blob: f25eca79f4e56d096ed749918752e8aca26ee68d [file] [log] [blame]
/*
* Copyright 2017 ATMEL
* Copyright 2017 Free Electrons
*
* Author: Boris Brezillon <boris.brezillon@free-electrons.com>
*
* Derived from the atmel_nand.c driver which contained the following
* copyrights:
*
* Copyright 2003 Rick Bronson
*
* Derived from drivers/mtd/nand/autcpu12.c
* Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
*
* Derived from drivers/mtd/spia.c
* Copyright 2000 Steven J. Hill (sjhill@cotw.com)
*
*
* Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
* Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
*
* Derived from Das U-Boot source code
* (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
* Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
*
* Add Programmable Multibit ECC support for various AT91 SoC
* Copyright 2012 ATMEL, Hong Xu
*
* Add Nand Flash Controller support for SAMA5 SoC
* Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* A few words about the naming convention in this file. This convention
* applies to structure and function names.
*
* Prefixes:
*
* - atmel_nand_: all generic structures/functions
* - atmel_smc_nand_: all structures/functions specific to the SMC interface
* (at91sam9 and avr32 SoCs)
* - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
* (sama5 SoCs and later)
* - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
* that is available in the HSMC block
* - <soc>_nand_: all SoC specific structures/functions
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/genalloc.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/atmel-matrix.h>
#include <linux/mfd/syscon/atmel-smc.h>
#include <linux/module.h>
#include <linux/mtd/rawnand.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/iopoll.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include "pmecc.h"
#define ATMEL_HSMC_NFC_CFG 0x0
#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
#define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
#define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
#define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
#define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
#define ATMEL_HSMC_NFC_CTRL 0x4
#define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
#define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
#define ATMEL_HSMC_NFC_SR 0x8
#define ATMEL_HSMC_NFC_IER 0xc
#define ATMEL_HSMC_NFC_IDR 0x10
#define ATMEL_HSMC_NFC_IMR 0x14
#define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
#define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
#define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
#define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
#define ATMEL_HSMC_NFC_SR_WR BIT(11)
#define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
#define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
#define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
#define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
#define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
#define ATMEL_HSMC_NFC_SR_AWB BIT(22)
#define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
#define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
ATMEL_HSMC_NFC_SR_UNDEF | \
ATMEL_HSMC_NFC_SR_AWB | \
ATMEL_HSMC_NFC_SR_NFCASE)
#define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
#define ATMEL_HSMC_NFC_ADDR 0x18
#define ATMEL_HSMC_NFC_BANK 0x1c
#define ATMEL_NFC_MAX_RB_ID 7
#define ATMEL_NFC_SRAM_SIZE 0x2400
#define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
#define ATMEL_NFC_VCMD2 BIT(18)
#define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
#define ATMEL_NFC_CSID(cs) ((cs) << 22)
#define ATMEL_NFC_DATAEN BIT(25)
#define ATMEL_NFC_NFCWR BIT(26)
#define ATMEL_NFC_MAX_ADDR_CYCLES 5
#define ATMEL_NAND_ALE_OFFSET BIT(21)
#define ATMEL_NAND_CLE_OFFSET BIT(22)
#define DEFAULT_TIMEOUT_MS 1000
#define MIN_DMA_LEN 128
enum atmel_nand_rb_type {
ATMEL_NAND_NO_RB,
ATMEL_NAND_NATIVE_RB,
ATMEL_NAND_GPIO_RB,
};
struct atmel_nand_rb {
enum atmel_nand_rb_type type;
union {
struct gpio_desc *gpio;
int id;
};
};
struct atmel_nand_cs {
int id;
struct atmel_nand_rb rb;
struct gpio_desc *csgpio;
struct {
void __iomem *virt;
dma_addr_t dma;
} io;
struct atmel_smc_cs_conf smcconf;
};
struct atmel_nand {
struct list_head node;
struct device *dev;
struct nand_chip base;
struct atmel_nand_cs *activecs;
struct atmel_pmecc_user *pmecc;
struct gpio_desc *cdgpio;
int numcs;
struct atmel_nand_cs cs[];
};
static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
{
return container_of(chip, struct atmel_nand, base);
}
enum atmel_nfc_data_xfer {
ATMEL_NFC_NO_DATA,
ATMEL_NFC_READ_DATA,
ATMEL_NFC_WRITE_DATA,
};
struct atmel_nfc_op {
u8 cs;
u8 ncmds;
u8 cmds[2];
u8 naddrs;
u8 addrs[5];
enum atmel_nfc_data_xfer data;
u32 wait;
u32 errors;
};
struct atmel_nand_controller;
struct atmel_nand_controller_caps;
struct atmel_nand_controller_ops {
int (*probe)(struct platform_device *pdev,
const struct atmel_nand_controller_caps *caps);
int (*remove)(struct atmel_nand_controller *nc);
void (*nand_init)(struct atmel_nand_controller *nc,
struct atmel_nand *nand);
int (*ecc_init)(struct atmel_nand *nand);
int (*setup_data_interface)(struct atmel_nand *nand, int csline,
const struct nand_data_interface *conf);
};
struct atmel_nand_controller_caps {
bool has_dma;
bool legacy_of_bindings;
u32 ale_offs;
u32 cle_offs;
const struct atmel_nand_controller_ops *ops;
};
struct atmel_nand_controller {
struct nand_hw_control base;
const struct atmel_nand_controller_caps *caps;
struct device *dev;
struct regmap *smc;
struct dma_chan *dmac;
struct atmel_pmecc *pmecc;
struct list_head chips;
struct clk *mck;
};
static inline struct atmel_nand_controller *
to_nand_controller(struct nand_hw_control *ctl)
{
return container_of(ctl, struct atmel_nand_controller, base);
}
struct atmel_smc_nand_controller {
struct atmel_nand_controller base;
struct regmap *matrix;
unsigned int ebi_csa_offs;
};
static inline struct atmel_smc_nand_controller *
to_smc_nand_controller(struct nand_hw_control *ctl)
{
return container_of(to_nand_controller(ctl),
struct atmel_smc_nand_controller, base);
}
struct atmel_hsmc_nand_controller {
struct atmel_nand_controller base;
struct {
struct gen_pool *pool;
void __iomem *virt;
dma_addr_t dma;
} sram;
const struct atmel_hsmc_reg_layout *hsmc_layout;
struct regmap *io;
struct atmel_nfc_op op;
struct completion complete;
int irq;
/* Only used when instantiating from legacy DT bindings. */
struct clk *clk;
};
static inline struct atmel_hsmc_nand_controller *
to_hsmc_nand_controller(struct nand_hw_control *ctl)
{
return container_of(to_nand_controller(ctl),
struct atmel_hsmc_nand_controller, base);
}
static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
{
op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
op->wait ^= status & op->wait;
return !op->wait || op->errors;
}
static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
{
struct atmel_hsmc_nand_controller *nc = data;
u32 sr, rcvd;
bool done;
regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
done = atmel_nfc_op_done(&nc->op, sr);
if (rcvd)
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
if (done)
complete(&nc->complete);
return rcvd ? IRQ_HANDLED : IRQ_NONE;
}
static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
unsigned int timeout_ms)
{
int ret;
if (!timeout_ms)
timeout_ms = DEFAULT_TIMEOUT_MS;
if (poll) {
u32 status;
ret = regmap_read_poll_timeout(nc->base.smc,
ATMEL_HSMC_NFC_SR, status,
atmel_nfc_op_done(&nc->op,
status),
0, timeout_ms * 1000);
} else {
init_completion(&nc->complete);
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
ret = wait_for_completion_timeout(&nc->complete,
msecs_to_jiffies(timeout_ms));
if (!ret)
ret = -ETIMEDOUT;
else
ret = 0;
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
}
if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
ret = -ETIMEDOUT;
}
if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
dev_err(nc->base.dev, "Access to an undefined area\n");
ret = -EIO;
}
if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
dev_err(nc->base.dev, "Access while busy\n");
ret = -EIO;
}
if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
dev_err(nc->base.dev, "Wrong access size\n");
ret = -EIO;
}
return ret;
}
static void atmel_nand_dma_transfer_finished(void *data)
{
struct completion *finished = data;
complete(finished);
}
static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
void *buf, dma_addr_t dev_dma, size_t len,
enum dma_data_direction dir)
{
DECLARE_COMPLETION_ONSTACK(finished);
dma_addr_t src_dma, dst_dma, buf_dma;
struct dma_async_tx_descriptor *tx;
dma_cookie_t cookie;
buf_dma = dma_map_single(nc->dev, buf, len, dir);
if (dma_mapping_error(nc->dev, dev_dma)) {
dev_err(nc->dev,
"Failed to prepare a buffer for DMA access\n");
goto err;
}
if (dir == DMA_FROM_DEVICE) {
src_dma = dev_dma;
dst_dma = buf_dma;
} else {
src_dma = buf_dma;
dst_dma = dev_dma;
}
tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
goto err_unmap;
}
tx->callback = atmel_nand_dma_transfer_finished;
tx->callback_param = &finished;
cookie = dmaengine_submit(tx);
if (dma_submit_error(cookie)) {
dev_err(nc->dev, "Failed to do DMA tx_submit\n");
goto err_unmap;
}
dma_async_issue_pending(nc->dmac);
wait_for_completion(&finished);
return 0;
err_unmap:
dma_unmap_single(nc->dev, buf_dma, len, dir);
err:
dev_dbg(nc->dev, "Fall back to CPU I/O\n");
return -EIO;
}
static u8 atmel_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
return ioread8(nand->activecs->io.virt);
}
static u16 atmel_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
return ioread16(nand->activecs->io.virt);
}
static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
if (chip->options & NAND_BUSWIDTH_16)
iowrite16(byte | (byte << 8), nand->activecs->io.virt);
else
iowrite8(byte, nand->activecs->io.virt);
}
static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_nand_controller *nc;
nc = to_nand_controller(chip->controller);
/*
* If the controller supports DMA, the buffer address is DMA-able and
* len is long enough to make DMA transfers profitable, let's trigger
* a DMA transfer. If it fails, fallback to PIO mode.
*/
if (nc->dmac && virt_addr_valid(buf) &&
len >= MIN_DMA_LEN &&
!atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
DMA_FROM_DEVICE))
return;
if (chip->options & NAND_BUSWIDTH_16)
ioread16_rep(nand->activecs->io.virt, buf, len / 2);
else
ioread8_rep(nand->activecs->io.virt, buf, len);
}
static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_nand_controller *nc;
nc = to_nand_controller(chip->controller);
/*
* If the controller supports DMA, the buffer address is DMA-able and
* len is long enough to make DMA transfers profitable, let's trigger
* a DMA transfer. If it fails, fallback to PIO mode.
*/
if (nc->dmac && virt_addr_valid(buf) &&
len >= MIN_DMA_LEN &&
!atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
len, DMA_TO_DEVICE))
return;
if (chip->options & NAND_BUSWIDTH_16)
iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
else
iowrite8_rep(nand->activecs->io.virt, buf, len);
}
static int atmel_nand_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
return gpiod_get_value(nand->activecs->rb.gpio);
}
static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
if (cs < 0 || cs >= nand->numcs) {
nand->activecs = NULL;
chip->dev_ready = NULL;
return;
}
nand->activecs = &nand->cs[cs];
if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
chip->dev_ready = atmel_nand_dev_ready;
}
static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_hsmc_nand_controller *nc;
u32 status;
nc = to_hsmc_nand_controller(chip->controller);
regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
}
static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_hsmc_nand_controller *nc;
nc = to_hsmc_nand_controller(chip->controller);
atmel_nand_select_chip(mtd, cs);
if (!nand->activecs) {
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
ATMEL_HSMC_NFC_CTRL_DIS);
return;
}
if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
chip->dev_ready = atmel_hsmc_nand_dev_ready;
regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
ATMEL_HSMC_NFC_CFG_RSPARE |
ATMEL_HSMC_NFC_CFG_WSPARE,
ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
ATMEL_HSMC_NFC_CFG_RSPARE);
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
ATMEL_HSMC_NFC_CTRL_EN);
}
static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
{
u8 *addrs = nc->op.addrs;
unsigned int op = 0;
u32 addr, val;
int i, ret;
nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
for (i = 0; i < nc->op.ncmds; i++)
op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
op |= ATMEL_NFC_CSID(nc->op.cs) |
ATMEL_NFC_ACYCLE(nc->op.naddrs);
if (nc->op.ncmds > 1)
op |= ATMEL_NFC_VCMD2;
addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
(addrs[3] << 24);
if (nc->op.data != ATMEL_NFC_NO_DATA) {
op |= ATMEL_NFC_DATAEN;
nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
if (nc->op.data == ATMEL_NFC_WRITE_DATA)
op |= ATMEL_NFC_NFCWR;
}
/* Clear all flags. */
regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
/* Send the command. */
regmap_write(nc->io, op, addr);
ret = atmel_nfc_wait(nc, poll, 0);
if (ret)
dev_err(nc->base.dev,
"Failed to send NAND command (err = %d)!",
ret);
/* Reset the op state. */
memset(&nc->op, 0, sizeof(nc->op));
return ret;
}
static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
unsigned int ctrl)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_hsmc_nand_controller *nc;
nc = to_hsmc_nand_controller(chip->controller);
if (ctrl & NAND_ALE) {
if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
return;
nc->op.addrs[nc->op.naddrs++] = dat;
} else if (ctrl & NAND_CLE) {
if (nc->op.ncmds > 1)
return;
nc->op.cmds[nc->op.ncmds++] = dat;
}
if (dat == NAND_CMD_NONE) {
nc->op.cs = nand->activecs->id;
atmel_nfc_exec_op(nc, true);
}
}
static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_nand_controller *nc;
nc = to_nand_controller(chip->controller);
if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
if (ctrl & NAND_NCE)
gpiod_set_value(nand->activecs->csgpio, 0);
else
gpiod_set_value(nand->activecs->csgpio, 1);
}
if (ctrl & NAND_ALE)
writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
else if (ctrl & NAND_CLE)
writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
}
static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
bool oob_required)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_hsmc_nand_controller *nc;
int ret = -EIO;
nc = to_hsmc_nand_controller(chip->controller);
if (nc->base.dmac)
ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
nc->sram.dma, mtd->writesize,
DMA_TO_DEVICE);
/* Falling back to CPU copy. */
if (ret)
memcpy_toio(nc->sram.virt, buf, mtd->writesize);
if (oob_required)
memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
mtd->oobsize);
}
static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
bool oob_required)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_hsmc_nand_controller *nc;
int ret = -EIO;
nc = to_hsmc_nand_controller(chip->controller);
if (nc->base.dmac)
ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
mtd->writesize, DMA_FROM_DEVICE);
/* Falling back to CPU copy. */
if (ret)
memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
if (oob_required)
memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
mtd->oobsize);
}
static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_hsmc_nand_controller *nc;
nc = to_hsmc_nand_controller(chip->controller);
if (column >= 0) {
nc->op.addrs[nc->op.naddrs++] = column;
/*
* 2 address cycles for the column offset on large page NANDs.
*/
if (mtd->writesize > 512)
nc->op.addrs[nc->op.naddrs++] = column >> 8;
}
if (page >= 0) {
nc->op.addrs[nc->op.naddrs++] = page;
nc->op.addrs[nc->op.naddrs++] = page >> 8;
if ((mtd->writesize > 512 && chip->chipsize > SZ_128M) ||
(mtd->writesize <= 512 && chip->chipsize > SZ_32M))
nc->op.addrs[nc->op.naddrs++] = page >> 16;
}
}
static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
{
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_nand_controller *nc;
int ret;
nc = to_nand_controller(chip->controller);
if (raw)
return 0;
ret = atmel_pmecc_enable(nand->pmecc, op);
if (ret)
dev_err(nc->dev,
"Failed to enable ECC engine (err = %d)\n", ret);
return ret;
}
static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
{
struct atmel_nand *nand = to_atmel_nand(chip);
if (!raw)
atmel_pmecc_disable(nand->pmecc);
}
static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
{
struct atmel_nand *nand = to_atmel_nand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand_controller *nc;
struct mtd_oob_region oobregion;
void *eccbuf;
int ret, i;
nc = to_nand_controller(chip->controller);
if (raw)
return 0;
ret = atmel_pmecc_wait_rdy(nand->pmecc);
if (ret) {
dev_err(nc->dev,
"Failed to transfer NAND page data (err = %d)\n",
ret);
return ret;
}
mtd_ooblayout_ecc(mtd, 0, &oobregion);
eccbuf = chip->oob_poi + oobregion.offset;
for (i = 0; i < chip->ecc.steps; i++) {
atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
eccbuf);
eccbuf += chip->ecc.bytes;
}
return 0;
}
static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
bool raw)
{
struct atmel_nand *nand = to_atmel_nand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand_controller *nc;
struct mtd_oob_region oobregion;
int ret, i, max_bitflips = 0;
void *databuf, *eccbuf;
nc = to_nand_controller(chip->controller);
if (raw)
return 0;
ret = atmel_pmecc_wait_rdy(nand->pmecc);
if (ret) {
dev_err(nc->dev,
"Failed to read NAND page data (err = %d)\n",
ret);
return ret;
}
mtd_ooblayout_ecc(mtd, 0, &oobregion);
eccbuf = chip->oob_poi + oobregion.offset;
databuf = buf;
for (i = 0; i < chip->ecc.steps; i++) {
ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
eccbuf);
if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
ret = nand_check_erased_ecc_chunk(databuf,
chip->ecc.size,
eccbuf,
chip->ecc.bytes,
NULL, 0,
chip->ecc.strength);
if (ret >= 0)
max_bitflips = max(ret, max_bitflips);
else
mtd->ecc_stats.failed++;
databuf += chip->ecc.size;
eccbuf += chip->ecc.bytes;
}
return max_bitflips;
}
static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
bool oob_required, int page, bool raw)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand *nand = to_atmel_nand(chip);
int ret;
ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
if (ret)
return ret;
atmel_nand_write_buf(mtd, buf, mtd->writesize);
ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
if (ret) {
atmel_pmecc_disable(nand->pmecc);
return ret;
}
atmel_nand_pmecc_disable(chip, raw);
atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
}
static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
struct nand_chip *chip,
const u8 *buf, int oob_required,
int page)
{
return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
}
static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
bool oob_required, int page, bool raw)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
if (ret)
return ret;
atmel_nand_read_buf(mtd, buf, mtd->writesize);
atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
atmel_nand_pmecc_disable(chip, raw);
return ret;
}
static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
}
static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
}
static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
const u8 *buf, bool oob_required,
int page, bool raw)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_hsmc_nand_controller *nc;
int ret, status;
nc = to_hsmc_nand_controller(chip->controller);
atmel_nfc_copy_to_sram(chip, buf, false);
nc->op.cmds[0] = NAND_CMD_SEQIN;
nc->op.ncmds = 1;
atmel_nfc_set_op_addr(chip, page, 0x0);
nc->op.cs = nand->activecs->id;
nc->op.data = ATMEL_NFC_WRITE_DATA;
ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
if (ret)
return ret;
ret = atmel_nfc_exec_op(nc, false);
if (ret) {
atmel_nand_pmecc_disable(chip, raw);
dev_err(nc->base.dev,
"Failed to transfer NAND page data (err = %d)\n",
ret);
return ret;
}
ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
atmel_nand_pmecc_disable(chip, raw);
if (ret)
return ret;
atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
nc->op.cmds[0] = NAND_CMD_PAGEPROG;
nc->op.ncmds = 1;
nc->op.cs = nand->activecs->id;
ret = atmel_nfc_exec_op(nc, false);
if (ret)
dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
ret);
status = chip->waitfunc(mtd, chip);
if (status & NAND_STATUS_FAIL)
return -EIO;
return ret;
}
static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
struct nand_chip *chip,
const u8 *buf, int oob_required,
int page)
{
return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
false);
}
static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
struct nand_chip *chip,
const u8 *buf,
int oob_required, int page)
{
return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
true);
}
static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
bool oob_required, int page,
bool raw)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_hsmc_nand_controller *nc;
int ret;
nc = to_hsmc_nand_controller(chip->controller);
/*
* Optimized read page accessors only work when the NAND R/B pin is
* connected to a native SoC R/B pin. If that's not the case, fallback
* to the non-optimized one.
*/
if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
raw);
}
nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
if (mtd->writesize > 512)
nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
atmel_nfc_set_op_addr(chip, page, 0x0);
nc->op.cs = nand->activecs->id;
nc->op.data = ATMEL_NFC_READ_DATA;
ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
if (ret)
return ret;
ret = atmel_nfc_exec_op(nc, false);
if (ret) {
atmel_nand_pmecc_disable(chip, raw);
dev_err(nc->base.dev,
"Failed to load NAND page data (err = %d)\n",
ret);
return ret;
}
atmel_nfc_copy_from_sram(chip, buf, true);
ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
atmel_nand_pmecc_disable(chip, raw);
return ret;
}
static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
false);
}
static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
struct nand_chip *chip,
u8 *buf, int oob_required,
int page)
{
return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
true);
}
static int atmel_nand_pmecc_init(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_nand_controller *nc;
struct atmel_pmecc_user_req req;
nc = to_nand_controller(chip->controller);
if (!nc->pmecc) {
dev_err(nc->dev, "HW ECC not supported\n");
return -ENOTSUPP;
}
if (nc->caps->legacy_of_bindings) {
u32 val;
if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
&val))
chip->ecc.strength = val;
if (!of_property_read_u32(nc->dev->of_node,
"atmel,pmecc-sector-size",
&val))
chip->ecc.size = val;
}
if (chip->ecc.options & NAND_ECC_MAXIMIZE)
req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
else if (chip->ecc.strength)
req.ecc.strength = chip->ecc.strength;
else if (chip->ecc_strength_ds)
req.ecc.strength = chip->ecc_strength_ds;
else
req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
if (chip->ecc.size)
req.ecc.sectorsize = chip->ecc.size;
else if (chip->ecc_step_ds)
req.ecc.sectorsize = chip->ecc_step_ds;
else
req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
req.pagesize = mtd->writesize;
req.oobsize = mtd->oobsize;
if (mtd->writesize <= 512) {
req.ecc.bytes = 4;
req.ecc.ooboffset = 0;
} else {
req.ecc.bytes = mtd->oobsize - 2;
req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
}
nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
if (IS_ERR(nand->pmecc))
return PTR_ERR(nand->pmecc);
chip->ecc.algo = NAND_ECC_BCH;
chip->ecc.size = req.ecc.sectorsize;
chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
chip->ecc.strength = req.ecc.strength;
chip->options |= NAND_NO_SUBPAGE_WRITE;
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
return 0;
}
static int atmel_nand_ecc_init(struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
struct atmel_nand_controller *nc;
int ret;
nc = to_nand_controller(chip->controller);
switch (chip->ecc.mode) {
case NAND_ECC_NONE:
case NAND_ECC_SOFT:
/*
* Nothing to do, the core will initialize everything for us.
*/
break;
case NAND_ECC_HW:
ret = atmel_nand_pmecc_init(chip);
if (ret)
return ret;
chip->ecc.read_page = atmel_nand_pmecc_read_page;
chip->ecc.write_page = atmel_nand_pmecc_write_page;
chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
break;
default:
/* Other modes are not supported. */
dev_err(nc->dev, "Unsupported ECC mode: %d\n",
chip->ecc.mode);
return -ENOTSUPP;
}
return 0;
}
static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
int ret;
ret = atmel_nand_ecc_init(nand);
if (ret)
return ret;
if (chip->ecc.mode != NAND_ECC_HW)
return 0;
/* Adjust the ECC operations for the HSMC IP. */
chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
return 0;
}
static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
const struct nand_data_interface *conf,
struct atmel_smc_cs_conf *smcconf)
{
u32 ncycles, totalcycles, timeps, mckperiodps;
struct atmel_nand_controller *nc;
int ret;
nc = to_nand_controller(nand->base.controller);
/* DDR interface not supported. */
if (conf->type != NAND_SDR_IFACE)
return -ENOTSUPP;
/*
* tRC < 30ns implies EDO mode. This controller does not support this
* mode.
*/
if (conf->timings.sdr.tRC_min < 30000)
return -ENOTSUPP;
atmel_smc_cs_conf_init(smcconf);
mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
mckperiodps *= 1000;
/*
* Set write pulse timing. This one is easy to extract:
*
* NWE_PULSE = tWP
*/
ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
totalcycles = ncycles;
ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
ncycles);
if (ret)
return ret;
/*
* The write setup timing depends on the operation done on the NAND.
* All operations goes through the same data bus, but the operation
* type depends on the address we are writing to (ALE/CLE address
* lines).
* Since we have no way to differentiate the different operations at
* the SMC level, we must consider the worst case (the biggest setup
* time among all operation types):
*
* NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
*/
timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
conf->timings.sdr.tALS_min);
timeps = max(timeps, conf->timings.sdr.tDS_min);
ncycles = DIV_ROUND_UP(timeps, mckperiodps);
ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
totalcycles += ncycles;
ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
ncycles);
if (ret)
return ret;
/*
* As for the write setup timing, the write hold timing depends on the
* operation done on the NAND:
*
* NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
*/
timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
conf->timings.sdr.tALH_min);
timeps = max3(timeps, conf->timings.sdr.tDH_min,
conf->timings.sdr.tWH_min);
ncycles = DIV_ROUND_UP(timeps, mckperiodps);
totalcycles += ncycles;
/*
* The write cycle timing is directly matching tWC, but is also
* dependent on the other timings on the setup and hold timings we
* calculated earlier, which gives:
*
* NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
*/
ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
ncycles = max(totalcycles, ncycles);
ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
ncycles);
if (ret)
return ret;
/*
* We don't want the CS line to be toggled between each byte/word
* transfer to the NAND. The only way to guarantee that is to have the
* NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
*
* NCS_WR_PULSE = NWE_CYCLE
*/
ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
ncycles);
if (ret)
return ret;
/*
* As for the write setup timing, the read hold timing depends on the
* operation done on the NAND:
*
* NRD_HOLD = max(tREH, tRHOH)
*/
timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
ncycles = DIV_ROUND_UP(timeps, mckperiodps);
totalcycles = ncycles;
/*
* TDF = tRHZ - NRD_HOLD
*/
ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
ncycles -= totalcycles;
/*
* In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
* we might end up with a config that does not fit in the TDF field.
* Just take the max value in this case and hope that the NAND is more
* tolerant than advertised.
*/
if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
ncycles = ATMEL_SMC_MODE_TDF_MAX;
else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
ncycles = ATMEL_SMC_MODE_TDF_MIN;
smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
/*
* Read pulse timing directly matches tRP:
*
* NRD_PULSE = tRP
*/
ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
totalcycles += ncycles;
ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
ncycles);
if (ret)
return ret;
/*
* The write cycle timing is directly matching tWC, but is also
* dependent on the setup and hold timings we calculated earlier,
* which gives:
*
* NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
*
* NRD_SETUP is always 0.
*/
ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
ncycles = max(totalcycles, ncycles);
ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
ncycles);
if (ret)
return ret;
/*
* We don't want the CS line to be toggled between each byte/word
* transfer from the NAND. The only way to guarantee that is to have
* the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
*
* NCS_RD_PULSE = NRD_CYCLE
*/
ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
ncycles);
if (ret)
return ret;
/* Txxx timings are directly matching tXXX ones. */
ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
ret = atmel_smc_cs_conf_set_timing(smcconf,
ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
ncycles);
if (ret)
return ret;
ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
ret = atmel_smc_cs_conf_set_timing(smcconf,
ATMEL_HSMC_TIMINGS_TADL_SHIFT,
ncycles);
/*
* Version 4 of the ONFI spec mandates that tADL be at least 400
* nanoseconds, but, depending on the master clock rate, 400 ns may not
* fit in the tADL field of the SMC reg. We need to relax the check and
* accept the -ERANGE return code.
*
* Note that previous versions of the ONFI spec had a lower tADL_min
* (100 or 200 ns). It's not clear why this timing constraint got
* increased but it seems most NANDs are fine with values lower than
* 400ns, so we should be safe.
*/
if (ret && ret != -ERANGE)
return ret;
ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
ret = atmel_smc_cs_conf_set_timing(smcconf,
ATMEL_HSMC_TIMINGS_TAR_SHIFT,
ncycles);
if (ret)
return ret;
ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
ret = atmel_smc_cs_conf_set_timing(smcconf,
ATMEL_HSMC_TIMINGS_TRR_SHIFT,
ncycles);
if (ret)
return ret;
ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
ret = atmel_smc_cs_conf_set_timing(smcconf,
ATMEL_HSMC_TIMINGS_TWB_SHIFT,
ncycles);
if (ret)
return ret;
/* Attach the CS line to the NFC logic. */
smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
/* Set the appropriate data bus width. */
if (nand->base.options & NAND_BUSWIDTH_16)
smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
/* Operate in NRD/NWE READ/WRITEMODE. */
smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
ATMEL_SMC_MODE_WRITEMODE_NWE;
return 0;
}
static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
int csline,
const struct nand_data_interface *conf)
{
struct atmel_nand_controller *nc;
struct atmel_smc_cs_conf smcconf;
struct atmel_nand_cs *cs;
int ret;
nc = to_nand_controller(nand->base.controller);
ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
if (ret)
return ret;
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
cs = &nand->cs[csline];
cs->smcconf = smcconf;
atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
return 0;
}
static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
int csline,
const struct nand_data_interface *conf)
{
struct atmel_hsmc_nand_controller *nc;
struct atmel_smc_cs_conf smcconf;
struct atmel_nand_cs *cs;
int ret;
nc = to_hsmc_nand_controller(nand->base.controller);
ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
if (ret)
return ret;
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
cs = &nand->cs[csline];
cs->smcconf = smcconf;
if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
&cs->smcconf);
return 0;
}
static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
const struct nand_data_interface *conf)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_nand_controller *nc;
nc = to_nand_controller(nand->base.controller);
if (csline >= nand->numcs ||
(csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
return -EINVAL;
return nc->caps->ops->setup_data_interface(nand, csline, conf);
}
static void atmel_nand_init(struct atmel_nand_controller *nc,
struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
struct mtd_info *mtd = nand_to_mtd(chip);
mtd->dev.parent = nc->dev;
nand->base.controller = &nc->base;
chip->cmd_ctrl = atmel_nand_cmd_ctrl;
chip->read_byte = atmel_nand_read_byte;
chip->read_word = atmel_nand_read_word;
chip->write_byte = atmel_nand_write_byte;
chip->read_buf = atmel_nand_read_buf;
chip->write_buf = atmel_nand_write_buf;
chip->select_chip = atmel_nand_select_chip;
if (nc->mck && nc->caps->ops->setup_data_interface)
chip->setup_data_interface = atmel_nand_setup_data_interface;
/* Some NANDs require a longer delay than the default one (20us). */
chip->chip_delay = 40;
/*
* Use a bounce buffer when the buffer passed by the MTD user is not
* suitable for DMA.
*/
if (nc->dmac)
chip->options |= NAND_USE_BOUNCE_BUFFER;
/* Default to HW ECC if pmecc is available. */
if (nc->pmecc)
chip->ecc.mode = NAND_ECC_HW;
}
static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
struct atmel_smc_nand_controller *smc_nc;
int i;
atmel_nand_init(nc, nand);
smc_nc = to_smc_nand_controller(chip->controller);
if (!smc_nc->matrix)
return;
/* Attach the CS to the NAND Flash logic. */
for (i = 0; i < nand->numcs; i++)
regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
BIT(nand->cs[i].id), BIT(nand->cs[i].id));
}
static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
atmel_nand_init(nc, nand);
/* Overload some methods for the HSMC controller. */
chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
chip->select_chip = atmel_hsmc_nand_select_chip;
}
static int atmel_nand_detect(struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand_controller *nc;
int ret;
nc = to_nand_controller(chip->controller);
ret = nand_scan_ident(mtd, nand->numcs, NULL);
if (ret)
dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret);
return ret;
}
static int atmel_nand_unregister(struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
ret = mtd_device_unregister(mtd);
if (ret)
return ret;
nand_cleanup(chip);
list_del(&nand->node);
return 0;
}
static int atmel_nand_register(struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand_controller *nc;
int ret;
nc = to_nand_controller(chip->controller);
if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
/*
* We keep the MTD name unchanged to avoid breaking platforms
* where the MTD cmdline parser is used and the bootloader
* has not been updated to use the new naming scheme.
*/
mtd->name = "atmel_nand";
} else if (!mtd->name) {
/*
* If the new bindings are used and the bootloader has not been
* updated to pass a new mtdparts parameter on the cmdline, you
* should define the following property in your nand node:
*
* label = "atmel_nand";
*
* This way, mtd->name will be set by the core when
* nand_set_flash_node() is called.
*/
mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
"%s:nand.%d", dev_name(nc->dev),
nand->cs[0].id);
if (!mtd->name) {
dev_err(nc->dev, "Failed to allocate mtd->name\n");
return -ENOMEM;
}
}
ret = nand_scan_tail(mtd);
if (ret) {
dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret);
return ret;
}
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
nand_cleanup(chip);
return ret;
}
list_add_tail(&nand->node, &nc->chips);
return 0;
}
static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
struct device_node *np,
int reg_cells)
{
struct atmel_nand *nand;
struct gpio_desc *gpio;
int numcs, ret, i;
numcs = of_property_count_elems_of_size(np, "reg",
reg_cells * sizeof(u32));
if (numcs < 1) {
dev_err(nc->dev, "Missing or invalid reg property\n");
return ERR_PTR(-EINVAL);
}
nand = devm_kzalloc(nc->dev,
sizeof(*nand) + (numcs * sizeof(*nand->cs)),
GFP_KERNEL);
if (!nand) {
dev_err(nc->dev, "Failed to allocate NAND object\n");
return ERR_PTR(-ENOMEM);
}
nand->numcs = numcs;
gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
&np->fwnode, GPIOD_IN,
"nand-det");
if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
dev_err(nc->dev,
"Failed to get detect gpio (err = %ld)\n",
PTR_ERR(gpio));
return ERR_CAST(gpio);
}
if (!IS_ERR(gpio))
nand->cdgpio = gpio;
for (i = 0; i < numcs; i++) {
struct resource res;
u32 val;
ret = of_address_to_resource(np, 0, &res);
if (ret) {
dev_err(nc->dev, "Invalid reg property (err = %d)\n",
ret);
return ERR_PTR(ret);
}
ret = of_property_read_u32_index(np, "reg", i * reg_cells,
&val);
if (ret) {
dev_err(nc->dev, "Invalid reg property (err = %d)\n",
ret);
return ERR_PTR(ret);
}
nand->cs[i].id = val;
nand->cs[i].io.dma = res.start;
nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
if (IS_ERR(nand->cs[i].io.virt))
return ERR_CAST(nand->cs[i].io.virt);
if (!of_property_read_u32(np, "atmel,rb", &val)) {
if (val > ATMEL_NFC_MAX_RB_ID)
return ERR_PTR(-EINVAL);
nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
nand->cs[i].rb.id = val;
} else {
gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
"rb", i, &np->fwnode,
GPIOD_IN, "nand-rb");
if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
dev_err(nc->dev,
"Failed to get R/B gpio (err = %ld)\n",
PTR_ERR(gpio));
return ERR_CAST(gpio);
}
if (!IS_ERR(gpio)) {
nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
nand->cs[i].rb.gpio = gpio;
}
}
gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
i, &np->fwnode,
GPIOD_OUT_HIGH,
"nand-cs");
if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
dev_err(nc->dev,
"Failed to get CS gpio (err = %ld)\n",
PTR_ERR(gpio));
return ERR_CAST(gpio);
}
if (!IS_ERR(gpio))
nand->cs[i].csgpio = gpio;
}
nand_set_flash_node(&nand->base, np);
return nand;
}
static int
atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
struct atmel_nand *nand)
{
int ret;
/* No card inserted, skip this NAND. */
if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
dev_info(nc->dev, "No SmartMedia card inserted.\n");
return 0;
}
nc->caps->ops->nand_init(nc, nand);
ret = atmel_nand_detect(nand);
if (ret)
return ret;
ret = nc->caps->ops->ecc_init(nand);
if (ret)
return ret;
return atmel_nand_register(nand);
}
static int
atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
{
struct atmel_nand *nand, *tmp;
int ret;
list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
ret = atmel_nand_unregister(nand);
if (ret)
return ret;
}
return 0;
}
static int
atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
{
struct device *dev = nc->dev;
struct platform_device *pdev = to_platform_device(dev);
struct atmel_nand *nand;
struct gpio_desc *gpio;
struct resource *res;
/*
* Legacy bindings only allow connecting a single NAND with a unique CS
* line to the controller.
*/
nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
GFP_KERNEL);
if (!nand)
return -ENOMEM;
nand->numcs = 1;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
if (IS_ERR(nand->cs[0].io.virt))
return PTR_ERR(nand->cs[0].io.virt);
nand->cs[0].io.dma = res->start;
/*
* The old driver was hardcoding the CS id to 3 for all sama5
* controllers. Since this id is only meaningful for the sama5
* controller we can safely assign this id to 3 no matter the
* controller.
* If one wants to connect a NAND to a different CS line, he will
* have to use the new bindings.
*/
nand->cs[0].id = 3;
/* R/B GPIO. */
gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
if (IS_ERR(gpio)) {
dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
PTR_ERR(gpio));
return PTR_ERR(gpio);
}
if (gpio) {
nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
nand->cs[0].rb.gpio = gpio;
}
/* CS GPIO. */
gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
if (IS_ERR(gpio)) {
dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
PTR_ERR(gpio));
return PTR_ERR(gpio);
}
nand->cs[0].csgpio = gpio;
/* Card detect GPIO. */
gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
if (IS_ERR(gpio)) {
dev_err(dev,
"Failed to get detect gpio (err = %ld)\n",
PTR_ERR(gpio));
return PTR_ERR(gpio);
}
nand->cdgpio = gpio;
nand_set_flash_node(&nand->base, nc->dev->of_node);
return atmel_nand_controller_add_nand(nc, nand);
}
static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
{
struct device_node *np, *nand_np;
struct device *dev = nc->dev;
int ret, reg_cells;
u32 val;
/* We do not retrieve the SMC syscon when parsing old DTs. */
if (nc->caps->legacy_of_bindings)
return atmel_nand_controller_legacy_add_nands(nc);
np = dev->of_node;
ret = of_property_read_u32(np, "#address-cells", &val);
if (ret) {
dev_err(dev, "missing #address-cells property\n");
return ret;
}
reg_cells = val;
ret = of_property_read_u32(np, "#size-cells", &val);
if (ret) {
dev_err(dev, "missing #address-cells property\n");
return ret;
}
reg_cells += val;
for_each_child_of_node(np, nand_np) {
struct atmel_nand *nand;
nand = atmel_nand_create(nc, nand_np, reg_cells);
if (IS_ERR(nand)) {
ret = PTR_ERR(nand);
goto err;
}
ret = atmel_nand_controller_add_nand(nc, nand);
if (ret)
goto err;
}
return 0;
err:
atmel_nand_controller_remove_nands(nc);
return ret;
}
static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
{
if (nc->dmac)
dma_release_channel(nc->dmac);
clk_put(nc->mck);
}
static const struct of_device_id atmel_matrix_of_ids[] = {
{
.compatible = "atmel,at91sam9260-matrix",
.data = (void *)AT91SAM9260_MATRIX_EBICSA,
},
{
.compatible = "atmel,at91sam9261-matrix",
.data = (void *)AT91SAM9261_MATRIX_EBICSA,
},
{
.compatible = "atmel,at91sam9263-matrix",
.data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
},
{
.compatible = "atmel,at91sam9rl-matrix",
.data = (void *)AT91SAM9RL_MATRIX_EBICSA,
},
{
.compatible = "atmel,at91sam9g45-matrix",
.data = (void *)AT91SAM9G45_MATRIX_EBICSA,
},
{
.compatible = "atmel,at91sam9n12-matrix",
.data = (void *)AT91SAM9N12_MATRIX_EBICSA,
},
{
.compatible = "atmel,at91sam9x5-matrix",
.data = (void *)AT91SAM9X5_MATRIX_EBICSA,
},
{ /* sentinel */ },
};
static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
struct platform_device *pdev,
const struct atmel_nand_controller_caps *caps)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
int ret;
nand_hw_control_init(&nc->base);
INIT_LIST_HEAD(&nc->chips);
nc->dev = dev;
nc->caps = caps;
platform_set_drvdata(pdev, nc);
nc->pmecc = devm_atmel_pmecc_get(dev);
if (IS_ERR(nc->pmecc)) {
ret = PTR_ERR(nc->pmecc);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Could not get PMECC object (err = %d)\n",
ret);
return ret;
}
if (nc->caps->has_dma) {
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
nc->dmac = dma_request_channel(mask, NULL, NULL);
if (!nc->dmac)
dev_err(nc->dev, "Failed to request DMA channel\n");
}
/* We do not retrieve the SMC syscon when parsing old DTs. */
if (nc->caps->legacy_of_bindings)
return 0;
nc->mck = of_clk_get(dev->parent->of_node, 0);
if (IS_ERR(nc->mck)) {
dev_err(dev, "Failed to retrieve MCK clk\n");
return PTR_ERR(nc->mck);
}
np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
if (!np) {
dev_err(dev, "Missing or invalid atmel,smc property\n");
return -EINVAL;
}
nc->smc = syscon_node_to_regmap(np);
of_node_put(np);
if (IS_ERR(nc->smc)) {
ret = PTR_ERR(nc->smc);
dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
return ret;
}
return 0;
}
static int
atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
{
struct device *dev = nc->base.dev;
const struct of_device_id *match;
struct device_node *np;
int ret;
/* We do not retrieve the matrix syscon when parsing old DTs. */
if (nc->base.caps->legacy_of_bindings)
return 0;
np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
if (!np)
return 0;
match = of_match_node(atmel_matrix_of_ids, np);
if (!match) {
of_node_put(np);
return 0;
}
nc->matrix = syscon_node_to_regmap(np);
of_node_put(np);
if (IS_ERR(nc->matrix)) {
ret = PTR_ERR(nc->matrix);
dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
return ret;
}
nc->ebi_csa_offs = (unsigned int)match->data;
/*
* The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
* add 4 to ->ebi_csa_offs.
*/
if (of_device_is_compatible(dev->parent->of_node,
"atmel,at91sam9263-ebi1"))
nc->ebi_csa_offs += 4;
return 0;
}
static int
atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
{
struct regmap_config regmap_conf = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
struct device *dev = nc->base.dev;
struct device_node *nand_np, *nfc_np;
void __iomem *iomem;
struct resource res;
int ret;
nand_np = dev->of_node;
nfc_np = of_find_compatible_node(dev->of_node, NULL,
"atmel,sama5d3-nfc");
nc->clk = of_clk_get(nfc_np, 0);
if (IS_ERR(nc->clk)) {
ret = PTR_ERR(nc->clk);
dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
ret);
goto out;
}
ret = clk_prepare_enable(nc->clk);
if (ret) {
dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
ret);
goto out;
}
nc->irq = of_irq_get(nand_np, 0);
if (nc->irq <= 0) {
ret = nc->irq ?: -ENXIO;
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get IRQ number (err = %d)\n",
ret);
goto out;
}
ret = of_address_to_resource(nfc_np, 0, &res);
if (ret) {
dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
ret);
goto out;
}
iomem = devm_ioremap_resource(dev, &res);
if (IS_ERR(iomem)) {
ret = PTR_ERR(iomem);
goto out;
}
regmap_conf.name = "nfc-io";
regmap_conf.max_register = resource_size(&res) - 4;
nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
if (IS_ERR(nc->io)) {
ret = PTR_ERR(nc->io);
dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
ret);
goto out;
}
ret = of_address_to_resource(nfc_np, 1, &res);
if (ret) {
dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
ret);
goto out;
}
iomem = devm_ioremap_resource(dev, &res);
if (IS_ERR(iomem)) {
ret = PTR_ERR(iomem);
goto out;
}
regmap_conf.name = "smc";
regmap_conf.max_register = resource_size(&res) - 4;
nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
if (IS_ERR(nc->base.smc)) {
ret = PTR_ERR(nc->base.smc);
dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
ret);
goto out;
}
ret = of_address_to_resource(nfc_np, 2, &res);
if (ret) {
dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
ret);
goto out;
}
nc->sram.virt = devm_ioremap_resource(dev, &res);
if (IS_ERR(nc->sram.virt)) {
ret = PTR_ERR(nc->sram.virt);
goto out;
}
nc->sram.dma = res.start;
out:
of_node_put(nfc_np);
return ret;
}
static int
atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
{
struct device *dev = nc->base.dev;
struct device_node *np;
int ret;
np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
if (!np) {
dev_err(dev, "Missing or invalid atmel,smc property\n");
return -EINVAL;
}
nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
nc->irq = of_irq_get(np, 0);
of_node_put(np);
if (nc->irq <= 0) {
ret = nc->irq ?: -ENXIO;
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get IRQ number (err = %d)\n",
ret);
return ret;
}
np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
if (!np) {
dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
return -EINVAL;
}
nc->io = syscon_node_to_regmap(np);
of_node_put(np);
if (IS_ERR(nc->io)) {
ret = PTR_ERR(nc->io);
dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
return ret;
}
nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
"atmel,nfc-sram", 0);
if (!nc->sram.pool) {
dev_err(nc->base.dev, "Missing SRAM\n");
return -ENOMEM;
}
nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool,
ATMEL_NFC_SRAM_SIZE,
&nc->sram.dma);
if (!nc->sram.virt) {
dev_err(nc->base.dev,
"Could not allocate memory from the NFC SRAM pool\n");
return -ENOMEM;
}
return 0;
}
static int
atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
{
struct atmel_hsmc_nand_controller *hsmc_nc;
int ret;
ret = atmel_nand_controller_remove_nands(nc);
if (ret)
return ret;
hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
if (hsmc_nc->sram.pool)
gen_pool_free(hsmc_nc->sram.pool,
(unsigned long)hsmc_nc->sram.virt,
ATMEL_NFC_SRAM_SIZE);
if (hsmc_nc->clk) {
clk_disable_unprepare(hsmc_nc->clk);
clk_put(hsmc_nc->clk);
}
atmel_nand_controller_cleanup(nc);
return 0;
}
static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
const struct atmel_nand_controller_caps *caps)
{
struct device *dev = &pdev->dev;
struct atmel_hsmc_nand_controller *nc;
int ret;
nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
if (!nc)
return -ENOMEM;
ret = atmel_nand_controller_init(&nc->base, pdev, caps);
if (ret)
return ret;
if (caps->legacy_of_bindings)
ret = atmel_hsmc_nand_controller_legacy_init(nc);
else
ret = atmel_hsmc_nand_controller_init(nc);
if (ret)
return ret;
/* Make sure all irqs are masked before registering our IRQ handler. */
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
IRQF_SHARED, "nfc", nc);
if (ret) {
dev_err(dev,
"Could not get register NFC interrupt handler (err = %d)\n",
ret);
goto err;
}
/* Initial NFC configuration. */
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
ATMEL_HSMC_NFC_CFG_DTO_MAX);
ret = atmel_nand_controller_add_nands(&nc->base);
if (ret)
goto err;
return 0;
err:
atmel_hsmc_nand_controller_remove(&nc->base);
return ret;
}
static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
.probe = atmel_hsmc_nand_controller_probe,
.remove = atmel_hsmc_nand_controller_remove,
.ecc_init = atmel_hsmc_nand_ecc_init,
.nand_init = atmel_hsmc_nand_init,
.setup_data_interface = atmel_hsmc_nand_setup_data_interface,
};
static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
.has_dma = true,
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &atmel_hsmc_nc_ops,
};
/* Only used to parse old bindings. */
static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
.has_dma = true,
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &atmel_hsmc_nc_ops,
.legacy_of_bindings = true,
};
static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
const struct atmel_nand_controller_caps *caps)
{
struct device *dev = &pdev->dev;
struct atmel_smc_nand_controller *nc;
int ret;
nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
if (!nc)
return -ENOMEM;
ret = atmel_nand_controller_init(&nc->base, pdev, caps);
if (ret)
return ret;
ret = atmel_smc_nand_controller_init(nc);
if (ret)
return ret;
return atmel_nand_controller_add_nands(&nc->base);
}
static int
atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
{
int ret;
ret = atmel_nand_controller_remove_nands(nc);
if (ret)
return ret;
atmel_nand_controller_cleanup(nc);
return 0;
}
/*
* The SMC reg layout of at91rm9200 is completely different which prevents us
* from re-using atmel_smc_nand_setup_data_interface() for the
* ->setup_data_interface() hook.
* At this point, there's no support for the at91rm9200 SMC IP, so we leave
* ->setup_data_interface() unassigned.
*/
static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
.probe = atmel_smc_nand_controller_probe,
.remove = atmel_smc_nand_controller_remove,
.ecc_init = atmel_nand_ecc_init,
.nand_init = atmel_smc_nand_init,
};
static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &at91rm9200_nc_ops,
};
static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
.probe = atmel_smc_nand_controller_probe,
.remove = atmel_smc_nand_controller_remove,
.ecc_init = atmel_nand_ecc_init,
.nand_init = atmel_smc_nand_init,
.setup_data_interface = atmel_smc_nand_setup_data_interface,
};
static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &atmel_smc_nc_ops,
};
static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
.ale_offs = BIT(22),
.cle_offs = BIT(21),
.ops = &atmel_smc_nc_ops,
};
static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
.has_dma = true,
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &atmel_smc_nc_ops,
};
/* Only used to parse old bindings. */
static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &atmel_smc_nc_ops,
.legacy_of_bindings = true,
};
static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
.ale_offs = BIT(22),
.cle_offs = BIT(21),
.ops = &atmel_smc_nc_ops,
.legacy_of_bindings = true,
};
static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
.has_dma = true,
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &atmel_smc_nc_ops,
.legacy_of_bindings = true,
};
static const struct of_device_id atmel_nand_controller_of_ids[] = {
{
.compatible = "atmel,at91rm9200-nand-controller",
.data = &atmel_rm9200_nc_caps,
},
{
.compatible = "atmel,at91sam9260-nand-controller",
.data = &atmel_sam9260_nc_caps,
},
{
.compatible = "atmel,at91sam9261-nand-controller",
.data = &atmel_sam9261_nc_caps,
},
{
.compatible = "atmel,at91sam9g45-nand-controller",
.data = &atmel_sam9g45_nc_caps,
},
{
.compatible = "atmel,sama5d3-nand-controller",
.data = &atmel_sama5_nc_caps,
},
/* Support for old/deprecated bindings: */
{
.compatible = "atmel,at91rm9200-nand",
.data = &atmel_rm9200_nand_caps,
},
{
.compatible = "atmel,sama5d4-nand",
.data = &atmel_rm9200_nand_caps,
},
{
.compatible = "atmel,sama5d2-nand",
.data = &atmel_rm9200_nand_caps,
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
static int atmel_nand_controller_probe(struct platform_device *pdev)
{
const struct atmel_nand_controller_caps *caps;
if (pdev->id_entry)
caps = (void *)pdev->id_entry->driver_data;
else
caps = of_device_get_match_data(&pdev->dev);
if (!caps) {
dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
return -EINVAL;
}
if (caps->legacy_of_bindings) {
u32 ale_offs = 21;
/*
* If we are parsing legacy DT props and the DT contains a
* valid NFC node, forward the request to the sama5 logic.
*/
if (of_find_compatible_node(pdev->dev.of_node, NULL,
"atmel,sama5d3-nfc"))
caps = &atmel_sama5_nand_caps;
/*
* Even if the compatible says we are dealing with an
* at91rm9200 controller, the atmel,nand-has-dma specify that
* this controller supports DMA, which means we are in fact
* dealing with an at91sam9g45+ controller.
*/
if (!caps->has_dma &&
of_property_read_bool(pdev->dev.of_node,
"atmel,nand-has-dma"))
caps = &atmel_sam9g45_nand_caps;
/*
* All SoCs except the at91sam9261 are assigning ALE to A21 and
* CLE to A22. If atmel,nand-addr-offset != 21 this means we're
* actually dealing with an at91sam9261 controller.
*/
of_property_read_u32(pdev->dev.of_node,
"atmel,nand-addr-offset", &ale_offs);
if (ale_offs != 21)
caps = &atmel_sam9261_nand_caps;
}
return caps->ops->probe(pdev, caps);
}
static int atmel_nand_controller_remove(struct platform_device *pdev)
{
struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
return nc->caps->ops->remove(nc);
}
static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
{
struct atmel_nand_controller *nc = dev_get_drvdata(dev);
struct atmel_nand *nand;
list_for_each_entry(nand, &nc->chips, node) {
int i;
for (i = 0; i < nand->numcs; i++)
nand_reset(&nand->base, i);
}
return 0;
}
static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
atmel_nand_controller_resume);
static struct platform_driver atmel_nand_controller_driver = {
.driver = {
.name = "atmel-nand-controller",
.of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
},
.probe = atmel_nand_controller_probe,
.remove = atmel_nand_controller_remove,
};
module_platform_driver(atmel_nand_controller_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
MODULE_ALIAS("platform:atmel-nand-controller");