|  | /* | 
|  | *  Kernel Probes (KProbes) | 
|  | *  arch/mips/kernel/kprobes.c | 
|  | * | 
|  | *  Copyright 2006 Sony Corp. | 
|  | *  Copyright 2010 Cavium Networks | 
|  | * | 
|  | *  Some portions copied from the powerpc version. | 
|  | * | 
|  | *   Copyright (C) IBM Corporation, 2002, 2004 | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; version 2 of the License. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; if not, write to the Free Software | 
|  | *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  |  | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/branch.h> | 
|  | #include <asm/break.h> | 
|  | #include <asm/inst.h> | 
|  |  | 
|  | static const union mips_instruction breakpoint_insn = { | 
|  | .b_format = { | 
|  | .opcode = spec_op, | 
|  | .code = BRK_KPROBE_BP, | 
|  | .func = break_op | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const union mips_instruction breakpoint2_insn = { | 
|  | .b_format = { | 
|  | .opcode = spec_op, | 
|  | .code = BRK_KPROBE_SSTEPBP, | 
|  | .func = break_op | 
|  | } | 
|  | }; | 
|  |  | 
|  | DEFINE_PER_CPU(struct kprobe *, current_kprobe); | 
|  | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
|  |  | 
|  | static int __kprobes insn_has_delayslot(union mips_instruction insn) | 
|  | { | 
|  | switch (insn.i_format.opcode) { | 
|  |  | 
|  | /* | 
|  | * This group contains: | 
|  | * jr and jalr are in r_format format. | 
|  | */ | 
|  | case spec_op: | 
|  | switch (insn.r_format.func) { | 
|  | case jr_op: | 
|  | case jalr_op: | 
|  | break; | 
|  | default: | 
|  | goto insn_ok; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This group contains: | 
|  | * bltz_op, bgez_op, bltzl_op, bgezl_op, | 
|  | * bltzal_op, bgezal_op, bltzall_op, bgezall_op. | 
|  | */ | 
|  | case bcond_op: | 
|  |  | 
|  | /* | 
|  | * These are unconditional and in j_format. | 
|  | */ | 
|  | case jal_op: | 
|  | case j_op: | 
|  |  | 
|  | /* | 
|  | * These are conditional and in i_format. | 
|  | */ | 
|  | case beq_op: | 
|  | case beql_op: | 
|  | case bne_op: | 
|  | case bnel_op: | 
|  | case blez_op: | 
|  | case blezl_op: | 
|  | case bgtz_op: | 
|  | case bgtzl_op: | 
|  |  | 
|  | /* | 
|  | * These are the FPA/cp1 branch instructions. | 
|  | */ | 
|  | case cop1_op: | 
|  |  | 
|  | #ifdef CONFIG_CPU_CAVIUM_OCTEON | 
|  | case lwc2_op: /* This is bbit0 on Octeon */ | 
|  | case ldc2_op: /* This is bbit032 on Octeon */ | 
|  | case swc2_op: /* This is bbit1 on Octeon */ | 
|  | case sdc2_op: /* This is bbit132 on Octeon */ | 
|  | #endif | 
|  | return 1; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | insn_ok: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * insn_has_ll_or_sc function checks whether instruction is ll or sc | 
|  | * one; putting breakpoint on top of atomic ll/sc pair is bad idea; | 
|  | * so we need to prevent it and refuse kprobes insertion for such | 
|  | * instructions; cannot do much about breakpoint in the middle of | 
|  | * ll/sc pair; it is upto user to avoid those places | 
|  | */ | 
|  | static int __kprobes insn_has_ll_or_sc(union mips_instruction insn) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | switch (insn.i_format.opcode) { | 
|  | case ll_op: | 
|  | case lld_op: | 
|  | case sc_op: | 
|  | case scd_op: | 
|  | ret = 1; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
|  | { | 
|  | union mips_instruction insn; | 
|  | union mips_instruction prev_insn; | 
|  | int ret = 0; | 
|  |  | 
|  | insn = p->addr[0]; | 
|  |  | 
|  | if (insn_has_ll_or_sc(insn)) { | 
|  | pr_notice("Kprobes for ll and sc instructions are not" | 
|  | "supported\n"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if ((probe_kernel_read(&prev_insn, p->addr - 1, | 
|  | sizeof(mips_instruction)) == 0) && | 
|  | insn_has_delayslot(prev_insn)) { | 
|  | pr_notice("Kprobes for branch delayslot are not supported\n"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* insn: must be on special executable page on mips. */ | 
|  | p->ainsn.insn = get_insn_slot(); | 
|  | if (!p->ainsn.insn) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In the kprobe->ainsn.insn[] array we store the original | 
|  | * instruction at index zero and a break trap instruction at | 
|  | * index one. | 
|  | * | 
|  | * On MIPS arch if the instruction at probed address is a | 
|  | * branch instruction, we need to execute the instruction at | 
|  | * Branch Delayslot (BD) at the time of probe hit. As MIPS also | 
|  | * doesn't have single stepping support, the BD instruction can | 
|  | * not be executed in-line and it would be executed on SSOL slot | 
|  | * using a normal breakpoint instruction in the next slot. | 
|  | * So, read the instruction and save it for later execution. | 
|  | */ | 
|  | if (insn_has_delayslot(insn)) | 
|  | memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t)); | 
|  | else | 
|  | memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t)); | 
|  |  | 
|  | p->ainsn.insn[1] = breakpoint2_insn; | 
|  | p->opcode = *p->addr; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
|  | { | 
|  | *p->addr = breakpoint_insn; | 
|  | flush_insn_slot(p); | 
|  | } | 
|  |  | 
|  | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
|  | { | 
|  | *p->addr = p->opcode; | 
|  | flush_insn_slot(p); | 
|  | } | 
|  |  | 
|  | void __kprobes arch_remove_kprobe(struct kprobe *p) | 
|  | { | 
|  | if (p->ainsn.insn) { | 
|  | free_insn_slot(p->ainsn.insn, 0); | 
|  | p->ainsn.insn = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | kcb->prev_kprobe.kp = kprobe_running(); | 
|  | kcb->prev_kprobe.status = kcb->kprobe_status; | 
|  | kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR; | 
|  | kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR; | 
|  | kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc; | 
|  | } | 
|  |  | 
|  | static void restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; | 
|  | kcb->kprobe_status = kcb->prev_kprobe.status; | 
|  | kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR; | 
|  | kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR; | 
|  | kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc; | 
|  | } | 
|  |  | 
|  | static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | 
|  | struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | __get_cpu_var(current_kprobe) = p; | 
|  | kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE); | 
|  | kcb->kprobe_saved_epc = regs->cp0_epc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * evaluate_branch_instrucion - | 
|  | * | 
|  | * Evaluate the branch instruction at probed address during probe hit. The | 
|  | * result of evaluation would be the updated epc. The insturction in delayslot | 
|  | * would actually be single stepped using a normal breakpoint) on SSOL slot. | 
|  | * | 
|  | * The result is also saved in the kprobe control block for later use, | 
|  | * in case we need to execute the delayslot instruction. The latter will be | 
|  | * false for NOP instruction in dealyslot and the branch-likely instructions | 
|  | * when the branch is taken. And for those cases we set a flag as | 
|  | * SKIP_DELAYSLOT in the kprobe control block | 
|  | */ | 
|  | static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs, | 
|  | struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | union mips_instruction insn = p->opcode; | 
|  | long epc; | 
|  | int ret = 0; | 
|  |  | 
|  | epc = regs->cp0_epc; | 
|  | if (epc & 3) | 
|  | goto unaligned; | 
|  |  | 
|  | if (p->ainsn.insn->word == 0) | 
|  | kcb->flags |= SKIP_DELAYSLOT; | 
|  | else | 
|  | kcb->flags &= ~SKIP_DELAYSLOT; | 
|  |  | 
|  | ret = __compute_return_epc_for_insn(regs, insn); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret == BRANCH_LIKELY_TAKEN) | 
|  | kcb->flags |= SKIP_DELAYSLOT; | 
|  |  | 
|  | kcb->target_epc = regs->cp0_epc; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | unaligned: | 
|  | pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm); | 
|  | force_sig(SIGBUS, current); | 
|  | return -EFAULT; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs, | 
|  | struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | regs->cp0_status &= ~ST0_IE; | 
|  |  | 
|  | /* single step inline if the instruction is a break */ | 
|  | if (p->opcode.word == breakpoint_insn.word || | 
|  | p->opcode.word == breakpoint2_insn.word) | 
|  | regs->cp0_epc = (unsigned long)p->addr; | 
|  | else if (insn_has_delayslot(p->opcode)) { | 
|  | ret = evaluate_branch_instruction(p, regs, kcb); | 
|  | if (ret < 0) { | 
|  | pr_notice("Kprobes: Error in evaluating branch\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  | regs->cp0_epc = (unsigned long)&p->ainsn.insn[0]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called after single-stepping.  p->addr is the address of the | 
|  | * instruction whose first byte has been replaced by the "break 0" | 
|  | * instruction.	 To avoid the SMP problems that can occur when we | 
|  | * temporarily put back the original opcode to single-step, we | 
|  | * single-stepped a copy of the instruction.  The address of this | 
|  | * copy is p->ainsn.insn. | 
|  | * | 
|  | * This function prepares to return from the post-single-step | 
|  | * breakpoint trap. In case of branch instructions, the target | 
|  | * epc to be restored. | 
|  | */ | 
|  | static void __kprobes resume_execution(struct kprobe *p, | 
|  | struct pt_regs *regs, | 
|  | struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | if (insn_has_delayslot(p->opcode)) | 
|  | regs->cp0_epc = kcb->target_epc; | 
|  | else { | 
|  | unsigned long orig_epc = kcb->kprobe_saved_epc; | 
|  | regs->cp0_epc = orig_epc + 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __kprobes kprobe_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe *p; | 
|  | int ret = 0; | 
|  | kprobe_opcode_t *addr; | 
|  | struct kprobe_ctlblk *kcb; | 
|  |  | 
|  | addr = (kprobe_opcode_t *) regs->cp0_epc; | 
|  |  | 
|  | /* | 
|  | * We don't want to be preempted for the entire | 
|  | * duration of kprobe processing | 
|  | */ | 
|  | preempt_disable(); | 
|  | kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | /* Check we're not actually recursing */ | 
|  | if (kprobe_running()) { | 
|  | p = get_kprobe(addr); | 
|  | if (p) { | 
|  | if (kcb->kprobe_status == KPROBE_HIT_SS && | 
|  | p->ainsn.insn->word == breakpoint_insn.word) { | 
|  | regs->cp0_status &= ~ST0_IE; | 
|  | regs->cp0_status |= kcb->kprobe_saved_SR; | 
|  | goto no_kprobe; | 
|  | } | 
|  | /* | 
|  | * We have reentered the kprobe_handler(), since | 
|  | * another probe was hit while within the handler. | 
|  | * We here save the original kprobes variables and | 
|  | * just single step on the instruction of the new probe | 
|  | * without calling any user handlers. | 
|  | */ | 
|  | save_previous_kprobe(kcb); | 
|  | set_current_kprobe(p, regs, kcb); | 
|  | kprobes_inc_nmissed_count(p); | 
|  | prepare_singlestep(p, regs, kcb); | 
|  | kcb->kprobe_status = KPROBE_REENTER; | 
|  | if (kcb->flags & SKIP_DELAYSLOT) { | 
|  | resume_execution(p, regs, kcb); | 
|  | restore_previous_kprobe(kcb); | 
|  | preempt_enable_no_resched(); | 
|  | } | 
|  | return 1; | 
|  | } else { | 
|  | if (addr->word != breakpoint_insn.word) { | 
|  | /* | 
|  | * The breakpoint instruction was removed by | 
|  | * another cpu right after we hit, no further | 
|  | * handling of this interrupt is appropriate | 
|  | */ | 
|  | ret = 1; | 
|  | goto no_kprobe; | 
|  | } | 
|  | p = __get_cpu_var(current_kprobe); | 
|  | if (p->break_handler && p->break_handler(p, regs)) | 
|  | goto ss_probe; | 
|  | } | 
|  | goto no_kprobe; | 
|  | } | 
|  |  | 
|  | p = get_kprobe(addr); | 
|  | if (!p) { | 
|  | if (addr->word != breakpoint_insn.word) { | 
|  | /* | 
|  | * The breakpoint instruction was removed right | 
|  | * after we hit it.  Another cpu has removed | 
|  | * either a probepoint or a debugger breakpoint | 
|  | * at this address.  In either case, no further | 
|  | * handling of this interrupt is appropriate. | 
|  | */ | 
|  | ret = 1; | 
|  | } | 
|  | /* Not one of ours: let kernel handle it */ | 
|  | goto no_kprobe; | 
|  | } | 
|  |  | 
|  | set_current_kprobe(p, regs, kcb); | 
|  | kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
|  |  | 
|  | if (p->pre_handler && p->pre_handler(p, regs)) { | 
|  | /* handler has already set things up, so skip ss setup */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | ss_probe: | 
|  | prepare_singlestep(p, regs, kcb); | 
|  | if (kcb->flags & SKIP_DELAYSLOT) { | 
|  | kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
|  | if (p->post_handler) | 
|  | p->post_handler(p, regs, 0); | 
|  | resume_execution(p, regs, kcb); | 
|  | preempt_enable_no_resched(); | 
|  | } else | 
|  | kcb->kprobe_status = KPROBE_HIT_SS; | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | no_kprobe: | 
|  | preempt_enable_no_resched(); | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static inline int post_kprobe_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe *cur = kprobe_running(); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | if (!cur) | 
|  | return 0; | 
|  |  | 
|  | if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | 
|  | kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
|  | cur->post_handler(cur, regs, 0); | 
|  | } | 
|  |  | 
|  | resume_execution(cur, regs, kcb); | 
|  |  | 
|  | regs->cp0_status |= kcb->kprobe_saved_SR; | 
|  |  | 
|  | /* Restore back the original saved kprobes variables and continue. */ | 
|  | if (kcb->kprobe_status == KPROBE_REENTER) { | 
|  | restore_previous_kprobe(kcb); | 
|  | goto out; | 
|  | } | 
|  | reset_current_kprobe(); | 
|  | out: | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | struct kprobe *cur = kprobe_running(); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | 
|  | return 1; | 
|  |  | 
|  | if (kcb->kprobe_status & KPROBE_HIT_SS) { | 
|  | resume_execution(cur, regs, kcb); | 
|  | regs->cp0_status |= kcb->kprobe_old_SR; | 
|  |  | 
|  | reset_current_kprobe(); | 
|  | preempt_enable_no_resched(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrapper routine for handling exceptions. | 
|  | */ | 
|  | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
|  | unsigned long val, void *data) | 
|  | { | 
|  |  | 
|  | struct die_args *args = (struct die_args *)data; | 
|  | int ret = NOTIFY_DONE; | 
|  |  | 
|  | switch (val) { | 
|  | case DIE_BREAK: | 
|  | if (kprobe_handler(args->regs)) | 
|  | ret = NOTIFY_STOP; | 
|  | break; | 
|  | case DIE_SSTEPBP: | 
|  | if (post_kprobe_handler(args->regs)) | 
|  | ret = NOTIFY_STOP; | 
|  | break; | 
|  |  | 
|  | case DIE_PAGE_FAULT: | 
|  | /* kprobe_running() needs smp_processor_id() */ | 
|  | preempt_disable(); | 
|  |  | 
|  | if (kprobe_running() | 
|  | && kprobe_fault_handler(args->regs, args->trapnr)) | 
|  | ret = NOTIFY_STOP; | 
|  | preempt_enable(); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct jprobe *jp = container_of(p, struct jprobe, kp); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | kcb->jprobe_saved_regs = *regs; | 
|  | kcb->jprobe_saved_sp = regs->regs[29]; | 
|  |  | 
|  | memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp, | 
|  | MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); | 
|  |  | 
|  | regs->cp0_epc = (unsigned long)(jp->entry); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Defined in the inline asm below. */ | 
|  | void jprobe_return_end(void); | 
|  |  | 
|  | void __kprobes jprobe_return(void) | 
|  | { | 
|  | /* Assembler quirk necessitates this '0,code' business.	 */ | 
|  | asm volatile( | 
|  | "break 0,%0\n\t" | 
|  | ".globl jprobe_return_end\n" | 
|  | "jprobe_return_end:\n" | 
|  | : : "n" (BRK_KPROBE_BP) : "memory"); | 
|  | } | 
|  |  | 
|  | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | if (regs->cp0_epc >= (unsigned long)jprobe_return && | 
|  | regs->cp0_epc <= (unsigned long)jprobe_return_end) { | 
|  | *regs = kcb->jprobe_saved_regs; | 
|  | memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack, | 
|  | MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function return probe trampoline: | 
|  | *	- init_kprobes() establishes a probepoint here | 
|  | *	- When the probed function returns, this probe causes the | 
|  | *	  handlers to fire | 
|  | */ | 
|  | static void __used kretprobe_trampoline_holder(void) | 
|  | { | 
|  | asm volatile( | 
|  | ".set push\n\t" | 
|  | /* Keep the assembler from reordering and placing JR here. */ | 
|  | ".set noreorder\n\t" | 
|  | "nop\n\t" | 
|  | ".global kretprobe_trampoline\n" | 
|  | "kretprobe_trampoline:\n\t" | 
|  | "nop\n\t" | 
|  | ".set pop" | 
|  | : : : "memory"); | 
|  | } | 
|  |  | 
|  | void kretprobe_trampoline(void); | 
|  |  | 
|  | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | ri->ret_addr = (kprobe_opcode_t *) regs->regs[31]; | 
|  |  | 
|  | /* Replace the return addr with trampoline addr */ | 
|  | regs->regs[31] = (unsigned long)kretprobe_trampoline; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when the probe at kretprobe trampoline is hit | 
|  | */ | 
|  | static int __kprobes trampoline_probe_handler(struct kprobe *p, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct kretprobe_instance *ri = NULL; | 
|  | struct hlist_head *head, empty_rp; | 
|  | struct hlist_node *tmp; | 
|  | unsigned long flags, orig_ret_address = 0; | 
|  | unsigned long trampoline_address = (unsigned long)kretprobe_trampoline; | 
|  |  | 
|  | INIT_HLIST_HEAD(&empty_rp); | 
|  | kretprobe_hash_lock(current, &head, &flags); | 
|  |  | 
|  | /* | 
|  | * It is possible to have multiple instances associated with a given | 
|  | * task either because an multiple functions in the call path | 
|  | * have a return probe installed on them, and/or more than one return | 
|  | * return probe was registered for a target function. | 
|  | * | 
|  | * We can handle this because: | 
|  | *     - instances are always inserted at the head of the list | 
|  | *     - when multiple return probes are registered for the same | 
|  | *	 function, the first instance's ret_addr will point to the | 
|  | *	 real return address, and all the rest will point to | 
|  | *	 kretprobe_trampoline | 
|  | */ | 
|  | hlist_for_each_entry_safe(ri, tmp, head, hlist) { | 
|  | if (ri->task != current) | 
|  | /* another task is sharing our hash bucket */ | 
|  | continue; | 
|  |  | 
|  | if (ri->rp && ri->rp->handler) | 
|  | ri->rp->handler(ri, regs); | 
|  |  | 
|  | orig_ret_address = (unsigned long)ri->ret_addr; | 
|  | recycle_rp_inst(ri, &empty_rp); | 
|  |  | 
|  | if (orig_ret_address != trampoline_address) | 
|  | /* | 
|  | * This is the real return address. Any other | 
|  | * instances associated with this task are for | 
|  | * other calls deeper on the call stack | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | kretprobe_assert(ri, orig_ret_address, trampoline_address); | 
|  | instruction_pointer(regs) = orig_ret_address; | 
|  |  | 
|  | reset_current_kprobe(); | 
|  | kretprobe_hash_unlock(current, &flags); | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { | 
|  | hlist_del(&ri->hlist); | 
|  | kfree(ri); | 
|  | } | 
|  | /* | 
|  | * By returning a non-zero value, we are telling | 
|  | * kprobe_handler() that we don't want the post_handler | 
|  | * to run (and have re-enabled preemption) | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | 
|  | { | 
|  | if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct kprobe trampoline_p = { | 
|  | .addr = (kprobe_opcode_t *)kretprobe_trampoline, | 
|  | .pre_handler = trampoline_probe_handler | 
|  | }; | 
|  |  | 
|  | int __init arch_init_kprobes(void) | 
|  | { | 
|  | return register_kprobe(&trampoline_p); | 
|  | } |