | 
 | #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) | 
 | #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) | 
 |  | 
 | #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) | 
 |  | 
 | SYSCALL_DEFINE2(memfd_create, | 
 | 		const char __user *, uname, | 
 | 		unsigned int, flags) | 
 | { | 
 | 	struct shmem_inode_info *info; | 
 | 	struct file *file; | 
 | 	int fd, error; | 
 | 	char *name; | 
 | 	long len; | 
 |  | 
 | 	if (flags & ~(unsigned int)MFD_ALL_FLAGS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* length includes terminating zero */ | 
 | 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); | 
 | 	if (len <= 0) | 
 | 		return -EFAULT; | 
 | 	if (len > MFD_NAME_MAX_LEN + 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); | 
 | 	if (!name) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	strcpy(name, MFD_NAME_PREFIX); | 
 | 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { | 
 | 		error = -EFAULT; | 
 | 		goto err_name; | 
 | 	} | 
 |  | 
 | 	/* terminating-zero may have changed after strnlen_user() returned */ | 
 | 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) { | 
 | 		error = -EFAULT; | 
 | 		goto err_name; | 
 | 	} | 
 |  | 
 | 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); | 
 | 	if (fd < 0) { | 
 | 		error = fd; | 
 | 		goto err_name; | 
 | 	} | 
 |  | 
 | 	file = shmem_file_setup(name, 0, VM_NORESERVE); | 
 | 	if (IS_ERR(file)) { | 
 | 		error = PTR_ERR(file); | 
 | 		goto err_fd; | 
 | 	} | 
 | 	info = SHMEM_I(file_inode(file)); | 
 | 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; | 
 | 	file->f_flags |= O_RDWR | O_LARGEFILE; | 
 | 	if (flags & MFD_ALLOW_SEALING) | 
 | 		info->seals &= ~F_SEAL_SEAL; | 
 |  | 
 | 	fd_install(fd, file); | 
 | 	kfree(name); | 
 | 	return fd; | 
 |  | 
 | err_fd: | 
 | 	put_unused_fd(fd); | 
 | err_name: | 
 | 	kfree(name); | 
 | 	return error; | 
 | } | 
 |  | 
 | #endif /* CONFIG_TMPFS */ | 
 |  | 
 | static void shmem_put_super(struct super_block *sb) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
 |  | 
 | 	percpu_counter_destroy(&sbinfo->used_blocks); | 
 | 	mpol_put(sbinfo->mpol); | 
 | 	kfree(sbinfo); | 
 | 	sb->s_fs_info = NULL; | 
 | } | 
 |  | 
 | int shmem_fill_super(struct super_block *sb, void *data, int silent) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct shmem_sb_info *sbinfo; | 
 | 	int err = -ENOMEM; | 
 |  | 
 | 	/* Round up to L1_CACHE_BYTES to resist false sharing */ | 
 | 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), | 
 | 				L1_CACHE_BYTES), GFP_KERNEL); | 
 | 	if (!sbinfo) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sbinfo->mode = S_IRWXUGO | S_ISVTX; | 
 | 	sbinfo->uid = current_fsuid(); | 
 | 	sbinfo->gid = current_fsgid(); | 
 | 	sb->s_fs_info = sbinfo; | 
 |  | 
 | #ifdef CONFIG_TMPFS | 
 | 	/* | 
 | 	 * Per default we only allow half of the physical ram per | 
 | 	 * tmpfs instance, limiting inodes to one per page of lowmem; | 
 | 	 * but the internal instance is left unlimited. | 
 | 	 */ | 
 | 	if (!(sb->s_flags & MS_KERNMOUNT)) { | 
 | 		sbinfo->max_blocks = shmem_default_max_blocks(); | 
 | 		sbinfo->max_inodes = shmem_default_max_inodes(); | 
 | 		if (shmem_parse_options(data, sbinfo, false)) { | 
 | 			err = -EINVAL; | 
 | 			goto failed; | 
 | 		} | 
 | 	} else { | 
 | 		sb->s_flags |= MS_NOUSER; | 
 | 	} | 
 | 	sb->s_export_op = &shmem_export_ops; | 
 | 	sb->s_flags |= MS_NOSEC; | 
 | #else | 
 | 	sb->s_flags |= MS_NOUSER; | 
 | #endif | 
 |  | 
 | 	spin_lock_init(&sbinfo->stat_lock); | 
 | 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) | 
 | 		goto failed; | 
 | 	sbinfo->free_inodes = sbinfo->max_inodes; | 
 | 	spin_lock_init(&sbinfo->shrinklist_lock); | 
 | 	INIT_LIST_HEAD(&sbinfo->shrinklist); | 
 |  | 
 | 	sb->s_maxbytes = MAX_LFS_FILESIZE; | 
 | 	sb->s_blocksize = PAGE_SIZE; | 
 | 	sb->s_blocksize_bits = PAGE_SHIFT; | 
 | 	sb->s_magic = TMPFS_MAGIC; | 
 | 	sb->s_op = &shmem_ops; | 
 | 	sb->s_time_gran = 1; | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | 	sb->s_xattr = shmem_xattr_handlers; | 
 | #endif | 
 | #ifdef CONFIG_TMPFS_POSIX_ACL | 
 | 	sb->s_flags |= MS_POSIXACL; | 
 | #endif | 
 |  | 
 | 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); | 
 | 	if (!inode) | 
 | 		goto failed; | 
 | 	inode->i_uid = sbinfo->uid; | 
 | 	inode->i_gid = sbinfo->gid; | 
 | 	sb->s_root = d_make_root(inode); | 
 | 	if (!sb->s_root) | 
 | 		goto failed; | 
 | 	return 0; | 
 |  | 
 | failed: | 
 | 	shmem_put_super(sb); | 
 | 	return err; | 
 | } | 
 |  | 
 | static struct kmem_cache *shmem_inode_cachep; | 
 |  | 
 | static struct inode *shmem_alloc_inode(struct super_block *sb) | 
 | { | 
 | 	struct shmem_inode_info *info; | 
 | 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); | 
 | 	if (!info) | 
 | 		return NULL; | 
 | 	return &info->vfs_inode; | 
 | } | 
 |  | 
 | static void shmem_destroy_callback(struct rcu_head *head) | 
 | { | 
 | 	struct inode *inode = container_of(head, struct inode, i_rcu); | 
 | 	if (S_ISLNK(inode->i_mode)) | 
 | 		kfree(inode->i_link); | 
 | 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); | 
 | } | 
 |  | 
 | static void shmem_destroy_inode(struct inode *inode) | 
 | { | 
 | 	if (S_ISREG(inode->i_mode)) | 
 | 		mpol_free_shared_policy(&SHMEM_I(inode)->policy); | 
 | 	call_rcu(&inode->i_rcu, shmem_destroy_callback); | 
 | } | 
 |  | 
 | static void shmem_init_inode(void *foo) | 
 | { | 
 | 	struct shmem_inode_info *info = foo; | 
 | 	inode_init_once(&info->vfs_inode); | 
 | } | 
 |  | 
 | static int shmem_init_inodecache(void) | 
 | { | 
 | 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", | 
 | 				sizeof(struct shmem_inode_info), | 
 | 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void shmem_destroy_inodecache(void) | 
 | { | 
 | 	kmem_cache_destroy(shmem_inode_cachep); | 
 | } | 
 |  | 
 | static const struct address_space_operations shmem_aops = { | 
 | 	.writepage	= shmem_writepage, | 
 | 	.set_page_dirty	= __set_page_dirty_no_writeback, | 
 | #ifdef CONFIG_TMPFS | 
 | 	.write_begin	= shmem_write_begin, | 
 | 	.write_end	= shmem_write_end, | 
 | #endif | 
 | #ifdef CONFIG_MIGRATION | 
 | 	.migratepage	= migrate_page, | 
 | #endif | 
 | 	.error_remove_page = generic_error_remove_page, | 
 | }; | 
 |  | 
 | static const struct file_operations shmem_file_operations = { | 
 | 	.mmap		= shmem_mmap, | 
 | 	.get_unmapped_area = shmem_get_unmapped_area, | 
 | #ifdef CONFIG_TMPFS | 
 | 	.llseek		= shmem_file_llseek, | 
 | 	.read_iter	= shmem_file_read_iter, | 
 | 	.write_iter	= generic_file_write_iter, | 
 | 	.fsync		= noop_fsync, | 
 | 	.splice_read	= generic_file_splice_read, | 
 | 	.splice_write	= iter_file_splice_write, | 
 | 	.fallocate	= shmem_fallocate, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct inode_operations shmem_inode_operations = { | 
 | 	.getattr	= shmem_getattr, | 
 | 	.setattr	= shmem_setattr, | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | 	.listxattr	= shmem_listxattr, | 
 | 	.set_acl	= simple_set_acl, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct inode_operations shmem_dir_inode_operations = { | 
 | #ifdef CONFIG_TMPFS | 
 | 	.create		= shmem_create, | 
 | 	.lookup		= simple_lookup, | 
 | 	.link		= shmem_link, | 
 | 	.unlink		= shmem_unlink, | 
 | 	.symlink	= shmem_symlink, | 
 | 	.mkdir		= shmem_mkdir, | 
 | 	.rmdir		= shmem_rmdir, | 
 | 	.mknod		= shmem_mknod, | 
 | 	.rename		= shmem_rename2, | 
 | 	.tmpfile	= shmem_tmpfile, | 
 | #endif | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | 	.listxattr	= shmem_listxattr, | 
 | #endif | 
 | #ifdef CONFIG_TMPFS_POSIX_ACL | 
 | 	.setattr	= shmem_setattr, | 
 | 	.set_acl	= simple_set_acl, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct inode_operations shmem_special_inode_operations = { | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | 	.listxattr	= shmem_listxattr, | 
 | #endif | 
 | #ifdef CONFIG_TMPFS_POSIX_ACL | 
 | 	.setattr	= shmem_setattr, | 
 | 	.set_acl	= simple_set_acl, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct super_operations shmem_ops = { | 
 | 	.alloc_inode	= shmem_alloc_inode, | 
 | 	.destroy_inode	= shmem_destroy_inode, | 
 | #ifdef CONFIG_TMPFS | 
 | 	.statfs		= shmem_statfs, | 
 | 	.remount_fs	= shmem_remount_fs, | 
 | 	.show_options	= shmem_show_options, | 
 | #endif | 
 | 	.evict_inode	= shmem_evict_inode, | 
 | 	.drop_inode	= generic_delete_inode, | 
 | 	.put_super	= shmem_put_super, | 
 | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE | 
 | 	.nr_cached_objects	= shmem_unused_huge_count, | 
 | 	.free_cached_objects	= shmem_unused_huge_scan, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct vm_operations_struct shmem_vm_ops = { | 
 | 	.fault		= shmem_fault, | 
 | 	.map_pages	= filemap_map_pages, | 
 | #ifdef CONFIG_NUMA | 
 | 	.set_policy     = shmem_set_policy, | 
 | 	.get_policy     = shmem_get_policy, | 
 | #endif | 
 | }; | 
 |  | 
 | static struct dentry *shmem_mount(struct file_system_type *fs_type, | 
 | 	int flags, const char *dev_name, void *data) | 
 | { | 
 | 	return mount_nodev(fs_type, flags, data, shmem_fill_super); | 
 | } | 
 |  | 
 | static struct file_system_type shmem_fs_type = { | 
 | 	.owner		= THIS_MODULE, | 
 | 	.name		= "tmpfs", | 
 | 	.mount		= shmem_mount, | 
 | 	.kill_sb	= kill_litter_super, | 
 | 	.fs_flags	= FS_USERNS_MOUNT, | 
 | }; | 
 |  | 
 | int __init shmem_init(void) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	/* If rootfs called this, don't re-init */ | 
 | 	if (shmem_inode_cachep) | 
 | 		return 0; | 
 |  | 
 | 	error = shmem_init_inodecache(); | 
 | 	if (error) | 
 | 		goto out3; | 
 |  | 
 | 	error = register_filesystem(&shmem_fs_type); | 
 | 	if (error) { | 
 | 		pr_err("Could not register tmpfs\n"); | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	shm_mnt = kern_mount(&shmem_fs_type); | 
 | 	if (IS_ERR(shm_mnt)) { | 
 | 		error = PTR_ERR(shm_mnt); | 
 | 		pr_err("Could not kern_mount tmpfs\n"); | 
 | 		goto out1; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE | 
 | 	if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY) | 
 | 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; | 
 | 	else | 
 | 		shmem_huge = 0; /* just in case it was patched */ | 
 | #endif | 
 | 	return 0; | 
 |  | 
 | out1: | 
 | 	unregister_filesystem(&shmem_fs_type); | 
 | out2: | 
 | 	shmem_destroy_inodecache(); | 
 | out3: | 
 | 	shm_mnt = ERR_PTR(error); | 
 | 	return error; | 
 | } | 
 |  | 
 | #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) | 
 | static ssize_t shmem_enabled_show(struct kobject *kobj, | 
 | 		struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	int values[] = { | 
 | 		SHMEM_HUGE_ALWAYS, | 
 | 		SHMEM_HUGE_WITHIN_SIZE, | 
 | 		SHMEM_HUGE_ADVISE, | 
 | 		SHMEM_HUGE_NEVER, | 
 | 		SHMEM_HUGE_DENY, | 
 | 		SHMEM_HUGE_FORCE, | 
 | 	}; | 
 | 	int i, count; | 
 |  | 
 | 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { | 
 | 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; | 
 |  | 
 | 		count += sprintf(buf + count, fmt, | 
 | 				shmem_format_huge(values[i])); | 
 | 	} | 
 | 	buf[count - 1] = '\n'; | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t shmem_enabled_store(struct kobject *kobj, | 
 | 		struct kobj_attribute *attr, const char *buf, size_t count) | 
 | { | 
 | 	char tmp[16]; | 
 | 	int huge; | 
 |  | 
 | 	if (count + 1 > sizeof(tmp)) | 
 | 		return -EINVAL; | 
 | 	memcpy(tmp, buf, count); | 
 | 	tmp[count] = '\0'; | 
 | 	if (count && tmp[count - 1] == '\n') | 
 | 		tmp[count - 1] = '\0'; | 
 |  | 
 | 	huge = shmem_parse_huge(tmp); | 
 | 	if (huge == -EINVAL) | 
 | 		return -EINVAL; | 
 | 	if (!has_transparent_hugepage() && | 
 | 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) | 
 | 		return -EINVAL; | 
 |  | 
 | 	shmem_huge = huge; | 
 | 	if (shmem_huge < SHMEM_HUGE_DENY) | 
 | 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; | 
 | 	return count; | 
 | } | 
 |  | 
 | struct kobj_attribute shmem_enabled_attr = | 
 | 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); | 
 | #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE | 
 | bool shmem_huge_enabled(struct vm_area_struct *vma) | 
 | { | 
 | 	struct inode *inode = file_inode(vma->vm_file); | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
 | 	loff_t i_size; | 
 | 	pgoff_t off; | 
 |  | 
 | 	if (shmem_huge == SHMEM_HUGE_FORCE) | 
 | 		return true; | 
 | 	if (shmem_huge == SHMEM_HUGE_DENY) | 
 | 		return false; | 
 | 	switch (sbinfo->huge) { | 
 | 		case SHMEM_HUGE_NEVER: | 
 | 			return false; | 
 | 		case SHMEM_HUGE_ALWAYS: | 
 | 			return true; | 
 | 		case SHMEM_HUGE_WITHIN_SIZE: | 
 | 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); | 
 | 			i_size = round_up(i_size_read(inode), PAGE_SIZE); | 
 | 			if (i_size >= HPAGE_PMD_SIZE && | 
 | 					i_size >> PAGE_SHIFT >= off) | 
 | 				return true; | 
 | 		case SHMEM_HUGE_ADVISE: | 
 | 			/* TODO: implement fadvise() hints */ | 
 | 			return (vma->vm_flags & VM_HUGEPAGE); | 
 | 		default: | 
 | 			VM_BUG_ON(1); | 
 | 			return false; | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ | 
 |  | 
 | #else /* !CONFIG_SHMEM */ | 
 |  | 
 | /* | 
 |  * tiny-shmem: simple shmemfs and tmpfs using ramfs code | 
 |  * | 
 |  * This is intended for small system where the benefits of the full | 
 |  * shmem code (swap-backed and resource-limited) are outweighed by | 
 |  * their complexity. On systems without swap this code should be | 
 |  * effectively equivalent, but much lighter weight. | 
 |  */ | 
 |  | 
 | static struct file_system_type shmem_fs_type = { | 
 | 	.name		= "tmpfs", | 
 | 	.mount		= ramfs_mount, | 
 | 	.kill_sb	= kill_litter_super, | 
 | 	.fs_flags	= FS_USERNS_MOUNT, | 
 | }; | 
 |  | 
 | int __init shmem_init(void) | 
 | { | 
 | 	BUG_ON(register_filesystem(&shmem_fs_type) != 0); | 
 |  | 
 | 	shm_mnt = kern_mount(&shmem_fs_type); | 
 | 	BUG_ON(IS_ERR(shm_mnt)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int shmem_unuse(swp_entry_t swap, struct page *page) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | int shmem_lock(struct file *file, int lock, struct user_struct *user) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | void shmem_unlock_mapping(struct address_space *mapping) | 
 | { | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | unsigned long shmem_get_unmapped_area(struct file *file, | 
 | 				      unsigned long addr, unsigned long len, | 
 | 				      unsigned long pgoff, unsigned long flags) | 
 | { | 
 | 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); | 
 | } | 
 | #endif | 
 |  | 
 | void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) | 
 | { | 
 | 	truncate_inode_pages_range(inode->i_mapping, lstart, lend); | 
 | } | 
 | EXPORT_SYMBOL_GPL(shmem_truncate_range); | 
 |  | 
 | #define shmem_vm_ops				generic_file_vm_ops | 
 | #define shmem_file_operations			ramfs_file_operations | 
 | #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev) | 
 | #define shmem_acct_size(flags, size)		0 | 
 | #define shmem_unacct_size(flags, size)		do {} while (0) | 
 |  | 
 | #endif /* CONFIG_SHMEM */ | 
 |  | 
 | /* common code */ | 
 |  | 
 | static const struct dentry_operations anon_ops = { | 
 | 	.d_dname = simple_dname | 
 | }; | 
 |  | 
 | static struct file *__shmem_file_setup(const char *name, loff_t size, | 
 | 				       unsigned long flags, unsigned int i_flags) | 
 | { | 
 | 	struct file *res; | 
 | 	struct inode *inode; | 
 | 	struct path path; | 
 | 	struct super_block *sb; | 
 | 	struct qstr this; | 
 |  | 
 | 	if (IS_ERR(shm_mnt)) | 
 | 		return ERR_CAST(shm_mnt); | 
 |  | 
 | 	if (size < 0 || size > MAX_LFS_FILESIZE) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	if (shmem_acct_size(flags, size)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	res = ERR_PTR(-ENOMEM); | 
 | 	this.name = name; | 
 | 	this.len = strlen(name); | 
 | 	this.hash = 0; /* will go */ | 
 | 	sb = shm_mnt->mnt_sb; | 
 | 	path.mnt = mntget(shm_mnt); | 
 | 	path.dentry = d_alloc_pseudo(sb, &this); | 
 | 	if (!path.dentry) | 
 | 		goto put_memory; | 
 | 	d_set_d_op(path.dentry, &anon_ops); | 
 |  | 
 | 	res = ERR_PTR(-ENOSPC); | 
 | 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); | 
 | 	if (!inode) | 
 | 		goto put_memory; | 
 |  | 
 | 	inode->i_flags |= i_flags; | 
 | 	d_instantiate(path.dentry, inode); | 
 | 	inode->i_size = size; | 
 | 	clear_nlink(inode);	/* It is unlinked */ | 
 | 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); | 
 | 	if (IS_ERR(res)) | 
 | 		goto put_path; | 
 |  | 
 | 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ, | 
 | 		  &shmem_file_operations); | 
 | 	if (IS_ERR(res)) | 
 | 		goto put_path; | 
 |  | 
 | 	return res; | 
 |  | 
 | put_memory: | 
 | 	shmem_unacct_size(flags, size); | 
 | put_path: | 
 | 	path_put(&path); | 
 | 	return res; | 
 | } | 
 |  | 
 | /** | 
 |  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be | 
 |  * 	kernel internal.  There will be NO LSM permission checks against the | 
 |  * 	underlying inode.  So users of this interface must do LSM checks at a | 
 |  *	higher layer.  The users are the big_key and shm implementations.  LSM | 
 |  *	checks are provided at the key or shm level rather than the inode. | 
 |  * @name: name for dentry (to be seen in /proc/<pid>/maps | 
 |  * @size: size to be set for the file | 
 |  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size | 
 |  */ | 
 | struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) | 
 | { | 
 | 	return __shmem_file_setup(name, size, flags, S_PRIVATE); | 
 | } | 
 |  | 
 | /** | 
 |  * shmem_file_setup - get an unlinked file living in tmpfs | 
 |  * @name: name for dentry (to be seen in /proc/<pid>/maps | 
 |  * @size: size to be set for the file | 
 |  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size | 
 |  */ | 
 | struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) | 
 | { | 
 | 	return __shmem_file_setup(name, size, flags, 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(shmem_file_setup); | 
 |  | 
 | /** | 
 |  * shmem_zero_setup - setup a shared anonymous mapping | 
 |  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff | 
 |  */ | 
 | int shmem_zero_setup(struct vm_area_struct *vma) | 
 | { | 
 | 	struct file *file; | 
 | 	loff_t size = vma->vm_end - vma->vm_start; | 
 |  | 
 | 	/* | 
 | 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict | 
 | 	 * between XFS directory reading and selinux: since this file is only | 
 | 	 * accessible to the user through its mapping, use S_PRIVATE flag to | 
 | 	 * bypass file security, in the same way as shmem_kernel_file_setup(). | 
 | 	 */ | 
 | 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); | 
 | 	if (IS_ERR(file)) | 
 | 		return PTR_ERR(file); | 
 |  | 
 | 	if (vma->vm_file) | 
 | 		fput(vma->vm_file); | 
 | 	vma->vm_file = file; | 
 | 	vma->vm_ops = &shmem_vm_ops; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && | 
 | 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < | 
 | 			(vma->vm_end & HPAGE_PMD_MASK)) { | 
 | 		khugepaged_enter(vma, vma->vm_flags); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. | 
 |  * @mapping:	the page's address_space | 
 |  * @index:	the page index | 
 |  * @gfp:	the page allocator flags to use if allocating | 
 |  * | 
 |  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", | 
 |  * with any new page allocations done using the specified allocation flags. | 
 |  * But read_cache_page_gfp() uses the ->readpage() method: which does not | 
 |  * suit tmpfs, since it may have pages in swapcache, and needs to find those | 
 |  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. | 
 |  * | 
 |  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in | 
 |  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. | 
 |  */ | 
 | struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, | 
 | 					 pgoff_t index, gfp_t gfp) | 
 | { | 
 | #ifdef CONFIG_SHMEM | 
 | 	struct inode *inode = mapping->host; | 
 | 	struct page *page; | 
 | 	int error; | 
 |  | 
 | 	BUG_ON(mapping->a_ops != &shmem_aops); | 
 | 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, | 
 | 				  gfp, NULL, NULL, NULL); | 
 | 	if (error) | 
 | 		page = ERR_PTR(error); | 
 | 	else | 
 | 		unlock_page(page); | 
 | 	return page; | 
 | #else | 
 | 	/* | 
 | 	 * The tiny !SHMEM case uses ramfs without swap | 
 | 	 */ | 
 | 	return read_cache_page_gfp(mapping, index, gfp); | 
 | #endif | 
 | } | 
 | EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); |