| /* |
| * Copyright © 2006-2011 Intel Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| */ |
| |
| #include <linux/i2c.h> |
| |
| #include <drm/drmP.h> |
| #include <drm/drm_plane_helper.h> |
| #include "framebuffer.h" |
| #include "psb_drv.h" |
| #include "psb_intel_drv.h" |
| #include "psb_intel_reg.h" |
| #include "gma_display.h" |
| #include "power.h" |
| |
| #define INTEL_LIMIT_I9XX_SDVO_DAC 0 |
| #define INTEL_LIMIT_I9XX_LVDS 1 |
| |
| static const struct gma_limit_t psb_intel_limits[] = { |
| { /* INTEL_LIMIT_I9XX_SDVO_DAC */ |
| .dot = {.min = 20000, .max = 400000}, |
| .vco = {.min = 1400000, .max = 2800000}, |
| .n = {.min = 1, .max = 6}, |
| .m = {.min = 70, .max = 120}, |
| .m1 = {.min = 8, .max = 18}, |
| .m2 = {.min = 3, .max = 7}, |
| .p = {.min = 5, .max = 80}, |
| .p1 = {.min = 1, .max = 8}, |
| .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5}, |
| .find_pll = gma_find_best_pll, |
| }, |
| { /* INTEL_LIMIT_I9XX_LVDS */ |
| .dot = {.min = 20000, .max = 400000}, |
| .vco = {.min = 1400000, .max = 2800000}, |
| .n = {.min = 1, .max = 6}, |
| .m = {.min = 70, .max = 120}, |
| .m1 = {.min = 8, .max = 18}, |
| .m2 = {.min = 3, .max = 7}, |
| .p = {.min = 7, .max = 98}, |
| .p1 = {.min = 1, .max = 8}, |
| /* The single-channel range is 25-112Mhz, and dual-channel |
| * is 80-224Mhz. Prefer single channel as much as possible. |
| */ |
| .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7}, |
| .find_pll = gma_find_best_pll, |
| }, |
| }; |
| |
| static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc, |
| int refclk) |
| { |
| const struct gma_limit_t *limit; |
| |
| if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) |
| limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS]; |
| else |
| limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC]; |
| return limit; |
| } |
| |
| static void psb_intel_clock(int refclk, struct gma_clock_t *clock) |
| { |
| clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); |
| clock->p = clock->p1 * clock->p2; |
| clock->vco = refclk * clock->m / (clock->n + 2); |
| clock->dot = clock->vco / clock->p; |
| } |
| |
| /** |
| * Return the pipe currently connected to the panel fitter, |
| * or -1 if the panel fitter is not present or not in use |
| */ |
| static int psb_intel_panel_fitter_pipe(struct drm_device *dev) |
| { |
| u32 pfit_control; |
| |
| pfit_control = REG_READ(PFIT_CONTROL); |
| |
| /* See if the panel fitter is in use */ |
| if ((pfit_control & PFIT_ENABLE) == 0) |
| return -1; |
| /* Must be on PIPE 1 for PSB */ |
| return 1; |
| } |
| |
| static int psb_intel_crtc_mode_set(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode, |
| int x, int y, |
| struct drm_framebuffer *old_fb) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| struct gma_crtc *gma_crtc = to_gma_crtc(crtc); |
| const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; |
| int pipe = gma_crtc->pipe; |
| const struct psb_offset *map = &dev_priv->regmap[pipe]; |
| int refclk; |
| struct gma_clock_t clock; |
| u32 dpll = 0, fp = 0, dspcntr, pipeconf; |
| bool ok, is_sdvo = false; |
| bool is_lvds = false, is_tv = false; |
| struct drm_mode_config *mode_config = &dev->mode_config; |
| struct drm_connector *connector; |
| const struct gma_limit_t *limit; |
| |
| /* No scan out no play */ |
| if (crtc->primary->fb == NULL) { |
| crtc_funcs->mode_set_base(crtc, x, y, old_fb); |
| return 0; |
| } |
| |
| list_for_each_entry(connector, &mode_config->connector_list, head) { |
| struct gma_encoder *gma_encoder = gma_attached_encoder(connector); |
| |
| if (!connector->encoder |
| || connector->encoder->crtc != crtc) |
| continue; |
| |
| switch (gma_encoder->type) { |
| case INTEL_OUTPUT_LVDS: |
| is_lvds = true; |
| break; |
| case INTEL_OUTPUT_SDVO: |
| is_sdvo = true; |
| break; |
| case INTEL_OUTPUT_TVOUT: |
| is_tv = true; |
| break; |
| } |
| } |
| |
| refclk = 96000; |
| |
| limit = gma_crtc->clock_funcs->limit(crtc, refclk); |
| |
| ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, |
| &clock); |
| if (!ok) { |
| DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d", |
| adjusted_mode->clock, clock.dot); |
| return 0; |
| } |
| |
| fp = clock.n << 16 | clock.m1 << 8 | clock.m2; |
| |
| dpll = DPLL_VGA_MODE_DIS; |
| if (is_lvds) { |
| dpll |= DPLLB_MODE_LVDS; |
| dpll |= DPLL_DVO_HIGH_SPEED; |
| } else |
| dpll |= DPLLB_MODE_DAC_SERIAL; |
| if (is_sdvo) { |
| int sdvo_pixel_multiply = |
| adjusted_mode->clock / mode->clock; |
| dpll |= DPLL_DVO_HIGH_SPEED; |
| dpll |= |
| (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; |
| } |
| |
| /* compute bitmask from p1 value */ |
| dpll |= (1 << (clock.p1 - 1)) << 16; |
| switch (clock.p2) { |
| case 5: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; |
| break; |
| case 7: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; |
| break; |
| case 10: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; |
| break; |
| case 14: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; |
| break; |
| } |
| |
| if (is_tv) { |
| /* XXX: just matching BIOS for now */ |
| /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ |
| dpll |= 3; |
| } |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| /* setup pipeconf */ |
| pipeconf = REG_READ(map->conf); |
| |
| /* Set up the display plane register */ |
| dspcntr = DISPPLANE_GAMMA_ENABLE; |
| |
| if (pipe == 0) |
| dspcntr |= DISPPLANE_SEL_PIPE_A; |
| else |
| dspcntr |= DISPPLANE_SEL_PIPE_B; |
| |
| dspcntr |= DISPLAY_PLANE_ENABLE; |
| pipeconf |= PIPEACONF_ENABLE; |
| dpll |= DPLL_VCO_ENABLE; |
| |
| |
| /* Disable the panel fitter if it was on our pipe */ |
| if (psb_intel_panel_fitter_pipe(dev) == pipe) |
| REG_WRITE(PFIT_CONTROL, 0); |
| |
| drm_mode_debug_printmodeline(mode); |
| |
| if (dpll & DPLL_VCO_ENABLE) { |
| REG_WRITE(map->fp0, fp); |
| REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE); |
| REG_READ(map->dpll); |
| udelay(150); |
| } |
| |
| /* The LVDS pin pair needs to be on before the DPLLs are enabled. |
| * This is an exception to the general rule that mode_set doesn't turn |
| * things on. |
| */ |
| if (is_lvds) { |
| u32 lvds = REG_READ(LVDS); |
| |
| lvds &= ~LVDS_PIPEB_SELECT; |
| if (pipe == 1) |
| lvds |= LVDS_PIPEB_SELECT; |
| |
| lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; |
| /* Set the B0-B3 data pairs corresponding to |
| * whether we're going to |
| * set the DPLLs for dual-channel mode or not. |
| */ |
| lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); |
| if (clock.p2 == 7) |
| lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; |
| |
| /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) |
| * appropriately here, but we need to look more |
| * thoroughly into how panels behave in the two modes. |
| */ |
| |
| REG_WRITE(LVDS, lvds); |
| REG_READ(LVDS); |
| } |
| |
| REG_WRITE(map->fp0, fp); |
| REG_WRITE(map->dpll, dpll); |
| REG_READ(map->dpll); |
| /* Wait for the clocks to stabilize. */ |
| udelay(150); |
| |
| /* write it again -- the BIOS does, after all */ |
| REG_WRITE(map->dpll, dpll); |
| |
| REG_READ(map->dpll); |
| /* Wait for the clocks to stabilize. */ |
| udelay(150); |
| |
| REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) | |
| ((adjusted_mode->crtc_htotal - 1) << 16)); |
| REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) | |
| ((adjusted_mode->crtc_hblank_end - 1) << 16)); |
| REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) | |
| ((adjusted_mode->crtc_hsync_end - 1) << 16)); |
| REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) | |
| ((adjusted_mode->crtc_vtotal - 1) << 16)); |
| REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) | |
| ((adjusted_mode->crtc_vblank_end - 1) << 16)); |
| REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) | |
| ((adjusted_mode->crtc_vsync_end - 1) << 16)); |
| /* pipesrc and dspsize control the size that is scaled from, |
| * which should always be the user's requested size. |
| */ |
| REG_WRITE(map->size, |
| ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); |
| REG_WRITE(map->pos, 0); |
| REG_WRITE(map->src, |
| ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); |
| REG_WRITE(map->conf, pipeconf); |
| REG_READ(map->conf); |
| |
| gma_wait_for_vblank(dev); |
| |
| REG_WRITE(map->cntr, dspcntr); |
| |
| /* Flush the plane changes */ |
| crtc_funcs->mode_set_base(crtc, x, y, old_fb); |
| |
| gma_wait_for_vblank(dev); |
| |
| return 0; |
| } |
| |
| /* Returns the clock of the currently programmed mode of the given pipe. */ |
| static int psb_intel_crtc_clock_get(struct drm_device *dev, |
| struct drm_crtc *crtc) |
| { |
| struct gma_crtc *gma_crtc = to_gma_crtc(crtc); |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| int pipe = gma_crtc->pipe; |
| const struct psb_offset *map = &dev_priv->regmap[pipe]; |
| u32 dpll; |
| u32 fp; |
| struct gma_clock_t clock; |
| bool is_lvds; |
| struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; |
| |
| if (gma_power_begin(dev, false)) { |
| dpll = REG_READ(map->dpll); |
| if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) |
| fp = REG_READ(map->fp0); |
| else |
| fp = REG_READ(map->fp1); |
| is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); |
| gma_power_end(dev); |
| } else { |
| dpll = p->dpll; |
| |
| if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) |
| fp = p->fp0; |
| else |
| fp = p->fp1; |
| |
| is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS & |
| LVDS_PORT_EN); |
| } |
| |
| clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; |
| clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; |
| |
| if (is_lvds) { |
| clock.p1 = |
| ffs((dpll & |
| DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT); |
| clock.p2 = 14; |
| |
| if ((dpll & PLL_REF_INPUT_MASK) == |
| PLLB_REF_INPUT_SPREADSPECTRUMIN) { |
| /* XXX: might not be 66MHz */ |
| psb_intel_clock(66000, &clock); |
| } else |
| psb_intel_clock(48000, &clock); |
| } else { |
| if (dpll & PLL_P1_DIVIDE_BY_TWO) |
| clock.p1 = 2; |
| else { |
| clock.p1 = |
| ((dpll & |
| DPLL_FPA01_P1_POST_DIV_MASK_I830) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; |
| } |
| if (dpll & PLL_P2_DIVIDE_BY_4) |
| clock.p2 = 4; |
| else |
| clock.p2 = 2; |
| |
| psb_intel_clock(48000, &clock); |
| } |
| |
| /* XXX: It would be nice to validate the clocks, but we can't reuse |
| * i830PllIsValid() because it relies on the xf86_config connector |
| * configuration being accurate, which it isn't necessarily. |
| */ |
| |
| return clock.dot; |
| } |
| |
| /** Returns the currently programmed mode of the given pipe. */ |
| struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev, |
| struct drm_crtc *crtc) |
| { |
| struct gma_crtc *gma_crtc = to_gma_crtc(crtc); |
| int pipe = gma_crtc->pipe; |
| struct drm_display_mode *mode; |
| int htot; |
| int hsync; |
| int vtot; |
| int vsync; |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; |
| const struct psb_offset *map = &dev_priv->regmap[pipe]; |
| |
| if (gma_power_begin(dev, false)) { |
| htot = REG_READ(map->htotal); |
| hsync = REG_READ(map->hsync); |
| vtot = REG_READ(map->vtotal); |
| vsync = REG_READ(map->vsync); |
| gma_power_end(dev); |
| } else { |
| htot = p->htotal; |
| hsync = p->hsync; |
| vtot = p->vtotal; |
| vsync = p->vsync; |
| } |
| |
| mode = kzalloc(sizeof(*mode), GFP_KERNEL); |
| if (!mode) |
| return NULL; |
| |
| mode->clock = psb_intel_crtc_clock_get(dev, crtc); |
| mode->hdisplay = (htot & 0xffff) + 1; |
| mode->htotal = ((htot & 0xffff0000) >> 16) + 1; |
| mode->hsync_start = (hsync & 0xffff) + 1; |
| mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; |
| mode->vdisplay = (vtot & 0xffff) + 1; |
| mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; |
| mode->vsync_start = (vsync & 0xffff) + 1; |
| mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; |
| |
| drm_mode_set_name(mode); |
| drm_mode_set_crtcinfo(mode, 0); |
| |
| return mode; |
| } |
| |
| const struct drm_crtc_helper_funcs psb_intel_helper_funcs = { |
| .dpms = gma_crtc_dpms, |
| .mode_set = psb_intel_crtc_mode_set, |
| .mode_set_base = gma_pipe_set_base, |
| .prepare = gma_crtc_prepare, |
| .commit = gma_crtc_commit, |
| .disable = gma_crtc_disable, |
| }; |
| |
| const struct drm_crtc_funcs psb_intel_crtc_funcs = { |
| .cursor_set = gma_crtc_cursor_set, |
| .cursor_move = gma_crtc_cursor_move, |
| .gamma_set = gma_crtc_gamma_set, |
| .set_config = gma_crtc_set_config, |
| .destroy = gma_crtc_destroy, |
| }; |
| |
| const struct gma_clock_funcs psb_clock_funcs = { |
| .clock = psb_intel_clock, |
| .limit = psb_intel_limit, |
| .pll_is_valid = gma_pll_is_valid, |
| }; |
| |
| /* |
| * Set the default value of cursor control and base register |
| * to zero. This is a workaround for h/w defect on Oaktrail |
| */ |
| static void psb_intel_cursor_init(struct drm_device *dev, |
| struct gma_crtc *gma_crtc) |
| { |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR }; |
| u32 base[3] = { CURABASE, CURBBASE, CURCBASE }; |
| struct gtt_range *cursor_gt; |
| |
| if (dev_priv->ops->cursor_needs_phys) { |
| /* Allocate 4 pages of stolen mem for a hardware cursor. That |
| * is enough for the 64 x 64 ARGB cursors we support. |
| */ |
| cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1, |
| PAGE_SIZE); |
| if (!cursor_gt) { |
| gma_crtc->cursor_gt = NULL; |
| goto out; |
| } |
| gma_crtc->cursor_gt = cursor_gt; |
| gma_crtc->cursor_addr = dev_priv->stolen_base + |
| cursor_gt->offset; |
| } else { |
| gma_crtc->cursor_gt = NULL; |
| } |
| |
| out: |
| REG_WRITE(control[gma_crtc->pipe], 0); |
| REG_WRITE(base[gma_crtc->pipe], 0); |
| } |
| |
| void psb_intel_crtc_init(struct drm_device *dev, int pipe, |
| struct psb_intel_mode_device *mode_dev) |
| { |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| struct gma_crtc *gma_crtc; |
| int i; |
| |
| /* We allocate a extra array of drm_connector pointers |
| * for fbdev after the crtc */ |
| gma_crtc = kzalloc(sizeof(struct gma_crtc) + |
| (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), |
| GFP_KERNEL); |
| if (gma_crtc == NULL) |
| return; |
| |
| gma_crtc->crtc_state = |
| kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL); |
| if (!gma_crtc->crtc_state) { |
| dev_err(dev->dev, "Crtc state error: No memory\n"); |
| kfree(gma_crtc); |
| return; |
| } |
| |
| /* Set the CRTC operations from the chip specific data */ |
| drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs); |
| |
| /* Set the CRTC clock functions from chip specific data */ |
| gma_crtc->clock_funcs = dev_priv->ops->clock_funcs; |
| |
| drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256); |
| gma_crtc->pipe = pipe; |
| gma_crtc->plane = pipe; |
| |
| for (i = 0; i < 256; i++) { |
| gma_crtc->lut_r[i] = i; |
| gma_crtc->lut_g[i] = i; |
| gma_crtc->lut_b[i] = i; |
| |
| gma_crtc->lut_adj[i] = 0; |
| } |
| |
| gma_crtc->mode_dev = mode_dev; |
| gma_crtc->cursor_addr = 0; |
| |
| drm_crtc_helper_add(&gma_crtc->base, |
| dev_priv->ops->crtc_helper); |
| |
| /* Setup the array of drm_connector pointer array */ |
| gma_crtc->mode_set.crtc = &gma_crtc->base; |
| BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || |
| dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL); |
| dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base; |
| dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base; |
| gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1); |
| gma_crtc->mode_set.num_connectors = 0; |
| psb_intel_cursor_init(dev, gma_crtc); |
| |
| /* Set to true so that the pipe is forced off on initial config. */ |
| gma_crtc->active = true; |
| } |
| |
| struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe) |
| { |
| struct drm_crtc *crtc = NULL; |
| |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| struct gma_crtc *gma_crtc = to_gma_crtc(crtc); |
| if (gma_crtc->pipe == pipe) |
| break; |
| } |
| return crtc; |
| } |
| |
| int gma_connector_clones(struct drm_device *dev, int type_mask) |
| { |
| int index_mask = 0; |
| struct drm_connector *connector; |
| int entry = 0; |
| |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| head) { |
| struct gma_encoder *gma_encoder = gma_attached_encoder(connector); |
| if (type_mask & (1 << gma_encoder->type)) |
| index_mask |= (1 << entry); |
| entry++; |
| } |
| return index_mask; |
| } |