| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * This contains functions for filename crypto management |
| * |
| * Copyright (C) 2015, Google, Inc. |
| * Copyright (C) 2015, Motorola Mobility |
| * |
| * Written by Uday Savagaonkar, 2014. |
| * Modified by Jaegeuk Kim, 2015. |
| * |
| * This has not yet undergone a rigorous security audit. |
| */ |
| |
| #include <linux/scatterlist.h> |
| #include <linux/ratelimit.h> |
| #include "fscrypt_private.h" |
| |
| /** |
| * fname_crypt_complete() - completion callback for filename crypto |
| * @req: The asynchronous cipher request context |
| * @res: The result of the cipher operation |
| */ |
| static void fname_crypt_complete(struct crypto_async_request *req, int res) |
| { |
| struct fscrypt_completion_result *ecr = req->data; |
| |
| if (res == -EINPROGRESS) |
| return; |
| ecr->res = res; |
| complete(&ecr->completion); |
| } |
| |
| /** |
| * fname_encrypt() - encrypt a filename |
| * |
| * The caller must have allocated sufficient memory for the @oname string. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int fname_encrypt(struct inode *inode, |
| const struct qstr *iname, struct fscrypt_str *oname) |
| { |
| struct skcipher_request *req = NULL; |
| DECLARE_FS_COMPLETION_RESULT(ecr); |
| struct fscrypt_info *ci = inode->i_crypt_info; |
| struct crypto_skcipher *tfm = ci->ci_ctfm; |
| int res = 0; |
| char iv[FS_CRYPTO_BLOCK_SIZE]; |
| struct scatterlist sg; |
| int padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK); |
| unsigned int lim; |
| unsigned int cryptlen; |
| |
| lim = inode->i_sb->s_cop->max_namelen(inode); |
| if (iname->len <= 0 || iname->len > lim) |
| return -EIO; |
| |
| /* |
| * Copy the filename to the output buffer for encrypting in-place and |
| * pad it with the needed number of NUL bytes. |
| */ |
| cryptlen = max_t(unsigned int, iname->len, FS_CRYPTO_BLOCK_SIZE); |
| cryptlen = round_up(cryptlen, padding); |
| cryptlen = min(cryptlen, lim); |
| memcpy(oname->name, iname->name, iname->len); |
| memset(oname->name + iname->len, 0, cryptlen - iname->len); |
| |
| /* Initialize the IV */ |
| memset(iv, 0, FS_CRYPTO_BLOCK_SIZE); |
| |
| /* Set up the encryption request */ |
| req = skcipher_request_alloc(tfm, GFP_NOFS); |
| if (!req) { |
| printk_ratelimited(KERN_ERR |
| "%s: skcipher_request_alloc() failed\n", __func__); |
| return -ENOMEM; |
| } |
| skcipher_request_set_callback(req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| fname_crypt_complete, &ecr); |
| sg_init_one(&sg, oname->name, cryptlen); |
| skcipher_request_set_crypt(req, &sg, &sg, cryptlen, iv); |
| |
| /* Do the encryption */ |
| res = crypto_skcipher_encrypt(req); |
| if (res == -EINPROGRESS || res == -EBUSY) { |
| /* Request is being completed asynchronously; wait for it */ |
| wait_for_completion(&ecr.completion); |
| res = ecr.res; |
| } |
| skcipher_request_free(req); |
| if (res < 0) { |
| printk_ratelimited(KERN_ERR |
| "%s: Error (error code %d)\n", __func__, res); |
| return res; |
| } |
| |
| oname->len = cryptlen; |
| return 0; |
| } |
| |
| /** |
| * fname_decrypt() - decrypt a filename |
| * |
| * The caller must have allocated sufficient memory for the @oname string. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int fname_decrypt(struct inode *inode, |
| const struct fscrypt_str *iname, |
| struct fscrypt_str *oname) |
| { |
| struct skcipher_request *req = NULL; |
| DECLARE_FS_COMPLETION_RESULT(ecr); |
| struct scatterlist src_sg, dst_sg; |
| struct fscrypt_info *ci = inode->i_crypt_info; |
| struct crypto_skcipher *tfm = ci->ci_ctfm; |
| int res = 0; |
| char iv[FS_CRYPTO_BLOCK_SIZE]; |
| unsigned lim; |
| |
| lim = inode->i_sb->s_cop->max_namelen(inode); |
| if (iname->len <= 0 || iname->len > lim) |
| return -EIO; |
| |
| /* Allocate request */ |
| req = skcipher_request_alloc(tfm, GFP_NOFS); |
| if (!req) { |
| printk_ratelimited(KERN_ERR |
| "%s: crypto_request_alloc() failed\n", __func__); |
| return -ENOMEM; |
| } |
| skcipher_request_set_callback(req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| fname_crypt_complete, &ecr); |
| |
| /* Initialize IV */ |
| memset(iv, 0, FS_CRYPTO_BLOCK_SIZE); |
| |
| /* Create decryption request */ |
| sg_init_one(&src_sg, iname->name, iname->len); |
| sg_init_one(&dst_sg, oname->name, oname->len); |
| skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, iv); |
| res = crypto_skcipher_decrypt(req); |
| if (res == -EINPROGRESS || res == -EBUSY) { |
| wait_for_completion(&ecr.completion); |
| res = ecr.res; |
| } |
| skcipher_request_free(req); |
| if (res < 0) { |
| printk_ratelimited(KERN_ERR |
| "%s: Error (error code %d)\n", __func__, res); |
| return res; |
| } |
| |
| oname->len = strnlen(oname->name, iname->len); |
| return 0; |
| } |
| |
| static const char *lookup_table = |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,"; |
| |
| #define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3) |
| |
| /** |
| * digest_encode() - |
| * |
| * Encodes the input digest using characters from the set [a-zA-Z0-9_+]. |
| * The encoded string is roughly 4/3 times the size of the input string. |
| */ |
| static int digest_encode(const char *src, int len, char *dst) |
| { |
| int i = 0, bits = 0, ac = 0; |
| char *cp = dst; |
| |
| while (i < len) { |
| ac += (((unsigned char) src[i]) << bits); |
| bits += 8; |
| do { |
| *cp++ = lookup_table[ac & 0x3f]; |
| ac >>= 6; |
| bits -= 6; |
| } while (bits >= 6); |
| i++; |
| } |
| if (bits) |
| *cp++ = lookup_table[ac & 0x3f]; |
| return cp - dst; |
| } |
| |
| static int digest_decode(const char *src, int len, char *dst) |
| { |
| int i = 0, bits = 0, ac = 0; |
| const char *p; |
| char *cp = dst; |
| |
| while (i < len) { |
| p = strchr(lookup_table, src[i]); |
| if (p == NULL || src[i] == 0) |
| return -2; |
| ac += (p - lookup_table) << bits; |
| bits += 6; |
| if (bits >= 8) { |
| *cp++ = ac & 0xff; |
| ac >>= 8; |
| bits -= 8; |
| } |
| i++; |
| } |
| if (ac) |
| return -1; |
| return cp - dst; |
| } |
| |
| u32 fscrypt_fname_encrypted_size(const struct inode *inode, u32 ilen) |
| { |
| int padding = 32; |
| struct fscrypt_info *ci = inode->i_crypt_info; |
| |
| if (ci) |
| padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK); |
| ilen = max(ilen, (u32)FS_CRYPTO_BLOCK_SIZE); |
| return round_up(ilen, padding); |
| } |
| EXPORT_SYMBOL(fscrypt_fname_encrypted_size); |
| |
| /** |
| * fscrypt_fname_crypto_alloc_obuff() - |
| * |
| * Allocates an output buffer that is sufficient for the crypto operation |
| * specified by the context and the direction. |
| */ |
| int fscrypt_fname_alloc_buffer(const struct inode *inode, |
| u32 ilen, struct fscrypt_str *crypto_str) |
| { |
| u32 olen = fscrypt_fname_encrypted_size(inode, ilen); |
| const u32 max_encoded_len = |
| max_t(u32, BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE), |
| 1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name))); |
| |
| crypto_str->len = olen; |
| olen = max(olen, max_encoded_len); |
| |
| /* |
| * Allocated buffer can hold one more character to null-terminate the |
| * string |
| */ |
| crypto_str->name = kmalloc(olen + 1, GFP_NOFS); |
| if (!(crypto_str->name)) |
| return -ENOMEM; |
| return 0; |
| } |
| EXPORT_SYMBOL(fscrypt_fname_alloc_buffer); |
| |
| /** |
| * fscrypt_fname_crypto_free_buffer() - |
| * |
| * Frees the buffer allocated for crypto operation. |
| */ |
| void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) |
| { |
| if (!crypto_str) |
| return; |
| kfree(crypto_str->name); |
| crypto_str->name = NULL; |
| } |
| EXPORT_SYMBOL(fscrypt_fname_free_buffer); |
| |
| /** |
| * fscrypt_fname_disk_to_usr() - converts a filename from disk space to user |
| * space |
| * |
| * The caller must have allocated sufficient memory for the @oname string. |
| * |
| * If the key is available, we'll decrypt the disk name; otherwise, we'll encode |
| * it for presentation. Short names are directly base64-encoded, while long |
| * names are encoded in fscrypt_digested_name format. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fscrypt_fname_disk_to_usr(struct inode *inode, |
| u32 hash, u32 minor_hash, |
| const struct fscrypt_str *iname, |
| struct fscrypt_str *oname) |
| { |
| const struct qstr qname = FSTR_TO_QSTR(iname); |
| struct fscrypt_digested_name digested_name; |
| |
| if (fscrypt_is_dot_dotdot(&qname)) { |
| oname->name[0] = '.'; |
| oname->name[iname->len - 1] = '.'; |
| oname->len = iname->len; |
| return 0; |
| } |
| |
| if (iname->len < FS_CRYPTO_BLOCK_SIZE) |
| return -EUCLEAN; |
| |
| if (inode->i_crypt_info) |
| return fname_decrypt(inode, iname, oname); |
| |
| if (iname->len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) { |
| oname->len = digest_encode(iname->name, iname->len, |
| oname->name); |
| return 0; |
| } |
| if (hash) { |
| digested_name.hash = hash; |
| digested_name.minor_hash = minor_hash; |
| } else { |
| digested_name.hash = 0; |
| digested_name.minor_hash = 0; |
| } |
| memcpy(digested_name.digest, |
| FSCRYPT_FNAME_DIGEST(iname->name, iname->len), |
| FSCRYPT_FNAME_DIGEST_SIZE); |
| oname->name[0] = '_'; |
| oname->len = 1 + digest_encode((const char *)&digested_name, |
| sizeof(digested_name), oname->name + 1); |
| return 0; |
| } |
| EXPORT_SYMBOL(fscrypt_fname_disk_to_usr); |
| |
| /** |
| * fscrypt_fname_usr_to_disk() - converts a filename from user space to disk |
| * space |
| * |
| * The caller must have allocated sufficient memory for the @oname string. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fscrypt_fname_usr_to_disk(struct inode *inode, |
| const struct qstr *iname, |
| struct fscrypt_str *oname) |
| { |
| if (fscrypt_is_dot_dotdot(iname)) { |
| oname->name[0] = '.'; |
| oname->name[iname->len - 1] = '.'; |
| oname->len = iname->len; |
| return 0; |
| } |
| if (inode->i_crypt_info) |
| return fname_encrypt(inode, iname, oname); |
| /* |
| * Without a proper key, a user is not allowed to modify the filenames |
| * in a directory. Consequently, a user space name cannot be mapped to |
| * a disk-space name |
| */ |
| return -ENOKEY; |
| } |
| EXPORT_SYMBOL(fscrypt_fname_usr_to_disk); |
| |
| /** |
| * fscrypt_setup_filename() - prepare to search a possibly encrypted directory |
| * @dir: the directory that will be searched |
| * @iname: the user-provided filename being searched for |
| * @lookup: 1 if we're allowed to proceed without the key because it's |
| * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot |
| * proceed without the key because we're going to create the dir_entry. |
| * @fname: the filename information to be filled in |
| * |
| * Given a user-provided filename @iname, this function sets @fname->disk_name |
| * to the name that would be stored in the on-disk directory entry, if possible. |
| * If the directory is unencrypted this is simply @iname. Else, if we have the |
| * directory's encryption key, then @iname is the plaintext, so we encrypt it to |
| * get the disk_name. |
| * |
| * Else, for keyless @lookup operations, @iname is the presented ciphertext, so |
| * we decode it to get either the ciphertext disk_name (for short names) or the |
| * fscrypt_digested_name (for long names). Non-@lookup operations will be |
| * impossible in this case, so we fail them with ENOKEY. |
| * |
| * If successful, fscrypt_free_filename() must be called later to clean up. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname, |
| int lookup, struct fscrypt_name *fname) |
| { |
| int ret; |
| int digested; |
| |
| memset(fname, 0, sizeof(struct fscrypt_name)); |
| fname->usr_fname = iname; |
| |
| if (!dir->i_sb->s_cop->is_encrypted(dir) || |
| fscrypt_is_dot_dotdot(iname)) { |
| fname->disk_name.name = (unsigned char *)iname->name; |
| fname->disk_name.len = iname->len; |
| return 0; |
| } |
| ret = fscrypt_get_encryption_info(dir); |
| if (ret && ret != -EOPNOTSUPP) |
| return ret; |
| |
| if (dir->i_crypt_info) { |
| ret = fscrypt_fname_alloc_buffer(dir, iname->len, |
| &fname->crypto_buf); |
| if (ret) |
| return ret; |
| ret = fname_encrypt(dir, iname, &fname->crypto_buf); |
| if (ret) |
| goto errout; |
| fname->disk_name.name = fname->crypto_buf.name; |
| fname->disk_name.len = fname->crypto_buf.len; |
| return 0; |
| } |
| if (!lookup) |
| return -ENOKEY; |
| |
| /* |
| * We don't have the key and we are doing a lookup; decode the |
| * user-supplied name |
| */ |
| if (iname->name[0] == '_') { |
| if (iname->len != |
| 1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name))) |
| return -ENOENT; |
| digested = 1; |
| } else { |
| if (iname->len > |
| BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE)) |
| return -ENOENT; |
| digested = 0; |
| } |
| |
| fname->crypto_buf.name = |
| kmalloc(max_t(size_t, FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE, |
| sizeof(struct fscrypt_digested_name)), |
| GFP_KERNEL); |
| if (fname->crypto_buf.name == NULL) |
| return -ENOMEM; |
| |
| ret = digest_decode(iname->name + digested, iname->len - digested, |
| fname->crypto_buf.name); |
| if (ret < 0) { |
| ret = -ENOENT; |
| goto errout; |
| } |
| fname->crypto_buf.len = ret; |
| if (digested) { |
| const struct fscrypt_digested_name *n = |
| (const void *)fname->crypto_buf.name; |
| fname->hash = n->hash; |
| fname->minor_hash = n->minor_hash; |
| } else { |
| fname->disk_name.name = fname->crypto_buf.name; |
| fname->disk_name.len = fname->crypto_buf.len; |
| } |
| return 0; |
| |
| errout: |
| fscrypt_fname_free_buffer(&fname->crypto_buf); |
| return ret; |
| } |
| EXPORT_SYMBOL(fscrypt_setup_filename); |