|  | /* | 
|  | kmod, the new module loader (replaces kerneld) | 
|  | Kirk Petersen | 
|  |  | 
|  | Reorganized not to be a daemon by Adam Richter, with guidance | 
|  | from Greg Zornetzer. | 
|  |  | 
|  | Modified to avoid chroot and file sharing problems. | 
|  | Mikael Pettersson | 
|  |  | 
|  | Limit the concurrent number of kmod modprobes to catch loops from | 
|  | "modprobe needs a service that is in a module". | 
|  | Keith Owens <kaos@ocs.com.au> December 1999 | 
|  |  | 
|  | Unblock all signals when we exec a usermode process. | 
|  | Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000 | 
|  |  | 
|  | call_usermodehelper wait flag, and remove exec_usermodehelper. | 
|  | Rusty Russell <rusty@rustcorp.com.au>  Jan 2003 | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/cred.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fdtable.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/resource.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/rwsem.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/async.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include <trace/events/module.h> | 
|  |  | 
|  | extern int max_threads; | 
|  |  | 
|  | #define CAP_BSET	(void *)1 | 
|  | #define CAP_PI		(void *)2 | 
|  |  | 
|  | static kernel_cap_t usermodehelper_bset = CAP_FULL_SET; | 
|  | static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET; | 
|  | static DEFINE_SPINLOCK(umh_sysctl_lock); | 
|  | static DECLARE_RWSEM(umhelper_sem); | 
|  |  | 
|  | #ifdef CONFIG_MODULES | 
|  |  | 
|  | /* | 
|  | modprobe_path is set via /proc/sys. | 
|  | */ | 
|  | char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe"; | 
|  |  | 
|  | static void free_modprobe_argv(struct subprocess_info *info) | 
|  | { | 
|  | kfree(info->argv[3]); /* check call_modprobe() */ | 
|  | kfree(info->argv); | 
|  | } | 
|  |  | 
|  | static int call_modprobe(char *module_name, int wait) | 
|  | { | 
|  | struct subprocess_info *info; | 
|  | static char *envp[] = { | 
|  | "HOME=/", | 
|  | "TERM=linux", | 
|  | "PATH=/sbin:/usr/sbin:/bin:/usr/bin", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL); | 
|  | if (!argv) | 
|  | goto out; | 
|  |  | 
|  | module_name = kstrdup(module_name, GFP_KERNEL); | 
|  | if (!module_name) | 
|  | goto free_argv; | 
|  |  | 
|  | argv[0] = modprobe_path; | 
|  | argv[1] = "-q"; | 
|  | argv[2] = "--"; | 
|  | argv[3] = module_name;	/* check free_modprobe_argv() */ | 
|  | argv[4] = NULL; | 
|  |  | 
|  | info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL, | 
|  | NULL, free_modprobe_argv, NULL); | 
|  | if (!info) | 
|  | goto free_module_name; | 
|  |  | 
|  | return call_usermodehelper_exec(info, wait | UMH_KILLABLE); | 
|  |  | 
|  | free_module_name: | 
|  | kfree(module_name); | 
|  | free_argv: | 
|  | kfree(argv); | 
|  | out: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __request_module - try to load a kernel module | 
|  | * @wait: wait (or not) for the operation to complete | 
|  | * @fmt: printf style format string for the name of the module | 
|  | * @...: arguments as specified in the format string | 
|  | * | 
|  | * Load a module using the user mode module loader. The function returns | 
|  | * zero on success or a negative errno code or positive exit code from | 
|  | * "modprobe" on failure. Note that a successful module load does not mean | 
|  | * the module did not then unload and exit on an error of its own. Callers | 
|  | * must check that the service they requested is now available not blindly | 
|  | * invoke it. | 
|  | * | 
|  | * If module auto-loading support is disabled then this function | 
|  | * becomes a no-operation. | 
|  | */ | 
|  | int __request_module(bool wait, const char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char module_name[MODULE_NAME_LEN]; | 
|  | unsigned int max_modprobes; | 
|  | int ret; | 
|  | static atomic_t kmod_concurrent = ATOMIC_INIT(0); | 
|  | #define MAX_KMOD_CONCURRENT 50	/* Completely arbitrary value - KAO */ | 
|  | static int kmod_loop_msg; | 
|  |  | 
|  | /* | 
|  | * We don't allow synchronous module loading from async.  Module | 
|  | * init may invoke async_synchronize_full() which will end up | 
|  | * waiting for this task which already is waiting for the module | 
|  | * loading to complete, leading to a deadlock. | 
|  | */ | 
|  | WARN_ON_ONCE(wait && current_is_async()); | 
|  |  | 
|  | if (!modprobe_path[0]) | 
|  | return 0; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); | 
|  | va_end(args); | 
|  | if (ret >= MODULE_NAME_LEN) | 
|  | return -ENAMETOOLONG; | 
|  |  | 
|  | ret = security_kernel_module_request(module_name); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* If modprobe needs a service that is in a module, we get a recursive | 
|  | * loop.  Limit the number of running kmod threads to max_threads/2 or | 
|  | * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method | 
|  | * would be to run the parents of this process, counting how many times | 
|  | * kmod was invoked.  That would mean accessing the internals of the | 
|  | * process tables to get the command line, proc_pid_cmdline is static | 
|  | * and it is not worth changing the proc code just to handle this case. | 
|  | * KAO. | 
|  | * | 
|  | * "trace the ppid" is simple, but will fail if someone's | 
|  | * parent exits.  I think this is as good as it gets. --RR | 
|  | */ | 
|  | max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT); | 
|  | atomic_inc(&kmod_concurrent); | 
|  | if (atomic_read(&kmod_concurrent) > max_modprobes) { | 
|  | /* We may be blaming an innocent here, but unlikely */ | 
|  | if (kmod_loop_msg < 5) { | 
|  | printk(KERN_ERR | 
|  | "request_module: runaway loop modprobe %s\n", | 
|  | module_name); | 
|  | kmod_loop_msg++; | 
|  | } | 
|  | atomic_dec(&kmod_concurrent); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | trace_module_request(module_name, wait, _RET_IP_); | 
|  |  | 
|  | ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC); | 
|  |  | 
|  | atomic_dec(&kmod_concurrent); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__request_module); | 
|  | #endif /* CONFIG_MODULES */ | 
|  |  | 
|  | static void call_usermodehelper_freeinfo(struct subprocess_info *info) | 
|  | { | 
|  | if (info->cleanup) | 
|  | (*info->cleanup)(info); | 
|  | kfree(info); | 
|  | } | 
|  |  | 
|  | static void umh_complete(struct subprocess_info *sub_info) | 
|  | { | 
|  | struct completion *comp = xchg(&sub_info->complete, NULL); | 
|  | /* | 
|  | * See call_usermodehelper_exec(). If xchg() returns NULL | 
|  | * we own sub_info, the UMH_KILLABLE caller has gone away | 
|  | * or the caller used UMH_NO_WAIT. | 
|  | */ | 
|  | if (comp) | 
|  | complete(comp); | 
|  | else | 
|  | call_usermodehelper_freeinfo(sub_info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the task which runs the usermode application | 
|  | */ | 
|  | static int call_usermodehelper_exec_async(void *data) | 
|  | { | 
|  | struct subprocess_info *sub_info = data; | 
|  | struct cred *new; | 
|  | int retval; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | flush_signal_handlers(current, 1); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * Our parent (unbound workqueue) runs with elevated scheduling | 
|  | * priority. Avoid propagating that into the userspace child. | 
|  | */ | 
|  | set_user_nice(current, 0); | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | new = prepare_kernel_cred(current); | 
|  | if (!new) | 
|  | goto out; | 
|  |  | 
|  | spin_lock(&umh_sysctl_lock); | 
|  | new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset); | 
|  | new->cap_inheritable = cap_intersect(usermodehelper_inheritable, | 
|  | new->cap_inheritable); | 
|  | spin_unlock(&umh_sysctl_lock); | 
|  |  | 
|  | if (sub_info->init) { | 
|  | retval = sub_info->init(sub_info, new); | 
|  | if (retval) { | 
|  | abort_creds(new); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | commit_creds(new); | 
|  |  | 
|  | retval = do_execve(getname_kernel(sub_info->path), | 
|  | (const char __user *const __user *)sub_info->argv, | 
|  | (const char __user *const __user *)sub_info->envp); | 
|  | out: | 
|  | sub_info->retval = retval; | 
|  | /* | 
|  | * call_usermodehelper_exec_sync() will call umh_complete | 
|  | * if UHM_WAIT_PROC. | 
|  | */ | 
|  | if (!(sub_info->wait & UMH_WAIT_PROC)) | 
|  | umh_complete(sub_info); | 
|  | if (!retval) | 
|  | return 0; | 
|  | do_exit(0); | 
|  | } | 
|  |  | 
|  | /* Handles UMH_WAIT_PROC.  */ | 
|  | static void call_usermodehelper_exec_sync(struct subprocess_info *sub_info) | 
|  | { | 
|  | pid_t pid; | 
|  |  | 
|  | /* If SIGCLD is ignored sys_wait4 won't populate the status. */ | 
|  | kernel_sigaction(SIGCHLD, SIG_DFL); | 
|  | pid = kernel_thread(call_usermodehelper_exec_async, sub_info, SIGCHLD); | 
|  | if (pid < 0) { | 
|  | sub_info->retval = pid; | 
|  | } else { | 
|  | int ret = -ECHILD; | 
|  | /* | 
|  | * Normally it is bogus to call wait4() from in-kernel because | 
|  | * wait4() wants to write the exit code to a userspace address. | 
|  | * But call_usermodehelper_exec_sync() always runs as kernel | 
|  | * thread (workqueue) and put_user() to a kernel address works | 
|  | * OK for kernel threads, due to their having an mm_segment_t | 
|  | * which spans the entire address space. | 
|  | * | 
|  | * Thus the __user pointer cast is valid here. | 
|  | */ | 
|  | sys_wait4(pid, (int __user *)&ret, 0, NULL); | 
|  |  | 
|  | /* | 
|  | * If ret is 0, either call_usermodehelper_exec_async failed and | 
|  | * the real error code is already in sub_info->retval or | 
|  | * sub_info->retval is 0 anyway, so don't mess with it then. | 
|  | */ | 
|  | if (ret) | 
|  | sub_info->retval = ret; | 
|  | } | 
|  |  | 
|  | /* Restore default kernel sig handler */ | 
|  | kernel_sigaction(SIGCHLD, SIG_IGN); | 
|  |  | 
|  | umh_complete(sub_info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to create the usermodehelper kernel thread from a task that is affine | 
|  | * to an optimized set of CPUs (or nohz housekeeping ones) such that they | 
|  | * inherit a widest affinity irrespective of call_usermodehelper() callers with | 
|  | * possibly reduced affinity (eg: per-cpu workqueues). We don't want | 
|  | * usermodehelper targets to contend a busy CPU. | 
|  | * | 
|  | * Unbound workqueues provide such wide affinity and allow to block on | 
|  | * UMH_WAIT_PROC requests without blocking pending request (up to some limit). | 
|  | * | 
|  | * Besides, workqueues provide the privilege level that caller might not have | 
|  | * to perform the usermodehelper request. | 
|  | * | 
|  | */ | 
|  | static void call_usermodehelper_exec_work(struct work_struct *work) | 
|  | { | 
|  | struct subprocess_info *sub_info = | 
|  | container_of(work, struct subprocess_info, work); | 
|  |  | 
|  | if (sub_info->wait & UMH_WAIT_PROC) { | 
|  | call_usermodehelper_exec_sync(sub_info); | 
|  | } else { | 
|  | pid_t pid; | 
|  | /* | 
|  | * Use CLONE_PARENT to reparent it to kthreadd; we do not | 
|  | * want to pollute current->children, and we need a parent | 
|  | * that always ignores SIGCHLD to ensure auto-reaping. | 
|  | */ | 
|  | pid = kernel_thread(call_usermodehelper_exec_async, sub_info, | 
|  | CLONE_PARENT | SIGCHLD); | 
|  | if (pid < 0) { | 
|  | sub_info->retval = pid; | 
|  | umh_complete(sub_info); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY | 
|  | * (used for preventing user land processes from being created after the user | 
|  | * land has been frozen during a system-wide hibernation or suspend operation). | 
|  | * Should always be manipulated under umhelper_sem acquired for write. | 
|  | */ | 
|  | static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED; | 
|  |  | 
|  | /* Number of helpers running */ | 
|  | static atomic_t running_helpers = ATOMIC_INIT(0); | 
|  |  | 
|  | /* | 
|  | * Wait queue head used by usermodehelper_disable() to wait for all running | 
|  | * helpers to finish. | 
|  | */ | 
|  | static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq); | 
|  |  | 
|  | /* | 
|  | * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled | 
|  | * to become 'false'. | 
|  | */ | 
|  | static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq); | 
|  |  | 
|  | /* | 
|  | * Time to wait for running_helpers to become zero before the setting of | 
|  | * usermodehelper_disabled in usermodehelper_disable() fails | 
|  | */ | 
|  | #define RUNNING_HELPERS_TIMEOUT	(5 * HZ) | 
|  |  | 
|  | int usermodehelper_read_trylock(void) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  | int ret = 0; | 
|  |  | 
|  | down_read(&umhelper_sem); | 
|  | for (;;) { | 
|  | prepare_to_wait(&usermodehelper_disabled_waitq, &wait, | 
|  | TASK_INTERRUPTIBLE); | 
|  | if (!usermodehelper_disabled) | 
|  | break; | 
|  |  | 
|  | if (usermodehelper_disabled == UMH_DISABLED) | 
|  | ret = -EAGAIN; | 
|  |  | 
|  | up_read(&umhelper_sem); | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | schedule(); | 
|  | try_to_freeze(); | 
|  |  | 
|  | down_read(&umhelper_sem); | 
|  | } | 
|  | finish_wait(&usermodehelper_disabled_waitq, &wait); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usermodehelper_read_trylock); | 
|  |  | 
|  | long usermodehelper_read_lock_wait(long timeout) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | if (timeout < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | down_read(&umhelper_sem); | 
|  | for (;;) { | 
|  | prepare_to_wait(&usermodehelper_disabled_waitq, &wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | if (!usermodehelper_disabled) | 
|  | break; | 
|  |  | 
|  | up_read(&umhelper_sem); | 
|  |  | 
|  | timeout = schedule_timeout(timeout); | 
|  | if (!timeout) | 
|  | break; | 
|  |  | 
|  | down_read(&umhelper_sem); | 
|  | } | 
|  | finish_wait(&usermodehelper_disabled_waitq, &wait); | 
|  | return timeout; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait); | 
|  |  | 
|  | void usermodehelper_read_unlock(void) | 
|  | { | 
|  | up_read(&umhelper_sem); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usermodehelper_read_unlock); | 
|  |  | 
|  | /** | 
|  | * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled. | 
|  | * @depth: New value to assign to usermodehelper_disabled. | 
|  | * | 
|  | * Change the value of usermodehelper_disabled (under umhelper_sem locked for | 
|  | * writing) and wakeup tasks waiting for it to change. | 
|  | */ | 
|  | void __usermodehelper_set_disable_depth(enum umh_disable_depth depth) | 
|  | { | 
|  | down_write(&umhelper_sem); | 
|  | usermodehelper_disabled = depth; | 
|  | wake_up(&usermodehelper_disabled_waitq); | 
|  | up_write(&umhelper_sem); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __usermodehelper_disable - Prevent new helpers from being started. | 
|  | * @depth: New value to assign to usermodehelper_disabled. | 
|  | * | 
|  | * Set usermodehelper_disabled to @depth and wait for running helpers to exit. | 
|  | */ | 
|  | int __usermodehelper_disable(enum umh_disable_depth depth) | 
|  | { | 
|  | long retval; | 
|  |  | 
|  | if (!depth) | 
|  | return -EINVAL; | 
|  |  | 
|  | down_write(&umhelper_sem); | 
|  | usermodehelper_disabled = depth; | 
|  | up_write(&umhelper_sem); | 
|  |  | 
|  | /* | 
|  | * From now on call_usermodehelper_exec() won't start any new | 
|  | * helpers, so it is sufficient if running_helpers turns out to | 
|  | * be zero at one point (it may be increased later, but that | 
|  | * doesn't matter). | 
|  | */ | 
|  | retval = wait_event_timeout(running_helpers_waitq, | 
|  | atomic_read(&running_helpers) == 0, | 
|  | RUNNING_HELPERS_TIMEOUT); | 
|  | if (retval) | 
|  | return 0; | 
|  |  | 
|  | __usermodehelper_set_disable_depth(UMH_ENABLED); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | static void helper_lock(void) | 
|  | { | 
|  | atomic_inc(&running_helpers); | 
|  | smp_mb__after_atomic(); | 
|  | } | 
|  |  | 
|  | static void helper_unlock(void) | 
|  | { | 
|  | if (atomic_dec_and_test(&running_helpers)) | 
|  | wake_up(&running_helpers_waitq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * call_usermodehelper_setup - prepare to call a usermode helper | 
|  | * @path: path to usermode executable | 
|  | * @argv: arg vector for process | 
|  | * @envp: environment for process | 
|  | * @gfp_mask: gfp mask for memory allocation | 
|  | * @cleanup: a cleanup function | 
|  | * @init: an init function | 
|  | * @data: arbitrary context sensitive data | 
|  | * | 
|  | * Returns either %NULL on allocation failure, or a subprocess_info | 
|  | * structure.  This should be passed to call_usermodehelper_exec to | 
|  | * exec the process and free the structure. | 
|  | * | 
|  | * The init function is used to customize the helper process prior to | 
|  | * exec.  A non-zero return code causes the process to error out, exit, | 
|  | * and return the failure to the calling process | 
|  | * | 
|  | * The cleanup function is just before ethe subprocess_info is about to | 
|  | * be freed.  This can be used for freeing the argv and envp.  The | 
|  | * Function must be runnable in either a process context or the | 
|  | * context in which call_usermodehelper_exec is called. | 
|  | */ | 
|  | struct subprocess_info *call_usermodehelper_setup(char *path, char **argv, | 
|  | char **envp, gfp_t gfp_mask, | 
|  | int (*init)(struct subprocess_info *info, struct cred *new), | 
|  | void (*cleanup)(struct subprocess_info *info), | 
|  | void *data) | 
|  | { | 
|  | struct subprocess_info *sub_info; | 
|  | sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask); | 
|  | if (!sub_info) | 
|  | goto out; | 
|  |  | 
|  | INIT_WORK(&sub_info->work, call_usermodehelper_exec_work); | 
|  | sub_info->path = path; | 
|  | sub_info->argv = argv; | 
|  | sub_info->envp = envp; | 
|  |  | 
|  | sub_info->cleanup = cleanup; | 
|  | sub_info->init = init; | 
|  | sub_info->data = data; | 
|  | out: | 
|  | return sub_info; | 
|  | } | 
|  | EXPORT_SYMBOL(call_usermodehelper_setup); | 
|  |  | 
|  | /** | 
|  | * call_usermodehelper_exec - start a usermode application | 
|  | * @sub_info: information about the subprocessa | 
|  | * @wait: wait for the application to finish and return status. | 
|  | *        when UMH_NO_WAIT don't wait at all, but you get no useful error back | 
|  | *        when the program couldn't be exec'ed. This makes it safe to call | 
|  | *        from interrupt context. | 
|  | * | 
|  | * Runs a user-space application.  The application is started | 
|  | * asynchronously if wait is not set, and runs as a child of system workqueues. | 
|  | * (ie. it runs with full root capabilities and optimized affinity). | 
|  | */ | 
|  | int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait) | 
|  | { | 
|  | DECLARE_COMPLETION_ONSTACK(done); | 
|  | int retval = 0; | 
|  |  | 
|  | if (!sub_info->path) { | 
|  | call_usermodehelper_freeinfo(sub_info); | 
|  | return -EINVAL; | 
|  | } | 
|  | helper_lock(); | 
|  | if (usermodehelper_disabled) { | 
|  | retval = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * Set the completion pointer only if there is a waiter. | 
|  | * This makes it possible to use umh_complete to free | 
|  | * the data structure in case of UMH_NO_WAIT. | 
|  | */ | 
|  | sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done; | 
|  | sub_info->wait = wait; | 
|  |  | 
|  | queue_work(system_unbound_wq, &sub_info->work); | 
|  | if (wait == UMH_NO_WAIT)	/* task has freed sub_info */ | 
|  | goto unlock; | 
|  |  | 
|  | if (wait & UMH_KILLABLE) { | 
|  | retval = wait_for_completion_killable(&done); | 
|  | if (!retval) | 
|  | goto wait_done; | 
|  |  | 
|  | /* umh_complete() will see NULL and free sub_info */ | 
|  | if (xchg(&sub_info->complete, NULL)) | 
|  | goto unlock; | 
|  | /* fallthrough, umh_complete() was already called */ | 
|  | } | 
|  |  | 
|  | wait_for_completion(&done); | 
|  | wait_done: | 
|  | retval = sub_info->retval; | 
|  | out: | 
|  | call_usermodehelper_freeinfo(sub_info); | 
|  | unlock: | 
|  | helper_unlock(); | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL(call_usermodehelper_exec); | 
|  |  | 
|  | /** | 
|  | * call_usermodehelper() - prepare and start a usermode application | 
|  | * @path: path to usermode executable | 
|  | * @argv: arg vector for process | 
|  | * @envp: environment for process | 
|  | * @wait: wait for the application to finish and return status. | 
|  | *        when UMH_NO_WAIT don't wait at all, but you get no useful error back | 
|  | *        when the program couldn't be exec'ed. This makes it safe to call | 
|  | *        from interrupt context. | 
|  | * | 
|  | * This function is the equivalent to use call_usermodehelper_setup() and | 
|  | * call_usermodehelper_exec(). | 
|  | */ | 
|  | int call_usermodehelper(char *path, char **argv, char **envp, int wait) | 
|  | { | 
|  | struct subprocess_info *info; | 
|  | gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL; | 
|  |  | 
|  | info = call_usermodehelper_setup(path, argv, envp, gfp_mask, | 
|  | NULL, NULL, NULL); | 
|  | if (info == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return call_usermodehelper_exec(info, wait); | 
|  | } | 
|  | EXPORT_SYMBOL(call_usermodehelper); | 
|  |  | 
|  | static int proc_cap_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | struct ctl_table t; | 
|  | unsigned long cap_array[_KERNEL_CAPABILITY_U32S]; | 
|  | kernel_cap_t new_cap; | 
|  | int err, i; | 
|  |  | 
|  | if (write && (!capable(CAP_SETPCAP) || | 
|  | !capable(CAP_SYS_MODULE))) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * convert from the global kernel_cap_t to the ulong array to print to | 
|  | * userspace if this is a read. | 
|  | */ | 
|  | spin_lock(&umh_sysctl_lock); | 
|  | for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  { | 
|  | if (table->data == CAP_BSET) | 
|  | cap_array[i] = usermodehelper_bset.cap[i]; | 
|  | else if (table->data == CAP_PI) | 
|  | cap_array[i] = usermodehelper_inheritable.cap[i]; | 
|  | else | 
|  | BUG(); | 
|  | } | 
|  | spin_unlock(&umh_sysctl_lock); | 
|  |  | 
|  | t = *table; | 
|  | t.data = &cap_array; | 
|  |  | 
|  | /* | 
|  | * actually read or write and array of ulongs from userspace.  Remember | 
|  | * these are least significant 32 bits first | 
|  | */ | 
|  | err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * convert from the sysctl array of ulongs to the kernel_cap_t | 
|  | * internal representation | 
|  | */ | 
|  | for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) | 
|  | new_cap.cap[i] = cap_array[i]; | 
|  |  | 
|  | /* | 
|  | * Drop everything not in the new_cap (but don't add things) | 
|  | */ | 
|  | spin_lock(&umh_sysctl_lock); | 
|  | if (write) { | 
|  | if (table->data == CAP_BSET) | 
|  | usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap); | 
|  | if (table->data == CAP_PI) | 
|  | usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap); | 
|  | } | 
|  | spin_unlock(&umh_sysctl_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct ctl_table usermodehelper_table[] = { | 
|  | { | 
|  | .procname	= "bset", | 
|  | .data		= CAP_BSET, | 
|  | .maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long), | 
|  | .mode		= 0600, | 
|  | .proc_handler	= proc_cap_handler, | 
|  | }, | 
|  | { | 
|  | .procname	= "inheritable", | 
|  | .data		= CAP_PI, | 
|  | .maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long), | 
|  | .mode		= 0600, | 
|  | .proc_handler	= proc_cap_handler, | 
|  | }, | 
|  | { } | 
|  | }; |