| /* |
| * Code to handle x86 style IRQs plus some generic interrupt stuff. |
| * |
| * Copyright (C) 1992 Linus Torvalds |
| * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle |
| * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org) |
| * Copyright (C) 1999-2000 Grant Grundler |
| * Copyright (c) 2005 Matthew Wilcox |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| #include <linux/bitops.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/seq_file.h> |
| #include <linux/types.h> |
| #include <asm/io.h> |
| |
| #include <asm/smp.h> |
| #include <asm/ldcw.h> |
| |
| #undef PARISC_IRQ_CR16_COUNTS |
| |
| extern irqreturn_t timer_interrupt(int, void *); |
| extern irqreturn_t ipi_interrupt(int, void *); |
| |
| #define EIEM_MASK(irq) (1UL<<(CPU_IRQ_MAX - irq)) |
| |
| /* Bits in EIEM correlate with cpu_irq_action[]. |
| ** Numbered *Big Endian*! (ie bit 0 is MSB) |
| */ |
| static volatile unsigned long cpu_eiem = 0; |
| |
| /* |
| ** local ACK bitmap ... habitually set to 1, but reset to zero |
| ** between ->ack() and ->end() of the interrupt to prevent |
| ** re-interruption of a processing interrupt. |
| */ |
| static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL; |
| |
| static void cpu_mask_irq(struct irq_data *d) |
| { |
| unsigned long eirr_bit = EIEM_MASK(d->irq); |
| |
| cpu_eiem &= ~eirr_bit; |
| /* Do nothing on the other CPUs. If they get this interrupt, |
| * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't |
| * handle it, and the set_eiem() at the bottom will ensure it |
| * then gets disabled */ |
| } |
| |
| static void __cpu_unmask_irq(unsigned int irq) |
| { |
| unsigned long eirr_bit = EIEM_MASK(irq); |
| |
| cpu_eiem |= eirr_bit; |
| |
| /* This is just a simple NOP IPI. But what it does is cause |
| * all the other CPUs to do a set_eiem(cpu_eiem) at the end |
| * of the interrupt handler */ |
| smp_send_all_nop(); |
| } |
| |
| static void cpu_unmask_irq(struct irq_data *d) |
| { |
| __cpu_unmask_irq(d->irq); |
| } |
| |
| void cpu_ack_irq(struct irq_data *d) |
| { |
| unsigned long mask = EIEM_MASK(d->irq); |
| int cpu = smp_processor_id(); |
| |
| /* Clear in EIEM so we can no longer process */ |
| per_cpu(local_ack_eiem, cpu) &= ~mask; |
| |
| /* disable the interrupt */ |
| set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); |
| |
| /* and now ack it */ |
| mtctl(mask, 23); |
| } |
| |
| void cpu_eoi_irq(struct irq_data *d) |
| { |
| unsigned long mask = EIEM_MASK(d->irq); |
| int cpu = smp_processor_id(); |
| |
| /* set it in the eiems---it's no longer in process */ |
| per_cpu(local_ack_eiem, cpu) |= mask; |
| |
| /* enable the interrupt */ |
| set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); |
| } |
| |
| #ifdef CONFIG_SMP |
| int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest) |
| { |
| int cpu_dest; |
| |
| /* timer and ipi have to always be received on all CPUs */ |
| if (irqd_is_per_cpu(d)) |
| return -EINVAL; |
| |
| /* whatever mask they set, we just allow one CPU */ |
| cpu_dest = cpumask_first_and(dest, cpu_online_mask); |
| |
| return cpu_dest; |
| } |
| |
| static int cpu_set_affinity_irq(struct irq_data *d, const struct cpumask *dest, |
| bool force) |
| { |
| int cpu_dest; |
| |
| cpu_dest = cpu_check_affinity(d, dest); |
| if (cpu_dest < 0) |
| return -1; |
| |
| cpumask_copy(irq_data_get_affinity_mask(d), dest); |
| |
| return 0; |
| } |
| #endif |
| |
| static struct irq_chip cpu_interrupt_type = { |
| .name = "CPU", |
| .irq_mask = cpu_mask_irq, |
| .irq_unmask = cpu_unmask_irq, |
| .irq_ack = cpu_ack_irq, |
| .irq_eoi = cpu_eoi_irq, |
| #ifdef CONFIG_SMP |
| .irq_set_affinity = cpu_set_affinity_irq, |
| #endif |
| /* XXX: Needs to be written. We managed without it so far, but |
| * we really ought to write it. |
| */ |
| .irq_retrigger = NULL, |
| }; |
| |
| DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); |
| #define irq_stats(x) (&per_cpu(irq_stat, x)) |
| |
| /* |
| * /proc/interrupts printing for arch specific interrupts |
| */ |
| int arch_show_interrupts(struct seq_file *p, int prec) |
| { |
| int j; |
| |
| #ifdef CONFIG_DEBUG_STACKOVERFLOW |
| seq_printf(p, "%*s: ", prec, "STK"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage); |
| seq_puts(p, " Kernel stack usage\n"); |
| # ifdef CONFIG_IRQSTACKS |
| seq_printf(p, "%*s: ", prec, "IST"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage); |
| seq_puts(p, " Interrupt stack usage\n"); |
| # endif |
| #endif |
| #ifdef CONFIG_SMP |
| seq_printf(p, "%*s: ", prec, "RES"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); |
| seq_puts(p, " Rescheduling interrupts\n"); |
| #endif |
| seq_printf(p, "%*s: ", prec, "UAH"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count); |
| seq_puts(p, " Unaligned access handler traps\n"); |
| seq_printf(p, "%*s: ", prec, "FPA"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count); |
| seq_puts(p, " Floating point assist traps\n"); |
| seq_printf(p, "%*s: ", prec, "TLB"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); |
| seq_puts(p, " TLB shootdowns\n"); |
| return 0; |
| } |
| |
| int show_interrupts(struct seq_file *p, void *v) |
| { |
| int i = *(loff_t *) v, j; |
| unsigned long flags; |
| |
| if (i == 0) { |
| seq_puts(p, " "); |
| for_each_online_cpu(j) |
| seq_printf(p, " CPU%d", j); |
| |
| #ifdef PARISC_IRQ_CR16_COUNTS |
| seq_printf(p, " [min/avg/max] (CPU cycle counts)"); |
| #endif |
| seq_putc(p, '\n'); |
| } |
| |
| if (i < NR_IRQS) { |
| struct irq_desc *desc = irq_to_desc(i); |
| struct irqaction *action; |
| |
| raw_spin_lock_irqsave(&desc->lock, flags); |
| action = desc->action; |
| if (!action) |
| goto skip; |
| seq_printf(p, "%3d: ", i); |
| #ifdef CONFIG_SMP |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); |
| #else |
| seq_printf(p, "%10u ", kstat_irqs(i)); |
| #endif |
| |
| seq_printf(p, " %14s", irq_desc_get_chip(desc)->name); |
| #ifndef PARISC_IRQ_CR16_COUNTS |
| seq_printf(p, " %s", action->name); |
| |
| while ((action = action->next)) |
| seq_printf(p, ", %s", action->name); |
| #else |
| for ( ;action; action = action->next) { |
| unsigned int k, avg, min, max; |
| |
| min = max = action->cr16_hist[0]; |
| |
| for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) { |
| int hist = action->cr16_hist[k]; |
| |
| if (hist) { |
| avg += hist; |
| } else |
| break; |
| |
| if (hist > max) max = hist; |
| if (hist < min) min = hist; |
| } |
| |
| avg /= k; |
| seq_printf(p, " %s[%d/%d/%d]", action->name, |
| min,avg,max); |
| } |
| #endif |
| |
| seq_putc(p, '\n'); |
| skip: |
| raw_spin_unlock_irqrestore(&desc->lock, flags); |
| } |
| |
| if (i == NR_IRQS) |
| arch_show_interrupts(p, 3); |
| |
| return 0; |
| } |
| |
| |
| |
| /* |
| ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data. |
| ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit. |
| ** |
| ** To use txn_XXX() interfaces, get a Virtual IRQ first. |
| ** Then use that to get the Transaction address and data. |
| */ |
| |
| int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data) |
| { |
| if (irq_has_action(irq)) |
| return -EBUSY; |
| if (irq_get_chip(irq) != &cpu_interrupt_type) |
| return -EBUSY; |
| |
| /* for iosapic interrupts */ |
| if (type) { |
| irq_set_chip_and_handler(irq, type, handle_percpu_irq); |
| irq_set_chip_data(irq, data); |
| __cpu_unmask_irq(irq); |
| } |
| return 0; |
| } |
| |
| int txn_claim_irq(int irq) |
| { |
| return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq; |
| } |
| |
| /* |
| * The bits_wide parameter accommodates the limitations of the HW/SW which |
| * use these bits: |
| * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register) |
| * V-class (EPIC): 6 bits |
| * N/L/A-class (iosapic): 8 bits |
| * PCI 2.2 MSI: 16 bits |
| * Some PCI devices: 32 bits (Symbios SCSI/ATM/HyperFabric) |
| * |
| * On the service provider side: |
| * o PA 1.1 (and PA2.0 narrow mode) 5-bits (width of EIR register) |
| * o PA 2.0 wide mode 6-bits (per processor) |
| * o IA64 8-bits (0-256 total) |
| * |
| * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported |
| * by the processor...and the N/L-class I/O subsystem supports more bits than |
| * PA2.0 has. The first case is the problem. |
| */ |
| int txn_alloc_irq(unsigned int bits_wide) |
| { |
| int irq; |
| |
| /* never return irq 0 cause that's the interval timer */ |
| for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) { |
| if (cpu_claim_irq(irq, NULL, NULL) < 0) |
| continue; |
| if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide)) |
| continue; |
| return irq; |
| } |
| |
| /* unlikely, but be prepared */ |
| return -1; |
| } |
| |
| |
| unsigned long txn_affinity_addr(unsigned int irq, int cpu) |
| { |
| #ifdef CONFIG_SMP |
| struct irq_data *d = irq_get_irq_data(irq); |
| cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(cpu)); |
| #endif |
| |
| return per_cpu(cpu_data, cpu).txn_addr; |
| } |
| |
| |
| unsigned long txn_alloc_addr(unsigned int virt_irq) |
| { |
| static int next_cpu = -1; |
| |
| next_cpu++; /* assign to "next" CPU we want this bugger on */ |
| |
| /* validate entry */ |
| while ((next_cpu < nr_cpu_ids) && |
| (!per_cpu(cpu_data, next_cpu).txn_addr || |
| !cpu_online(next_cpu))) |
| next_cpu++; |
| |
| if (next_cpu >= nr_cpu_ids) |
| next_cpu = 0; /* nothing else, assign monarch */ |
| |
| return txn_affinity_addr(virt_irq, next_cpu); |
| } |
| |
| |
| unsigned int txn_alloc_data(unsigned int virt_irq) |
| { |
| return virt_irq - CPU_IRQ_BASE; |
| } |
| |
| static inline int eirr_to_irq(unsigned long eirr) |
| { |
| int bit = fls_long(eirr); |
| return (BITS_PER_LONG - bit) + TIMER_IRQ; |
| } |
| |
| #ifdef CONFIG_IRQSTACKS |
| /* |
| * IRQ STACK - used for irq handler |
| */ |
| #define IRQ_STACK_SIZE (4096 << 2) /* 16k irq stack size */ |
| |
| union irq_stack_union { |
| unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)]; |
| volatile unsigned int slock[4]; |
| volatile unsigned int lock[1]; |
| }; |
| |
| DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = { |
| .slock = { 1,1,1,1 }, |
| }; |
| #endif |
| |
| |
| int sysctl_panic_on_stackoverflow = 1; |
| |
| static inline void stack_overflow_check(struct pt_regs *regs) |
| { |
| #ifdef CONFIG_DEBUG_STACKOVERFLOW |
| #define STACK_MARGIN (256*6) |
| |
| /* Our stack starts directly behind the thread_info struct. */ |
| unsigned long stack_start = (unsigned long) current_thread_info(); |
| unsigned long sp = regs->gr[30]; |
| unsigned long stack_usage; |
| unsigned int *last_usage; |
| int cpu = smp_processor_id(); |
| |
| /* if sr7 != 0, we interrupted a userspace process which we do not want |
| * to check for stack overflow. We will only check the kernel stack. */ |
| if (regs->sr[7]) |
| return; |
| |
| /* exit if already in panic */ |
| if (sysctl_panic_on_stackoverflow < 0) |
| return; |
| |
| /* calculate kernel stack usage */ |
| stack_usage = sp - stack_start; |
| #ifdef CONFIG_IRQSTACKS |
| if (likely(stack_usage <= THREAD_SIZE)) |
| goto check_kernel_stack; /* found kernel stack */ |
| |
| /* check irq stack usage */ |
| stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack; |
| stack_usage = sp - stack_start; |
| |
| last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu); |
| if (unlikely(stack_usage > *last_usage)) |
| *last_usage = stack_usage; |
| |
| if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN))) |
| return; |
| |
| pr_emerg("stackcheck: %s will most likely overflow irq stack " |
| "(sp:%lx, stk bottom-top:%lx-%lx)\n", |
| current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE); |
| goto panic_check; |
| |
| check_kernel_stack: |
| #endif |
| |
| /* check kernel stack usage */ |
| last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu); |
| |
| if (unlikely(stack_usage > *last_usage)) |
| *last_usage = stack_usage; |
| |
| if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN))) |
| return; |
| |
| pr_emerg("stackcheck: %s will most likely overflow kernel stack " |
| "(sp:%lx, stk bottom-top:%lx-%lx)\n", |
| current->comm, sp, stack_start, stack_start + THREAD_SIZE); |
| |
| #ifdef CONFIG_IRQSTACKS |
| panic_check: |
| #endif |
| if (sysctl_panic_on_stackoverflow) { |
| sysctl_panic_on_stackoverflow = -1; /* disable further checks */ |
| panic("low stack detected by irq handler - check messages\n"); |
| } |
| #endif |
| } |
| |
| #ifdef CONFIG_IRQSTACKS |
| /* in entry.S: */ |
| void call_on_stack(unsigned long p1, void *func, unsigned long new_stack); |
| |
| static void execute_on_irq_stack(void *func, unsigned long param1) |
| { |
| union irq_stack_union *union_ptr; |
| unsigned long irq_stack; |
| volatile unsigned int *irq_stack_in_use; |
| |
| union_ptr = &per_cpu(irq_stack_union, smp_processor_id()); |
| irq_stack = (unsigned long) &union_ptr->stack; |
| irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock), |
| 64); /* align for stack frame usage */ |
| |
| /* We may be called recursive. If we are already using the irq stack, |
| * just continue to use it. Use spinlocks to serialize |
| * the irq stack usage. |
| */ |
| irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr); |
| if (!__ldcw(irq_stack_in_use)) { |
| void (*direct_call)(unsigned long p1) = func; |
| |
| /* We are using the IRQ stack already. |
| * Do direct call on current stack. */ |
| direct_call(param1); |
| return; |
| } |
| |
| /* This is where we switch to the IRQ stack. */ |
| call_on_stack(param1, func, irq_stack); |
| |
| /* free up irq stack usage. */ |
| *irq_stack_in_use = 1; |
| } |
| |
| void do_softirq_own_stack(void) |
| { |
| execute_on_irq_stack(__do_softirq, 0); |
| } |
| #endif /* CONFIG_IRQSTACKS */ |
| |
| /* ONLY called from entry.S:intr_extint() */ |
| void do_cpu_irq_mask(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs; |
| unsigned long eirr_val; |
| int irq, cpu = smp_processor_id(); |
| struct irq_data *irq_data; |
| #ifdef CONFIG_SMP |
| cpumask_t dest; |
| #endif |
| |
| old_regs = set_irq_regs(regs); |
| local_irq_disable(); |
| irq_enter(); |
| |
| eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu); |
| if (!eirr_val) |
| goto set_out; |
| irq = eirr_to_irq(eirr_val); |
| |
| irq_data = irq_get_irq_data(irq); |
| |
| /* Filter out spurious interrupts, mostly from serial port at bootup */ |
| if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data)))) |
| goto set_out; |
| |
| #ifdef CONFIG_SMP |
| cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data)); |
| if (irqd_is_per_cpu(irq_data) && |
| !cpumask_test_cpu(smp_processor_id(), &dest)) { |
| int cpu = cpumask_first(&dest); |
| |
| printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n", |
| irq, smp_processor_id(), cpu); |
| gsc_writel(irq + CPU_IRQ_BASE, |
| per_cpu(cpu_data, cpu).hpa); |
| goto set_out; |
| } |
| #endif |
| stack_overflow_check(regs); |
| |
| #ifdef CONFIG_IRQSTACKS |
| execute_on_irq_stack(&generic_handle_irq, irq); |
| #else |
| generic_handle_irq(irq); |
| #endif /* CONFIG_IRQSTACKS */ |
| |
| out: |
| irq_exit(); |
| set_irq_regs(old_regs); |
| return; |
| |
| set_out: |
| set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); |
| goto out; |
| } |
| |
| static struct irqaction timer_action = { |
| .handler = timer_interrupt, |
| .name = "timer", |
| .flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL, |
| }; |
| |
| #ifdef CONFIG_SMP |
| static struct irqaction ipi_action = { |
| .handler = ipi_interrupt, |
| .name = "IPI", |
| .flags = IRQF_PERCPU, |
| }; |
| #endif |
| |
| static void claim_cpu_irqs(void) |
| { |
| int i; |
| for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) { |
| irq_set_chip_and_handler(i, &cpu_interrupt_type, |
| handle_percpu_irq); |
| } |
| |
| irq_set_handler(TIMER_IRQ, handle_percpu_irq); |
| setup_irq(TIMER_IRQ, &timer_action); |
| #ifdef CONFIG_SMP |
| irq_set_handler(IPI_IRQ, handle_percpu_irq); |
| setup_irq(IPI_IRQ, &ipi_action); |
| #endif |
| } |
| |
| void __init init_IRQ(void) |
| { |
| local_irq_disable(); /* PARANOID - should already be disabled */ |
| mtctl(~0UL, 23); /* EIRR : clear all pending external intr */ |
| #ifdef CONFIG_SMP |
| if (!cpu_eiem) { |
| claim_cpu_irqs(); |
| cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ); |
| } |
| #else |
| claim_cpu_irqs(); |
| cpu_eiem = EIEM_MASK(TIMER_IRQ); |
| #endif |
| set_eiem(cpu_eiem); /* EIEM : enable all external intr */ |
| } |