| /* |
| * kaslr.c |
| * |
| * This contains the routines needed to generate a reasonable level of |
| * entropy to choose a randomized kernel base address offset in support |
| * of Kernel Address Space Layout Randomization (KASLR). Additionally |
| * handles walking the physical memory maps (and tracking memory regions |
| * to avoid) in order to select a physical memory location that can |
| * contain the entire properly aligned running kernel image. |
| * |
| */ |
| #include "misc.h" |
| #include "error.h" |
| #include "../boot.h" |
| |
| #include <generated/compile.h> |
| #include <linux/module.h> |
| #include <linux/uts.h> |
| #include <linux/utsname.h> |
| #include <generated/utsrelease.h> |
| |
| /* Simplified build-specific string for starting entropy. */ |
| static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" |
| LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; |
| |
| static unsigned long rotate_xor(unsigned long hash, const void *area, |
| size_t size) |
| { |
| size_t i; |
| unsigned long *ptr = (unsigned long *)area; |
| |
| for (i = 0; i < size / sizeof(hash); i++) { |
| /* Rotate by odd number of bits and XOR. */ |
| hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); |
| hash ^= ptr[i]; |
| } |
| |
| return hash; |
| } |
| |
| /* Attempt to create a simple but unpredictable starting entropy. */ |
| static unsigned long get_boot_seed(void) |
| { |
| unsigned long hash = 0; |
| |
| hash = rotate_xor(hash, build_str, sizeof(build_str)); |
| hash = rotate_xor(hash, boot_params, sizeof(*boot_params)); |
| |
| return hash; |
| } |
| |
| #define KASLR_COMPRESSED_BOOT |
| #include "../../lib/kaslr.c" |
| |
| struct mem_vector { |
| unsigned long long start; |
| unsigned long long size; |
| }; |
| |
| /* Only supporting at most 4 unusable memmap regions with kaslr */ |
| #define MAX_MEMMAP_REGIONS 4 |
| |
| static bool memmap_too_large; |
| |
| enum mem_avoid_index { |
| MEM_AVOID_ZO_RANGE = 0, |
| MEM_AVOID_INITRD, |
| MEM_AVOID_CMDLINE, |
| MEM_AVOID_BOOTPARAMS, |
| MEM_AVOID_MEMMAP_BEGIN, |
| MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1, |
| MEM_AVOID_MAX, |
| }; |
| |
| static struct mem_vector mem_avoid[MEM_AVOID_MAX]; |
| |
| static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) |
| { |
| /* Item one is entirely before item two. */ |
| if (one->start + one->size <= two->start) |
| return false; |
| /* Item one is entirely after item two. */ |
| if (one->start >= two->start + two->size) |
| return false; |
| return true; |
| } |
| |
| /** |
| * _memparse - Parse a string with mem suffixes into a number |
| * @ptr: Where parse begins |
| * @retptr: (output) Optional pointer to next char after parse completes |
| * |
| * Parses a string into a number. The number stored at @ptr is |
| * potentially suffixed with K, M, G, T, P, E. |
| */ |
| static unsigned long long _memparse(const char *ptr, char **retptr) |
| { |
| char *endptr; /* Local pointer to end of parsed string */ |
| |
| unsigned long long ret = simple_strtoull(ptr, &endptr, 0); |
| |
| switch (*endptr) { |
| case 'E': |
| case 'e': |
| ret <<= 10; |
| case 'P': |
| case 'p': |
| ret <<= 10; |
| case 'T': |
| case 't': |
| ret <<= 10; |
| case 'G': |
| case 'g': |
| ret <<= 10; |
| case 'M': |
| case 'm': |
| ret <<= 10; |
| case 'K': |
| case 'k': |
| ret <<= 10; |
| endptr++; |
| default: |
| break; |
| } |
| |
| if (retptr) |
| *retptr = endptr; |
| |
| return ret; |
| } |
| |
| static int |
| parse_memmap(char *p, unsigned long long *start, unsigned long long *size) |
| { |
| char *oldp; |
| |
| if (!p) |
| return -EINVAL; |
| |
| /* We don't care about this option here */ |
| if (!strncmp(p, "exactmap", 8)) |
| return -EINVAL; |
| |
| oldp = p; |
| *size = _memparse(p, &p); |
| if (p == oldp) |
| return -EINVAL; |
| |
| switch (*p) { |
| case '@': |
| /* Skip this region, usable */ |
| *start = 0; |
| *size = 0; |
| return 0; |
| case '#': |
| case '$': |
| case '!': |
| *start = _memparse(p + 1, &p); |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static void mem_avoid_memmap(void) |
| { |
| char arg[128]; |
| int rc; |
| int i; |
| char *str; |
| |
| /* See if we have any memmap areas */ |
| rc = cmdline_find_option("memmap", arg, sizeof(arg)); |
| if (rc <= 0) |
| return; |
| |
| i = 0; |
| str = arg; |
| while (str && (i < MAX_MEMMAP_REGIONS)) { |
| int rc; |
| unsigned long long start, size; |
| char *k = strchr(str, ','); |
| |
| if (k) |
| *k++ = 0; |
| |
| rc = parse_memmap(str, &start, &size); |
| if (rc < 0) |
| break; |
| str = k; |
| /* A usable region that should not be skipped */ |
| if (size == 0) |
| continue; |
| |
| mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start; |
| mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size; |
| i++; |
| } |
| |
| /* More than 4 memmaps, fail kaslr */ |
| if ((i >= MAX_MEMMAP_REGIONS) && str) |
| memmap_too_large = true; |
| } |
| |
| /* |
| * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T). |
| * The mem_avoid array is used to store the ranges that need to be avoided |
| * when KASLR searches for an appropriate random address. We must avoid any |
| * regions that are unsafe to overlap with during decompression, and other |
| * things like the initrd, cmdline and boot_params. This comment seeks to |
| * explain mem_avoid as clearly as possible since incorrect mem_avoid |
| * memory ranges lead to really hard to debug boot failures. |
| * |
| * The initrd, cmdline, and boot_params are trivial to identify for |
| * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and |
| * MEM_AVOID_BOOTPARAMS respectively below. |
| * |
| * What is not obvious how to avoid is the range of memory that is used |
| * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover |
| * the compressed kernel (ZO) and its run space, which is used to extract |
| * the uncompressed kernel (VO) and relocs. |
| * |
| * ZO's full run size sits against the end of the decompression buffer, so |
| * we can calculate where text, data, bss, etc of ZO are positioned more |
| * easily. |
| * |
| * For additional background, the decompression calculations can be found |
| * in header.S, and the memory diagram is based on the one found in misc.c. |
| * |
| * The following conditions are already enforced by the image layouts and |
| * associated code: |
| * - input + input_size >= output + output_size |
| * - kernel_total_size <= init_size |
| * - kernel_total_size <= output_size (see Note below) |
| * - output + init_size >= output + output_size |
| * |
| * (Note that kernel_total_size and output_size have no fundamental |
| * relationship, but output_size is passed to choose_random_location |
| * as a maximum of the two. The diagram is showing a case where |
| * kernel_total_size is larger than output_size, but this case is |
| * handled by bumping output_size.) |
| * |
| * The above conditions can be illustrated by a diagram: |
| * |
| * 0 output input input+input_size output+init_size |
| * | | | | | |
| * | | | | | |
| * |-----|--------|--------|--------------|-----------|--|-------------| |
| * | | | |
| * | | | |
| * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size |
| * |
| * [output, output+init_size) is the entire memory range used for |
| * extracting the compressed image. |
| * |
| * [output, output+kernel_total_size) is the range needed for the |
| * uncompressed kernel (VO) and its run size (bss, brk, etc). |
| * |
| * [output, output+output_size) is VO plus relocs (i.e. the entire |
| * uncompressed payload contained by ZO). This is the area of the buffer |
| * written to during decompression. |
| * |
| * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case |
| * range of the copied ZO and decompression code. (i.e. the range |
| * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.) |
| * |
| * [input, input+input_size) is the original copied compressed image (ZO) |
| * (i.e. it does not include its run size). This range must be avoided |
| * because it contains the data used for decompression. |
| * |
| * [input+input_size, output+init_size) is [_text, _end) for ZO. This |
| * range includes ZO's heap and stack, and must be avoided since it |
| * performs the decompression. |
| * |
| * Since the above two ranges need to be avoided and they are adjacent, |
| * they can be merged, resulting in: [input, output+init_size) which |
| * becomes the MEM_AVOID_ZO_RANGE below. |
| */ |
| static void mem_avoid_init(unsigned long input, unsigned long input_size, |
| unsigned long output) |
| { |
| unsigned long init_size = boot_params->hdr.init_size; |
| u64 initrd_start, initrd_size; |
| u64 cmd_line, cmd_line_size; |
| char *ptr; |
| |
| /* |
| * Avoid the region that is unsafe to overlap during |
| * decompression. |
| */ |
| mem_avoid[MEM_AVOID_ZO_RANGE].start = input; |
| mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input; |
| add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start, |
| mem_avoid[MEM_AVOID_ZO_RANGE].size); |
| |
| /* Avoid initrd. */ |
| initrd_start = (u64)boot_params->ext_ramdisk_image << 32; |
| initrd_start |= boot_params->hdr.ramdisk_image; |
| initrd_size = (u64)boot_params->ext_ramdisk_size << 32; |
| initrd_size |= boot_params->hdr.ramdisk_size; |
| mem_avoid[MEM_AVOID_INITRD].start = initrd_start; |
| mem_avoid[MEM_AVOID_INITRD].size = initrd_size; |
| /* No need to set mapping for initrd, it will be handled in VO. */ |
| |
| /* Avoid kernel command line. */ |
| cmd_line = (u64)boot_params->ext_cmd_line_ptr << 32; |
| cmd_line |= boot_params->hdr.cmd_line_ptr; |
| /* Calculate size of cmd_line. */ |
| ptr = (char *)(unsigned long)cmd_line; |
| for (cmd_line_size = 0; ptr[cmd_line_size++]; ) |
| ; |
| mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line; |
| mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size; |
| add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start, |
| mem_avoid[MEM_AVOID_CMDLINE].size); |
| |
| /* Avoid boot parameters. */ |
| mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params; |
| mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params); |
| add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start, |
| mem_avoid[MEM_AVOID_BOOTPARAMS].size); |
| |
| /* We don't need to set a mapping for setup_data. */ |
| |
| /* Mark the memmap regions we need to avoid */ |
| mem_avoid_memmap(); |
| |
| #ifdef CONFIG_X86_VERBOSE_BOOTUP |
| /* Make sure video RAM can be used. */ |
| add_identity_map(0, PMD_SIZE); |
| #endif |
| } |
| |
| /* |
| * Does this memory vector overlap a known avoided area? If so, record the |
| * overlap region with the lowest address. |
| */ |
| static bool mem_avoid_overlap(struct mem_vector *img, |
| struct mem_vector *overlap) |
| { |
| int i; |
| struct setup_data *ptr; |
| unsigned long earliest = img->start + img->size; |
| bool is_overlapping = false; |
| |
| for (i = 0; i < MEM_AVOID_MAX; i++) { |
| if (mem_overlaps(img, &mem_avoid[i]) && |
| mem_avoid[i].start < earliest) { |
| *overlap = mem_avoid[i]; |
| earliest = overlap->start; |
| is_overlapping = true; |
| } |
| } |
| |
| /* Avoid all entries in the setup_data linked list. */ |
| ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; |
| while (ptr) { |
| struct mem_vector avoid; |
| |
| avoid.start = (unsigned long)ptr; |
| avoid.size = sizeof(*ptr) + ptr->len; |
| |
| if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { |
| *overlap = avoid; |
| earliest = overlap->start; |
| is_overlapping = true; |
| } |
| |
| ptr = (struct setup_data *)(unsigned long)ptr->next; |
| } |
| |
| return is_overlapping; |
| } |
| |
| struct slot_area { |
| unsigned long addr; |
| int num; |
| }; |
| |
| #define MAX_SLOT_AREA 100 |
| |
| static struct slot_area slot_areas[MAX_SLOT_AREA]; |
| |
| static unsigned long slot_max; |
| |
| static unsigned long slot_area_index; |
| |
| static void store_slot_info(struct mem_vector *region, unsigned long image_size) |
| { |
| struct slot_area slot_area; |
| |
| if (slot_area_index == MAX_SLOT_AREA) |
| return; |
| |
| slot_area.addr = region->start; |
| slot_area.num = (region->size - image_size) / |
| CONFIG_PHYSICAL_ALIGN + 1; |
| |
| if (slot_area.num > 0) { |
| slot_areas[slot_area_index++] = slot_area; |
| slot_max += slot_area.num; |
| } |
| } |
| |
| static unsigned long slots_fetch_random(void) |
| { |
| unsigned long slot; |
| int i; |
| |
| /* Handle case of no slots stored. */ |
| if (slot_max == 0) |
| return 0; |
| |
| slot = kaslr_get_random_long("Physical") % slot_max; |
| |
| for (i = 0; i < slot_area_index; i++) { |
| if (slot >= slot_areas[i].num) { |
| slot -= slot_areas[i].num; |
| continue; |
| } |
| return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN; |
| } |
| |
| if (i == slot_area_index) |
| debug_putstr("slots_fetch_random() failed!?\n"); |
| return 0; |
| } |
| |
| static void process_e820_entry(struct boot_e820_entry *entry, |
| unsigned long minimum, |
| unsigned long image_size) |
| { |
| struct mem_vector region, overlap; |
| struct slot_area slot_area; |
| unsigned long start_orig; |
| |
| /* Skip non-RAM entries. */ |
| if (entry->type != E820_TYPE_RAM) |
| return; |
| |
| /* On 32-bit, ignore entries entirely above our maximum. */ |
| if (IS_ENABLED(CONFIG_X86_32) && entry->addr >= KERNEL_IMAGE_SIZE) |
| return; |
| |
| /* Ignore entries entirely below our minimum. */ |
| if (entry->addr + entry->size < minimum) |
| return; |
| |
| region.start = entry->addr; |
| region.size = entry->size; |
| |
| /* Give up if slot area array is full. */ |
| while (slot_area_index < MAX_SLOT_AREA) { |
| start_orig = region.start; |
| |
| /* Potentially raise address to minimum location. */ |
| if (region.start < minimum) |
| region.start = minimum; |
| |
| /* Potentially raise address to meet alignment needs. */ |
| region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); |
| |
| /* Did we raise the address above this e820 region? */ |
| if (region.start > entry->addr + entry->size) |
| return; |
| |
| /* Reduce size by any delta from the original address. */ |
| region.size -= region.start - start_orig; |
| |
| /* On 32-bit, reduce region size to fit within max size. */ |
| if (IS_ENABLED(CONFIG_X86_32) && |
| region.start + region.size > KERNEL_IMAGE_SIZE) |
| region.size = KERNEL_IMAGE_SIZE - region.start; |
| |
| /* Return if region can't contain decompressed kernel */ |
| if (region.size < image_size) |
| return; |
| |
| /* If nothing overlaps, store the region and return. */ |
| if (!mem_avoid_overlap(®ion, &overlap)) { |
| store_slot_info(®ion, image_size); |
| return; |
| } |
| |
| /* Store beginning of region if holds at least image_size. */ |
| if (overlap.start > region.start + image_size) { |
| struct mem_vector beginning; |
| |
| beginning.start = region.start; |
| beginning.size = overlap.start - region.start; |
| store_slot_info(&beginning, image_size); |
| } |
| |
| /* Return if overlap extends to or past end of region. */ |
| if (overlap.start + overlap.size >= region.start + region.size) |
| return; |
| |
| /* Clip off the overlapping region and start over. */ |
| region.size -= overlap.start - region.start + overlap.size; |
| region.start = overlap.start + overlap.size; |
| } |
| } |
| |
| static unsigned long find_random_phys_addr(unsigned long minimum, |
| unsigned long image_size) |
| { |
| int i; |
| unsigned long addr; |
| |
| /* Check if we had too many memmaps. */ |
| if (memmap_too_large) { |
| debug_putstr("Aborted e820 scan (more than 4 memmap= args)!\n"); |
| return 0; |
| } |
| |
| /* Make sure minimum is aligned. */ |
| minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); |
| |
| /* Verify potential e820 positions, appending to slots list. */ |
| for (i = 0; i < boot_params->e820_entries; i++) { |
| process_e820_entry(&boot_params->e820_table[i], minimum, |
| image_size); |
| if (slot_area_index == MAX_SLOT_AREA) { |
| debug_putstr("Aborted e820 scan (slot_areas full)!\n"); |
| break; |
| } |
| } |
| |
| return slots_fetch_random(); |
| } |
| |
| static unsigned long find_random_virt_addr(unsigned long minimum, |
| unsigned long image_size) |
| { |
| unsigned long slots, random_addr; |
| |
| /* Make sure minimum is aligned. */ |
| minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); |
| /* Align image_size for easy slot calculations. */ |
| image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN); |
| |
| /* |
| * There are how many CONFIG_PHYSICAL_ALIGN-sized slots |
| * that can hold image_size within the range of minimum to |
| * KERNEL_IMAGE_SIZE? |
| */ |
| slots = (KERNEL_IMAGE_SIZE - minimum - image_size) / |
| CONFIG_PHYSICAL_ALIGN + 1; |
| |
| random_addr = kaslr_get_random_long("Virtual") % slots; |
| |
| return random_addr * CONFIG_PHYSICAL_ALIGN + minimum; |
| } |
| |
| /* |
| * Since this function examines addresses much more numerically, |
| * it takes the input and output pointers as 'unsigned long'. |
| */ |
| void choose_random_location(unsigned long input, |
| unsigned long input_size, |
| unsigned long *output, |
| unsigned long output_size, |
| unsigned long *virt_addr) |
| { |
| unsigned long random_addr, min_addr; |
| |
| if (cmdline_find_option_bool("nokaslr")) { |
| warn("KASLR disabled: 'nokaslr' on cmdline."); |
| return; |
| } |
| |
| boot_params->hdr.loadflags |= KASLR_FLAG; |
| |
| /* Prepare to add new identity pagetables on demand. */ |
| initialize_identity_maps(); |
| |
| /* Record the various known unsafe memory ranges. */ |
| mem_avoid_init(input, input_size, *output); |
| |
| /* |
| * Low end of the randomization range should be the |
| * smaller of 512M or the initial kernel image |
| * location: |
| */ |
| min_addr = min(*output, 512UL << 20); |
| |
| /* Walk e820 and find a random address. */ |
| random_addr = find_random_phys_addr(min_addr, output_size); |
| if (!random_addr) { |
| warn("Physical KASLR disabled: no suitable memory region!"); |
| } else { |
| /* Update the new physical address location. */ |
| if (*output != random_addr) { |
| add_identity_map(random_addr, output_size); |
| *output = random_addr; |
| } |
| |
| /* |
| * This loads the identity mapping page table. |
| * This should only be done if a new physical address |
| * is found for the kernel, otherwise we should keep |
| * the old page table to make it be like the "nokaslr" |
| * case. |
| */ |
| finalize_identity_maps(); |
| } |
| |
| |
| /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */ |
| if (IS_ENABLED(CONFIG_X86_64)) |
| random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size); |
| *virt_addr = random_addr; |
| } |