blob: 7df503aedb692b86c7111bd81f63ac60eba793c4 [file] [log] [blame]
/*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Rafał Miłecki <zajec5@gmail.com>
* Alex Deucher <alexdeucher@gmail.com>
*/
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_drv.h"
#include "amdgpu_pm.h"
#include "amdgpu_dpm.h"
#include "atom.h"
#include <linux/power_supply.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include "amd_powerplay.h"
static int amdgpu_debugfs_pm_init(struct amdgpu_device *adev);
static const struct cg_flag_name clocks[] = {
{AMD_CG_SUPPORT_GFX_MGCG, "Graphics Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_MGLS, "Graphics Medium Grain memory Light Sleep"},
{AMD_CG_SUPPORT_GFX_CGCG, "Graphics Coarse Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_CGLS, "Graphics Coarse Grain memory Light Sleep"},
{AMD_CG_SUPPORT_GFX_CGTS, "Graphics Coarse Grain Tree Shader Clock Gating"},
{AMD_CG_SUPPORT_GFX_CGTS_LS, "Graphics Coarse Grain Tree Shader Light Sleep"},
{AMD_CG_SUPPORT_GFX_CP_LS, "Graphics Command Processor Light Sleep"},
{AMD_CG_SUPPORT_GFX_RLC_LS, "Graphics Run List Controller Light Sleep"},
{AMD_CG_SUPPORT_GFX_3D_CGCG, "Graphics 3D Coarse Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_3D_CGLS, "Graphics 3D Coarse Grain memory Light Sleep"},
{AMD_CG_SUPPORT_MC_LS, "Memory Controller Light Sleep"},
{AMD_CG_SUPPORT_MC_MGCG, "Memory Controller Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_SDMA_LS, "System Direct Memory Access Light Sleep"},
{AMD_CG_SUPPORT_SDMA_MGCG, "System Direct Memory Access Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_BIF_MGCG, "Bus Interface Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_BIF_LS, "Bus Interface Light Sleep"},
{AMD_CG_SUPPORT_UVD_MGCG, "Unified Video Decoder Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_VCE_MGCG, "Video Compression Engine Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_HDP_LS, "Host Data Path Light Sleep"},
{AMD_CG_SUPPORT_HDP_MGCG, "Host Data Path Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DRM_MGCG, "Digital Right Management Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DRM_LS, "Digital Right Management Light Sleep"},
{AMD_CG_SUPPORT_ROM_MGCG, "Rom Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DF_MGCG, "Data Fabric Medium Grain Clock Gating"},
{0, NULL},
};
void amdgpu_pm_acpi_event_handler(struct amdgpu_device *adev)
{
if (adev->pp_enabled)
/* TODO */
return;
if (adev->pm.dpm_enabled) {
mutex_lock(&adev->pm.mutex);
if (power_supply_is_system_supplied() > 0)
adev->pm.dpm.ac_power = true;
else
adev->pm.dpm.ac_power = false;
if (adev->pm.funcs->enable_bapm)
amdgpu_dpm_enable_bapm(adev, adev->pm.dpm.ac_power);
mutex_unlock(&adev->pm.mutex);
}
}
static ssize_t amdgpu_get_dpm_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
enum amd_pm_state_type pm;
if (adev->pp_enabled) {
pm = amdgpu_dpm_get_current_power_state(adev);
} else
pm = adev->pm.dpm.user_state;
return snprintf(buf, PAGE_SIZE, "%s\n",
(pm == POWER_STATE_TYPE_BATTERY) ? "battery" :
(pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance");
}
static ssize_t amdgpu_set_dpm_state(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
enum amd_pm_state_type state;
if (strncmp("battery", buf, strlen("battery")) == 0)
state = POWER_STATE_TYPE_BATTERY;
else if (strncmp("balanced", buf, strlen("balanced")) == 0)
state = POWER_STATE_TYPE_BALANCED;
else if (strncmp("performance", buf, strlen("performance")) == 0)
state = POWER_STATE_TYPE_PERFORMANCE;
else {
count = -EINVAL;
goto fail;
}
if (adev->pp_enabled) {
amdgpu_dpm_dispatch_task(adev, AMD_PP_EVENT_ENABLE_USER_STATE, &state, NULL);
} else {
mutex_lock(&adev->pm.mutex);
adev->pm.dpm.user_state = state;
mutex_unlock(&adev->pm.mutex);
/* Can't set dpm state when the card is off */
if (!(adev->flags & AMD_IS_PX) ||
(ddev->switch_power_state == DRM_SWITCH_POWER_ON))
amdgpu_pm_compute_clocks(adev);
}
fail:
return count;
}
static ssize_t amdgpu_get_dpm_forced_performance_level(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
enum amd_dpm_forced_level level;
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return snprintf(buf, PAGE_SIZE, "off\n");
level = amdgpu_dpm_get_performance_level(adev);
return snprintf(buf, PAGE_SIZE, "%s\n",
(level == AMD_DPM_FORCED_LEVEL_AUTO) ? "auto" :
(level == AMD_DPM_FORCED_LEVEL_LOW) ? "low" :
(level == AMD_DPM_FORCED_LEVEL_HIGH) ? "high" :
(level == AMD_DPM_FORCED_LEVEL_MANUAL) ? "manual" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) ? "profile_standard" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) ? "profile_min_sclk" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) ? "profile_min_mclk" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) ? "profile_peak" :
"unknown");
}
static ssize_t amdgpu_set_dpm_forced_performance_level(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
enum amd_dpm_forced_level level;
enum amd_dpm_forced_level current_level;
int ret = 0;
/* Can't force performance level when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
current_level = amdgpu_dpm_get_performance_level(adev);
if (strncmp("low", buf, strlen("low")) == 0) {
level = AMD_DPM_FORCED_LEVEL_LOW;
} else if (strncmp("high", buf, strlen("high")) == 0) {
level = AMD_DPM_FORCED_LEVEL_HIGH;
} else if (strncmp("auto", buf, strlen("auto")) == 0) {
level = AMD_DPM_FORCED_LEVEL_AUTO;
} else if (strncmp("manual", buf, strlen("manual")) == 0) {
level = AMD_DPM_FORCED_LEVEL_MANUAL;
} else if (strncmp("profile_exit", buf, strlen("profile_exit")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_EXIT;
} else if (strncmp("profile_standard", buf, strlen("profile_standard")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD;
} else if (strncmp("profile_min_sclk", buf, strlen("profile_min_sclk")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK;
} else if (strncmp("profile_min_mclk", buf, strlen("profile_min_mclk")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK;
} else if (strncmp("profile_peak", buf, strlen("profile_peak")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
} else {
count = -EINVAL;
goto fail;
}
if (current_level == level)
return count;
if (adev->pp_enabled)
amdgpu_dpm_force_performance_level(adev, level);
else {
mutex_lock(&adev->pm.mutex);
if (adev->pm.dpm.thermal_active) {
count = -EINVAL;
mutex_unlock(&adev->pm.mutex);
goto fail;
}
ret = amdgpu_dpm_force_performance_level(adev, level);
if (ret)
count = -EINVAL;
else
adev->pm.dpm.forced_level = level;
mutex_unlock(&adev->pm.mutex);
}
fail:
return count;
}
static ssize_t amdgpu_get_pp_num_states(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
struct pp_states_info data;
int i, buf_len;
if (adev->pp_enabled)
amdgpu_dpm_get_pp_num_states(adev, &data);
buf_len = snprintf(buf, PAGE_SIZE, "states: %d\n", data.nums);
for (i = 0; i < data.nums; i++)
buf_len += snprintf(buf + buf_len, PAGE_SIZE, "%d %s\n", i,
(data.states[i] == POWER_STATE_TYPE_INTERNAL_BOOT) ? "boot" :
(data.states[i] == POWER_STATE_TYPE_BATTERY) ? "battery" :
(data.states[i] == POWER_STATE_TYPE_BALANCED) ? "balanced" :
(data.states[i] == POWER_STATE_TYPE_PERFORMANCE) ? "performance" : "default");
return buf_len;
}
static ssize_t amdgpu_get_pp_cur_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
struct pp_states_info data;
enum amd_pm_state_type pm = 0;
int i = 0;
if (adev->pp_enabled) {
pm = amdgpu_dpm_get_current_power_state(adev);
amdgpu_dpm_get_pp_num_states(adev, &data);
for (i = 0; i < data.nums; i++) {
if (pm == data.states[i])
break;
}
if (i == data.nums)
i = -EINVAL;
}
return snprintf(buf, PAGE_SIZE, "%d\n", i);
}
static ssize_t amdgpu_get_pp_force_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
struct pp_states_info data;
enum amd_pm_state_type pm = 0;
int i;
if (adev->pp_force_state_enabled && adev->pp_enabled) {
pm = amdgpu_dpm_get_current_power_state(adev);
amdgpu_dpm_get_pp_num_states(adev, &data);
for (i = 0; i < data.nums; i++) {
if (pm == data.states[i])
break;
}
if (i == data.nums)
i = -EINVAL;
return snprintf(buf, PAGE_SIZE, "%d\n", i);
} else
return snprintf(buf, PAGE_SIZE, "\n");
}
static ssize_t amdgpu_set_pp_force_state(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
enum amd_pm_state_type state = 0;
unsigned long idx;
int ret;
if (strlen(buf) == 1)
adev->pp_force_state_enabled = false;
else if (adev->pp_enabled) {
struct pp_states_info data;
ret = kstrtoul(buf, 0, &idx);
if (ret || idx >= ARRAY_SIZE(data.states)) {
count = -EINVAL;
goto fail;
}
amdgpu_dpm_get_pp_num_states(adev, &data);
state = data.states[idx];
/* only set user selected power states */
if (state != POWER_STATE_TYPE_INTERNAL_BOOT &&
state != POWER_STATE_TYPE_DEFAULT) {
amdgpu_dpm_dispatch_task(adev,
AMD_PP_EVENT_ENABLE_USER_STATE, &state, NULL);
adev->pp_force_state_enabled = true;
}
}
fail:
return count;
}
static ssize_t amdgpu_get_pp_table(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
char *table = NULL;
int size;
if (adev->pp_enabled)
size = amdgpu_dpm_get_pp_table(adev, &table);
else
return 0;
if (size >= PAGE_SIZE)
size = PAGE_SIZE - 1;
memcpy(buf, table, size);
return size;
}
static ssize_t amdgpu_set_pp_table(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
if (adev->pp_enabled)
amdgpu_dpm_set_pp_table(adev, buf, count);
return count;
}
static ssize_t amdgpu_get_pp_dpm_sclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
ssize_t size = 0;
if (adev->pp_enabled)
size = amdgpu_dpm_print_clock_levels(adev, PP_SCLK, buf);
else if (adev->pm.funcs->print_clock_levels)
size = adev->pm.funcs->print_clock_levels(adev, PP_SCLK, buf);
return size;
}
static ssize_t amdgpu_set_pp_dpm_sclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
long level;
uint32_t i, mask = 0;
char sub_str[2];
for (i = 0; i < strlen(buf); i++) {
if (*(buf + i) == '\n')
continue;
sub_str[0] = *(buf + i);
sub_str[1] = '\0';
ret = kstrtol(sub_str, 0, &level);
if (ret) {
count = -EINVAL;
goto fail;
}
mask |= 1 << level;
}
if (adev->pp_enabled)
amdgpu_dpm_force_clock_level(adev, PP_SCLK, mask);
else if (adev->pm.funcs->force_clock_level)
adev->pm.funcs->force_clock_level(adev, PP_SCLK, mask);
fail:
return count;
}
static ssize_t amdgpu_get_pp_dpm_mclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
ssize_t size = 0;
if (adev->pp_enabled)
size = amdgpu_dpm_print_clock_levels(adev, PP_MCLK, buf);
else if (adev->pm.funcs->print_clock_levels)
size = adev->pm.funcs->print_clock_levels(adev, PP_MCLK, buf);
return size;
}
static ssize_t amdgpu_set_pp_dpm_mclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
long level;
uint32_t i, mask = 0;
char sub_str[2];
for (i = 0; i < strlen(buf); i++) {
if (*(buf + i) == '\n')
continue;
sub_str[0] = *(buf + i);
sub_str[1] = '\0';
ret = kstrtol(sub_str, 0, &level);
if (ret) {
count = -EINVAL;
goto fail;
}
mask |= 1 << level;
}
if (adev->pp_enabled)
amdgpu_dpm_force_clock_level(adev, PP_MCLK, mask);
else if (adev->pm.funcs->force_clock_level)
adev->pm.funcs->force_clock_level(adev, PP_MCLK, mask);
fail:
return count;
}
static ssize_t amdgpu_get_pp_dpm_pcie(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
ssize_t size = 0;
if (adev->pp_enabled)
size = amdgpu_dpm_print_clock_levels(adev, PP_PCIE, buf);
else if (adev->pm.funcs->print_clock_levels)
size = adev->pm.funcs->print_clock_levels(adev, PP_PCIE, buf);
return size;
}
static ssize_t amdgpu_set_pp_dpm_pcie(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
long level;
uint32_t i, mask = 0;
char sub_str[2];
for (i = 0; i < strlen(buf); i++) {
if (*(buf + i) == '\n')
continue;
sub_str[0] = *(buf + i);
sub_str[1] = '\0';
ret = kstrtol(sub_str, 0, &level);
if (ret) {
count = -EINVAL;
goto fail;
}
mask |= 1 << level;
}
if (adev->pp_enabled)
amdgpu_dpm_force_clock_level(adev, PP_PCIE, mask);
else if (adev->pm.funcs->force_clock_level)
adev->pm.funcs->force_clock_level(adev, PP_PCIE, mask);
fail:
return count;
}
static ssize_t amdgpu_get_pp_sclk_od(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
uint32_t value = 0;
if (adev->pp_enabled)
value = amdgpu_dpm_get_sclk_od(adev);
else if (adev->pm.funcs->get_sclk_od)
value = adev->pm.funcs->get_sclk_od(adev);
return snprintf(buf, PAGE_SIZE, "%d\n", value);
}
static ssize_t amdgpu_set_pp_sclk_od(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
long int value;
ret = kstrtol(buf, 0, &value);
if (ret) {
count = -EINVAL;
goto fail;
}
if (adev->pp_enabled) {
amdgpu_dpm_set_sclk_od(adev, (uint32_t)value);
amdgpu_dpm_dispatch_task(adev, AMD_PP_EVENT_READJUST_POWER_STATE, NULL, NULL);
} else if (adev->pm.funcs->set_sclk_od) {
adev->pm.funcs->set_sclk_od(adev, (uint32_t)value);
adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps;
amdgpu_pm_compute_clocks(adev);
}
fail:
return count;
}
static ssize_t amdgpu_get_pp_mclk_od(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
uint32_t value = 0;
if (adev->pp_enabled)
value = amdgpu_dpm_get_mclk_od(adev);
else if (adev->pm.funcs->get_mclk_od)
value = adev->pm.funcs->get_mclk_od(adev);
return snprintf(buf, PAGE_SIZE, "%d\n", value);
}
static ssize_t amdgpu_set_pp_mclk_od(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
long int value;
ret = kstrtol(buf, 0, &value);
if (ret) {
count = -EINVAL;
goto fail;
}
if (adev->pp_enabled) {
amdgpu_dpm_set_mclk_od(adev, (uint32_t)value);
amdgpu_dpm_dispatch_task(adev, AMD_PP_EVENT_READJUST_POWER_STATE, NULL, NULL);
} else if (adev->pm.funcs->set_mclk_od) {
adev->pm.funcs->set_mclk_od(adev, (uint32_t)value);
adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps;
amdgpu_pm_compute_clocks(adev);
}
fail:
return count;
}
static ssize_t amdgpu_get_pp_power_profile(struct device *dev,
char *buf, struct amd_pp_profile *query)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret = 0;
if (adev->pp_enabled)
ret = amdgpu_dpm_get_power_profile_state(
adev, query);
else if (adev->pm.funcs->get_power_profile_state)
ret = adev->pm.funcs->get_power_profile_state(
adev, query);
if (ret)
return ret;
return snprintf(buf, PAGE_SIZE,
"%d %d %d %d %d\n",
query->min_sclk / 100,
query->min_mclk / 100,
query->activity_threshold,
query->up_hyst,
query->down_hyst);
}
static ssize_t amdgpu_get_pp_gfx_power_profile(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amd_pp_profile query = {0};
query.type = AMD_PP_GFX_PROFILE;
return amdgpu_get_pp_power_profile(dev, buf, &query);
}
static ssize_t amdgpu_get_pp_compute_power_profile(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amd_pp_profile query = {0};
query.type = AMD_PP_COMPUTE_PROFILE;
return amdgpu_get_pp_power_profile(dev, buf, &query);
}
static ssize_t amdgpu_set_pp_power_profile(struct device *dev,
const char *buf,
size_t count,
struct amd_pp_profile *request)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
uint32_t loop = 0;
char *sub_str, buf_cpy[128], *tmp_str;
const char delimiter[3] = {' ', '\n', '\0'};
long int value;
int ret = 0;
if (strncmp("reset", buf, strlen("reset")) == 0) {
if (adev->pp_enabled)
ret = amdgpu_dpm_reset_power_profile_state(
adev, request);
else if (adev->pm.funcs->reset_power_profile_state)
ret = adev->pm.funcs->reset_power_profile_state(
adev, request);
if (ret) {
count = -EINVAL;
goto fail;
}
return count;
}
if (strncmp("set", buf, strlen("set")) == 0) {
if (adev->pp_enabled)
ret = amdgpu_dpm_set_power_profile_state(
adev, request);
else if (adev->pm.funcs->set_power_profile_state)
ret = adev->pm.funcs->set_power_profile_state(
adev, request);
if (ret) {
count = -EINVAL;
goto fail;
}
return count;
}
if (count + 1 >= 128) {
count = -EINVAL;
goto fail;
}
memcpy(buf_cpy, buf, count + 1);
tmp_str = buf_cpy;
while (tmp_str[0]) {
sub_str = strsep(&tmp_str, delimiter);
ret = kstrtol(sub_str, 0, &value);
if (ret) {
count = -EINVAL;
goto fail;
}
switch (loop) {
case 0:
/* input unit MHz convert to dpm table unit 10KHz*/
request->min_sclk = (uint32_t)value * 100;
break;
case 1:
/* input unit MHz convert to dpm table unit 10KHz*/
request->min_mclk = (uint32_t)value * 100;
break;
case 2:
request->activity_threshold = (uint16_t)value;
break;
case 3:
request->up_hyst = (uint8_t)value;
break;
case 4:
request->down_hyst = (uint8_t)value;
break;
default:
break;
}
loop++;
}
if (adev->pp_enabled)
ret = amdgpu_dpm_set_power_profile_state(
adev, request);
else if (adev->pm.funcs->set_power_profile_state)
ret = adev->pm.funcs->set_power_profile_state(
adev, request);
if (ret)
count = -EINVAL;
fail:
return count;
}
static ssize_t amdgpu_set_pp_gfx_power_profile(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amd_pp_profile request = {0};
request.type = AMD_PP_GFX_PROFILE;
return amdgpu_set_pp_power_profile(dev, buf, count, &request);
}
static ssize_t amdgpu_set_pp_compute_power_profile(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amd_pp_profile request = {0};
request.type = AMD_PP_COMPUTE_PROFILE;
return amdgpu_set_pp_power_profile(dev, buf, count, &request);
}
static DEVICE_ATTR(power_dpm_state, S_IRUGO | S_IWUSR, amdgpu_get_dpm_state, amdgpu_set_dpm_state);
static DEVICE_ATTR(power_dpm_force_performance_level, S_IRUGO | S_IWUSR,
amdgpu_get_dpm_forced_performance_level,
amdgpu_set_dpm_forced_performance_level);
static DEVICE_ATTR(pp_num_states, S_IRUGO, amdgpu_get_pp_num_states, NULL);
static DEVICE_ATTR(pp_cur_state, S_IRUGO, amdgpu_get_pp_cur_state, NULL);
static DEVICE_ATTR(pp_force_state, S_IRUGO | S_IWUSR,
amdgpu_get_pp_force_state,
amdgpu_set_pp_force_state);
static DEVICE_ATTR(pp_table, S_IRUGO | S_IWUSR,
amdgpu_get_pp_table,
amdgpu_set_pp_table);
static DEVICE_ATTR(pp_dpm_sclk, S_IRUGO | S_IWUSR,
amdgpu_get_pp_dpm_sclk,
amdgpu_set_pp_dpm_sclk);
static DEVICE_ATTR(pp_dpm_mclk, S_IRUGO | S_IWUSR,
amdgpu_get_pp_dpm_mclk,
amdgpu_set_pp_dpm_mclk);
static DEVICE_ATTR(pp_dpm_pcie, S_IRUGO | S_IWUSR,
amdgpu_get_pp_dpm_pcie,
amdgpu_set_pp_dpm_pcie);
static DEVICE_ATTR(pp_sclk_od, S_IRUGO | S_IWUSR,
amdgpu_get_pp_sclk_od,
amdgpu_set_pp_sclk_od);
static DEVICE_ATTR(pp_mclk_od, S_IRUGO | S_IWUSR,
amdgpu_get_pp_mclk_od,
amdgpu_set_pp_mclk_od);
static DEVICE_ATTR(pp_gfx_power_profile, S_IRUGO | S_IWUSR,
amdgpu_get_pp_gfx_power_profile,
amdgpu_set_pp_gfx_power_profile);
static DEVICE_ATTR(pp_compute_power_profile, S_IRUGO | S_IWUSR,
amdgpu_get_pp_compute_power_profile,
amdgpu_set_pp_compute_power_profile);
static ssize_t amdgpu_hwmon_show_temp(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
struct drm_device *ddev = adev->ddev;
int temp;
/* Can't get temperature when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
if (!adev->pp_enabled && !adev->pm.funcs->get_temperature)
temp = 0;
else
temp = amdgpu_dpm_get_temperature(adev);
return snprintf(buf, PAGE_SIZE, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_temp;
else
temp = adev->pm.dpm.thermal.max_temp;
return snprintf(buf, PAGE_SIZE, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_get_pwm1_enable(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 pwm_mode = 0;
if (!adev->pp_enabled && !adev->pm.funcs->get_fan_control_mode)
return -EINVAL;
pwm_mode = amdgpu_dpm_get_fan_control_mode(adev);
return sprintf(buf, "%i\n", pwm_mode);
}
static ssize_t amdgpu_hwmon_set_pwm1_enable(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
int value;
if (!adev->pp_enabled && !adev->pm.funcs->set_fan_control_mode)
return -EINVAL;
err = kstrtoint(buf, 10, &value);
if (err)
return err;
amdgpu_dpm_set_fan_control_mode(adev, value);
return count;
}
static ssize_t amdgpu_hwmon_get_pwm1_min(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%i\n", 0);
}
static ssize_t amdgpu_hwmon_get_pwm1_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%i\n", 255);
}
static ssize_t amdgpu_hwmon_set_pwm1(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 value;
err = kstrtou32(buf, 10, &value);
if (err)
return err;
value = (value * 100) / 255;
err = amdgpu_dpm_set_fan_speed_percent(adev, value);
if (err)
return err;
return count;
}
static ssize_t amdgpu_hwmon_get_pwm1(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 speed;
err = amdgpu_dpm_get_fan_speed_percent(adev, &speed);
if (err)
return err;
speed = (speed * 255) / 100;
return sprintf(buf, "%i\n", speed);
}
static ssize_t amdgpu_hwmon_get_fan1_input(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 speed;
err = amdgpu_dpm_get_fan_speed_rpm(adev, &speed);
if (err)
return err;
return sprintf(buf, "%i\n", speed);
}
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 1);
static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1, amdgpu_hwmon_set_pwm1, 0);
static SENSOR_DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1_enable, amdgpu_hwmon_set_pwm1_enable, 0);
static SENSOR_DEVICE_ATTR(pwm1_min, S_IRUGO, amdgpu_hwmon_get_pwm1_min, NULL, 0);
static SENSOR_DEVICE_ATTR(pwm1_max, S_IRUGO, amdgpu_hwmon_get_pwm1_max, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, amdgpu_hwmon_get_fan1_input, NULL, 0);
static struct attribute *hwmon_attributes[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_min.dev_attr.attr,
&sensor_dev_attr_pwm1_max.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
NULL
};
static umode_t hwmon_attributes_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct amdgpu_device *adev = dev_get_drvdata(dev);
umode_t effective_mode = attr->mode;
/* Skip limit attributes if DPM is not enabled */
if (!adev->pm.dpm_enabled &&
(attr == &sensor_dev_attr_temp1_crit.dev_attr.attr ||
attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr))
return 0;
if (adev->pp_enabled)
return effective_mode;
/* Skip fan attributes if fan is not present */
if (adev->pm.no_fan &&
(attr == &sensor_dev_attr_pwm1.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr))
return 0;
/* mask fan attributes if we have no bindings for this asic to expose */
if ((!adev->pm.funcs->get_fan_speed_percent &&
attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't query fan */
(!adev->pm.funcs->get_fan_control_mode &&
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't query state */
effective_mode &= ~S_IRUGO;
if ((!adev->pm.funcs->set_fan_speed_percent &&
attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't manage fan */
(!adev->pm.funcs->set_fan_control_mode &&
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't manage state */
effective_mode &= ~S_IWUSR;
/* hide max/min values if we can't both query and manage the fan */
if ((!adev->pm.funcs->set_fan_speed_percent &&
!adev->pm.funcs->get_fan_speed_percent) &&
(attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr))
return 0;
/* requires powerplay */
if (attr == &sensor_dev_attr_fan1_input.dev_attr.attr)
return 0;
return effective_mode;
}
static const struct attribute_group hwmon_attrgroup = {
.attrs = hwmon_attributes,
.is_visible = hwmon_attributes_visible,
};
static const struct attribute_group *hwmon_groups[] = {
&hwmon_attrgroup,
NULL
};
void amdgpu_dpm_thermal_work_handler(struct work_struct *work)
{
struct amdgpu_device *adev =
container_of(work, struct amdgpu_device,
pm.dpm.thermal.work);
/* switch to the thermal state */
enum amd_pm_state_type dpm_state = POWER_STATE_TYPE_INTERNAL_THERMAL;
if (!adev->pm.dpm_enabled)
return;
if (adev->pm.funcs->get_temperature) {
int temp = amdgpu_dpm_get_temperature(adev);
if (temp < adev->pm.dpm.thermal.min_temp)
/* switch back the user state */
dpm_state = adev->pm.dpm.user_state;
} else {
if (adev->pm.dpm.thermal.high_to_low)
/* switch back the user state */
dpm_state = adev->pm.dpm.user_state;
}
mutex_lock(&adev->pm.mutex);
if (dpm_state == POWER_STATE_TYPE_INTERNAL_THERMAL)
adev->pm.dpm.thermal_active = true;
else
adev->pm.dpm.thermal_active = false;
adev->pm.dpm.state = dpm_state;
mutex_unlock(&adev->pm.mutex);
amdgpu_pm_compute_clocks(adev);
}
static struct amdgpu_ps *amdgpu_dpm_pick_power_state(struct amdgpu_device *adev,
enum amd_pm_state_type dpm_state)
{
int i;
struct amdgpu_ps *ps;
u32 ui_class;
bool single_display = (adev->pm.dpm.new_active_crtc_count < 2) ?
true : false;
/* check if the vblank period is too short to adjust the mclk */
if (single_display && adev->pm.funcs->vblank_too_short) {
if (amdgpu_dpm_vblank_too_short(adev))
single_display = false;
}
/* certain older asics have a separare 3D performance state,
* so try that first if the user selected performance
*/
if (dpm_state == POWER_STATE_TYPE_PERFORMANCE)
dpm_state = POWER_STATE_TYPE_INTERNAL_3DPERF;
/* balanced states don't exist at the moment */
if (dpm_state == POWER_STATE_TYPE_BALANCED)
dpm_state = POWER_STATE_TYPE_PERFORMANCE;
restart_search:
/* Pick the best power state based on current conditions */
for (i = 0; i < adev->pm.dpm.num_ps; i++) {
ps = &adev->pm.dpm.ps[i];
ui_class = ps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK;
switch (dpm_state) {
/* user states */
case POWER_STATE_TYPE_BATTERY:
if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) {
if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) {
if (single_display)
return ps;
} else
return ps;
}
break;
case POWER_STATE_TYPE_BALANCED:
if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BALANCED) {
if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) {
if (single_display)
return ps;
} else
return ps;
}
break;
case POWER_STATE_TYPE_PERFORMANCE:
if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) {
if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) {
if (single_display)
return ps;
} else
return ps;
}
break;
/* internal states */
case POWER_STATE_TYPE_INTERNAL_UVD:
if (adev->pm.dpm.uvd_ps)
return adev->pm.dpm.uvd_ps;
else
break;
case POWER_STATE_TYPE_INTERNAL_UVD_SD:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_UVD_HD:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_UVD_HD2:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_UVD_MVC:
if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_BOOT:
return adev->pm.dpm.boot_ps;
case POWER_STATE_TYPE_INTERNAL_THERMAL:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_ACPI:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_ACPI)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_ULV:
if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_3DPERF:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
return ps;
break;
default:
break;
}
}
/* use a fallback state if we didn't match */
switch (dpm_state) {
case POWER_STATE_TYPE_INTERNAL_UVD_SD:
dpm_state = POWER_STATE_TYPE_INTERNAL_UVD_HD;
goto restart_search;
case POWER_STATE_TYPE_INTERNAL_UVD_HD:
case POWER_STATE_TYPE_INTERNAL_UVD_HD2:
case POWER_STATE_TYPE_INTERNAL_UVD_MVC:
if (adev->pm.dpm.uvd_ps) {
return adev->pm.dpm.uvd_ps;
} else {
dpm_state = POWER_STATE_TYPE_PERFORMANCE;
goto restart_search;
}
case POWER_STATE_TYPE_INTERNAL_THERMAL:
dpm_state = POWER_STATE_TYPE_INTERNAL_ACPI;
goto restart_search;
case POWER_STATE_TYPE_INTERNAL_ACPI:
dpm_state = POWER_STATE_TYPE_BATTERY;
goto restart_search;
case POWER_STATE_TYPE_BATTERY:
case POWER_STATE_TYPE_BALANCED:
case POWER_STATE_TYPE_INTERNAL_3DPERF:
dpm_state = POWER_STATE_TYPE_PERFORMANCE;
goto restart_search;
default:
break;
}
return NULL;
}
static void amdgpu_dpm_change_power_state_locked(struct amdgpu_device *adev)
{
struct amdgpu_ps *ps;
enum amd_pm_state_type dpm_state;
int ret;
bool equal;
/* if dpm init failed */
if (!adev->pm.dpm_enabled)
return;
if (adev->pm.dpm.user_state != adev->pm.dpm.state) {
/* add other state override checks here */
if ((!adev->pm.dpm.thermal_active) &&
(!adev->pm.dpm.uvd_active))
adev->pm.dpm.state = adev->pm.dpm.user_state;
}
dpm_state = adev->pm.dpm.state;
ps = amdgpu_dpm_pick_power_state(adev, dpm_state);
if (ps)
adev->pm.dpm.requested_ps = ps;
else
return;
if (amdgpu_dpm == 1) {
printk("switching from power state:\n");
amdgpu_dpm_print_power_state(adev, adev->pm.dpm.current_ps);
printk("switching to power state:\n");
amdgpu_dpm_print_power_state(adev, adev->pm.dpm.requested_ps);
}
/* update whether vce is active */
ps->vce_active = adev->pm.dpm.vce_active;
amdgpu_dpm_display_configuration_changed(adev);
ret = amdgpu_dpm_pre_set_power_state(adev);
if (ret)
return;
if ((0 != amgdpu_dpm_check_state_equal(adev, adev->pm.dpm.current_ps, adev->pm.dpm.requested_ps, &equal)))
equal = false;
if (equal)
return;
amdgpu_dpm_set_power_state(adev);
amdgpu_dpm_post_set_power_state(adev);
adev->pm.dpm.current_active_crtcs = adev->pm.dpm.new_active_crtcs;
adev->pm.dpm.current_active_crtc_count = adev->pm.dpm.new_active_crtc_count;
if (adev->pm.funcs->force_performance_level) {
if (adev->pm.dpm.thermal_active) {
enum amd_dpm_forced_level level = adev->pm.dpm.forced_level;
/* force low perf level for thermal */
amdgpu_dpm_force_performance_level(adev, AMD_DPM_FORCED_LEVEL_LOW);
/* save the user's level */
adev->pm.dpm.forced_level = level;
} else {
/* otherwise, user selected level */
amdgpu_dpm_force_performance_level(adev, adev->pm.dpm.forced_level);
}
}
}
void amdgpu_dpm_enable_uvd(struct amdgpu_device *adev, bool enable)
{
if (adev->pp_enabled || adev->pm.funcs->powergate_uvd) {
/* enable/disable UVD */
mutex_lock(&adev->pm.mutex);
amdgpu_dpm_powergate_uvd(adev, !enable);
mutex_unlock(&adev->pm.mutex);
} else {
if (enable) {
mutex_lock(&adev->pm.mutex);
adev->pm.dpm.uvd_active = true;
adev->pm.dpm.state = POWER_STATE_TYPE_INTERNAL_UVD;
mutex_unlock(&adev->pm.mutex);
} else {
mutex_lock(&adev->pm.mutex);
adev->pm.dpm.uvd_active = false;
mutex_unlock(&adev->pm.mutex);
}
amdgpu_pm_compute_clocks(adev);
}
}
void amdgpu_dpm_enable_vce(struct amdgpu_device *adev, bool enable)
{
if (adev->pp_enabled || adev->pm.funcs->powergate_vce) {
/* enable/disable VCE */
mutex_lock(&adev->pm.mutex);
amdgpu_dpm_powergate_vce(adev, !enable);
mutex_unlock(&adev->pm.mutex);
} else {
if (enable) {
mutex_lock(&adev->pm.mutex);
adev->pm.dpm.vce_active = true;
/* XXX select vce level based on ring/task */
adev->pm.dpm.vce_level = AMD_VCE_LEVEL_AC_ALL;
mutex_unlock(&adev->pm.mutex);
amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_UNGATE);
amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_UNGATE);
amdgpu_pm_compute_clocks(adev);
} else {
amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_GATE);
amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_GATE);
mutex_lock(&adev->pm.mutex);
adev->pm.dpm.vce_active = false;
mutex_unlock(&adev->pm.mutex);
amdgpu_pm_compute_clocks(adev);
}
}
}
void amdgpu_pm_print_power_states(struct amdgpu_device *adev)
{
int i;
if (adev->pp_enabled)
/* TO DO */
return;
for (i = 0; i < adev->pm.dpm.num_ps; i++)
amdgpu_dpm_print_power_state(adev, &adev->pm.dpm.ps[i]);
}
int amdgpu_pm_sysfs_init(struct amdgpu_device *adev)
{
int ret;
if (adev->pm.sysfs_initialized)
return 0;
if (!adev->pp_enabled) {
if (adev->pm.funcs->get_temperature == NULL)
return 0;
}
adev->pm.int_hwmon_dev = hwmon_device_register_with_groups(adev->dev,
DRIVER_NAME, adev,
hwmon_groups);
if (IS_ERR(adev->pm.int_hwmon_dev)) {
ret = PTR_ERR(adev->pm.int_hwmon_dev);
dev_err(adev->dev,
"Unable to register hwmon device: %d\n", ret);
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_power_dpm_state);
if (ret) {
DRM_ERROR("failed to create device file for dpm state\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_power_dpm_force_performance_level);
if (ret) {
DRM_ERROR("failed to create device file for dpm state\n");
return ret;
}
if (adev->pp_enabled) {
ret = device_create_file(adev->dev, &dev_attr_pp_num_states);
if (ret) {
DRM_ERROR("failed to create device file pp_num_states\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_cur_state);
if (ret) {
DRM_ERROR("failed to create device file pp_cur_state\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_force_state);
if (ret) {
DRM_ERROR("failed to create device file pp_force_state\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_table);
if (ret) {
DRM_ERROR("failed to create device file pp_table\n");
return ret;
}
}
ret = device_create_file(adev->dev, &dev_attr_pp_dpm_sclk);
if (ret) {
DRM_ERROR("failed to create device file pp_dpm_sclk\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_dpm_mclk);
if (ret) {
DRM_ERROR("failed to create device file pp_dpm_mclk\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_dpm_pcie);
if (ret) {
DRM_ERROR("failed to create device file pp_dpm_pcie\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_sclk_od);
if (ret) {
DRM_ERROR("failed to create device file pp_sclk_od\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_mclk_od);
if (ret) {
DRM_ERROR("failed to create device file pp_mclk_od\n");
return ret;
}
ret = device_create_file(adev->dev,
&dev_attr_pp_gfx_power_profile);
if (ret) {
DRM_ERROR("failed to create device file "
"pp_gfx_power_profile\n");
return ret;
}
ret = device_create_file(adev->dev,
&dev_attr_pp_compute_power_profile);
if (ret) {
DRM_ERROR("failed to create device file "
"pp_compute_power_profile\n");
return ret;
}
ret = amdgpu_debugfs_pm_init(adev);
if (ret) {
DRM_ERROR("Failed to register debugfs file for dpm!\n");
return ret;
}
adev->pm.sysfs_initialized = true;
return 0;
}
void amdgpu_pm_sysfs_fini(struct amdgpu_device *adev)
{
if (adev->pm.int_hwmon_dev)
hwmon_device_unregister(adev->pm.int_hwmon_dev);
device_remove_file(adev->dev, &dev_attr_power_dpm_state);
device_remove_file(adev->dev, &dev_attr_power_dpm_force_performance_level);
if (adev->pp_enabled) {
device_remove_file(adev->dev, &dev_attr_pp_num_states);
device_remove_file(adev->dev, &dev_attr_pp_cur_state);
device_remove_file(adev->dev, &dev_attr_pp_force_state);
device_remove_file(adev->dev, &dev_attr_pp_table);
}
device_remove_file(adev->dev, &dev_attr_pp_dpm_sclk);
device_remove_file(adev->dev, &dev_attr_pp_dpm_mclk);
device_remove_file(adev->dev, &dev_attr_pp_dpm_pcie);
device_remove_file(adev->dev, &dev_attr_pp_sclk_od);
device_remove_file(adev->dev, &dev_attr_pp_mclk_od);
device_remove_file(adev->dev,
&dev_attr_pp_gfx_power_profile);
device_remove_file(adev->dev,
&dev_attr_pp_compute_power_profile);
}
void amdgpu_pm_compute_clocks(struct amdgpu_device *adev)
{
struct drm_device *ddev = adev->ddev;
struct drm_crtc *crtc;
struct amdgpu_crtc *amdgpu_crtc;
int i = 0;
if (!adev->pm.dpm_enabled)
return;
if (adev->mode_info.num_crtc)
amdgpu_display_bandwidth_update(adev);
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
struct amdgpu_ring *ring = adev->rings[i];
if (ring && ring->ready)
amdgpu_fence_wait_empty(ring);
}
if (adev->pp_enabled) {
amdgpu_dpm_dispatch_task(adev, AMD_PP_EVENT_DISPLAY_CONFIG_CHANGE, NULL, NULL);
} else {
mutex_lock(&adev->pm.mutex);
adev->pm.dpm.new_active_crtcs = 0;
adev->pm.dpm.new_active_crtc_count = 0;
if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
list_for_each_entry(crtc,
&ddev->mode_config.crtc_list, head) {
amdgpu_crtc = to_amdgpu_crtc(crtc);
if (crtc->enabled) {
adev->pm.dpm.new_active_crtcs |= (1 << amdgpu_crtc->crtc_id);
adev->pm.dpm.new_active_crtc_count++;
}
}
}
/* update battery/ac status */
if (power_supply_is_system_supplied() > 0)
adev->pm.dpm.ac_power = true;
else
adev->pm.dpm.ac_power = false;
amdgpu_dpm_change_power_state_locked(adev);
mutex_unlock(&adev->pm.mutex);
}
}
/*
* Debugfs info
*/
#if defined(CONFIG_DEBUG_FS)
static int amdgpu_debugfs_pm_info_pp(struct seq_file *m, struct amdgpu_device *adev)
{
uint32_t value;
struct pp_gpu_power query = {0};
int size;
/* sanity check PP is enabled */
if (!(adev->powerplay.pp_funcs &&
adev->powerplay.pp_funcs->read_sensor))
return -EINVAL;
/* GPU Clocks */
size = sizeof(value);
seq_printf(m, "GFX Clocks and Power:\n");
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (MCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (SCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&value, &size))
seq_printf(m, "\t%u mV (VDDGFX)\n", value);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&value, &size))
seq_printf(m, "\t%u mV (VDDNB)\n", value);
size = sizeof(query);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER, (void *)&query, &size)) {
seq_printf(m, "\t%u.%u W (VDDC)\n", query.vddc_power >> 8,
query.vddc_power & 0xff);
seq_printf(m, "\t%u.%u W (VDDCI)\n", query.vddci_power >> 8,
query.vddci_power & 0xff);
seq_printf(m, "\t%u.%u W (max GPU)\n", query.max_gpu_power >> 8,
query.max_gpu_power & 0xff);
seq_printf(m, "\t%u.%u W (average GPU)\n", query.average_gpu_power >> 8,
query.average_gpu_power & 0xff);
}
size = sizeof(value);
seq_printf(m, "\n");
/* GPU Temp */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_TEMP, (void *)&value, &size))
seq_printf(m, "GPU Temperature: %u C\n", value/1000);
/* GPU Load */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, (void *)&value, &size))
seq_printf(m, "GPU Load: %u %%\n", value);
seq_printf(m, "\n");
/* UVD clocks */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_POWER, (void *)&value, &size)) {
if (!value) {
seq_printf(m, "UVD: Disabled\n");
} else {
seq_printf(m, "UVD: Enabled\n");
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (DCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (VCLK)\n", value/100);
}
}
seq_printf(m, "\n");
/* VCE clocks */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_POWER, (void *)&value, &size)) {
if (!value) {
seq_printf(m, "VCE: Disabled\n");
} else {
seq_printf(m, "VCE: Enabled\n");
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_ECCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (ECCLK)\n", value/100);
}
}
return 0;
}
static void amdgpu_parse_cg_state(struct seq_file *m, u32 flags)
{
int i;
for (i = 0; clocks[i].flag; i++)
seq_printf(m, "\t%s: %s\n", clocks[i].name,
(flags & clocks[i].flag) ? "On" : "Off");
}
static int amdgpu_debugfs_pm_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct amdgpu_device *adev = dev->dev_private;
struct drm_device *ddev = adev->ddev;
u32 flags = 0;
amdgpu_get_clockgating_state(adev, &flags);
seq_printf(m, "Clock Gating Flags Mask: 0x%x\n", flags);
amdgpu_parse_cg_state(m, flags);
seq_printf(m, "\n");
if (!adev->pm.dpm_enabled) {
seq_printf(m, "dpm not enabled\n");
return 0;
}
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON)) {
seq_printf(m, "PX asic powered off\n");
} else if (adev->pp_enabled) {
return amdgpu_debugfs_pm_info_pp(m, adev);
} else {
mutex_lock(&adev->pm.mutex);
if (adev->pm.funcs->debugfs_print_current_performance_level)
adev->pm.funcs->debugfs_print_current_performance_level(adev, m);
else
seq_printf(m, "Debugfs support not implemented for this asic\n");
mutex_unlock(&adev->pm.mutex);
}
return 0;
}
static const struct drm_info_list amdgpu_pm_info_list[] = {
{"amdgpu_pm_info", amdgpu_debugfs_pm_info, 0, NULL},
};
#endif
static int amdgpu_debugfs_pm_init(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
return amdgpu_debugfs_add_files(adev, amdgpu_pm_info_list, ARRAY_SIZE(amdgpu_pm_info_list));
#else
return 0;
#endif
}