| /* |
| * Copyright 2012 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/moduleparam.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> /* printk() */ |
| #include <linux/slab.h> /* kmalloc() */ |
| #include <linux/errno.h> /* error codes */ |
| #include <linux/types.h> /* size_t */ |
| #include <linux/interrupt.h> |
| #include <linux/in.h> |
| #include <linux/irq.h> |
| #include <linux/netdevice.h> /* struct device, and other headers */ |
| #include <linux/etherdevice.h> /* eth_type_trans */ |
| #include <linux/skbuff.h> |
| #include <linux/ioctl.h> |
| #include <linux/cdev.h> |
| #include <linux/hugetlb.h> |
| #include <linux/in6.h> |
| #include <linux/timer.h> |
| #include <linux/hrtimer.h> |
| #include <linux/ktime.h> |
| #include <linux/io.h> |
| #include <linux/ctype.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| |
| #include <asm/checksum.h> |
| #include <asm/homecache.h> |
| #include <gxio/mpipe.h> |
| #include <arch/sim.h> |
| |
| /* Default transmit lockup timeout period, in jiffies. */ |
| #define TILE_NET_TIMEOUT (5 * HZ) |
| |
| /* The maximum number of distinct channels (idesc.channel is 5 bits). */ |
| #define TILE_NET_CHANNELS 32 |
| |
| /* Maximum number of idescs to handle per "poll". */ |
| #define TILE_NET_BATCH 128 |
| |
| /* Maximum number of packets to handle per "poll". */ |
| #define TILE_NET_WEIGHT 64 |
| |
| /* Number of entries in each iqueue. */ |
| #define IQUEUE_ENTRIES 512 |
| |
| /* Number of entries in each equeue. */ |
| #define EQUEUE_ENTRIES 2048 |
| |
| /* Total header bytes per equeue slot. Must be big enough for 2 bytes |
| * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to |
| * 60 bytes of actual TCP header. We round up to align to cache lines. |
| */ |
| #define HEADER_BYTES 128 |
| |
| /* Maximum completions per cpu per device (must be a power of two). |
| * ISSUE: What is the right number here? If this is too small, then |
| * egress might block waiting for free space in a completions array. |
| * ISSUE: At the least, allocate these only for initialized echannels. |
| */ |
| #define TILE_NET_MAX_COMPS 64 |
| |
| #define MAX_FRAGS (MAX_SKB_FRAGS + 1) |
| |
| /* Size of completions data to allocate. |
| * ISSUE: Probably more than needed since we don't use all the channels. |
| */ |
| #define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps)) |
| |
| /* Size of NotifRing data to allocate. */ |
| #define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t)) |
| |
| /* Timeout to wake the per-device TX timer after we stop the queue. |
| * We don't want the timeout too short (adds overhead, and might end |
| * up causing stop/wake/stop/wake cycles) or too long (affects performance). |
| * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets. |
| */ |
| #define TX_TIMER_DELAY_USEC 30 |
| |
| /* Timeout to wake the per-cpu egress timer to free completions. */ |
| #define EGRESS_TIMER_DELAY_USEC 1000 |
| |
| MODULE_AUTHOR("Tilera Corporation"); |
| MODULE_LICENSE("GPL"); |
| |
| /* A "packet fragment" (a chunk of memory). */ |
| struct frag { |
| void *buf; |
| size_t length; |
| }; |
| |
| /* A single completion. */ |
| struct tile_net_comp { |
| /* The "complete_count" when the completion will be complete. */ |
| s64 when; |
| /* The buffer to be freed when the completion is complete. */ |
| struct sk_buff *skb; |
| }; |
| |
| /* The completions for a given cpu and echannel. */ |
| struct tile_net_comps { |
| /* The completions. */ |
| struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS]; |
| /* The number of completions used. */ |
| unsigned long comp_next; |
| /* The number of completions freed. */ |
| unsigned long comp_last; |
| }; |
| |
| /* The transmit wake timer for a given cpu and echannel. */ |
| struct tile_net_tx_wake { |
| struct hrtimer timer; |
| struct net_device *dev; |
| }; |
| |
| /* Info for a specific cpu. */ |
| struct tile_net_info { |
| /* The NAPI struct. */ |
| struct napi_struct napi; |
| /* Packet queue. */ |
| gxio_mpipe_iqueue_t iqueue; |
| /* Our cpu. */ |
| int my_cpu; |
| /* True if iqueue is valid. */ |
| bool has_iqueue; |
| /* NAPI flags. */ |
| bool napi_added; |
| bool napi_enabled; |
| /* Number of small sk_buffs which must still be provided. */ |
| unsigned int num_needed_small_buffers; |
| /* Number of large sk_buffs which must still be provided. */ |
| unsigned int num_needed_large_buffers; |
| /* A timer for handling egress completions. */ |
| struct hrtimer egress_timer; |
| /* True if "egress_timer" is scheduled. */ |
| bool egress_timer_scheduled; |
| /* Comps for each egress channel. */ |
| struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS]; |
| /* Transmit wake timer for each egress channel. */ |
| struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS]; |
| }; |
| |
| /* Info for egress on a particular egress channel. */ |
| struct tile_net_egress { |
| /* The "equeue". */ |
| gxio_mpipe_equeue_t *equeue; |
| /* The headers for TSO. */ |
| unsigned char *headers; |
| }; |
| |
| /* Info for a specific device. */ |
| struct tile_net_priv { |
| /* Our network device. */ |
| struct net_device *dev; |
| /* The primary link. */ |
| gxio_mpipe_link_t link; |
| /* The primary channel, if open, else -1. */ |
| int channel; |
| /* The "loopify" egress link, if needed. */ |
| gxio_mpipe_link_t loopify_link; |
| /* The "loopify" egress channel, if open, else -1. */ |
| int loopify_channel; |
| /* The egress channel (channel or loopify_channel). */ |
| int echannel; |
| /* Total stats. */ |
| struct net_device_stats stats; |
| }; |
| |
| /* Egress info, indexed by "priv->echannel" (lazily created as needed). */ |
| static struct tile_net_egress egress_for_echannel[TILE_NET_CHANNELS]; |
| |
| /* Devices currently associated with each channel. |
| * NOTE: The array entry can become NULL after ifconfig down, but |
| * we do not free the underlying net_device structures, so it is |
| * safe to use a pointer after reading it from this array. |
| */ |
| static struct net_device *tile_net_devs_for_channel[TILE_NET_CHANNELS]; |
| |
| /* A mutex for "tile_net_devs_for_channel". */ |
| static DEFINE_MUTEX(tile_net_devs_for_channel_mutex); |
| |
| /* The per-cpu info. */ |
| static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info); |
| |
| /* The "context" for all devices. */ |
| static gxio_mpipe_context_t context; |
| |
| /* Buffer sizes and mpipe enum codes for buffer stacks. |
| * See arch/tile/include/gxio/mpipe.h for the set of possible values. |
| */ |
| #define BUFFER_SIZE_SMALL_ENUM GXIO_MPIPE_BUFFER_SIZE_128 |
| #define BUFFER_SIZE_SMALL 128 |
| #define BUFFER_SIZE_LARGE_ENUM GXIO_MPIPE_BUFFER_SIZE_1664 |
| #define BUFFER_SIZE_LARGE 1664 |
| |
| /* The small/large "buffer stacks". */ |
| static int small_buffer_stack = -1; |
| static int large_buffer_stack = -1; |
| |
| /* Amount of memory allocated for each buffer stack. */ |
| static size_t buffer_stack_size; |
| |
| /* The actual memory allocated for the buffer stacks. */ |
| static void *small_buffer_stack_va; |
| static void *large_buffer_stack_va; |
| |
| /* The buckets. */ |
| static int first_bucket = -1; |
| static int num_buckets = 1; |
| |
| /* The ingress irq. */ |
| static int ingress_irq = -1; |
| |
| /* Text value of tile_net.cpus if passed as a module parameter. */ |
| static char *network_cpus_string; |
| |
| /* The actual cpus in "network_cpus". */ |
| static struct cpumask network_cpus_map; |
| |
| /* If "loopify=LINK" was specified, this is "LINK". */ |
| static char *loopify_link_name; |
| |
| /* If "tile_net.custom" was specified, this is non-NULL. */ |
| static char *custom_str; |
| |
| /* The "tile_net.cpus" argument specifies the cpus that are dedicated |
| * to handle ingress packets. |
| * |
| * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where |
| * m, n, x, y are integer numbers that represent the cpus that can be |
| * neither a dedicated cpu nor a dataplane cpu. |
| */ |
| static bool network_cpus_init(void) |
| { |
| char buf[1024]; |
| int rc; |
| |
| if (network_cpus_string == NULL) |
| return false; |
| |
| rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map); |
| if (rc != 0) { |
| pr_warn("tile_net.cpus=%s: malformed cpu list\n", |
| network_cpus_string); |
| return false; |
| } |
| |
| /* Remove dedicated cpus. */ |
| cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask); |
| |
| if (cpumask_empty(&network_cpus_map)) { |
| pr_warn("Ignoring empty tile_net.cpus='%s'.\n", |
| network_cpus_string); |
| return false; |
| } |
| |
| cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map); |
| pr_info("Linux network CPUs: %s\n", buf); |
| return true; |
| } |
| |
| module_param_named(cpus, network_cpus_string, charp, 0444); |
| MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts"); |
| |
| /* The "tile_net.loopify=LINK" argument causes the named device to |
| * actually use "loop0" for ingress, and "loop1" for egress. This |
| * allows an app to sit between the actual link and linux, passing |
| * (some) packets along to linux, and forwarding (some) packets sent |
| * out by linux. |
| */ |
| module_param_named(loopify, loopify_link_name, charp, 0444); |
| MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress"); |
| |
| /* The "tile_net.custom" argument causes us to ignore the "conventional" |
| * classifier metadata, in particular, the "l2_offset". |
| */ |
| module_param_named(custom, custom_str, charp, 0444); |
| MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier"); |
| |
| /* Atomically update a statistics field. |
| * Note that on TILE-Gx, this operation is fire-and-forget on the |
| * issuing core (single-cycle dispatch) and takes only a few cycles |
| * longer than a regular store when the request reaches the home cache. |
| * No expensive bus management overhead is required. |
| */ |
| static void tile_net_stats_add(unsigned long value, unsigned long *field) |
| { |
| BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long)); |
| atomic_long_add(value, (atomic_long_t *)field); |
| } |
| |
| /* Allocate and push a buffer. */ |
| static bool tile_net_provide_buffer(bool small) |
| { |
| int stack = small ? small_buffer_stack : large_buffer_stack; |
| const unsigned long buffer_alignment = 128; |
| struct sk_buff *skb; |
| int len; |
| |
| len = sizeof(struct sk_buff **) + buffer_alignment; |
| len += (small ? BUFFER_SIZE_SMALL : BUFFER_SIZE_LARGE); |
| skb = dev_alloc_skb(len); |
| if (skb == NULL) |
| return false; |
| |
| /* Make room for a back-pointer to 'skb' and guarantee alignment. */ |
| skb_reserve(skb, sizeof(struct sk_buff **)); |
| skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1)); |
| |
| /* Save a back-pointer to 'skb'. */ |
| *(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb; |
| |
| /* Make sure "skb" and the back-pointer have been flushed. */ |
| wmb(); |
| |
| gxio_mpipe_push_buffer(&context, stack, |
| (void *)va_to_tile_io_addr(skb->data)); |
| |
| return true; |
| } |
| |
| /* Convert a raw mpipe buffer to its matching skb pointer. */ |
| static struct sk_buff *mpipe_buf_to_skb(void *va) |
| { |
| /* Acquire the associated "skb". */ |
| struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); |
| struct sk_buff *skb = *skb_ptr; |
| |
| /* Paranoia. */ |
| if (skb->data != va) { |
| /* Panic here since there's a reasonable chance |
| * that corrupt buffers means generic memory |
| * corruption, with unpredictable system effects. |
| */ |
| panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p", |
| va, skb, skb->data); |
| } |
| |
| return skb; |
| } |
| |
| static void tile_net_pop_all_buffers(int stack) |
| { |
| for (;;) { |
| tile_io_addr_t addr = |
| (tile_io_addr_t)gxio_mpipe_pop_buffer(&context, stack); |
| if (addr == 0) |
| break; |
| dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr))); |
| } |
| } |
| |
| /* Provide linux buffers to mPIPE. */ |
| static void tile_net_provide_needed_buffers(void) |
| { |
| struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| |
| while (info->num_needed_small_buffers != 0) { |
| if (!tile_net_provide_buffer(true)) |
| goto oops; |
| info->num_needed_small_buffers--; |
| } |
| |
| while (info->num_needed_large_buffers != 0) { |
| if (!tile_net_provide_buffer(false)) |
| goto oops; |
| info->num_needed_large_buffers--; |
| } |
| |
| return; |
| |
| oops: |
| /* Add a description to the page allocation failure dump. */ |
| pr_notice("Tile %d still needs some buffers\n", info->my_cpu); |
| } |
| |
| static inline bool filter_packet(struct net_device *dev, void *buf) |
| { |
| /* Filter packets received before we're up. */ |
| if (dev == NULL || !(dev->flags & IFF_UP)) |
| return true; |
| |
| /* Filter out packets that aren't for us. */ |
| if (!(dev->flags & IFF_PROMISC) && |
| !is_multicast_ether_addr(buf) && |
| compare_ether_addr(dev->dev_addr, buf) != 0) |
| return true; |
| |
| return false; |
| } |
| |
| static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb, |
| gxio_mpipe_idesc_t *idesc, unsigned long len) |
| { |
| struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| struct tile_net_priv *priv = netdev_priv(dev); |
| |
| /* Encode the actual packet length. */ |
| skb_put(skb, len); |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| /* Acknowledge "good" hardware checksums. */ |
| if (idesc->cs && idesc->csum_seed_val == 0xFFFF) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| netif_receive_skb(skb); |
| |
| /* Update stats. */ |
| tile_net_stats_add(1, &priv->stats.rx_packets); |
| tile_net_stats_add(len, &priv->stats.rx_bytes); |
| |
| /* Need a new buffer. */ |
| if (idesc->size == BUFFER_SIZE_SMALL_ENUM) |
| info->num_needed_small_buffers++; |
| else |
| info->num_needed_large_buffers++; |
| } |
| |
| /* Handle a packet. Return true if "processed", false if "filtered". */ |
| static bool tile_net_handle_packet(gxio_mpipe_idesc_t *idesc) |
| { |
| struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| struct net_device *dev = tile_net_devs_for_channel[idesc->channel]; |
| uint8_t l2_offset; |
| void *va; |
| void *buf; |
| unsigned long len; |
| bool filter; |
| |
| /* Drop packets for which no buffer was available. |
| * NOTE: This happens under heavy load. |
| */ |
| if (idesc->be) { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| tile_net_stats_add(1, &priv->stats.rx_dropped); |
| gxio_mpipe_iqueue_consume(&info->iqueue, idesc); |
| if (net_ratelimit()) |
| pr_info("Dropping packet (insufficient buffers).\n"); |
| return false; |
| } |
| |
| /* Get the "l2_offset", if allowed. */ |
| l2_offset = custom_str ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc); |
| |
| /* Get the raw buffer VA (includes "headroom"). */ |
| va = tile_io_addr_to_va((unsigned long)(long)idesc->va); |
| |
| /* Get the actual packet start/length. */ |
| buf = va + l2_offset; |
| len = idesc->l2_size - l2_offset; |
| |
| /* Point "va" at the raw buffer. */ |
| va -= NET_IP_ALIGN; |
| |
| filter = filter_packet(dev, buf); |
| if (filter) { |
| gxio_mpipe_iqueue_drop(&info->iqueue, idesc); |
| } else { |
| struct sk_buff *skb = mpipe_buf_to_skb(va); |
| |
| /* Skip headroom, and any custom header. */ |
| skb_reserve(skb, NET_IP_ALIGN + l2_offset); |
| |
| tile_net_receive_skb(dev, skb, idesc, len); |
| } |
| |
| gxio_mpipe_iqueue_consume(&info->iqueue, idesc); |
| return !filter; |
| } |
| |
| /* Handle some packets for the current CPU. |
| * |
| * This function handles up to TILE_NET_BATCH idescs per call. |
| * |
| * ISSUE: Since we do not provide new buffers until this function is |
| * complete, we must initially provide enough buffers for each network |
| * cpu to fill its iqueue and also its batched idescs. |
| * |
| * ISSUE: The "rotting packet" race condition occurs if a packet |
| * arrives after the queue appears to be empty, and before the |
| * hypervisor interrupt is re-enabled. |
| */ |
| static int tile_net_poll(struct napi_struct *napi, int budget) |
| { |
| struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| unsigned int work = 0; |
| gxio_mpipe_idesc_t *idesc; |
| int i, n; |
| |
| /* Process packets. */ |
| while ((n = gxio_mpipe_iqueue_try_peek(&info->iqueue, &idesc)) > 0) { |
| for (i = 0; i < n; i++) { |
| if (i == TILE_NET_BATCH) |
| goto done; |
| if (tile_net_handle_packet(idesc + i)) { |
| if (++work >= budget) |
| goto done; |
| } |
| } |
| } |
| |
| /* There are no packets left. */ |
| napi_complete(&info->napi); |
| |
| /* Re-enable hypervisor interrupts. */ |
| gxio_mpipe_enable_notif_ring_interrupt(&context, info->iqueue.ring); |
| |
| /* HACK: Avoid the "rotting packet" problem. */ |
| if (gxio_mpipe_iqueue_try_peek(&info->iqueue, &idesc) > 0) |
| napi_schedule(&info->napi); |
| |
| /* ISSUE: Handle completions? */ |
| |
| done: |
| tile_net_provide_needed_buffers(); |
| |
| return work; |
| } |
| |
| /* Handle an ingress interrupt on the current cpu. */ |
| static irqreturn_t tile_net_handle_ingress_irq(int irq, void *unused) |
| { |
| struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| napi_schedule(&info->napi); |
| return IRQ_HANDLED; |
| } |
| |
| /* Free some completions. This must be called with interrupts blocked. */ |
| static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue, |
| struct tile_net_comps *comps, |
| int limit, bool force_update) |
| { |
| int n = 0; |
| while (comps->comp_last < comps->comp_next) { |
| unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS; |
| struct tile_net_comp *comp = &comps->comp_queue[cid]; |
| if (!gxio_mpipe_equeue_is_complete(equeue, comp->when, |
| force_update || n == 0)) |
| break; |
| dev_kfree_skb_irq(comp->skb); |
| comps->comp_last++; |
| if (++n == limit) |
| break; |
| } |
| return n; |
| } |
| |
| /* Add a completion. This must be called with interrupts blocked. |
| * tile_net_equeue_try_reserve() will have ensured a free completion entry. |
| */ |
| static void add_comp(gxio_mpipe_equeue_t *equeue, |
| struct tile_net_comps *comps, |
| uint64_t when, struct sk_buff *skb) |
| { |
| int cid = comps->comp_next % TILE_NET_MAX_COMPS; |
| comps->comp_queue[cid].when = when; |
| comps->comp_queue[cid].skb = skb; |
| comps->comp_next++; |
| } |
| |
| static void tile_net_schedule_tx_wake_timer(struct net_device *dev) |
| { |
| struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| struct tile_net_priv *priv = netdev_priv(dev); |
| |
| hrtimer_start(&info->tx_wake[priv->echannel].timer, |
| ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL), |
| HRTIMER_MODE_REL_PINNED); |
| } |
| |
| static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t) |
| { |
| struct tile_net_tx_wake *tx_wake = |
| container_of(t, struct tile_net_tx_wake, timer); |
| netif_wake_subqueue(tx_wake->dev, smp_processor_id()); |
| return HRTIMER_NORESTART; |
| } |
| |
| /* Make sure the egress timer is scheduled. */ |
| static void tile_net_schedule_egress_timer(void) |
| { |
| struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| |
| if (!info->egress_timer_scheduled) { |
| hrtimer_start(&info->egress_timer, |
| ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL), |
| HRTIMER_MODE_REL_PINNED); |
| info->egress_timer_scheduled = true; |
| } |
| } |
| |
| /* The "function" for "info->egress_timer". |
| * |
| * This timer will reschedule itself as long as there are any pending |
| * completions expected for this tile. |
| */ |
| static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t) |
| { |
| struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| unsigned long irqflags; |
| bool pending = false; |
| int i; |
| |
| local_irq_save(irqflags); |
| |
| /* The timer is no longer scheduled. */ |
| info->egress_timer_scheduled = false; |
| |
| /* Free all possible comps for this tile. */ |
| for (i = 0; i < TILE_NET_CHANNELS; i++) { |
| struct tile_net_egress *egress = &egress_for_echannel[i]; |
| struct tile_net_comps *comps = info->comps_for_echannel[i]; |
| if (comps->comp_last >= comps->comp_next) |
| continue; |
| tile_net_free_comps(egress->equeue, comps, -1, true); |
| pending = pending || (comps->comp_last < comps->comp_next); |
| } |
| |
| /* Reschedule timer if needed. */ |
| if (pending) |
| tile_net_schedule_egress_timer(); |
| |
| local_irq_restore(irqflags); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| /* Helper function for "tile_net_update()". |
| * "dev" (i.e. arg) is the device being brought up or down, |
| * or NULL if all devices are now down. |
| */ |
| static void tile_net_update_cpu(void *arg) |
| { |
| struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| struct net_device *dev = arg; |
| |
| if (!info->has_iqueue) |
| return; |
| |
| if (dev != NULL) { |
| if (!info->napi_added) { |
| netif_napi_add(dev, &info->napi, |
| tile_net_poll, TILE_NET_WEIGHT); |
| info->napi_added = true; |
| } |
| if (!info->napi_enabled) { |
| napi_enable(&info->napi); |
| info->napi_enabled = true; |
| } |
| enable_percpu_irq(ingress_irq, 0); |
| } else { |
| disable_percpu_irq(ingress_irq); |
| if (info->napi_enabled) { |
| napi_disable(&info->napi); |
| info->napi_enabled = false; |
| } |
| /* FIXME: Drain the iqueue. */ |
| } |
| } |
| |
| /* Helper function for tile_net_open() and tile_net_stop(). |
| * Always called under tile_net_devs_for_channel_mutex. |
| */ |
| static int tile_net_update(struct net_device *dev) |
| { |
| static gxio_mpipe_rules_t rules; /* too big to fit on the stack */ |
| bool saw_channel = false; |
| int channel; |
| int rc; |
| int cpu; |
| |
| gxio_mpipe_rules_init(&rules, &context); |
| |
| for (channel = 0; channel < TILE_NET_CHANNELS; channel++) { |
| if (tile_net_devs_for_channel[channel] == NULL) |
| continue; |
| if (!saw_channel) { |
| saw_channel = true; |
| gxio_mpipe_rules_begin(&rules, first_bucket, |
| num_buckets, NULL); |
| gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN); |
| } |
| gxio_mpipe_rules_add_channel(&rules, channel); |
| } |
| |
| /* NOTE: This can fail if there is no classifier. |
| * ISSUE: Can anything else cause it to fail? |
| */ |
| rc = gxio_mpipe_rules_commit(&rules); |
| if (rc != 0) { |
| netdev_warn(dev, "gxio_mpipe_rules_commit failed: %d\n", rc); |
| return -EIO; |
| } |
| |
| /* Update all cpus, sequentially (to protect "netif_napi_add()"). */ |
| for_each_online_cpu(cpu) |
| smp_call_function_single(cpu, tile_net_update_cpu, |
| (saw_channel ? dev : NULL), 1); |
| |
| /* HACK: Allow packets to flow in the simulator. */ |
| if (saw_channel) |
| sim_enable_mpipe_links(0, -1); |
| |
| return 0; |
| } |
| |
| /* Allocate and initialize mpipe buffer stacks, and register them in |
| * the mPIPE TLBs, for both small and large packet sizes. |
| * This routine supports tile_net_init_mpipe(), below. |
| */ |
| static int init_buffer_stacks(struct net_device *dev, int num_buffers) |
| { |
| pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH); |
| int rc; |
| |
| /* Compute stack bytes; we round up to 64KB and then use |
| * alloc_pages() so we get the required 64KB alignment as well. |
| */ |
| buffer_stack_size = |
| ALIGN(gxio_mpipe_calc_buffer_stack_bytes(num_buffers), |
| 64 * 1024); |
| |
| /* Allocate two buffer stack indices. */ |
| rc = gxio_mpipe_alloc_buffer_stacks(&context, 2, 0, 0); |
| if (rc < 0) { |
| netdev_err(dev, "gxio_mpipe_alloc_buffer_stacks failed: %d\n", |
| rc); |
| return rc; |
| } |
| small_buffer_stack = rc; |
| large_buffer_stack = rc + 1; |
| |
| /* Allocate the small memory stack. */ |
| small_buffer_stack_va = |
| alloc_pages_exact(buffer_stack_size, GFP_KERNEL); |
| if (small_buffer_stack_va == NULL) { |
| netdev_err(dev, |
| "Could not alloc %zd bytes for buffer stacks\n", |
| buffer_stack_size); |
| return -ENOMEM; |
| } |
| rc = gxio_mpipe_init_buffer_stack(&context, small_buffer_stack, |
| BUFFER_SIZE_SMALL_ENUM, |
| small_buffer_stack_va, |
| buffer_stack_size, 0); |
| if (rc != 0) { |
| netdev_err(dev, "gxio_mpipe_init_buffer_stack: %d\n", rc); |
| return rc; |
| } |
| rc = gxio_mpipe_register_client_memory(&context, small_buffer_stack, |
| hash_pte, 0); |
| if (rc != 0) { |
| netdev_err(dev, |
| "gxio_mpipe_register_buffer_memory failed: %d\n", |
| rc); |
| return rc; |
| } |
| |
| /* Allocate the large buffer stack. */ |
| large_buffer_stack_va = |
| alloc_pages_exact(buffer_stack_size, GFP_KERNEL); |
| if (large_buffer_stack_va == NULL) { |
| netdev_err(dev, |
| "Could not alloc %zd bytes for buffer stacks\n", |
| buffer_stack_size); |
| return -ENOMEM; |
| } |
| rc = gxio_mpipe_init_buffer_stack(&context, large_buffer_stack, |
| BUFFER_SIZE_LARGE_ENUM, |
| large_buffer_stack_va, |
| buffer_stack_size, 0); |
| if (rc != 0) { |
| netdev_err(dev, "gxio_mpipe_init_buffer_stack failed: %d\n", |
| rc); |
| return rc; |
| } |
| rc = gxio_mpipe_register_client_memory(&context, large_buffer_stack, |
| hash_pte, 0); |
| if (rc != 0) { |
| netdev_err(dev, |
| "gxio_mpipe_register_buffer_memory failed: %d\n", |
| rc); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| /* Allocate per-cpu resources (memory for completions and idescs). |
| * This routine supports tile_net_init_mpipe(), below. |
| */ |
| static int alloc_percpu_mpipe_resources(struct net_device *dev, |
| int cpu, int ring) |
| { |
| struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); |
| int order, i, rc; |
| struct page *page; |
| void *addr; |
| |
| /* Allocate the "comps". */ |
| order = get_order(COMPS_SIZE); |
| page = homecache_alloc_pages(GFP_KERNEL, order, cpu); |
| if (page == NULL) { |
| netdev_err(dev, "Failed to alloc %zd bytes comps memory\n", |
| COMPS_SIZE); |
| return -ENOMEM; |
| } |
| addr = pfn_to_kaddr(page_to_pfn(page)); |
| memset(addr, 0, COMPS_SIZE); |
| for (i = 0; i < TILE_NET_CHANNELS; i++) |
| info->comps_for_echannel[i] = |
| addr + i * sizeof(struct tile_net_comps); |
| |
| /* If this is a network cpu, create an iqueue. */ |
| if (cpu_isset(cpu, network_cpus_map)) { |
| order = get_order(NOTIF_RING_SIZE); |
| page = homecache_alloc_pages(GFP_KERNEL, order, cpu); |
| if (page == NULL) { |
| netdev_err(dev, |
| "Failed to alloc %zd bytes iqueue memory\n", |
| NOTIF_RING_SIZE); |
| return -ENOMEM; |
| } |
| addr = pfn_to_kaddr(page_to_pfn(page)); |
| rc = gxio_mpipe_iqueue_init(&info->iqueue, &context, ring++, |
| addr, NOTIF_RING_SIZE, 0); |
| if (rc < 0) { |
| netdev_err(dev, |
| "gxio_mpipe_iqueue_init failed: %d\n", rc); |
| return rc; |
| } |
| info->has_iqueue = true; |
| } |
| |
| return ring; |
| } |
| |
| /* Initialize NotifGroup and buckets. |
| * This routine supports tile_net_init_mpipe(), below. |
| */ |
| static int init_notif_group_and_buckets(struct net_device *dev, |
| int ring, int network_cpus_count) |
| { |
| int group, rc; |
| |
| /* Allocate one NotifGroup. */ |
| rc = gxio_mpipe_alloc_notif_groups(&context, 1, 0, 0); |
| if (rc < 0) { |
| netdev_err(dev, "gxio_mpipe_alloc_notif_groups failed: %d\n", |
| rc); |
| return rc; |
| } |
| group = rc; |
| |
| /* Initialize global num_buckets value. */ |
| if (network_cpus_count > 4) |
| num_buckets = 256; |
| else if (network_cpus_count > 1) |
| num_buckets = 16; |
| |
| /* Allocate some buckets, and set global first_bucket value. */ |
| rc = gxio_mpipe_alloc_buckets(&context, num_buckets, 0, 0); |
| if (rc < 0) { |
| netdev_err(dev, "gxio_mpipe_alloc_buckets failed: %d\n", rc); |
| return rc; |
| } |
| first_bucket = rc; |
| |
| /* Init group and buckets. */ |
| rc = gxio_mpipe_init_notif_group_and_buckets( |
| &context, group, ring, network_cpus_count, |
| first_bucket, num_buckets, |
| GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY); |
| if (rc != 0) { |
| netdev_err( |
| dev, |
| "gxio_mpipe_init_notif_group_and_buckets failed: %d\n", |
| rc); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| /* Create an irq and register it, then activate the irq and request |
| * interrupts on all cores. Note that "ingress_irq" being initialized |
| * is how we know not to call tile_net_init_mpipe() again. |
| * This routine supports tile_net_init_mpipe(), below. |
| */ |
| static int tile_net_setup_interrupts(struct net_device *dev) |
| { |
| int cpu, rc; |
| |
| rc = create_irq(); |
| if (rc < 0) { |
| netdev_err(dev, "create_irq failed: %d\n", rc); |
| return rc; |
| } |
| ingress_irq = rc; |
| tile_irq_activate(ingress_irq, TILE_IRQ_PERCPU); |
| rc = request_irq(ingress_irq, tile_net_handle_ingress_irq, |
| 0, NULL, NULL); |
| if (rc != 0) { |
| netdev_err(dev, "request_irq failed: %d\n", rc); |
| destroy_irq(ingress_irq); |
| ingress_irq = -1; |
| return rc; |
| } |
| |
| for_each_online_cpu(cpu) { |
| struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); |
| if (info->has_iqueue) { |
| gxio_mpipe_request_notif_ring_interrupt( |
| &context, cpu_x(cpu), cpu_y(cpu), |
| 1, ingress_irq, info->iqueue.ring); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Undo any state set up partially by a failed call to tile_net_init_mpipe. */ |
| static void tile_net_init_mpipe_fail(void) |
| { |
| int cpu; |
| |
| /* Do cleanups that require the mpipe context first. */ |
| if (small_buffer_stack >= 0) |
| tile_net_pop_all_buffers(small_buffer_stack); |
| if (large_buffer_stack >= 0) |
| tile_net_pop_all_buffers(large_buffer_stack); |
| |
| /* Destroy mpipe context so the hardware no longer owns any memory. */ |
| gxio_mpipe_destroy(&context); |
| |
| for_each_online_cpu(cpu) { |
| struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); |
| free_pages((unsigned long)(info->comps_for_echannel[0]), |
| get_order(COMPS_SIZE)); |
| info->comps_for_echannel[0] = NULL; |
| free_pages((unsigned long)(info->iqueue.idescs), |
| get_order(NOTIF_RING_SIZE)); |
| info->iqueue.idescs = NULL; |
| } |
| |
| if (small_buffer_stack_va) |
| free_pages_exact(small_buffer_stack_va, buffer_stack_size); |
| if (large_buffer_stack_va) |
| free_pages_exact(large_buffer_stack_va, buffer_stack_size); |
| |
| small_buffer_stack_va = NULL; |
| large_buffer_stack_va = NULL; |
| large_buffer_stack = -1; |
| small_buffer_stack = -1; |
| first_bucket = -1; |
| } |
| |
| /* The first time any tilegx network device is opened, we initialize |
| * the global mpipe state. If this step fails, we fail to open the |
| * device, but if it succeeds, we never need to do it again, and since |
| * tile_net can't be unloaded, we never undo it. |
| * |
| * Note that some resources in this path (buffer stack indices, |
| * bindings from init_buffer_stack, etc.) are hypervisor resources |
| * that are freed implicitly by gxio_mpipe_destroy(). |
| */ |
| static int tile_net_init_mpipe(struct net_device *dev) |
| { |
| int i, num_buffers, rc; |
| int cpu; |
| int first_ring, ring; |
| int network_cpus_count = cpus_weight(network_cpus_map); |
| |
| if (!hash_default) { |
| netdev_err(dev, "Networking requires hash_default!\n"); |
| return -EIO; |
| } |
| |
| rc = gxio_mpipe_init(&context, 0); |
| if (rc != 0) { |
| netdev_err(dev, "gxio_mpipe_init failed: %d\n", rc); |
| return -EIO; |
| } |
| |
| /* Set up the buffer stacks. */ |
| num_buffers = |
| network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH); |
| rc = init_buffer_stacks(dev, num_buffers); |
| if (rc != 0) |
| goto fail; |
| |
| /* Provide initial buffers. */ |
| rc = -ENOMEM; |
| for (i = 0; i < num_buffers; i++) { |
| if (!tile_net_provide_buffer(true)) { |
| netdev_err(dev, "Cannot allocate initial sk_bufs!\n"); |
| goto fail; |
| } |
| } |
| for (i = 0; i < num_buffers; i++) { |
| if (!tile_net_provide_buffer(false)) { |
| netdev_err(dev, "Cannot allocate initial sk_bufs!\n"); |
| goto fail; |
| } |
| } |
| |
| /* Allocate one NotifRing for each network cpu. */ |
| rc = gxio_mpipe_alloc_notif_rings(&context, network_cpus_count, 0, 0); |
| if (rc < 0) { |
| netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n", |
| rc); |
| goto fail; |
| } |
| |
| /* Init NotifRings per-cpu. */ |
| first_ring = rc; |
| ring = first_ring; |
| for_each_online_cpu(cpu) { |
| rc = alloc_percpu_mpipe_resources(dev, cpu, ring); |
| if (rc < 0) |
| goto fail; |
| ring = rc; |
| } |
| |
| /* Initialize NotifGroup and buckets. */ |
| rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count); |
| if (rc != 0) |
| goto fail; |
| |
| /* Create and enable interrupts. */ |
| rc = tile_net_setup_interrupts(dev); |
| if (rc != 0) |
| goto fail; |
| |
| return 0; |
| |
| fail: |
| tile_net_init_mpipe_fail(); |
| return rc; |
| } |
| |
| /* Create persistent egress info for a given egress channel. |
| * Note that this may be shared between, say, "gbe0" and "xgbe0". |
| * ISSUE: Defer header allocation until TSO is actually needed? |
| */ |
| static int tile_net_init_egress(struct net_device *dev, int echannel) |
| { |
| struct page *headers_page, *edescs_page, *equeue_page; |
| gxio_mpipe_edesc_t *edescs; |
| gxio_mpipe_equeue_t *equeue; |
| unsigned char *headers; |
| int headers_order, edescs_order, equeue_order; |
| size_t edescs_size; |
| int edma; |
| int rc = -ENOMEM; |
| |
| /* Only initialize once. */ |
| if (egress_for_echannel[echannel].equeue != NULL) |
| return 0; |
| |
| /* Allocate memory for the "headers". */ |
| headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES); |
| headers_page = alloc_pages(GFP_KERNEL, headers_order); |
| if (headers_page == NULL) { |
| netdev_warn(dev, |
| "Could not alloc %zd bytes for TSO headers.\n", |
| PAGE_SIZE << headers_order); |
| goto fail; |
| } |
| headers = pfn_to_kaddr(page_to_pfn(headers_page)); |
| |
| /* Allocate memory for the "edescs". */ |
| edescs_size = EQUEUE_ENTRIES * sizeof(*edescs); |
| edescs_order = get_order(edescs_size); |
| edescs_page = alloc_pages(GFP_KERNEL, edescs_order); |
| if (edescs_page == NULL) { |
| netdev_warn(dev, |
| "Could not alloc %zd bytes for eDMA ring.\n", |
| edescs_size); |
| goto fail_headers; |
| } |
| edescs = pfn_to_kaddr(page_to_pfn(edescs_page)); |
| |
| /* Allocate memory for the "equeue". */ |
| equeue_order = get_order(sizeof(*equeue)); |
| equeue_page = alloc_pages(GFP_KERNEL, equeue_order); |
| if (equeue_page == NULL) { |
| netdev_warn(dev, |
| "Could not alloc %zd bytes for equeue info.\n", |
| PAGE_SIZE << equeue_order); |
| goto fail_edescs; |
| } |
| equeue = pfn_to_kaddr(page_to_pfn(equeue_page)); |
| |
| /* Allocate an edma ring. Note that in practice this can't |
| * fail, which is good, because we will leak an edma ring if so. |
| */ |
| rc = gxio_mpipe_alloc_edma_rings(&context, 1, 0, 0); |
| if (rc < 0) { |
| netdev_warn(dev, "gxio_mpipe_alloc_edma_rings failed: %d\n", |
| rc); |
| goto fail_equeue; |
| } |
| edma = rc; |
| |
| /* Initialize the equeue. */ |
| rc = gxio_mpipe_equeue_init(equeue, &context, edma, echannel, |
| edescs, edescs_size, 0); |
| if (rc != 0) { |
| netdev_err(dev, "gxio_mpipe_equeue_init failed: %d\n", rc); |
| goto fail_equeue; |
| } |
| |
| /* Done. */ |
| egress_for_echannel[echannel].equeue = equeue; |
| egress_for_echannel[echannel].headers = headers; |
| return 0; |
| |
| fail_equeue: |
| __free_pages(equeue_page, equeue_order); |
| |
| fail_edescs: |
| __free_pages(edescs_page, edescs_order); |
| |
| fail_headers: |
| __free_pages(headers_page, headers_order); |
| |
| fail: |
| return rc; |
| } |
| |
| /* Return channel number for a newly-opened link. */ |
| static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link, |
| const char *link_name) |
| { |
| int rc = gxio_mpipe_link_open(link, &context, link_name, 0); |
| if (rc < 0) { |
| netdev_err(dev, "Failed to open '%s'\n", link_name); |
| return rc; |
| } |
| rc = gxio_mpipe_link_channel(link); |
| if (rc < 0 || rc >= TILE_NET_CHANNELS) { |
| netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc); |
| gxio_mpipe_link_close(link); |
| return -EINVAL; |
| } |
| return rc; |
| } |
| |
| /* Help the kernel activate the given network interface. */ |
| static int tile_net_open(struct net_device *dev) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int cpu, rc; |
| |
| mutex_lock(&tile_net_devs_for_channel_mutex); |
| |
| /* Do one-time initialization the first time any device is opened. */ |
| if (ingress_irq < 0) { |
| rc = tile_net_init_mpipe(dev); |
| if (rc != 0) |
| goto fail; |
| } |
| |
| /* Determine if this is the "loopify" device. */ |
| if (unlikely((loopify_link_name != NULL) && |
| !strcmp(dev->name, loopify_link_name))) { |
| rc = tile_net_link_open(dev, &priv->link, "loop0"); |
| if (rc < 0) |
| goto fail; |
| priv->channel = rc; |
| rc = tile_net_link_open(dev, &priv->loopify_link, "loop1"); |
| if (rc < 0) |
| goto fail; |
| priv->loopify_channel = rc; |
| priv->echannel = rc; |
| } else { |
| rc = tile_net_link_open(dev, &priv->link, dev->name); |
| if (rc < 0) |
| goto fail; |
| priv->channel = rc; |
| priv->echannel = rc; |
| } |
| |
| /* Initialize egress info (if needed). Once ever, per echannel. */ |
| rc = tile_net_init_egress(dev, priv->echannel); |
| if (rc != 0) |
| goto fail; |
| |
| tile_net_devs_for_channel[priv->channel] = dev; |
| |
| rc = tile_net_update(dev); |
| if (rc != 0) |
| goto fail; |
| |
| mutex_unlock(&tile_net_devs_for_channel_mutex); |
| |
| /* Initialize the transmit wake timer for this device for each cpu. */ |
| for_each_online_cpu(cpu) { |
| struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); |
| struct tile_net_tx_wake *tx_wake = |
| &info->tx_wake[priv->echannel]; |
| |
| hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC, |
| HRTIMER_MODE_REL); |
| tx_wake->timer.function = tile_net_handle_tx_wake_timer; |
| tx_wake->dev = dev; |
| } |
| |
| for_each_online_cpu(cpu) |
| netif_start_subqueue(dev, cpu); |
| netif_carrier_on(dev); |
| return 0; |
| |
| fail: |
| if (priv->loopify_channel >= 0) { |
| if (gxio_mpipe_link_close(&priv->loopify_link) != 0) |
| netdev_warn(dev, "Failed to close loopify link!\n"); |
| priv->loopify_channel = -1; |
| } |
| if (priv->channel >= 0) { |
| if (gxio_mpipe_link_close(&priv->link) != 0) |
| netdev_warn(dev, "Failed to close link!\n"); |
| priv->channel = -1; |
| } |
| priv->echannel = -1; |
| tile_net_devs_for_channel[priv->channel] = NULL; |
| mutex_unlock(&tile_net_devs_for_channel_mutex); |
| |
| /* Don't return raw gxio error codes to generic Linux. */ |
| return (rc > -512) ? rc : -EIO; |
| } |
| |
| /* Help the kernel deactivate the given network interface. */ |
| static int tile_net_stop(struct net_device *dev) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int cpu; |
| |
| for_each_online_cpu(cpu) { |
| struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); |
| struct tile_net_tx_wake *tx_wake = |
| &info->tx_wake[priv->echannel]; |
| |
| hrtimer_cancel(&tx_wake->timer); |
| netif_stop_subqueue(dev, cpu); |
| } |
| |
| mutex_lock(&tile_net_devs_for_channel_mutex); |
| tile_net_devs_for_channel[priv->channel] = NULL; |
| (void)tile_net_update(dev); |
| if (priv->loopify_channel >= 0) { |
| if (gxio_mpipe_link_close(&priv->loopify_link) != 0) |
| netdev_warn(dev, "Failed to close loopify link!\n"); |
| priv->loopify_channel = -1; |
| } |
| if (priv->channel >= 0) { |
| if (gxio_mpipe_link_close(&priv->link) != 0) |
| netdev_warn(dev, "Failed to close link!\n"); |
| priv->channel = -1; |
| } |
| priv->echannel = -1; |
| mutex_unlock(&tile_net_devs_for_channel_mutex); |
| |
| return 0; |
| } |
| |
| /* Determine the VA for a fragment. */ |
| static inline void *tile_net_frag_buf(skb_frag_t *f) |
| { |
| unsigned long pfn = page_to_pfn(skb_frag_page(f)); |
| return pfn_to_kaddr(pfn) + f->page_offset; |
| } |
| |
| /* Acquire a completion entry and an egress slot, or if we can't, |
| * stop the queue and schedule the tx_wake timer. |
| */ |
| static s64 tile_net_equeue_try_reserve(struct net_device *dev, |
| struct tile_net_comps *comps, |
| gxio_mpipe_equeue_t *equeue, |
| int num_edescs) |
| { |
| /* Try to acquire a completion entry. */ |
| if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 || |
| tile_net_free_comps(equeue, comps, 32, false) != 0) { |
| |
| /* Try to acquire an egress slot. */ |
| s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs); |
| if (slot >= 0) |
| return slot; |
| |
| /* Freeing some completions gives the equeue time to drain. */ |
| tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false); |
| |
| slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs); |
| if (slot >= 0) |
| return slot; |
| } |
| |
| /* Still nothing; give up and stop the queue for a short while. */ |
| netif_stop_subqueue(dev, smp_processor_id()); |
| tile_net_schedule_tx_wake_timer(dev); |
| return -1; |
| } |
| |
| /* Determine how many edesc's are needed for TSO. |
| * |
| * Sometimes, if "sendfile()" requires copying, we will be called with |
| * "data" containing the header and payload, with "frags" being empty. |
| * Sometimes, for example when using NFS over TCP, a single segment can |
| * span 3 fragments. This requires special care. |
| */ |
| static int tso_count_edescs(struct sk_buff *skb) |
| { |
| struct skb_shared_info *sh = skb_shinfo(skb); |
| unsigned int data_len = skb->data_len; |
| unsigned int p_len = sh->gso_size; |
| long f_id = -1; /* id of the current fragment */ |
| long f_size = -1; /* size of the current fragment */ |
| long f_used = -1; /* bytes used from the current fragment */ |
| long n; /* size of the current piece of payload */ |
| int num_edescs = 0; |
| int segment; |
| |
| for (segment = 0; segment < sh->gso_segs; segment++) { |
| |
| unsigned int p_used = 0; |
| |
| /* One edesc for header and for each piece of the payload. */ |
| for (num_edescs++; p_used < p_len; num_edescs++) { |
| |
| /* Advance as needed. */ |
| while (f_used >= f_size) { |
| f_id++; |
| f_size = sh->frags[f_id].size; |
| f_used = 0; |
| } |
| |
| /* Use bytes from the current fragment. */ |
| n = p_len - p_used; |
| if (n > f_size - f_used) |
| n = f_size - f_used; |
| f_used += n; |
| p_used += n; |
| } |
| |
| /* The last segment may be less than gso_size. */ |
| data_len -= p_len; |
| if (data_len < p_len) |
| p_len = data_len; |
| } |
| |
| return num_edescs; |
| } |
| |
| /* Prepare modified copies of the skbuff headers. |
| * FIXME: add support for IPv6. |
| */ |
| static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers, |
| s64 slot) |
| { |
| struct skb_shared_info *sh = skb_shinfo(skb); |
| struct iphdr *ih; |
| struct tcphdr *th; |
| unsigned int data_len = skb->data_len; |
| unsigned char *data = skb->data; |
| unsigned int ih_off, th_off, sh_len, p_len; |
| unsigned int isum_seed, tsum_seed, id, seq; |
| long f_id = -1; /* id of the current fragment */ |
| long f_size = -1; /* size of the current fragment */ |
| long f_used = -1; /* bytes used from the current fragment */ |
| long n; /* size of the current piece of payload */ |
| int segment; |
| |
| /* Locate original headers and compute various lengths. */ |
| ih = ip_hdr(skb); |
| th = tcp_hdr(skb); |
| ih_off = skb_network_offset(skb); |
| th_off = skb_transport_offset(skb); |
| sh_len = th_off + tcp_hdrlen(skb); |
| p_len = sh->gso_size; |
| |
| /* Set up seed values for IP and TCP csum and initialize id and seq. */ |
| isum_seed = ((0xFFFF - ih->check) + |
| (0xFFFF - ih->tot_len) + |
| (0xFFFF - ih->id)); |
| tsum_seed = th->check + (0xFFFF ^ htons(skb->len)); |
| id = ntohs(ih->id); |
| seq = ntohl(th->seq); |
| |
| /* Prepare all the headers. */ |
| for (segment = 0; segment < sh->gso_segs; segment++) { |
| unsigned char *buf; |
| unsigned int p_used = 0; |
| |
| /* Copy to the header memory for this segment. */ |
| buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES + |
| NET_IP_ALIGN; |
| memcpy(buf, data, sh_len); |
| |
| /* Update copied ip header. */ |
| ih = (struct iphdr *)(buf + ih_off); |
| ih->tot_len = htons(sh_len + p_len - ih_off); |
| ih->id = htons(id); |
| ih->check = csum_long(isum_seed + ih->tot_len + |
| ih->id) ^ 0xffff; |
| |
| /* Update copied tcp header. */ |
| th = (struct tcphdr *)(buf + th_off); |
| th->seq = htonl(seq); |
| th->check = csum_long(tsum_seed + htons(sh_len + p_len)); |
| if (segment != sh->gso_segs - 1) { |
| th->fin = 0; |
| th->psh = 0; |
| } |
| |
| /* Skip past the header. */ |
| slot++; |
| |
| /* Skip past the payload. */ |
| while (p_used < p_len) { |
| |
| /* Advance as needed. */ |
| while (f_used >= f_size) { |
| f_id++; |
| f_size = sh->frags[f_id].size; |
| f_used = 0; |
| } |
| |
| /* Use bytes from the current fragment. */ |
| n = p_len - p_used; |
| if (n > f_size - f_used) |
| n = f_size - f_used; |
| f_used += n; |
| p_used += n; |
| |
| slot++; |
| } |
| |
| id++; |
| seq += p_len; |
| |
| /* The last segment may be less than gso_size. */ |
| data_len -= p_len; |
| if (data_len < p_len) |
| p_len = data_len; |
| } |
| |
| /* Flush the headers so they are ready for hardware DMA. */ |
| wmb(); |
| } |
| |
| /* Pass all the data to mpipe for egress. */ |
| static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue, |
| struct sk_buff *skb, unsigned char *headers, s64 slot) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| struct skb_shared_info *sh = skb_shinfo(skb); |
| unsigned int data_len = skb->data_len; |
| unsigned int p_len = sh->gso_size; |
| gxio_mpipe_edesc_t edesc_head = { { 0 } }; |
| gxio_mpipe_edesc_t edesc_body = { { 0 } }; |
| long f_id = -1; /* id of the current fragment */ |
| long f_size = -1; /* size of the current fragment */ |
| long f_used = -1; /* bytes used from the current fragment */ |
| long n; /* size of the current piece of payload */ |
| unsigned long tx_packets = 0, tx_bytes = 0; |
| unsigned int csum_start, sh_len; |
| int segment; |
| |
| /* Prepare to egress the headers: set up header edesc. */ |
| csum_start = skb_checksum_start_offset(skb); |
| sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| edesc_head.csum = 1; |
| edesc_head.csum_start = csum_start; |
| edesc_head.csum_dest = csum_start + skb->csum_offset; |
| edesc_head.xfer_size = sh_len; |
| |
| /* This is only used to specify the TLB. */ |
| edesc_head.stack_idx = large_buffer_stack; |
| edesc_body.stack_idx = large_buffer_stack; |
| |
| /* Egress all the edescs. */ |
| for (segment = 0; segment < sh->gso_segs; segment++) { |
| void *va; |
| unsigned char *buf; |
| unsigned int p_used = 0; |
| |
| /* Egress the header. */ |
| buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES + |
| NET_IP_ALIGN; |
| edesc_head.va = va_to_tile_io_addr(buf); |
| gxio_mpipe_equeue_put_at(equeue, edesc_head, slot); |
| slot++; |
| |
| /* Egress the payload. */ |
| while (p_used < p_len) { |
| |
| /* Advance as needed. */ |
| while (f_used >= f_size) { |
| f_id++; |
| f_size = sh->frags[f_id].size; |
| f_used = 0; |
| } |
| |
| va = tile_net_frag_buf(&sh->frags[f_id]) + f_used; |
| |
| /* Use bytes from the current fragment. */ |
| n = p_len - p_used; |
| if (n > f_size - f_used) |
| n = f_size - f_used; |
| f_used += n; |
| p_used += n; |
| |
| /* Egress a piece of the payload. */ |
| edesc_body.va = va_to_tile_io_addr(va); |
| edesc_body.xfer_size = n; |
| edesc_body.bound = !(p_used < p_len); |
| gxio_mpipe_equeue_put_at(equeue, edesc_body, slot); |
| slot++; |
| } |
| |
| tx_packets++; |
| tx_bytes += sh_len + p_len; |
| |
| /* The last segment may be less than gso_size. */ |
| data_len -= p_len; |
| if (data_len < p_len) |
| p_len = data_len; |
| } |
| |
| /* Update stats. */ |
| tile_net_stats_add(tx_packets, &priv->stats.tx_packets); |
| tile_net_stats_add(tx_bytes, &priv->stats.tx_bytes); |
| } |
| |
| /* Do "TSO" handling for egress. |
| * |
| * Normally drivers set NETIF_F_TSO only to support hardware TSO; |
| * otherwise the stack uses scatter-gather to implement GSO in software. |
| * On our testing, enabling GSO support (via NETIF_F_SG) drops network |
| * performance down to around 7.5 Gbps on the 10G interfaces, although |
| * also dropping cpu utilization way down, to under 8%. But |
| * implementing "TSO" in the driver brings performance back up to line |
| * rate, while dropping cpu usage even further, to less than 4%. In |
| * practice, profiling of GSO shows that skb_segment() is what causes |
| * the performance overheads; we benefit in the driver from using |
| * preallocated memory to duplicate the TCP/IP headers. |
| */ |
| static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int channel = priv->echannel; |
| struct tile_net_egress *egress = &egress_for_echannel[channel]; |
| struct tile_net_comps *comps = info->comps_for_echannel[channel]; |
| gxio_mpipe_equeue_t *equeue = egress->equeue; |
| unsigned long irqflags; |
| int num_edescs; |
| s64 slot; |
| |
| /* Determine how many mpipe edesc's are needed. */ |
| num_edescs = tso_count_edescs(skb); |
| |
| local_irq_save(irqflags); |
| |
| /* Try to acquire a completion entry and an egress slot. */ |
| slot = tile_net_equeue_try_reserve(dev, comps, equeue, num_edescs); |
| if (slot < 0) { |
| local_irq_restore(irqflags); |
| return NETDEV_TX_BUSY; |
| } |
| |
| /* Set up copies of header data properly. */ |
| tso_headers_prepare(skb, egress->headers, slot); |
| |
| /* Actually pass the data to the network hardware. */ |
| tso_egress(dev, equeue, skb, egress->headers, slot); |
| |
| /* Add a completion record. */ |
| add_comp(equeue, comps, slot + num_edescs - 1, skb); |
| |
| local_irq_restore(irqflags); |
| |
| /* Make sure the egress timer is scheduled. */ |
| tile_net_schedule_egress_timer(); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /* Analyze the body and frags for a transmit request. */ |
| static unsigned int tile_net_tx_frags(struct frag *frags, |
| struct sk_buff *skb, |
| void *b_data, unsigned int b_len) |
| { |
| unsigned int i, n = 0; |
| |
| struct skb_shared_info *sh = skb_shinfo(skb); |
| |
| if (b_len != 0) { |
| frags[n].buf = b_data; |
| frags[n++].length = b_len; |
| } |
| |
| for (i = 0; i < sh->nr_frags; i++) { |
| skb_frag_t *f = &sh->frags[i]; |
| frags[n].buf = tile_net_frag_buf(f); |
| frags[n++].length = skb_frag_size(f); |
| } |
| |
| return n; |
| } |
| |
| /* Help the kernel transmit a packet. */ |
| static int tile_net_tx(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| struct tile_net_priv *priv = netdev_priv(dev); |
| struct tile_net_egress *egress = &egress_for_echannel[priv->echannel]; |
| gxio_mpipe_equeue_t *equeue = egress->equeue; |
| struct tile_net_comps *comps = |
| info->comps_for_echannel[priv->echannel]; |
| unsigned int len = skb->len; |
| unsigned char *data = skb->data; |
| unsigned int num_edescs; |
| struct frag frags[MAX_FRAGS]; |
| gxio_mpipe_edesc_t edescs[MAX_FRAGS]; |
| unsigned long irqflags; |
| gxio_mpipe_edesc_t edesc = { { 0 } }; |
| unsigned int i; |
| s64 slot; |
| |
| if (skb_is_gso(skb)) |
| return tile_net_tx_tso(skb, dev); |
| |
| num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb)); |
| |
| /* This is only used to specify the TLB. */ |
| edesc.stack_idx = large_buffer_stack; |
| |
| /* Prepare the edescs. */ |
| for (i = 0; i < num_edescs; i++) { |
| edesc.xfer_size = frags[i].length; |
| edesc.va = va_to_tile_io_addr(frags[i].buf); |
| edescs[i] = edesc; |
| } |
| |
| /* Mark the final edesc. */ |
| edescs[num_edescs - 1].bound = 1; |
| |
| /* Add checksum info to the initial edesc, if needed. */ |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| unsigned int csum_start = skb_checksum_start_offset(skb); |
| edescs[0].csum = 1; |
| edescs[0].csum_start = csum_start; |
| edescs[0].csum_dest = csum_start + skb->csum_offset; |
| } |
| |
| local_irq_save(irqflags); |
| |
| /* Try to acquire a completion entry and an egress slot. */ |
| slot = tile_net_equeue_try_reserve(dev, comps, equeue, num_edescs); |
| if (slot < 0) { |
| local_irq_restore(irqflags); |
| return NETDEV_TX_BUSY; |
| } |
| |
| for (i = 0; i < num_edescs; i++) |
| gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++); |
| |
| /* Add a completion record. */ |
| add_comp(equeue, comps, slot - 1, skb); |
| |
| /* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */ |
| tile_net_stats_add(1, &priv->stats.tx_packets); |
| tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN), |
| &priv->stats.tx_bytes); |
| |
| local_irq_restore(irqflags); |
| |
| /* Make sure the egress timer is scheduled. */ |
| tile_net_schedule_egress_timer(); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /* Return subqueue id on this core (one per core). */ |
| static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb) |
| { |
| return smp_processor_id(); |
| } |
| |
| /* Deal with a transmit timeout. */ |
| static void tile_net_tx_timeout(struct net_device *dev) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) |
| netif_wake_subqueue(dev, cpu); |
| } |
| |
| /* Ioctl commands. */ |
| static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| /* Get system network statistics for device. */ |
| static struct net_device_stats *tile_net_get_stats(struct net_device *dev) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| return &priv->stats; |
| } |
| |
| /* Change the MTU. */ |
| static int tile_net_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| if ((new_mtu < 68) || (new_mtu > 1500)) |
| return -EINVAL; |
| dev->mtu = new_mtu; |
| return 0; |
| } |
| |
| /* Change the Ethernet address of the NIC. |
| * |
| * The hypervisor driver does not support changing MAC address. However, |
| * the hardware does not do anything with the MAC address, so the address |
| * which gets used on outgoing packets, and which is accepted on incoming |
| * packets, is completely up to us. |
| * |
| * Returns 0 on success, negative on failure. |
| */ |
| static int tile_net_set_mac_address(struct net_device *dev, void *p) |
| { |
| struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EINVAL; |
| memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| return 0; |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* Polling 'interrupt' - used by things like netconsole to send skbs |
| * without having to re-enable interrupts. It's not called while |
| * the interrupt routine is executing. |
| */ |
| static void tile_net_netpoll(struct net_device *dev) |
| { |
| disable_percpu_irq(ingress_irq); |
| tile_net_handle_ingress_irq(ingress_irq, NULL); |
| enable_percpu_irq(ingress_irq, 0); |
| } |
| #endif |
| |
| static const struct net_device_ops tile_net_ops = { |
| .ndo_open = tile_net_open, |
| .ndo_stop = tile_net_stop, |
| .ndo_start_xmit = tile_net_tx, |
| .ndo_select_queue = tile_net_select_queue, |
| .ndo_do_ioctl = tile_net_ioctl, |
| .ndo_get_stats = tile_net_get_stats, |
| .ndo_change_mtu = tile_net_change_mtu, |
| .ndo_tx_timeout = tile_net_tx_timeout, |
| .ndo_set_mac_address = tile_net_set_mac_address, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = tile_net_netpoll, |
| #endif |
| }; |
| |
| /* The setup function. |
| * |
| * This uses ether_setup() to assign various fields in dev, including |
| * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields. |
| */ |
| static void tile_net_setup(struct net_device *dev) |
| { |
| ether_setup(dev); |
| dev->netdev_ops = &tile_net_ops; |
| dev->watchdog_timeo = TILE_NET_TIMEOUT; |
| dev->features |= NETIF_F_LLTX; |
| dev->features |= NETIF_F_HW_CSUM; |
| dev->features |= NETIF_F_SG; |
| dev->features |= NETIF_F_TSO; |
| dev->mtu = 1500; |
| } |
| |
| /* Allocate the device structure, register the device, and obtain the |
| * MAC address from the hypervisor. |
| */ |
| static void tile_net_dev_init(const char *name, const uint8_t *mac) |
| { |
| int ret; |
| int i; |
| int nz_addr = 0; |
| struct net_device *dev; |
| struct tile_net_priv *priv; |
| |
| /* HACK: Ignore "loop" links. */ |
| if (strncmp(name, "loop", 4) == 0) |
| return; |
| |
| /* Allocate the device structure. Normally, "name" is a |
| * template, instantiated by register_netdev(), but not for us. |
| */ |
| dev = alloc_netdev_mqs(sizeof(*priv), name, tile_net_setup, |
| NR_CPUS, 1); |
| if (!dev) { |
| pr_err("alloc_netdev_mqs(%s) failed\n", name); |
| return; |
| } |
| |
| /* Initialize "priv". */ |
| priv = netdev_priv(dev); |
| memset(priv, 0, sizeof(*priv)); |
| priv->dev = dev; |
| priv->channel = -1; |
| priv->loopify_channel = -1; |
| priv->echannel = -1; |
| |
| /* Get the MAC address and set it in the device struct; this must |
| * be done before the device is opened. If the MAC is all zeroes, |
| * we use a random address, since we're probably on the simulator. |
| */ |
| for (i = 0; i < 6; i++) |
| nz_addr |= mac[i]; |
| |
| if (nz_addr) { |
| memcpy(dev->dev_addr, mac, 6); |
| dev->addr_len = 6; |
| } else { |
| random_ether_addr(dev->dev_addr); |
| } |
| |
| /* Register the network device. */ |
| ret = register_netdev(dev); |
| if (ret) { |
| netdev_err(dev, "register_netdev failed %d\n", ret); |
| free_netdev(dev); |
| return; |
| } |
| } |
| |
| /* Per-cpu module initialization. */ |
| static void tile_net_init_module_percpu(void *unused) |
| { |
| struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| int my_cpu = smp_processor_id(); |
| |
| info->has_iqueue = false; |
| |
| info->my_cpu = my_cpu; |
| |
| /* Initialize the egress timer. */ |
| hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| info->egress_timer.function = tile_net_handle_egress_timer; |
| } |
| |
| /* Module initialization. */ |
| static int __init tile_net_init_module(void) |
| { |
| int i; |
| char name[GXIO_MPIPE_LINK_NAME_LEN]; |
| uint8_t mac[6]; |
| |
| pr_info("Tilera Network Driver\n"); |
| |
| mutex_init(&tile_net_devs_for_channel_mutex); |
| |
| /* Initialize each CPU. */ |
| on_each_cpu(tile_net_init_module_percpu, NULL, 1); |
| |
| /* Find out what devices we have, and initialize them. */ |
| for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++) |
| tile_net_dev_init(name, mac); |
| |
| if (!network_cpus_init()) |
| network_cpus_map = *cpu_online_mask; |
| |
| return 0; |
| } |
| |
| module_init(tile_net_init_module); |