| /* |
| * Copyright IBM Corporation 2001, 2005, 2006 |
| * Copyright Dave Engebretsen & Todd Inglett 2001 |
| * Copyright Linas Vepstas 2005, 2006 |
| * Copyright 2001-2012 IBM Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com> |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/pci.h> |
| #include <linux/iommu.h> |
| #include <linux/proc_fs.h> |
| #include <linux/rbtree.h> |
| #include <linux/reboot.h> |
| #include <linux/seq_file.h> |
| #include <linux/spinlock.h> |
| #include <linux/export.h> |
| #include <linux/of.h> |
| |
| #include <linux/atomic.h> |
| #include <asm/debugfs.h> |
| #include <asm/eeh.h> |
| #include <asm/eeh_event.h> |
| #include <asm/io.h> |
| #include <asm/iommu.h> |
| #include <asm/machdep.h> |
| #include <asm/ppc-pci.h> |
| #include <asm/rtas.h> |
| #include <asm/pte-walk.h> |
| |
| |
| /** Overview: |
| * EEH, or "Enhanced Error Handling" is a PCI bridge technology for |
| * dealing with PCI bus errors that can't be dealt with within the |
| * usual PCI framework, except by check-stopping the CPU. Systems |
| * that are designed for high-availability/reliability cannot afford |
| * to crash due to a "mere" PCI error, thus the need for EEH. |
| * An EEH-capable bridge operates by converting a detected error |
| * into a "slot freeze", taking the PCI adapter off-line, making |
| * the slot behave, from the OS'es point of view, as if the slot |
| * were "empty": all reads return 0xff's and all writes are silently |
| * ignored. EEH slot isolation events can be triggered by parity |
| * errors on the address or data busses (e.g. during posted writes), |
| * which in turn might be caused by low voltage on the bus, dust, |
| * vibration, humidity, radioactivity or plain-old failed hardware. |
| * |
| * Note, however, that one of the leading causes of EEH slot |
| * freeze events are buggy device drivers, buggy device microcode, |
| * or buggy device hardware. This is because any attempt by the |
| * device to bus-master data to a memory address that is not |
| * assigned to the device will trigger a slot freeze. (The idea |
| * is to prevent devices-gone-wild from corrupting system memory). |
| * Buggy hardware/drivers will have a miserable time co-existing |
| * with EEH. |
| * |
| * Ideally, a PCI device driver, when suspecting that an isolation |
| * event has occurred (e.g. by reading 0xff's), will then ask EEH |
| * whether this is the case, and then take appropriate steps to |
| * reset the PCI slot, the PCI device, and then resume operations. |
| * However, until that day, the checking is done here, with the |
| * eeh_check_failure() routine embedded in the MMIO macros. If |
| * the slot is found to be isolated, an "EEH Event" is synthesized |
| * and sent out for processing. |
| */ |
| |
| /* If a device driver keeps reading an MMIO register in an interrupt |
| * handler after a slot isolation event, it might be broken. |
| * This sets the threshold for how many read attempts we allow |
| * before printing an error message. |
| */ |
| #define EEH_MAX_FAILS 2100000 |
| |
| /* Time to wait for a PCI slot to report status, in milliseconds */ |
| #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000) |
| |
| /* |
| * EEH probe mode support, which is part of the flags, |
| * is to support multiple platforms for EEH. Some platforms |
| * like pSeries do PCI emunation based on device tree. |
| * However, other platforms like powernv probe PCI devices |
| * from hardware. The flag is used to distinguish that. |
| * In addition, struct eeh_ops::probe would be invoked for |
| * particular OF node or PCI device so that the corresponding |
| * PE would be created there. |
| */ |
| int eeh_subsystem_flags; |
| EXPORT_SYMBOL(eeh_subsystem_flags); |
| |
| /* |
| * EEH allowed maximal frozen times. If one particular PE's |
| * frozen count in last hour exceeds this limit, the PE will |
| * be forced to be offline permanently. |
| */ |
| int eeh_max_freezes = 5; |
| |
| /* Platform dependent EEH operations */ |
| struct eeh_ops *eeh_ops = NULL; |
| |
| /* Lock to avoid races due to multiple reports of an error */ |
| DEFINE_RAW_SPINLOCK(confirm_error_lock); |
| EXPORT_SYMBOL_GPL(confirm_error_lock); |
| |
| /* Lock to protect passed flags */ |
| static DEFINE_MUTEX(eeh_dev_mutex); |
| |
| /* Buffer for reporting pci register dumps. Its here in BSS, and |
| * not dynamically alloced, so that it ends up in RMO where RTAS |
| * can access it. |
| */ |
| #define EEH_PCI_REGS_LOG_LEN 8192 |
| static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN]; |
| |
| /* |
| * The struct is used to maintain the EEH global statistic |
| * information. Besides, the EEH global statistics will be |
| * exported to user space through procfs |
| */ |
| struct eeh_stats { |
| u64 no_device; /* PCI device not found */ |
| u64 no_dn; /* OF node not found */ |
| u64 no_cfg_addr; /* Config address not found */ |
| u64 ignored_check; /* EEH check skipped */ |
| u64 total_mmio_ffs; /* Total EEH checks */ |
| u64 false_positives; /* Unnecessary EEH checks */ |
| u64 slot_resets; /* PE reset */ |
| }; |
| |
| static struct eeh_stats eeh_stats; |
| |
| static int __init eeh_setup(char *str) |
| { |
| if (!strcmp(str, "off")) |
| eeh_add_flag(EEH_FORCE_DISABLED); |
| else if (!strcmp(str, "early_log")) |
| eeh_add_flag(EEH_EARLY_DUMP_LOG); |
| |
| return 1; |
| } |
| __setup("eeh=", eeh_setup); |
| |
| /* |
| * This routine captures assorted PCI configuration space data |
| * for the indicated PCI device, and puts them into a buffer |
| * for RTAS error logging. |
| */ |
| static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len) |
| { |
| struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| u32 cfg; |
| int cap, i; |
| int n = 0, l = 0; |
| char buffer[128]; |
| |
| n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n", |
| pdn->phb->global_number, pdn->busno, |
| PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); |
| pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n", |
| pdn->phb->global_number, pdn->busno, |
| PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); |
| |
| eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg); |
| pr_warn("EEH: PCI device/vendor: %08x\n", cfg); |
| |
| eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg); |
| pr_warn("EEH: PCI cmd/status register: %08x\n", cfg); |
| |
| /* Gather bridge-specific registers */ |
| if (edev->mode & EEH_DEV_BRIDGE) { |
| eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg); |
| n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg); |
| pr_warn("EEH: Bridge secondary status: %04x\n", cfg); |
| |
| eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg); |
| n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg); |
| pr_warn("EEH: Bridge control: %04x\n", cfg); |
| } |
| |
| /* Dump out the PCI-X command and status regs */ |
| cap = edev->pcix_cap; |
| if (cap) { |
| eeh_ops->read_config(pdn, cap, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg); |
| pr_warn("EEH: PCI-X cmd: %08x\n", cfg); |
| |
| eeh_ops->read_config(pdn, cap+4, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg); |
| pr_warn("EEH: PCI-X status: %08x\n", cfg); |
| } |
| |
| /* If PCI-E capable, dump PCI-E cap 10 */ |
| cap = edev->pcie_cap; |
| if (cap) { |
| n += scnprintf(buf+n, len-n, "pci-e cap10:\n"); |
| pr_warn("EEH: PCI-E capabilities and status follow:\n"); |
| |
| for (i=0; i<=8; i++) { |
| eeh_ops->read_config(pdn, cap+4*i, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); |
| |
| if ((i % 4) == 0) { |
| if (i != 0) |
| pr_warn("%s\n", buffer); |
| |
| l = scnprintf(buffer, sizeof(buffer), |
| "EEH: PCI-E %02x: %08x ", |
| 4*i, cfg); |
| } else { |
| l += scnprintf(buffer+l, sizeof(buffer)-l, |
| "%08x ", cfg); |
| } |
| |
| } |
| |
| pr_warn("%s\n", buffer); |
| } |
| |
| /* If AER capable, dump it */ |
| cap = edev->aer_cap; |
| if (cap) { |
| n += scnprintf(buf+n, len-n, "pci-e AER:\n"); |
| pr_warn("EEH: PCI-E AER capability register set follows:\n"); |
| |
| for (i=0; i<=13; i++) { |
| eeh_ops->read_config(pdn, cap+4*i, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); |
| |
| if ((i % 4) == 0) { |
| if (i != 0) |
| pr_warn("%s\n", buffer); |
| |
| l = scnprintf(buffer, sizeof(buffer), |
| "EEH: PCI-E AER %02x: %08x ", |
| 4*i, cfg); |
| } else { |
| l += scnprintf(buffer+l, sizeof(buffer)-l, |
| "%08x ", cfg); |
| } |
| } |
| |
| pr_warn("%s\n", buffer); |
| } |
| |
| return n; |
| } |
| |
| static void *eeh_dump_pe_log(void *data, void *flag) |
| { |
| struct eeh_pe *pe = data; |
| struct eeh_dev *edev, *tmp; |
| size_t *plen = flag; |
| |
| eeh_pe_for_each_dev(pe, edev, tmp) |
| *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen, |
| EEH_PCI_REGS_LOG_LEN - *plen); |
| |
| return NULL; |
| } |
| |
| /** |
| * eeh_slot_error_detail - Generate combined log including driver log and error log |
| * @pe: EEH PE |
| * @severity: temporary or permanent error log |
| * |
| * This routine should be called to generate the combined log, which |
| * is comprised of driver log and error log. The driver log is figured |
| * out from the config space of the corresponding PCI device, while |
| * the error log is fetched through platform dependent function call. |
| */ |
| void eeh_slot_error_detail(struct eeh_pe *pe, int severity) |
| { |
| size_t loglen = 0; |
| |
| /* |
| * When the PHB is fenced or dead, it's pointless to collect |
| * the data from PCI config space because it should return |
| * 0xFF's. For ER, we still retrieve the data from the PCI |
| * config space. |
| * |
| * For pHyp, we have to enable IO for log retrieval. Otherwise, |
| * 0xFF's is always returned from PCI config space. |
| * |
| * When the @severity is EEH_LOG_PERM, the PE is going to be |
| * removed. Prior to that, the drivers for devices included in |
| * the PE will be closed. The drivers rely on working IO path |
| * to bring the devices to quiet state. Otherwise, PCI traffic |
| * from those devices after they are removed is like to cause |
| * another unexpected EEH error. |
| */ |
| if (!(pe->type & EEH_PE_PHB)) { |
| if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) || |
| severity == EEH_LOG_PERM) |
| eeh_pci_enable(pe, EEH_OPT_THAW_MMIO); |
| |
| /* |
| * The config space of some PCI devices can't be accessed |
| * when their PEs are in frozen state. Otherwise, fenced |
| * PHB might be seen. Those PEs are identified with flag |
| * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED |
| * is set automatically when the PE is put to EEH_PE_ISOLATED. |
| * |
| * Restoring BARs possibly triggers PCI config access in |
| * (OPAL) firmware and then causes fenced PHB. If the |
| * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's |
| * pointless to restore BARs and dump config space. |
| */ |
| eeh_ops->configure_bridge(pe); |
| if (!(pe->state & EEH_PE_CFG_BLOCKED)) { |
| eeh_pe_restore_bars(pe); |
| |
| pci_regs_buf[0] = 0; |
| eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen); |
| } |
| } |
| |
| eeh_ops->get_log(pe, severity, pci_regs_buf, loglen); |
| } |
| |
| /** |
| * eeh_token_to_phys - Convert EEH address token to phys address |
| * @token: I/O token, should be address in the form 0xA.... |
| * |
| * This routine should be called to convert virtual I/O address |
| * to physical one. |
| */ |
| static inline unsigned long eeh_token_to_phys(unsigned long token) |
| { |
| pte_t *ptep; |
| unsigned long pa; |
| int hugepage_shift; |
| |
| /* |
| * We won't find hugepages here(this is iomem). Hence we are not |
| * worried about _PAGE_SPLITTING/collapse. Also we will not hit |
| * page table free, because of init_mm. |
| */ |
| ptep = find_init_mm_pte(token, &hugepage_shift); |
| if (!ptep) |
| return token; |
| WARN_ON(hugepage_shift); |
| pa = pte_pfn(*ptep) << PAGE_SHIFT; |
| |
| return pa | (token & (PAGE_SIZE-1)); |
| } |
| |
| /* |
| * On PowerNV platform, we might already have fenced PHB there. |
| * For that case, it's meaningless to recover frozen PE. Intead, |
| * We have to handle fenced PHB firstly. |
| */ |
| static int eeh_phb_check_failure(struct eeh_pe *pe) |
| { |
| struct eeh_pe *phb_pe; |
| unsigned long flags; |
| int ret; |
| |
| if (!eeh_has_flag(EEH_PROBE_MODE_DEV)) |
| return -EPERM; |
| |
| /* Find the PHB PE */ |
| phb_pe = eeh_phb_pe_get(pe->phb); |
| if (!phb_pe) { |
| pr_warn("%s Can't find PE for PHB#%x\n", |
| __func__, pe->phb->global_number); |
| return -EEXIST; |
| } |
| |
| /* If the PHB has been in problematic state */ |
| eeh_serialize_lock(&flags); |
| if (phb_pe->state & EEH_PE_ISOLATED) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* Check PHB state */ |
| ret = eeh_ops->get_state(phb_pe, NULL); |
| if ((ret < 0) || |
| (ret == EEH_STATE_NOT_SUPPORT) || |
| (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) == |
| (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* Isolate the PHB and send event */ |
| eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED); |
| eeh_serialize_unlock(flags); |
| |
| pr_err("EEH: PHB#%x failure detected, location: %s\n", |
| phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe)); |
| dump_stack(); |
| eeh_send_failure_event(phb_pe); |
| |
| return 1; |
| out: |
| eeh_serialize_unlock(flags); |
| return ret; |
| } |
| |
| /** |
| * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze |
| * @edev: eeh device |
| * |
| * Check for an EEH failure for the given device node. Call this |
| * routine if the result of a read was all 0xff's and you want to |
| * find out if this is due to an EEH slot freeze. This routine |
| * will query firmware for the EEH status. |
| * |
| * Returns 0 if there has not been an EEH error; otherwise returns |
| * a non-zero value and queues up a slot isolation event notification. |
| * |
| * It is safe to call this routine in an interrupt context. |
| */ |
| int eeh_dev_check_failure(struct eeh_dev *edev) |
| { |
| int ret; |
| int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE); |
| unsigned long flags; |
| struct device_node *dn; |
| struct pci_dev *dev; |
| struct eeh_pe *pe, *parent_pe, *phb_pe; |
| int rc = 0; |
| const char *location = NULL; |
| |
| eeh_stats.total_mmio_ffs++; |
| |
| if (!eeh_enabled()) |
| return 0; |
| |
| if (!edev) { |
| eeh_stats.no_dn++; |
| return 0; |
| } |
| dev = eeh_dev_to_pci_dev(edev); |
| pe = eeh_dev_to_pe(edev); |
| |
| /* Access to IO BARs might get this far and still not want checking. */ |
| if (!pe) { |
| eeh_stats.ignored_check++; |
| pr_debug("EEH: Ignored check for %s\n", |
| eeh_pci_name(dev)); |
| return 0; |
| } |
| |
| if (!pe->addr && !pe->config_addr) { |
| eeh_stats.no_cfg_addr++; |
| return 0; |
| } |
| |
| /* |
| * On PowerNV platform, we might already have fenced PHB |
| * there and we need take care of that firstly. |
| */ |
| ret = eeh_phb_check_failure(pe); |
| if (ret > 0) |
| return ret; |
| |
| /* |
| * If the PE isn't owned by us, we shouldn't check the |
| * state. Instead, let the owner handle it if the PE has |
| * been frozen. |
| */ |
| if (eeh_pe_passed(pe)) |
| return 0; |
| |
| /* If we already have a pending isolation event for this |
| * slot, we know it's bad already, we don't need to check. |
| * Do this checking under a lock; as multiple PCI devices |
| * in one slot might report errors simultaneously, and we |
| * only want one error recovery routine running. |
| */ |
| eeh_serialize_lock(&flags); |
| rc = 1; |
| if (pe->state & EEH_PE_ISOLATED) { |
| pe->check_count++; |
| if (pe->check_count % EEH_MAX_FAILS == 0) { |
| dn = pci_device_to_OF_node(dev); |
| if (dn) |
| location = of_get_property(dn, "ibm,loc-code", |
| NULL); |
| printk(KERN_ERR "EEH: %d reads ignored for recovering device at " |
| "location=%s driver=%s pci addr=%s\n", |
| pe->check_count, |
| location ? location : "unknown", |
| eeh_driver_name(dev), eeh_pci_name(dev)); |
| printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n", |
| eeh_driver_name(dev)); |
| dump_stack(); |
| } |
| goto dn_unlock; |
| } |
| |
| /* |
| * Now test for an EEH failure. This is VERY expensive. |
| * Note that the eeh_config_addr may be a parent device |
| * in the case of a device behind a bridge, or it may be |
| * function zero of a multi-function device. |
| * In any case they must share a common PHB. |
| */ |
| ret = eeh_ops->get_state(pe, NULL); |
| |
| /* Note that config-io to empty slots may fail; |
| * they are empty when they don't have children. |
| * We will punt with the following conditions: Failure to get |
| * PE's state, EEH not support and Permanently unavailable |
| * state, PE is in good state. |
| */ |
| if ((ret < 0) || |
| (ret == EEH_STATE_NOT_SUPPORT) || |
| ((ret & active_flags) == active_flags)) { |
| eeh_stats.false_positives++; |
| pe->false_positives++; |
| rc = 0; |
| goto dn_unlock; |
| } |
| |
| /* |
| * It should be corner case that the parent PE has been |
| * put into frozen state as well. We should take care |
| * that at first. |
| */ |
| parent_pe = pe->parent; |
| while (parent_pe) { |
| /* Hit the ceiling ? */ |
| if (parent_pe->type & EEH_PE_PHB) |
| break; |
| |
| /* Frozen parent PE ? */ |
| ret = eeh_ops->get_state(parent_pe, NULL); |
| if (ret > 0 && |
| (ret & active_flags) != active_flags) |
| pe = parent_pe; |
| |
| /* Next parent level */ |
| parent_pe = parent_pe->parent; |
| } |
| |
| eeh_stats.slot_resets++; |
| |
| /* Avoid repeated reports of this failure, including problems |
| * with other functions on this device, and functions under |
| * bridges. |
| */ |
| eeh_pe_state_mark(pe, EEH_PE_ISOLATED); |
| eeh_serialize_unlock(flags); |
| |
| /* Most EEH events are due to device driver bugs. Having |
| * a stack trace will help the device-driver authors figure |
| * out what happened. So print that out. |
| */ |
| phb_pe = eeh_phb_pe_get(pe->phb); |
| pr_err("EEH: Frozen PHB#%x-PE#%x detected\n", |
| pe->phb->global_number, pe->addr); |
| pr_err("EEH: PE location: %s, PHB location: %s\n", |
| eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe)); |
| dump_stack(); |
| |
| eeh_send_failure_event(pe); |
| |
| return 1; |
| |
| dn_unlock: |
| eeh_serialize_unlock(flags); |
| return rc; |
| } |
| |
| EXPORT_SYMBOL_GPL(eeh_dev_check_failure); |
| |
| /** |
| * eeh_check_failure - Check if all 1's data is due to EEH slot freeze |
| * @token: I/O address |
| * |
| * Check for an EEH failure at the given I/O address. Call this |
| * routine if the result of a read was all 0xff's and you want to |
| * find out if this is due to an EEH slot freeze event. This routine |
| * will query firmware for the EEH status. |
| * |
| * Note this routine is safe to call in an interrupt context. |
| */ |
| int eeh_check_failure(const volatile void __iomem *token) |
| { |
| unsigned long addr; |
| struct eeh_dev *edev; |
| |
| /* Finding the phys addr + pci device; this is pretty quick. */ |
| addr = eeh_token_to_phys((unsigned long __force) token); |
| edev = eeh_addr_cache_get_dev(addr); |
| if (!edev) { |
| eeh_stats.no_device++; |
| return 0; |
| } |
| |
| return eeh_dev_check_failure(edev); |
| } |
| EXPORT_SYMBOL(eeh_check_failure); |
| |
| |
| /** |
| * eeh_pci_enable - Enable MMIO or DMA transfers for this slot |
| * @pe: EEH PE |
| * |
| * This routine should be called to reenable frozen MMIO or DMA |
| * so that it would work correctly again. It's useful while doing |
| * recovery or log collection on the indicated device. |
| */ |
| int eeh_pci_enable(struct eeh_pe *pe, int function) |
| { |
| int active_flag, rc; |
| |
| /* |
| * pHyp doesn't allow to enable IO or DMA on unfrozen PE. |
| * Also, it's pointless to enable them on unfrozen PE. So |
| * we have to check before enabling IO or DMA. |
| */ |
| switch (function) { |
| case EEH_OPT_THAW_MMIO: |
| active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED; |
| break; |
| case EEH_OPT_THAW_DMA: |
| active_flag = EEH_STATE_DMA_ACTIVE; |
| break; |
| case EEH_OPT_DISABLE: |
| case EEH_OPT_ENABLE: |
| case EEH_OPT_FREEZE_PE: |
| active_flag = 0; |
| break; |
| default: |
| pr_warn("%s: Invalid function %d\n", |
| __func__, function); |
| return -EINVAL; |
| } |
| |
| /* |
| * Check if IO or DMA has been enabled before |
| * enabling them. |
| */ |
| if (active_flag) { |
| rc = eeh_ops->get_state(pe, NULL); |
| if (rc < 0) |
| return rc; |
| |
| /* Needn't enable it at all */ |
| if (rc == EEH_STATE_NOT_SUPPORT) |
| return 0; |
| |
| /* It's already enabled */ |
| if (rc & active_flag) |
| return 0; |
| } |
| |
| |
| /* Issue the request */ |
| rc = eeh_ops->set_option(pe, function); |
| if (rc) |
| pr_warn("%s: Unexpected state change %d on " |
| "PHB#%x-PE#%x, err=%d\n", |
| __func__, function, pe->phb->global_number, |
| pe->addr, rc); |
| |
| /* Check if the request is finished successfully */ |
| if (active_flag) { |
| rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC); |
| if (rc < 0) |
| return rc; |
| |
| if (rc & active_flag) |
| return 0; |
| |
| return -EIO; |
| } |
| |
| return rc; |
| } |
| |
| static void *eeh_disable_and_save_dev_state(void *data, void *userdata) |
| { |
| struct eeh_dev *edev = data; |
| struct pci_dev *pdev = eeh_dev_to_pci_dev(edev); |
| struct pci_dev *dev = userdata; |
| |
| /* |
| * The caller should have disabled and saved the |
| * state for the specified device |
| */ |
| if (!pdev || pdev == dev) |
| return NULL; |
| |
| /* Ensure we have D0 power state */ |
| pci_set_power_state(pdev, PCI_D0); |
| |
| /* Save device state */ |
| pci_save_state(pdev); |
| |
| /* |
| * Disable device to avoid any DMA traffic and |
| * interrupt from the device |
| */ |
| pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); |
| |
| return NULL; |
| } |
| |
| static void *eeh_restore_dev_state(void *data, void *userdata) |
| { |
| struct eeh_dev *edev = data; |
| struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| struct pci_dev *pdev = eeh_dev_to_pci_dev(edev); |
| struct pci_dev *dev = userdata; |
| |
| if (!pdev) |
| return NULL; |
| |
| /* Apply customization from firmware */ |
| if (pdn && eeh_ops->restore_config) |
| eeh_ops->restore_config(pdn); |
| |
| /* The caller should restore state for the specified device */ |
| if (pdev != dev) |
| pci_restore_state(pdev); |
| |
| return NULL; |
| } |
| |
| /** |
| * pcibios_set_pcie_reset_state - Set PCI-E reset state |
| * @dev: pci device struct |
| * @state: reset state to enter |
| * |
| * Return value: |
| * 0 if success |
| */ |
| int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) |
| { |
| struct eeh_dev *edev = pci_dev_to_eeh_dev(dev); |
| struct eeh_pe *pe = eeh_dev_to_pe(edev); |
| |
| if (!pe) { |
| pr_err("%s: No PE found on PCI device %s\n", |
| __func__, pci_name(dev)); |
| return -EINVAL; |
| } |
| |
| switch (state) { |
| case pcie_deassert_reset: |
| eeh_ops->reset(pe, EEH_RESET_DEACTIVATE); |
| eeh_unfreeze_pe(pe, false); |
| if (!(pe->type & EEH_PE_VF)) |
| eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED); |
| eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev); |
| eeh_pe_state_clear(pe, EEH_PE_ISOLATED); |
| break; |
| case pcie_hot_reset: |
| eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED); |
| eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); |
| eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev); |
| if (!(pe->type & EEH_PE_VF)) |
| eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); |
| eeh_ops->reset(pe, EEH_RESET_HOT); |
| break; |
| case pcie_warm_reset: |
| eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED); |
| eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); |
| eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev); |
| if (!(pe->type & EEH_PE_VF)) |
| eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); |
| eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL); |
| break; |
| default: |
| eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED); |
| return -EINVAL; |
| }; |
| |
| return 0; |
| } |
| |
| /** |
| * eeh_set_pe_freset - Check the required reset for the indicated device |
| * @data: EEH device |
| * @flag: return value |
| * |
| * Each device might have its preferred reset type: fundamental or |
| * hot reset. The routine is used to collected the information for |
| * the indicated device and its children so that the bunch of the |
| * devices could be reset properly. |
| */ |
| static void *eeh_set_dev_freset(void *data, void *flag) |
| { |
| struct pci_dev *dev; |
| unsigned int *freset = (unsigned int *)flag; |
| struct eeh_dev *edev = (struct eeh_dev *)data; |
| |
| dev = eeh_dev_to_pci_dev(edev); |
| if (dev) |
| *freset |= dev->needs_freset; |
| |
| return NULL; |
| } |
| |
| /** |
| * eeh_pe_reset_full - Complete a full reset process on the indicated PE |
| * @pe: EEH PE |
| * |
| * This function executes a full reset procedure on a PE, including setting |
| * the appropriate flags, performing a fundamental or hot reset, and then |
| * deactivating the reset status. It is designed to be used within the EEH |
| * subsystem, as opposed to eeh_pe_reset which is exported to drivers and |
| * only performs a single operation at a time. |
| * |
| * This function will attempt to reset a PE three times before failing. |
| */ |
| int eeh_pe_reset_full(struct eeh_pe *pe) |
| { |
| int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE); |
| int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED); |
| int type = EEH_RESET_HOT; |
| unsigned int freset = 0; |
| int i, state, ret; |
| |
| /* |
| * Determine the type of reset to perform - hot or fundamental. |
| * Hot reset is the default operation, unless any device under the |
| * PE requires a fundamental reset. |
| */ |
| eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset); |
| |
| if (freset) |
| type = EEH_RESET_FUNDAMENTAL; |
| |
| /* Mark the PE as in reset state and block config space accesses */ |
| eeh_pe_state_mark(pe, reset_state); |
| |
| /* Make three attempts at resetting the bus */ |
| for (i = 0; i < 3; i++) { |
| ret = eeh_pe_reset(pe, type); |
| if (ret) |
| break; |
| |
| ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE); |
| if (ret) |
| break; |
| |
| /* Wait until the PE is in a functioning state */ |
| state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC); |
| if ((state & active_flags) == active_flags) |
| break; |
| |
| if (state < 0) { |
| pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x", |
| __func__, pe->phb->global_number, pe->addr); |
| ret = -ENOTRECOVERABLE; |
| break; |
| } |
| |
| /* Set error in case this is our last attempt */ |
| ret = -EIO; |
| pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n", |
| __func__, state, pe->phb->global_number, pe->addr, (i + 1)); |
| } |
| |
| eeh_pe_state_clear(pe, reset_state); |
| return ret; |
| } |
| |
| /** |
| * eeh_save_bars - Save device bars |
| * @edev: PCI device associated EEH device |
| * |
| * Save the values of the device bars. Unlike the restore |
| * routine, this routine is *not* recursive. This is because |
| * PCI devices are added individually; but, for the restore, |
| * an entire slot is reset at a time. |
| */ |
| void eeh_save_bars(struct eeh_dev *edev) |
| { |
| struct pci_dn *pdn; |
| int i; |
| |
| pdn = eeh_dev_to_pdn(edev); |
| if (!pdn) |
| return; |
| |
| for (i = 0; i < 16; i++) |
| eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]); |
| |
| /* |
| * For PCI bridges including root port, we need enable bus |
| * master explicitly. Otherwise, it can't fetch IODA table |
| * entries correctly. So we cache the bit in advance so that |
| * we can restore it after reset, either PHB range or PE range. |
| */ |
| if (edev->mode & EEH_DEV_BRIDGE) |
| edev->config_space[1] |= PCI_COMMAND_MASTER; |
| } |
| |
| /** |
| * eeh_ops_register - Register platform dependent EEH operations |
| * @ops: platform dependent EEH operations |
| * |
| * Register the platform dependent EEH operation callback |
| * functions. The platform should call this function before |
| * any other EEH operations. |
| */ |
| int __init eeh_ops_register(struct eeh_ops *ops) |
| { |
| if (!ops->name) { |
| pr_warn("%s: Invalid EEH ops name for %p\n", |
| __func__, ops); |
| return -EINVAL; |
| } |
| |
| if (eeh_ops && eeh_ops != ops) { |
| pr_warn("%s: EEH ops of platform %s already existing (%s)\n", |
| __func__, eeh_ops->name, ops->name); |
| return -EEXIST; |
| } |
| |
| eeh_ops = ops; |
| |
| return 0; |
| } |
| |
| /** |
| * eeh_ops_unregister - Unreigster platform dependent EEH operations |
| * @name: name of EEH platform operations |
| * |
| * Unregister the platform dependent EEH operation callback |
| * functions. |
| */ |
| int __exit eeh_ops_unregister(const char *name) |
| { |
| if (!name || !strlen(name)) { |
| pr_warn("%s: Invalid EEH ops name\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| if (eeh_ops && !strcmp(eeh_ops->name, name)) { |
| eeh_ops = NULL; |
| return 0; |
| } |
| |
| return -EEXIST; |
| } |
| |
| static int eeh_reboot_notifier(struct notifier_block *nb, |
| unsigned long action, void *unused) |
| { |
| eeh_clear_flag(EEH_ENABLED); |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block eeh_reboot_nb = { |
| .notifier_call = eeh_reboot_notifier, |
| }; |
| |
| /** |
| * eeh_init - EEH initialization |
| * |
| * Initialize EEH by trying to enable it for all of the adapters in the system. |
| * As a side effect we can determine here if eeh is supported at all. |
| * Note that we leave EEH on so failed config cycles won't cause a machine |
| * check. If a user turns off EEH for a particular adapter they are really |
| * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't |
| * grant access to a slot if EEH isn't enabled, and so we always enable |
| * EEH for all slots/all devices. |
| * |
| * The eeh-force-off option disables EEH checking globally, for all slots. |
| * Even if force-off is set, the EEH hardware is still enabled, so that |
| * newer systems can boot. |
| */ |
| int eeh_init(void) |
| { |
| struct pci_controller *hose, *tmp; |
| struct pci_dn *pdn; |
| static int cnt = 0; |
| int ret = 0; |
| |
| /* |
| * We have to delay the initialization on PowerNV after |
| * the PCI hierarchy tree has been built because the PEs |
| * are figured out based on PCI devices instead of device |
| * tree nodes |
| */ |
| if (machine_is(powernv) && cnt++ <= 0) |
| return ret; |
| |
| /* Register reboot notifier */ |
| ret = register_reboot_notifier(&eeh_reboot_nb); |
| if (ret) { |
| pr_warn("%s: Failed to register notifier (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| /* call platform initialization function */ |
| if (!eeh_ops) { |
| pr_warn("%s: Platform EEH operation not found\n", |
| __func__); |
| return -EEXIST; |
| } else if ((ret = eeh_ops->init())) |
| return ret; |
| |
| /* Initialize PHB PEs */ |
| list_for_each_entry_safe(hose, tmp, &hose_list, list_node) |
| eeh_dev_phb_init_dynamic(hose); |
| |
| /* Initialize EEH event */ |
| ret = eeh_event_init(); |
| if (ret) |
| return ret; |
| |
| /* Enable EEH for all adapters */ |
| list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { |
| pdn = hose->pci_data; |
| traverse_pci_dn(pdn, eeh_ops->probe, NULL); |
| } |
| |
| /* |
| * Call platform post-initialization. Actually, It's good chance |
| * to inform platform that EEH is ready to supply service if the |
| * I/O cache stuff has been built up. |
| */ |
| if (eeh_ops->post_init) { |
| ret = eeh_ops->post_init(); |
| if (ret) |
| return ret; |
| } |
| |
| if (eeh_enabled()) |
| pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n"); |
| else |
| pr_info("EEH: No capable adapters found\n"); |
| |
| return ret; |
| } |
| |
| core_initcall_sync(eeh_init); |
| |
| /** |
| * eeh_add_device_early - Enable EEH for the indicated device node |
| * @pdn: PCI device node for which to set up EEH |
| * |
| * This routine must be used to perform EEH initialization for PCI |
| * devices that were added after system boot (e.g. hotplug, dlpar). |
| * This routine must be called before any i/o is performed to the |
| * adapter (inluding any config-space i/o). |
| * Whether this actually enables EEH or not for this device depends |
| * on the CEC architecture, type of the device, on earlier boot |
| * command-line arguments & etc. |
| */ |
| void eeh_add_device_early(struct pci_dn *pdn) |
| { |
| struct pci_controller *phb = pdn ? pdn->phb : NULL; |
| struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| |
| if (!edev) |
| return; |
| |
| if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE)) |
| return; |
| |
| /* USB Bus children of PCI devices will not have BUID's */ |
| if (NULL == phb || |
| (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid)) |
| return; |
| |
| eeh_ops->probe(pdn, NULL); |
| } |
| |
| /** |
| * eeh_add_device_tree_early - Enable EEH for the indicated device |
| * @pdn: PCI device node |
| * |
| * This routine must be used to perform EEH initialization for the |
| * indicated PCI device that was added after system boot (e.g. |
| * hotplug, dlpar). |
| */ |
| void eeh_add_device_tree_early(struct pci_dn *pdn) |
| { |
| struct pci_dn *n; |
| |
| if (!pdn) |
| return; |
| |
| list_for_each_entry(n, &pdn->child_list, list) |
| eeh_add_device_tree_early(n); |
| eeh_add_device_early(pdn); |
| } |
| EXPORT_SYMBOL_GPL(eeh_add_device_tree_early); |
| |
| /** |
| * eeh_add_device_late - Perform EEH initialization for the indicated pci device |
| * @dev: pci device for which to set up EEH |
| * |
| * This routine must be used to complete EEH initialization for PCI |
| * devices that were added after system boot (e.g. hotplug, dlpar). |
| */ |
| void eeh_add_device_late(struct pci_dev *dev) |
| { |
| struct pci_dn *pdn; |
| struct eeh_dev *edev; |
| |
| if (!dev || !eeh_enabled()) |
| return; |
| |
| pr_debug("EEH: Adding device %s\n", pci_name(dev)); |
| |
| pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); |
| edev = pdn_to_eeh_dev(pdn); |
| if (edev->pdev == dev) { |
| pr_debug("EEH: Already referenced !\n"); |
| return; |
| } |
| |
| /* |
| * The EEH cache might not be removed correctly because of |
| * unbalanced kref to the device during unplug time, which |
| * relies on pcibios_release_device(). So we have to remove |
| * that here explicitly. |
| */ |
| if (edev->pdev) { |
| eeh_rmv_from_parent_pe(edev); |
| eeh_addr_cache_rmv_dev(edev->pdev); |
| eeh_sysfs_remove_device(edev->pdev); |
| edev->mode &= ~EEH_DEV_SYSFS; |
| |
| /* |
| * We definitely should have the PCI device removed |
| * though it wasn't correctly. So we needn't call |
| * into error handler afterwards. |
| */ |
| edev->mode |= EEH_DEV_NO_HANDLER; |
| |
| edev->pdev = NULL; |
| dev->dev.archdata.edev = NULL; |
| } |
| |
| if (eeh_has_flag(EEH_PROBE_MODE_DEV)) |
| eeh_ops->probe(pdn, NULL); |
| |
| edev->pdev = dev; |
| dev->dev.archdata.edev = edev; |
| |
| eeh_addr_cache_insert_dev(dev); |
| } |
| |
| /** |
| * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus |
| * @bus: PCI bus |
| * |
| * This routine must be used to perform EEH initialization for PCI |
| * devices which are attached to the indicated PCI bus. The PCI bus |
| * is added after system boot through hotplug or dlpar. |
| */ |
| void eeh_add_device_tree_late(struct pci_bus *bus) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| eeh_add_device_late(dev); |
| if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { |
| struct pci_bus *subbus = dev->subordinate; |
| if (subbus) |
| eeh_add_device_tree_late(subbus); |
| } |
| } |
| } |
| EXPORT_SYMBOL_GPL(eeh_add_device_tree_late); |
| |
| /** |
| * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus |
| * @bus: PCI bus |
| * |
| * This routine must be used to add EEH sysfs files for PCI |
| * devices which are attached to the indicated PCI bus. The PCI bus |
| * is added after system boot through hotplug or dlpar. |
| */ |
| void eeh_add_sysfs_files(struct pci_bus *bus) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| eeh_sysfs_add_device(dev); |
| if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { |
| struct pci_bus *subbus = dev->subordinate; |
| if (subbus) |
| eeh_add_sysfs_files(subbus); |
| } |
| } |
| } |
| EXPORT_SYMBOL_GPL(eeh_add_sysfs_files); |
| |
| /** |
| * eeh_remove_device - Undo EEH setup for the indicated pci device |
| * @dev: pci device to be removed |
| * |
| * This routine should be called when a device is removed from |
| * a running system (e.g. by hotplug or dlpar). It unregisters |
| * the PCI device from the EEH subsystem. I/O errors affecting |
| * this device will no longer be detected after this call; thus, |
| * i/o errors affecting this slot may leave this device unusable. |
| */ |
| void eeh_remove_device(struct pci_dev *dev) |
| { |
| struct eeh_dev *edev; |
| |
| if (!dev || !eeh_enabled()) |
| return; |
| edev = pci_dev_to_eeh_dev(dev); |
| |
| /* Unregister the device with the EEH/PCI address search system */ |
| pr_debug("EEH: Removing device %s\n", pci_name(dev)); |
| |
| if (!edev || !edev->pdev || !edev->pe) { |
| pr_debug("EEH: Not referenced !\n"); |
| return; |
| } |
| |
| /* |
| * During the hotplug for EEH error recovery, we need the EEH |
| * device attached to the parent PE in order for BAR restore |
| * a bit later. So we keep it for BAR restore and remove it |
| * from the parent PE during the BAR resotre. |
| */ |
| edev->pdev = NULL; |
| |
| /* |
| * The flag "in_error" is used to trace EEH devices for VFs |
| * in error state or not. It's set in eeh_report_error(). If |
| * it's not set, eeh_report_{reset,resume}() won't be called |
| * for the VF EEH device. |
| */ |
| edev->in_error = false; |
| dev->dev.archdata.edev = NULL; |
| if (!(edev->pe->state & EEH_PE_KEEP)) |
| eeh_rmv_from_parent_pe(edev); |
| else |
| edev->mode |= EEH_DEV_DISCONNECTED; |
| |
| /* |
| * We're removing from the PCI subsystem, that means |
| * the PCI device driver can't support EEH or not |
| * well. So we rely on hotplug completely to do recovery |
| * for the specific PCI device. |
| */ |
| edev->mode |= EEH_DEV_NO_HANDLER; |
| |
| eeh_addr_cache_rmv_dev(dev); |
| eeh_sysfs_remove_device(dev); |
| edev->mode &= ~EEH_DEV_SYSFS; |
| } |
| |
| int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state) |
| { |
| int ret; |
| |
| ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO); |
| if (ret) { |
| pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n", |
| __func__, ret, pe->phb->global_number, pe->addr); |
| return ret; |
| } |
| |
| ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA); |
| if (ret) { |
| pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n", |
| __func__, ret, pe->phb->global_number, pe->addr); |
| return ret; |
| } |
| |
| /* Clear software isolated state */ |
| if (sw_state && (pe->state & EEH_PE_ISOLATED)) |
| eeh_pe_state_clear(pe, EEH_PE_ISOLATED); |
| |
| return ret; |
| } |
| |
| |
| static struct pci_device_id eeh_reset_ids[] = { |
| { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */ |
| { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */ |
| { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */ |
| { 0 } |
| }; |
| |
| static int eeh_pe_change_owner(struct eeh_pe *pe) |
| { |
| struct eeh_dev *edev, *tmp; |
| struct pci_dev *pdev; |
| struct pci_device_id *id; |
| int flags, ret; |
| |
| /* Check PE state */ |
| flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE); |
| ret = eeh_ops->get_state(pe, NULL); |
| if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT) |
| return 0; |
| |
| /* Unfrozen PE, nothing to do */ |
| if ((ret & flags) == flags) |
| return 0; |
| |
| /* Frozen PE, check if it needs PE level reset */ |
| eeh_pe_for_each_dev(pe, edev, tmp) { |
| pdev = eeh_dev_to_pci_dev(edev); |
| if (!pdev) |
| continue; |
| |
| for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) { |
| if (id->vendor != PCI_ANY_ID && |
| id->vendor != pdev->vendor) |
| continue; |
| if (id->device != PCI_ANY_ID && |
| id->device != pdev->device) |
| continue; |
| if (id->subvendor != PCI_ANY_ID && |
| id->subvendor != pdev->subsystem_vendor) |
| continue; |
| if (id->subdevice != PCI_ANY_ID && |
| id->subdevice != pdev->subsystem_device) |
| continue; |
| |
| return eeh_pe_reset_and_recover(pe); |
| } |
| } |
| |
| return eeh_unfreeze_pe(pe, true); |
| } |
| |
| /** |
| * eeh_dev_open - Increase count of pass through devices for PE |
| * @pdev: PCI device |
| * |
| * Increase count of passed through devices for the indicated |
| * PE. In the result, the EEH errors detected on the PE won't be |
| * reported. The PE owner will be responsible for detection |
| * and recovery. |
| */ |
| int eeh_dev_open(struct pci_dev *pdev) |
| { |
| struct eeh_dev *edev; |
| int ret = -ENODEV; |
| |
| mutex_lock(&eeh_dev_mutex); |
| |
| /* No PCI device ? */ |
| if (!pdev) |
| goto out; |
| |
| /* No EEH device or PE ? */ |
| edev = pci_dev_to_eeh_dev(pdev); |
| if (!edev || !edev->pe) |
| goto out; |
| |
| /* |
| * The PE might have been put into frozen state, but we |
| * didn't detect that yet. The passed through PCI devices |
| * in frozen PE won't work properly. Clear the frozen state |
| * in advance. |
| */ |
| ret = eeh_pe_change_owner(edev->pe); |
| if (ret) |
| goto out; |
| |
| /* Increase PE's pass through count */ |
| atomic_inc(&edev->pe->pass_dev_cnt); |
| mutex_unlock(&eeh_dev_mutex); |
| |
| return 0; |
| out: |
| mutex_unlock(&eeh_dev_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(eeh_dev_open); |
| |
| /** |
| * eeh_dev_release - Decrease count of pass through devices for PE |
| * @pdev: PCI device |
| * |
| * Decrease count of pass through devices for the indicated PE. If |
| * there is no passed through device in PE, the EEH errors detected |
| * on the PE will be reported and handled as usual. |
| */ |
| void eeh_dev_release(struct pci_dev *pdev) |
| { |
| struct eeh_dev *edev; |
| |
| mutex_lock(&eeh_dev_mutex); |
| |
| /* No PCI device ? */ |
| if (!pdev) |
| goto out; |
| |
| /* No EEH device ? */ |
| edev = pci_dev_to_eeh_dev(pdev); |
| if (!edev || !edev->pe || !eeh_pe_passed(edev->pe)) |
| goto out; |
| |
| /* Decrease PE's pass through count */ |
| WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0); |
| eeh_pe_change_owner(edev->pe); |
| out: |
| mutex_unlock(&eeh_dev_mutex); |
| } |
| EXPORT_SYMBOL(eeh_dev_release); |
| |
| #ifdef CONFIG_IOMMU_API |
| |
| static int dev_has_iommu_table(struct device *dev, void *data) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct pci_dev **ppdev = data; |
| |
| if (!dev) |
| return 0; |
| |
| if (dev->iommu_group) { |
| *ppdev = pdev; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE |
| * @group: IOMMU group |
| * |
| * The routine is called to convert IOMMU group to EEH PE. |
| */ |
| struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group) |
| { |
| struct pci_dev *pdev = NULL; |
| struct eeh_dev *edev; |
| int ret; |
| |
| /* No IOMMU group ? */ |
| if (!group) |
| return NULL; |
| |
| ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table); |
| if (!ret || !pdev) |
| return NULL; |
| |
| /* No EEH device or PE ? */ |
| edev = pci_dev_to_eeh_dev(pdev); |
| if (!edev || !edev->pe) |
| return NULL; |
| |
| return edev->pe; |
| } |
| EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe); |
| |
| #endif /* CONFIG_IOMMU_API */ |
| |
| /** |
| * eeh_pe_set_option - Set options for the indicated PE |
| * @pe: EEH PE |
| * @option: requested option |
| * |
| * The routine is called to enable or disable EEH functionality |
| * on the indicated PE, to enable IO or DMA for the frozen PE. |
| */ |
| int eeh_pe_set_option(struct eeh_pe *pe, int option) |
| { |
| int ret = 0; |
| |
| /* Invalid PE ? */ |
| if (!pe) |
| return -ENODEV; |
| |
| /* |
| * EEH functionality could possibly be disabled, just |
| * return error for the case. And the EEH functinality |
| * isn't expected to be disabled on one specific PE. |
| */ |
| switch (option) { |
| case EEH_OPT_ENABLE: |
| if (eeh_enabled()) { |
| ret = eeh_pe_change_owner(pe); |
| break; |
| } |
| ret = -EIO; |
| break; |
| case EEH_OPT_DISABLE: |
| break; |
| case EEH_OPT_THAW_MMIO: |
| case EEH_OPT_THAW_DMA: |
| case EEH_OPT_FREEZE_PE: |
| if (!eeh_ops || !eeh_ops->set_option) { |
| ret = -ENOENT; |
| break; |
| } |
| |
| ret = eeh_pci_enable(pe, option); |
| break; |
| default: |
| pr_debug("%s: Option %d out of range (%d, %d)\n", |
| __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA); |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(eeh_pe_set_option); |
| |
| /** |
| * eeh_pe_get_state - Retrieve PE's state |
| * @pe: EEH PE |
| * |
| * Retrieve the PE's state, which includes 3 aspects: enabled |
| * DMA, enabled IO and asserted reset. |
| */ |
| int eeh_pe_get_state(struct eeh_pe *pe) |
| { |
| int result, ret = 0; |
| bool rst_active, dma_en, mmio_en; |
| |
| /* Existing PE ? */ |
| if (!pe) |
| return -ENODEV; |
| |
| if (!eeh_ops || !eeh_ops->get_state) |
| return -ENOENT; |
| |
| /* |
| * If the parent PE is owned by the host kernel and is undergoing |
| * error recovery, we should return the PE state as temporarily |
| * unavailable so that the error recovery on the guest is suspended |
| * until the recovery completes on the host. |
| */ |
| if (pe->parent && |
| !(pe->state & EEH_PE_REMOVED) && |
| (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING))) |
| return EEH_PE_STATE_UNAVAIL; |
| |
| result = eeh_ops->get_state(pe, NULL); |
| rst_active = !!(result & EEH_STATE_RESET_ACTIVE); |
| dma_en = !!(result & EEH_STATE_DMA_ENABLED); |
| mmio_en = !!(result & EEH_STATE_MMIO_ENABLED); |
| |
| if (rst_active) |
| ret = EEH_PE_STATE_RESET; |
| else if (dma_en && mmio_en) |
| ret = EEH_PE_STATE_NORMAL; |
| else if (!dma_en && !mmio_en) |
| ret = EEH_PE_STATE_STOPPED_IO_DMA; |
| else if (!dma_en && mmio_en) |
| ret = EEH_PE_STATE_STOPPED_DMA; |
| else |
| ret = EEH_PE_STATE_UNAVAIL; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(eeh_pe_get_state); |
| |
| static int eeh_pe_reenable_devices(struct eeh_pe *pe) |
| { |
| struct eeh_dev *edev, *tmp; |
| struct pci_dev *pdev; |
| int ret = 0; |
| |
| /* Restore config space */ |
| eeh_pe_restore_bars(pe); |
| |
| /* |
| * Reenable PCI devices as the devices passed |
| * through are always enabled before the reset. |
| */ |
| eeh_pe_for_each_dev(pe, edev, tmp) { |
| pdev = eeh_dev_to_pci_dev(edev); |
| if (!pdev) |
| continue; |
| |
| ret = pci_reenable_device(pdev); |
| if (ret) { |
| pr_warn("%s: Failure %d reenabling %s\n", |
| __func__, ret, pci_name(pdev)); |
| return ret; |
| } |
| } |
| |
| /* The PE is still in frozen state */ |
| return eeh_unfreeze_pe(pe, true); |
| } |
| |
| |
| /** |
| * eeh_pe_reset - Issue PE reset according to specified type |
| * @pe: EEH PE |
| * @option: reset type |
| * |
| * The routine is called to reset the specified PE with the |
| * indicated type, either fundamental reset or hot reset. |
| * PE reset is the most important part for error recovery. |
| */ |
| int eeh_pe_reset(struct eeh_pe *pe, int option) |
| { |
| int ret = 0; |
| |
| /* Invalid PE ? */ |
| if (!pe) |
| return -ENODEV; |
| |
| if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset) |
| return -ENOENT; |
| |
| switch (option) { |
| case EEH_RESET_DEACTIVATE: |
| ret = eeh_ops->reset(pe, option); |
| eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED); |
| if (ret) |
| break; |
| |
| ret = eeh_pe_reenable_devices(pe); |
| break; |
| case EEH_RESET_HOT: |
| case EEH_RESET_FUNDAMENTAL: |
| /* |
| * Proactively freeze the PE to drop all MMIO access |
| * during reset, which should be banned as it's always |
| * cause recursive EEH error. |
| */ |
| eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); |
| |
| eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); |
| ret = eeh_ops->reset(pe, option); |
| break; |
| default: |
| pr_debug("%s: Unsupported option %d\n", |
| __func__, option); |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(eeh_pe_reset); |
| |
| /** |
| * eeh_pe_configure - Configure PCI bridges after PE reset |
| * @pe: EEH PE |
| * |
| * The routine is called to restore the PCI config space for |
| * those PCI devices, especially PCI bridges affected by PE |
| * reset issued previously. |
| */ |
| int eeh_pe_configure(struct eeh_pe *pe) |
| { |
| int ret = 0; |
| |
| /* Invalid PE ? */ |
| if (!pe) |
| return -ENODEV; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(eeh_pe_configure); |
| |
| /** |
| * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE |
| * @pe: the indicated PE |
| * @type: error type |
| * @function: error function |
| * @addr: address |
| * @mask: address mask |
| * |
| * The routine is called to inject the specified PCI error, which |
| * is determined by @type and @function, to the indicated PE for |
| * testing purpose. |
| */ |
| int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func, |
| unsigned long addr, unsigned long mask) |
| { |
| /* Invalid PE ? */ |
| if (!pe) |
| return -ENODEV; |
| |
| /* Unsupported operation ? */ |
| if (!eeh_ops || !eeh_ops->err_inject) |
| return -ENOENT; |
| |
| /* Check on PCI error type */ |
| if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64) |
| return -EINVAL; |
| |
| /* Check on PCI error function */ |
| if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX) |
| return -EINVAL; |
| |
| return eeh_ops->err_inject(pe, type, func, addr, mask); |
| } |
| EXPORT_SYMBOL_GPL(eeh_pe_inject_err); |
| |
| static int proc_eeh_show(struct seq_file *m, void *v) |
| { |
| if (!eeh_enabled()) { |
| seq_printf(m, "EEH Subsystem is globally disabled\n"); |
| seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs); |
| } else { |
| seq_printf(m, "EEH Subsystem is enabled\n"); |
| seq_printf(m, |
| "no device=%llu\n" |
| "no device node=%llu\n" |
| "no config address=%llu\n" |
| "check not wanted=%llu\n" |
| "eeh_total_mmio_ffs=%llu\n" |
| "eeh_false_positives=%llu\n" |
| "eeh_slot_resets=%llu\n", |
| eeh_stats.no_device, |
| eeh_stats.no_dn, |
| eeh_stats.no_cfg_addr, |
| eeh_stats.ignored_check, |
| eeh_stats.total_mmio_ffs, |
| eeh_stats.false_positives, |
| eeh_stats.slot_resets); |
| } |
| |
| return 0; |
| } |
| |
| static int proc_eeh_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, proc_eeh_show, NULL); |
| } |
| |
| static const struct file_operations proc_eeh_operations = { |
| .open = proc_eeh_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| #ifdef CONFIG_DEBUG_FS |
| static int eeh_enable_dbgfs_set(void *data, u64 val) |
| { |
| if (val) |
| eeh_clear_flag(EEH_FORCE_DISABLED); |
| else |
| eeh_add_flag(EEH_FORCE_DISABLED); |
| |
| /* Notify the backend */ |
| if (eeh_ops->post_init) |
| eeh_ops->post_init(); |
| |
| return 0; |
| } |
| |
| static int eeh_enable_dbgfs_get(void *data, u64 *val) |
| { |
| if (eeh_enabled()) |
| *val = 0x1ul; |
| else |
| *val = 0x0ul; |
| return 0; |
| } |
| |
| static int eeh_freeze_dbgfs_set(void *data, u64 val) |
| { |
| eeh_max_freezes = val; |
| return 0; |
| } |
| |
| static int eeh_freeze_dbgfs_get(void *data, u64 *val) |
| { |
| *val = eeh_max_freezes; |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get, |
| eeh_enable_dbgfs_set, "0x%llx\n"); |
| DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get, |
| eeh_freeze_dbgfs_set, "0x%llx\n"); |
| #endif |
| |
| static int __init eeh_init_proc(void) |
| { |
| if (machine_is(pseries) || machine_is(powernv)) { |
| proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations); |
| #ifdef CONFIG_DEBUG_FS |
| debugfs_create_file("eeh_enable", 0600, |
| powerpc_debugfs_root, NULL, |
| &eeh_enable_dbgfs_ops); |
| debugfs_create_file("eeh_max_freezes", 0600, |
| powerpc_debugfs_root, NULL, |
| &eeh_freeze_dbgfs_ops); |
| #endif |
| } |
| |
| return 0; |
| } |
| __initcall(eeh_init_proc); |